NO126231B - - Google Patents

Download PDF

Info

Publication number
NO126231B
NO126231B NO00007/69A NO769A NO126231B NO 126231 B NO126231 B NO 126231B NO 00007/69 A NO00007/69 A NO 00007/69A NO 769 A NO769 A NO 769A NO 126231 B NO126231 B NO 126231B
Authority
NO
Norway
Prior art keywords
nickel
reaction
water vapor
temperatures
gas
Prior art date
Application number
NO00007/69A
Other languages
Norwegian (no)
Inventor
Heinz Jockel
Emil Supp
Hagen Krumm
Original Assignee
Metallgesellschaft Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft Ag filed Critical Metallgesellschaft Ag
Publication of NO126231B publication Critical patent/NO126231B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

Fremgangsmåte for fremstilling av metanol-syntesegass. Process for the production of methanol synthesis gas.

Oppfinnelsens fremgangsmåte dreier seg om fremstilling av en egnet gassblanding for metanolsyntese, sammensatt av karbondioksyd, karbonmonoksyd og hydrogen, ved katalytisk omsetning av hydrokarboner med vanndamp under trykk og ved forhøyet temperatur på nikkelholdige katalysatorer med metalloksyder eller metallsili-kater som bærematerialer. The method of the invention concerns the production of a suitable gas mixture for methanol synthesis, composed of carbon dioxide, carbon monoxide and hydrogen, by catalytic reaction of hydrocarbons with water vapor under pressure and at elevated temperature on nickel-containing catalysts with metal oxides or metal silicates as carrier materials.

Syntesen av metanol ut fra CO og H2 skjer ifølge reak-sj ons ligningene The synthesis of methanol from CO and H2 takes place according to the reaction equations

og det kreves et forhold (Hg - C02) : (CO + C02) på minst 2,0 :1. Som regel arbeides det med et overskudd av hydrogen, dvs. med et forhold på (H'2 - COg) : (CO + C02) = 2,05 - ca. 2,.4 : 1 for å for-skyve likevekten i metanolsyntesen så mye som mulig mot høyre. Vanligvis fremstilles syntesegasser med et egnet forhold (H2 - C02) : (CO + C02) på minst 2 : 1 og høyere ved partiell for-brenning av hydrokarboner med oksygen ved termisk spalting ved temperaturer mellom 900 ogr l400°C ifølge reaksjonsligningene and a (Hg - C02) : (CO + C02) ratio of at least 2.0 :1 is required. As a rule, work is done with an excess of hydrogen, i.e. with a ratio of (H'2 - COg) : (CO + C02) = 2.05 - approx. 2.4 : 1 to shift the equilibrium in the methanol synthesis as much as possible to the right. Synthesis gases with a suitable ratio (H2 - C02) : (CO + C02) of at least 2:1 and higher are usually produced by partial combustion of hydrocarbons with oxygen by thermal cracking at temperatures between 900 and 1400°C according to the reaction equations

En del av hydrokarbonene forbrenner imidlertid til karbondioksyd og vann. På grunn av vanngasslikevekten må karbondioksydet som er dannet ved spalting ved temperaturer omkring 900°C utvaskes' fra produktgassen, mens en del av karbonmonoksydet fra produktgasser fremstilt ved spalting ved temperaturer omkring l400°C konverteres, dvs. omsettes med vanndamp til karbondioksyd og hydrogen, hvoretter overskytende C02 må utvaskes fra den delvis konverterte spaltegass. However, part of the hydrocarbons burn to carbon dioxide and water. Due to the water-gas equilibrium, the carbon dioxide formed by fission at temperatures around 900°C must be washed out of the product gas, while part of the carbon monoxide from product gases produced by fission at temperatures around 1400°C is converted, i.e. reacted with water vapor into carbon dioxide and hydrogen, after which excess C02 must be washed out from the partially converted cracking gas.

Hvis omsetningen av hydrokarboner med vanndamp utføres endotermt og katalytisk ved indirekte varmetilførsel, f.eks. i ut-vendig oppvarmede rørovner med temperaturer på over 700°C, får man ved bruk av 3 kg vanndamp pr. kg hydrokarboner, hvilket er nødvendig til spaltingen, spaltgasser som på grunn av et relativt høyt innhold karbondioksyd får et for høyt forhold (H2 - C02) : (CO + COg) for If the reaction of hydrocarbons with water vapor is carried out endothermicly and catalytically by indirect heat input, e.g. in externally heated tube furnaces with temperatures of over 700°C, using 3 kg of water vapor per kg of hydrocarbons, which is necessary for the fission, fission gases which, due to a relatively high content of carbon dioxide, have an excessively high ratio (H2 - C02) : (CO + COg) for

metanolsyntesen. the methanol synthesis.

