NO142969B - Kjoeleanordning for gassturbiner. - Google Patents

Kjoeleanordning for gassturbiner. Download PDF

Info

Publication number
NO142969B
NO142969B NO2942/70A NO294270A NO142969B NO 142969 B NO142969 B NO 142969B NO 2942/70 A NO2942/70 A NO 2942/70A NO 294270 A NO294270 A NO 294270A NO 142969 B NO142969 B NO 142969B
Authority
NO
Norway
Prior art keywords
reactance
currents
phase
phases
transformers
Prior art date
Application number
NO2942/70A
Other languages
English (en)
Other versions
NO142969C (no
Inventor
Richard Warren Gentile
Wayne Burdell Moyer
Original Assignee
Gen Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gen Electric filed Critical Gen Electric
Publication of NO142969B publication Critical patent/NO142969B/no
Publication of NO142969C publication Critical patent/NO142969C/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/601Fluid transfer using an ejector or a jet pump

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

Symmetreringsanordning for tre-fasede lysbueovner.
Ved tre-fasede lysbueovner forlegges tilførselsledningene fra transformatorens
tre faser til de tre elektroder alltid slik at ledningen til den ene elektrode ligger mellom og omtrent i samme plan som lednin-gene til de to andre elektroder. Hvis man betrakter ovnen ovenfra, kan man derfor tale om en «midtledning» og «ytre led-ninger», selv om selve elektrodene i virke-ligheten er anordnet i hjørnene av et like-sidet triangel. Analogt anvendes da ut-trykkene «midtelektrode» og «ytterelektroder». For enkelhets skyld skal disse be-tegnelser anvendes i den følgende beskri-velse.
Vanligvis forbindes hver elektrode med den ene ende av et kabelknippe, hvis annen ende er fast forankret i transformatorens skinnesystem. Transformatorfasene er som oftest delta-koblet med mange parallelle skinner pr. pol. For å ned-sette hvirvelstrømtapene i skinner og jern-bjeiker «stokkes» pluss- og minusskinnene med hinannen, slik at innenfor samme fase nærliggende skinner alltid fører strømmer av motsatt retning. Denne «stokking» kan imidlertid ikke utstrekkes lenger enn til opphengningspunktene for elektrodenes kabelknipper.
Det er et alminnelig kjent faktum at
kabelknippenes anordning i tre plan med store innbyrdes avstander fører til betyde-lige usymmetrier i de tre fasers strømmer og effekter. I henhold til patent 85 848 kan disse elimineres ved en riktig avpasset
økning av det midterste kabelknippes selv-
reaktans. Man har derfor latt det midterste knippe passere gjennom en laminert jern-krets med et passende antall luftgap.
Ved hjelp av denne anordning oppnås riktignok den nærmeste hensikt — fasenes symmetrering —, men utførelsen er for så vidt ugunstig som reaktansspolen kom-mer til å ligge i et område hvor skinne-systemet ikke lenger er «stokket». Der oppstår derfor sterke spredefelter og hvir-velstrømtap i spolen som så på sin side frembringer nye spredefelter og hvirvel-strømtap i byggets eller rommets arme-ringsjern. Der foreligger derfor et stort behov for en bedre symmetreringsmåte, hvor inngrepene i ledningssystemet gjøres innenfor de stokkede skinneføringers område, og foreliggende oppfinnelse angir en løsning av dette krav.
Oppfinnelsen angår nærmere bestemt en symmetreringsanordning for tre-fasede lysbueovner med en midtelektrode, som fører strømmen I2 og to ytterelektroder som fører strømmene I, henholdsvis I3, matet fra transformatorer i A-kobling med en midtfase som fører strømmen (I3 - I,)/3 og av to ytterfaser som fører strøm-mene ( I^- l. 2)/ 3 henholdsvis (I2-I3)/3; oppfinnelsen utmerker seg ved et reaktanselement som består av to like, bifilare viklinger som hver er seriekoblet med en av transformatorenes ytterfaser, slik at reaktanselementets resulterende ampérevin-dingstall er proporsjonalt med -(I, -I2)/3 + (I2-I.j)/3 = lg, hvor strømstyrken er angitt som vektorer.
Fig. 1 viser et koblingsskjema for an-ordningen ifølge oppfinnelsen, fig. 2 et forenklet skjema og fig. 3 et vektordia-gram for transformatorenes fasestrømmer i forhold til elektrodestrømmene.
Fra tre énfasetransformatorers sekun-dærsider S føres «stokkede» skinnestrenger 4 til A-koblingsstedet D—D, hvorfra ikke «stokkede» kabelknipper 5 fører strøm-mene I,, I2, I3 til elektrodene 6, 6P 62 og 63 i en lysbueovn. Da elektrodene kan antas å være Y-koblet, er
Transformatorenes sekundærstrømmer er ved gjennomført symmetrering
I henhold til fig. 1 kan man også for transformatorfasene innføre begrepene «ytterfaser» (1—2 hhv. 2—3) og «midtfase» (3—1).
Ifølge oppfinnelsen oppnås symmetrering ved hjelp av en reaktansspole 7 med
to like og mest mulig uten innbyrdes
spredning (altså bifilart) viklede spoler 7, og 73 magnetiseres av ytterfasenes strøm-sum
og som i hver sin strømkrets gir samme in-duktive spenningsfall
Her betyr x, hhv. x3 reaktansen av den énfasede strømkrets som på fig. 2 er dannet av midtelektroden 2 og en av ytterelektro-dene 1 eller 3 inklusive den tilhørende ytre transformatorfase med skinnestreng og kabelknipper, mens y betegner den gjensidige reaktans mellom de nevnte strøm-kretser. Det særegne ved oppfinnelsen er at reaktansen 7 nu ligger i en feltfri sone og at den lett kan utføres slik at den heller ikke selv frembringer ytre spredefelter av betydning. Reaktansspolens 7 jernkjerne er betegnet med 8.
Beviset for anordningens effektivitet kan føres som i det ovennevnte patent. Således betyr i det følgende: <E>21, E2S transformator-ytterfasenes
klemmespenning
Ej, E.,, E3 de tilhørende (ideelle) null--punktspenninger
v1 = r, = r3 = r fasenes effektive motstand ved
symmetrisk belastning.
Ved I, = (J^-flj) blir ytterfasenes spennings-ligninger:
Av ytterfasenes sym|metriske klemme-spenninger E.n og E23 utledes nullpunkt-spenningene É, og E3 ved symmetrisk belastning ved differansen Differansen (5)—(6) gir således Ved symmetrisk belastning kan denne ligning tydes som Nullpunktspenningen E, fås ved opera- I sjonen [(5)+<!>(6)]. Denne gir nemlig med h + :s] Med hensyn til (8a) kreves der imidlertid for symmetrisk belastning at
Symmetreringsbetingelsen krever således at (9) og (9a) stemmer overens, dvs. at:
hvilket skulle bevises.
Størrelsene I og E angir tidsvektorer for
strømmene og spenningene.

Claims (2)

1. Symmetreringsanordning for tre-fasede lysbueovner med en midtelektrode
som fører strømmen I2 og to ytterelektroder som fører strømmene I, og I3, matet fra transformatorer i A-kobling med en midtfase for strømmen (I3-I,)/3 og to ytterfaser for strømmene (I,-I2)/3 henholdsvis (I2-I3)/3, karakterisert v e d et reaktanselement (7) med to like, bifilare viklinger (7, henholdsvis 73) som hver er seriekoblet med en av transformatorenes ytterfaser (1—2 henholdsvis 2—3), slik at reaktanselementets resulterende ampere vindingstall blir proporsjonalt med hvor strømstyrkene er angitt som vektorer.
2. Anordning ifølge påstand 1, karakterisert ved at hver av reaktanselementets to viklinger (7, henholdsvis 73) har (omtrentlig) reaktansen hvor x, henholdsvis x3 angir reaktansen av den énfasede strømkrets som dannes av midtelektroden (62) og hver av ytterelek-trodene (6, henholdsvis 63) inklusive de tilhørende tilførselsledninger, men eksklu-sive reaktanselementet (7) og hvor y angir den gjensidige reaktans mellom de nevnte énfasede strømkretser.
NO2942/70A 1969-08-04 1970-07-29 Kjoeleanordning for gassturbiner. NO142969C (no)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84927269A 1969-08-04 1969-08-04

Publications (2)

Publication Number Publication Date
NO142969B true NO142969B (no) 1980-08-11
NO142969C NO142969C (no) 1980-11-19

Family

ID=25305450

Family Applications (1)

Application Number Title Priority Date Filing Date
NO2942/70A NO142969C (no) 1969-08-04 1970-07-29 Kjoeleanordning for gassturbiner.