I britisk patent nr. 1.120.258 er det omtalt en fremgangsmåte til spaltning av flytende petroleumhydrokarboner med vanndamp under øket trykk på nikkelholdige katalysatorer, hvor hydrokarbonene og vanndampene i et første trinn i lett eksoterm reaksjon omsettes til en metanrik, dessuten karbondioksyd og hydrogen og også vanndampholdig gassblanding som deretter i annet trinn ved høyere temperaturer, utreagerer under ytterligere spaltning av metanet. En på denne måte frembragt rå syntesegass krever imidlertid for an-vendelse som metanolsyntesegass dessuten en spesiell oppberedning. British patent no. 1,120,258 describes a method for splitting liquid petroleum hydrocarbons with water vapor under increased pressure on nickel-containing catalysts, where the hydrocarbons and water vapor are converted in a first step in a slightly exothermic reaction into a methane-rich, in addition carbon dioxide and hydrogen and also water vapor-containing gas mixture which then reacts in a second step at higher temperatures during further splitting of the methane. A raw synthesis gas produced in this way, however, also requires a special preparation for use as methanol synthesis gas.

Oppfinnelsen vedrører en fremgangsmåte for fremstilling av metanfattig og for fremstilling av metanol direkte anvendbar syntesegass hvis sammensetning oppfyller kravet ved omsetning av svovelfrie hydrokarboner med et gjennomsnittlig C-atom antall fra 2-20 med vanndamp under forhøyet trykk i nærvær av katalysatorer som inneholder nikkel på magnesiumsilikat eller aluminiumoksyd som bæremateriale, idet omsetningen i et første trinn gjennomføres ved temperaturer under 550°C med en nikkelrik katalysator som inneholder minst 30 og opptil 60% nikkel samt omsetningen av-sluttes i et ytterligere trinn ved temperaturer over 560°C med en nikkelf attigere k^alysator som inneholder. 15 - 25 vekt/5 nikkel, The invention relates to a method for the production of methane-poor synthesis gas that can be directly used for the production of methanol, the composition of which meets the requirement for reacting sulphur-free hydrocarbons with an average number of C atoms from 2-20 with water vapor under elevated pressure in the presence of catalysts containing nickel on magnesium silicate or aluminum oxide as carrier material, the reaction in a first step being carried out at temperatures below 550°C with a nickel-rich catalyst containing at least 30 and up to 60% nickel and the reaction being completed in a further step at temperatures above 560°C with a nickel-poor catalyst c^alysator containing. 15 - 25 weight/5 nickel,

idet fremgangsmåten er karakterisert ved at hydrokarbonet settes under et trykk på 2 - 20 atmosfærer og omsettes med 2-3 mol vanndamp pr. mol karbon ved temperaturer mellom 350 og 480°C i nærvær av den nikkelrike katalysator til en metanrik gass, hvoretter omsetningen fullbyrdes ved temperaturer mellom 820 og 900°C i nærvær av den nikkelfattigere katalysator og at reaksjonsproduktet etter av-kjøling under kondensasjon av ikke omsatt vanndamp komprimeres til et for syntetisering av metanol nødvendig trykk. in that the method is characterized by the hydrocarbon being placed under a pressure of 2-20 atmospheres and reacted with 2-3 mol of water vapor per moles of carbon at temperatures between 350 and 480°C in the presence of the nickel-rich catalyst to a methane-rich gas, after which the reaction is completed at temperatures between 820 and 900°C in the presence of the nickel-poor catalyst and that the reaction product after cooling during condensation of unreacted water vapor is compressed to a pressure necessary for synthesizing methanol.

Denne fremgangsmåte består i at man blander svovelfrie hydrokarboner med vanndamp i forholdet 1 vektdel hydrokarbon : høyst 3 vektdeler vanndamp, under trykk på høyst 20 atmosfærer på en nikkelrik katalysator som inneholder minst 30 vekt$ nikkel på et' bæremiddel av magnesiumsilikat, ved temperaturer mellom 250 og 500°C, fortrinnsvis mellom 350 og 480°C, idet gassen først spaltes til en blanding som overveiende består av metan, karbondioksyd og hydrogen med omtrent følgende sammensetning: (beregnet som tørre gasser). This method consists in mixing sulphur-free hydrocarbons with water vapor in the ratio of 1 part by weight of hydrocarbon: no more than 3 parts by weight of water vapour, under a pressure of no more than 20 atmospheres on a nickel-rich catalyst containing at least 30% by weight of nickel on a carrier of magnesium silicate, at temperatures between 250 and 500°C, preferably between 350 and 480°C, with the gas first being split into a mixture which predominantly consists of methane, carbon dioxide and hydrogen with approximately the following composition: (calculated as dry gases).