Country Status (6)

Country Link
US (1) US3631672A (no)
CH (1) CH512664A (no)
DE (1) DE2037816A1 (no)
GB (1) GB1317992A (no)
NL (1) NL169772C (no)
NO (1) NO142969C (no)

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4351150A (en) * 1980-02-25 1982-09-28 General Electric Company Auxiliary air system for gas turbine engine
US4711084A (en) * 1981-11-05 1987-12-08 Avco Corporation Ejector assisted compressor bleed
CH672004A5 (no) * 1986-09-26 1989-10-13 Bbc Brown Boveri & Cie
FR2630159B1 (fr) * 1988-04-13 1990-07-20 Snecma Carter d'echappement de turbomachine a dispositif de regulation thermique
US5039278A (en) * 1989-04-11 1991-08-13 General Electric Company Power turbine ventilation system
DE19845763A1 (de) * 1998-10-05 1999-12-16 Siemens Ag Verfahren zum Betrieb einer Gasturbine mit nachgeschaltetem Abgassystem und Gasturbine mit einem nachgeschalteten Abgassystem
DE10233113A1 (de) * 2001-10-30 2003-05-15 Alstom Switzerland Ltd Turbomaschine
DE10303088B4 (de) * 2002-02-09 2015-08-20 Alstom Technology Ltd. Abgasgehäuse einer Wärmekraftmaschine
US6701715B2 (en) 2002-05-02 2004-03-09 Honeywell International, Inc. Variable geometry ejector for a bleed air system using integral ejector exit pressure feedback
US7124590B2 (en) 2003-10-03 2006-10-24 United Technologies Corporation Ejector for cooling air supply pressure optimization
US7966825B2 (en) * 2006-10-31 2011-06-28 Honeywell International Inc. Exhaust eductor system with a recirculation baffle
EP1950382A1 (en) * 2007-01-29 2008-07-30 Siemens Aktiengesellschaft Spoke with flow guiding element
CA2715186C (en) 2008-03-28 2016-09-06 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
WO2009121008A2 (en) * 2008-03-28 2009-10-01 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
SG195533A1 (en) 2008-10-14 2013-12-30 Exxonmobil Upstream Res Co Methods and systems for controlling the products of combustion
US8100632B2 (en) * 2008-12-03 2012-01-24 General Electric Company Cooling system for a turbomachine
MX341477B (es) 2009-11-12 2016-08-22 Exxonmobil Upstream Res Company * Sistemas y métodos de generación de potencia de baja emisión y recuperación de hidrocarburos.
JP4958967B2 (ja) * 2009-12-15 2012-06-20 川崎重工業株式会社 換気構造を改良したガスタービンエンジン
WO2012003078A1 (en) 2010-07-02 2012-01-05 Exxonmobil Upstream Research Company Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
JP5906555B2 (ja) 2010-07-02 2016-04-20 エクソンモービル アップストリーム リサーチ カンパニー 排ガス再循環方式によるリッチエアの化学量論的燃焼
AU2011271633B2 (en) 2010-07-02 2015-06-11 Exxonmobil Upstream Research Company Low emission triple-cycle power generation systems and methods
CA2801499C (en) 2010-07-02 2017-01-03 Exxonmobil Upstream Research Company Low emission power generation systems and methods
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
WO2013095829A2 (en) 2011-12-20 2013-06-27 Exxonmobil Upstream Research Company Enhanced coal-bed methane production
US20130247584A1 (en) 2012-03-22 2013-09-26 General Electric Company Active control of compressor extraction flows used to cool a turbine exhaust frame
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9091171B2 (en) * 2012-10-30 2015-07-28 Siemens Aktiengesellschaft Temperature control within a cavity of a turbine engine
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US10138815B2 (en) 2012-11-02 2018-11-27 General Electric Company System and method for diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
RU2637609C2 (ru) 2013-02-28 2017-12-05 Эксонмобил Апстрим Рисерч Компани Система и способ для камеры сгорания турбины
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
WO2014137648A1 (en) 2013-03-08 2014-09-12 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
DE112013007581T5 (de) * 2013-11-08 2016-08-11 General Electric Company Turbomaschinenabgasgehäuse
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US20150240667A1 (en) * 2014-02-26 2015-08-27 General Electric Company Exhaust plenum for radial diffuser
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
CN107532481A (zh) * 2015-04-24 2018-01-02 诺沃皮尼奥内技术股份有限公司 具有设有冷却翅片的壳体的燃气涡轮发动机
US10436073B2 (en) * 2015-12-15 2019-10-08 General Electric Company System for generating steam via turbine extraction and compressor extraction
JP6580494B2 (ja) * 2016-01-22 2019-09-25 三菱日立パワーシステムズ株式会社 排気フレーム
US20170241294A1 (en) * 2016-02-18 2017-08-24 Solar Turbines Incorporated Exhaust system for gas turbine engine
FR3053727B1 (fr) * 2016-07-07 2020-04-17 Safran Aircraft Engines Dispositif de circulation d'air entre un compresseur et une turbine d'une turbomachine d'aeronef a double flux, permettant une aspiration par effet de venturi de l'air present dans un compartiment inter-veine
JP6632510B2 (ja) * 2016-10-31 2020-01-22 三菱重工業株式会社 蒸気タービンの排気室、蒸気タービン排気室用のフローガイド、及び、蒸気タービン