Denne primære spaltgass som fremdeles inneholder resterende uomsatt prosessdamp, føres derpå under samme trykk og indirekte oppvarming ved temperaturer på minst 820 til ca. 900°C i en rørovn over en vanlig nikkelkatalysator som inneholder 15 - 25 vekti nikkel på leire-bæremiddel, for fremstilling av en gassblanding som har en egnet sammensetning for metanolsyntese, nemlig (H2 - C02) : This primary split gas, which still contains residual unreacted process steam, is then passed under the same pressure and indirect heating at temperatures of at least 820 to approx. 900°C in a tube furnace over an ordinary nickel catalyst containing 15 - 25 wt. nickel on a clay carrier, for the production of a gas mixture which has a suitable composition for methanol synthesis, namely (H2 - CO2) :

(CO + C02) = 2,05 : 1 til 2, k : 1, idet gassen etter ferdig spalting har ca. følgende sammensetning: (CO + C02) = 2.05 : 1 to 2, k : 1, as the gas after complete splitting has approx. following composition:

Denne gassen komprimeres deretter til metanolsyntesens trykk som kan ligge mellom 50 og 350 atmosfærer, etter avkjøLing til normaltemperatur, for å utskille resterende vanndamp. This gas is then compressed to the methanol synthesis pressure, which can be between 50 and 350 atmospheres, after cooling to normal temperature, in order to separate residual water vapour.

Oppfinnelsen byr på den overraskende fordel at man ved valg av egnet spaltingstrykk og egnet spaltingstemperatur i to for-gassingstrinn som er koplet etter hverandre, og hvor første for-gassertrinn overfører hydrokarbonene ved påvirkning av vanndamp over en høynikkelholdig katalysator ved relativt lav temperatur og uten ytterligere varmetilførsel til en metanrik gass, og hvor det andre trinnet overfører den metanrike gass under ytre varmetilførsel ved temperaturer over 820°C uten ytterligere vanndamptilsetning, til en gassblanding som umiddelbart er egnet for metanolsyntesen og ikke be-høver noen videre behandling ved gassvasking eller konvertering. The invention offers the surprising advantage that by choosing a suitable cracking pressure and a suitable cracking temperature in two gasification stages which are connected one after the other, and where the first gasification stage transfers the hydrocarbons under the action of water vapor over a high-nickel catalyst at a relatively low temperature and without further heat input to a methane-rich gas, and where the second stage transfers the methane-rich gas under external heat input at temperatures above 820°C without further water vapor addition, to a gas mixture that is immediately suitable for the methanol synthesis and does not require any further treatment by gas washing or conversion.

Hvis man for denne spalting ikke rår over svovelfrie hydrokarboner, kan man også bruke svovelholdige sådanne. Svovelfor-bindelsene i hydrokarbonene kan fjernes på kjent måte i nærvær av hydrogen på kobolt-molybden- eller nikkel-molybden-katalysatorer ved temperaturer mellom 250 og 450°C og under trykk, idet svovelet hydrogeneres til hydrogensulfid som derpå kan bindes til oksydiské masser som f.eks. jernoksyd, manganoksyd eller sinkoksyd under samme trykk og samme temperatur. Man kan benytte den hydrogenholdige syntesegass etter forutgående tørking til denne hydrerende avsvovling, eller også den hydrogenrike avløpsgass fra metanolsyntesen. If sulfur-free hydrocarbons are not available for this cleavage, sulphur-containing hydrocarbons can also be used. The sulfur compounds in the hydrocarbons can be removed in a known manner in the presence of hydrogen on cobalt-molybdenum or nickel-molybdenum catalysts at temperatures between 250 and 450°C and under pressure, the sulfur being hydrogenated to hydrogen sulphide which can then be bound to oxidic masses which e.g. iron oxide, manganese oxide or zinc oxide under the same pressure and temperature. One can use the hydrogen-containing synthesis gas after prior drying for this hydrating desulphurisation, or the hydrogen-rich waste gas from the methanol synthesis.

Som utgangsstoffer for fremgangsmåten i henhold til oppfinnelsen benyttes særlig flytende hydrokarboner med øvre kokepunkt på ca. 300°C, hvilket tilsvarer et C-tall på ca. 5 - 20 og som om-fatter bensin, lettere brenselolje og dieselolje. Metoden ifølge oppfinnelsen kan imidlertid også anvendes på blandinger av lavere hydrokarboner, f.eks. på blandinger av propan og butan, samt på raffinerte avgasser eller n^urgasser hvis hydrokarbonbestanddeler C-^ til Cp. foreligger i forskjellige forhold. Gasser som overveiende består av metan har en beskaffenhet som tilsvarer den. primære spaltegass i henhold til oppfinnelsen. Liquid hydrocarbons with an upper boiling point of approx. 300°C, which corresponds to a C number of approx. 5 - 20 and including petrol, light fuel oil and diesel oil. However, the method according to the invention can also be applied to mixtures of lower hydrocarbons, e.g. on mixtures of propane and butane, as well as on refined exhaust gases or raw gases whose hydrocarbon constituents C-^ to Cp. exist in different conditions. Gases consisting predominantly of methane have a nature corresponding to it. primary cracking gas according to the invention.

Oppfinnelsen skal--ytterligere beskrives ved hjelp av de følgende eksempler. The invention shall be further described by means of the following examples.

Eksempler. Examples.

En svovelfri destillasjonsbensin ("straight run") med et kokepunktområde 60 - 200°C fordampes i en mengde på 1000 kg pr. time og blandes med 3000 kg pr. time overhetet vanndamp. Blandingen føres med en temperatur på 400°C og under et trykk på ca. 12 atmosfærer over en katalysator som inneholder 60 vekt% nikkel og H0% magnesiumsilikat-bæremiddel. Derved dannes en gass med følgende sammensetning (beregnet på tørr basis): A sulphur-free distillate petrol ("straight run") with a boiling point range of 60 - 200°C is evaporated in a quantity of 1000 kg per hour and mixed with 3,000 kg per hour of superheated steam. The mixture is carried out at a temperature of 400°C and under a pressure of approx. 12 atmospheres over a catalyst containing 60 wt% nickel and H0% magnesium silicate carrier. This creates a gas with the following composition (calculated on a dry basis):

Denne gass er fri og hydrokarboner med 2 og flere C-atomer pr. mole-kyl og inneholder fremdeles 1,2 kg vanndamp pr. Nm.^, dvs. 150 volum-. This gas is free and hydrocarbons with 2 or more C atoms per molecule and still contains 1.2 kg of water vapor per Nm.^, i.e. 150 volume-.

Denne gassen føres derpå over en vanlig nikkelkatalysator inneholdende 20 vekt% nikkel og 60 vekt/5 leire i en kontaktovn med indirekte oppvarming (rørovn), og spaltes fullstendig ved 835°C, hvorved metanet for størstedelen dekomponeres. This gas is then passed over a standard nickel catalyst containing 20% by weight of nickel and 60% by weight of clay in a contact furnace with indirect heating (tube furnace), and is completely decomposed at 835°C, whereby the methane is mostly decomposed.

Man får 5000 Nm^ spaltgass pr. time med følgende sammensetning: You get 5,000 Nm^ of fissile gas per hour with the following composition:

Etter avkjøling og utskilling av uomsatt vanndamp har man en gass som umiddelbart inneholder det ønskede forhold (Hg - COg) : (CO + COg) = 2,1 og som uten videre gassrensing kan komprimeres til-syntesetrykk. After cooling and separation of unreacted water vapor, you have a gas which immediately contains the desired ratio (Hg - COg) : (CO + COg) = 2.1 and which can be compressed to synthesis pressure without further gas purification.

Claims (1)