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2372467A (en) * 1944-02-04 1945-03-27 Gen Electric Turbosupercharger
US2650753A (en) * 1947-06-11 1953-09-01 Gen Electric Turbomachine stator casing
US2625009A (en) * 1948-07-15 1953-01-13 Curtiss Wright Corp Vehicle engine cooling system utilizing air ejector pump to induce flow of additional cooling air
US2840986A (en) * 1952-04-29 1958-07-01 Rolls Royce After-burner fuel supply system for gas-turbine engines
US2652216A (en) * 1952-05-05 1953-09-15 North American Aviation Inc Aircraft structure cooling means
BE535079A (no) * 1954-01-25
US3043561A (en) * 1958-12-29 1962-07-10 Gen Electric Turbine rotor ventilation system

Also Published As

Publication number Publication date
US3631672A (en) 1972-01-04
NL169772C (nl) 1982-08-16
NO142969C (no) 1980-11-19
CH512664A (de) 1971-09-15
NL7011485A (no) 1971-02-08
DE2037816A1 (de) 1972-02-17
GB1317992A (en) 1973-05-23

Similar Documents

Publication Publication Date Title
NO142969B (no) Kjoeleanordning for gassturbiner.
CN103238197B (zh) 励磁浪涌电流抑制装置
US2672584A (en) Diferential apparatus for the protection of current converters
KR20160112956A (ko) 유도 가열 시스템
EP3065504B1 (en) Induction heating system
NO162557B (no) Analogifremgangsmaate ved fremstilling av terapeutisk aktive (pyrrol-1-yl)-fenyldihydropyridazinoner.
US3193605A (en) Means for symmetrizing the load in electric three-phase arc furnaces
US1779724A (en) Electric protective arrangement for a. c. power circuits
US2786151A (en) Power distribution apparatus
Staszak Determination of slot leakage inductance for three-phase induction motor winding using an analytical method
US2682614A (en) Electroresponsive thermal instrument
US2883622A (en) Alternating-current responsive devices
US1905720A (en) Motor starter
US1316484A (en) of baden
GB190405688A (en) Improvements in, and Apparatus for, Producing Reactions in Gases by Means of Electricity.
US2473144A (en) Winding arrangement in alternating current machines
US1816729A (en) Device responsive to unbalance in polyphase circuit voltages and currents
US1818337A (en) Electrical protective system
SU760321A1 (ru) Синхронная электрическая машина 1
NO115177B (no)
US2029685A (en) Supervision of the dielectric losses of a conductor
JP3020560B2 (ja) 超電導トランスの監視装置
FI67978B (fi) Elektrisk apparat foer matning av likstroemsfoerbrukare
SU100363A2 (ru) Индукционный счетчик потерь энергии в трехфазном понизительном силовом трансформаторе
SU90168A1 (ru) Устройство дл преобразовани нечетной m-фазной системы