Fremgangsmåte for fremstilling av metanfattig og for fremstilling av metanol direkte anvendbar syntesegass hvis sammensetning oppfyller kravetProcess for the production of methane-poor and for the production of methanol directly usable synthesis gas whose composition meets the requirement ved omsetning av svovelfrie hydrokarboner med et gjennomsnittlig C<A>atom antall fra 2-20 med vanndamp under forhøyet trykk i nærvær av katalysatorer som inneholder nikkel på magnesiumsilikat eller aluminiumoksyd som bæremateriale, idet omsetningen i et første trinn • gjennomføres ved temperaturer under 550°C med en nikkelrik katalysator som inneholder minst 30 og opptil 60% nikkel samt omsetningen av-sluttes i et ytterligere trinn ved temperaturer over 560°C med en nikkelfattigere katalysator som inneholder 15 - 25 vekt% nikkel, karakterisert ved at hydrokarbonet settes under et trykk på 2 - 20 atmosfærer og omsettes med 2-3 mol vanndamp pr. mol karbon ved temperaturer mellom 350 og 480°C i nærvær av den nikkelrike katalysator til en metanrik gass, hvoretter omsetningen fullbyrdes ved temperaturer mellom 820 og 900°C i nærvær av den nikkelfattigere katalysator og at reaksjonsproduktet etter avkjøling under kondensasjon av ikke omsatt vanndamp komprimeres til et for syntetisering av metanol nødvendig trykk.by reaction of sulphur-free hydrocarbons with an average C<A> atom number from 2-20 with water vapor under elevated pressure in the presence of catalysts containing nickel on magnesium silicate or aluminum oxide as support material, the reaction in a first step • is carried out at temperatures below 550°C with a nickel-rich catalyst containing at least 30 and up to 60% nickel, and the reaction is completed in a further step at temperatures above 560°C with a nickel-poor catalyst containing 15 - 25% nickel by weight, characterized by that the hydrocarbon is placed under a pressure of 2 - 20 atmospheres and reacted with 2-3 mol of water vapor per moles of carbon at temperatures between 350 and 480°C in the presence of the nickel-rich catalyst to a methane-rich gas, after which the reaction is completed at temperatures between 820 and 900°C in the presence of the nickel-poor catalyst and that the reaction product is compressed after cooling during condensation of unreacted water vapor to a pressure necessary for synthesizing methanol.
NO00007/69A 1968-01-15 1969-01-02 NO126231B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1667631 1968-01-15

Publications (1)

Publication Number Publication Date
NO126231B true NO126231B (en) 1973-01-08

Family

ID=5685988

Family Applications (1)

Application Number Title Priority Date Filing Date
NO00007/69A NO126231B (en) 1968-01-15 1969-01-02

Country Status (6)

Country Link
JP (1) JPS4948839B1 (en)
BE (1) BE726873A (en)
FR (1) FR1598573A (en)
GB (1) GB1207759A (en)
NO (1) NO126231B (en)
SE (1) SE345647B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1423823A (en) * 1964-11-20 1966-01-07 Azote Office Nat Ind Catalytic reforming process under high pressure of petroleum hydrocarbons by steam
GB1132776A (en) * 1965-03-11 1968-11-06 Basf Ag Catalytic cracking of hydrocarbons containing two to thirty carbon atoms

Also Published As

Publication number Publication date
FR1598573A (en) 1970-07-06
GB1207759A (en) 1970-10-07
JPS4948839B1 (en) 1974-12-24
BE726873A (en) 1969-06-16
SE345647B (en) 1972-06-05

Similar Documents

Publication Publication Date Title
US3186797A (en) Process for catalytically steam reforming hydrocarbons
US1957743A (en) Production of hydrogen
RU2430140C2 (en) Method of obtaining fischer-tropsch synthesis product
US3625665A (en) Process for the production of methane containing gases
GB1033764A (en) Improvements in or relating to the production of methane gases
GB996327A (en) A method of raising the calorific value of gasification gases
NO153564B (en) PROCEDURE FOR THE PREPARATION OF SYNTHESIC GAS FROM A SULFULATED HYDROCARBON CONTAINING CHARGE.
US3642460A (en) Process for the production of a methane-containing gas
JPS62228035A (en) Production of organic compound from hydrocarbon-containing supply raw material
NO309518B1 (en) Process for the preparation of synthesis gas for methanol synthesis and reaction of the synthesis gas to form methanol
US2711419A (en) Process and apparatus for making fuel gas
JP2017508732A (en) Method and equipment for producing dimethyl ether from synthesis gas
GB714284A (en) Improvements relating to processes for the treatment of hydrocarbon gases
GB1043613A (en) Production of domestic heating gas
NO169647B (en) PROCEDURE FOR THE MANUFACTURE OF LIQUID HYDROCARBONS FROM A GASFUL HYDROCARBON CONTAINING SUPPLY MATERIAL
ES313860A1 (en) A procedure for the production of gases with methane content. (Machine-translation by Google Translate, not legally binding)
NO126231B (en)
US3533766A (en) Process for reforming hydrocarbons under high pressure
US3975169A (en) Process for producing a natural gas substitute
CA3214774A1 (en) Method for producing a synthesis gas mixture
NL7908283A (en) PROCESS FOR THE PRODUCTION OF SYNTHETIC NATURAL GAS FROM HYDROCARBONS.
US3990867A (en) Process of producing a high-methane gas interchangeable with natural gas
US4061475A (en) Process for producing a gas which can be substituted for natural gas
US2220357A (en) Synthetical production of liquid hydrocarbons from carbon monoxide and hydrogen
GB1005935A (en) Process for forming a combustion gas