NO169647B - PROCEDURE FOR THE MANUFACTURE OF LIQUID HYDROCARBONS FROM A GASFUL HYDROCARBON CONTAINING SUPPLY MATERIAL - Google Patents

PROCEDURE FOR THE MANUFACTURE OF LIQUID HYDROCARBONS FROM A GASFUL HYDROCARBON CONTAINING SUPPLY MATERIAL Download PDF

Info

Publication number
NO169647B
NO169647B NO864921A NO864921A NO169647B NO 169647 B NO169647 B NO 169647B NO 864921 A NO864921 A NO 864921A NO 864921 A NO864921 A NO 864921A NO 169647 B NO169647 B NO 169647B
Authority
NO
Norway
Prior art keywords
gas
hydrocarbon
carbon dioxide
feed material
liquid hydrocarbons
Prior art date
Application number
NO864921A
Other languages
Norwegian (no)
Other versions
NO864921L (en
NO864921D0 (en
NO169647C (en
Inventor
Johannes Didericus De Graaf
Original Assignee
Shell Int Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Int Research filed Critical Shell Int Research
Publication of NO864921D0 publication Critical patent/NO864921D0/en
Publication of NO864921L publication Critical patent/NO864921L/en
Publication of NO169647B publication Critical patent/NO169647B/en
Publication of NO169647C publication Critical patent/NO169647C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0222Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0255Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a non-catalytic partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/063Refinery processes
    • C01B2203/065Refinery processes using hydrotreating, e.g. hydrogenation, hydrodesulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/141At least two reforming, decomposition or partial oxidation steps in parallel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

remgangsmåte for fremstilling. av væskeformige hydrocarboner ut fra. et hydrocarbonholdig tilførselsmate-riale, omfattende de trinn at man:. (i) katalytisk reformer i det minste en del av det hydrocarbonholdige tilførselsmateriale ved forhøyet temperatur og trykk med damp i minst én reformingsone, (ii) varmer opp reformingsonen(e) ved hjelp av en carbondioxydholdig oppvarmningsgass omfattende et produkt erholdt ved partiell oxydasjon av reformerprodukt erholdt i trinn (i) eller av en gjenværende del av det hydrocarbonholdigeilferselsmateriale eller av en blanding derav med en oxygenholdig gass i en oxydasjonssone, (iii) skiller carbondioxyd fra oppvarmningsgass erholdt i trinn (ii), (iv) katalytisk omdanner i det minste en del av reformerproduktet erholdt i trinn (i) og/eller gass erholdt etter fraskillelse av carbondioxyd i trinn (iii) ved forhøyet temperatur og trykk til normalt væskeformige hydrocarboner, og (v) fører i det minste en del av carbondioxydet erholdt i trinn (iii) sammen med hydrocarbonholdig til-førselsmateriale for minst ett. av trinnene (i) og (ii).belt procedure for manufacture. of liquid hydrocarbons from. a hydrocarbonaceous feedstock comprising the steps of:. (i) catalytically reforming at least a portion of the hydrocarbonaceous feedstock at elevated temperature and pressure with steam in at least one reforming zone, (ii) heating the reforming zone (e) by means of a carbon dioxide-containing heating gas comprising a product obtained by partial oxidation of reformer product obtained in step (i) or of a residual part of the hydrocarbon-containing transfer material or of a mixture thereof with an oxygen-containing gas in an oxidation zone, (iii) separates carbon dioxide from the heating gas obtained in step (ii), (iv) catalytically converts at least one part of the reformer product obtained in step (i) and / or gas obtained after separation of carbon dioxide in step (iii) at elevated temperature and pressure to normally liquid hydrocarbons, and (v) conducts at least a part of the carbon dioxide obtained in step (iii) ) together with hydrocarbonaceous feedstock for at least one. of steps (i) and (ii).

Description

Denne oppfinnelse angår en fremgangsmåte for fremstilling av væskeformige hydrocarboner fra et gassformig hydrocarbonholdig tilførselsmateriale. This invention relates to a method for producing liquid hydrocarbons from a gaseous hydrocarbon-containing feed material.

Det er kjent å fremstille væskeformige hydrocarboner ved overføring av et gassformig hydrocarbonholdig tilfør-selsmateriale (f.eks. naturgass) til syntesegass (som inneholder hydrogen og carbonmonoxyd) og katalytisk overføring av syntesegassen til væskeformige og gassformige hydrocarboner. It is known to produce liquid hydrocarbons by transferring a gaseous hydrocarbon-containing feed material (e.g. natural gas) to synthesis gas (containing hydrogen and carbon monoxide) and catalytic transfer of the synthesis gas to liquid and gaseous hydrocarbons.

Imidlertid krever fremstillingen av syntesegass bruk av relativt store energimengder og i mange tilfeller - spesielt når det som fremstillingsmetode benyttes partiell oxydasjon - tilpasning av CO/H2-forholdet i gassen som skal benyttes i hydrocarbonsyntesetrinnet. However, the production of synthesis gas requires the use of relatively large amounts of energy and in many cases - especially when partial oxidation is used as the production method - adaptation of the CO/H2 ratio in the gas to be used in the hydrocarbon synthesis step.

Dessuten blir vanligvis vesentlige mengder carbonhol-dig materiale ikke overført til de ønskede, normalt væskeformige hydrocarboner. En kjent fremgangsmåte av denne art er beskrevet i DE-A nr. 3.244.252. Moreover, usually significant amounts of carbonaceous material are not transferred to the desired, normally liquid hydrocarbons. A known method of this kind is described in DE-A No. 3,244,252.

Det har nu vist seg at væskeformige hydrocarboner kan fremstilles under meget effektiv anvendelse av energi og ma-terialer ved hjelp av en integrert fremgangsmåte. It has now been shown that liquid hydrocarbons can be produced with very efficient use of energy and materials by means of an integrated method.

Oppfinnelsen angår således en fremgangsmåte for fremstilling av væskeformige hydrocarboner fra et gassformig hydrocarbonholdig tilførselsmateriale, hvilken fremgangsmåte i likhet med fremgangsmåten ifølge ovennevnte DE-A nr. 3.244.252 omfatter de følgende trinn: (i ) i det minste en del av det hydrocarbonholdige tilfør-selsmateriale reformes katalytisk ved forhøyet temperatur og trykk med damp i minst én reformingsone, (ii) reformingsonen(e) oppvarmes ved hjelp av en oppvarmningsgass omfattende et produkt oppnådd ved partiell oxydasjon av reformerprodukt oppnådd i trinn (i) eller av en gjenværende del av det hydrocarbonholdige tilførselsmateriale eller av en blanding derav med en oxygenholdig gass i en oxydasjonssone, The invention thus relates to a method for producing liquid hydrocarbons from a gaseous hydrocarbon-containing feed material, which method, like the method according to the above-mentioned DE-A No. 3,244,252, comprises the following steps: (i) at least part of the hydrocarbon-containing feed seal material is catalytically reformed at elevated temperature and pressure with steam in at least one reforming zone, (ii) the reforming zone(s) is heated by means of a heating gas comprising a product obtained by partial oxidation of reformer product obtained in step (i) or of a remaining part of the hydrocarbon-containing feed material or of a mixture thereof with an oxygen-containing gas in an oxidation zone,

og and

(iii) i det minste en del av reformerproduktet oppnådd i trinn (i) og/eller gassen oppnådd i trinn (ii) omdannes katalytisk ved forhøyet temperatur og trykk til hydrocarbonprodukter. (iii) at least part of the reformer product obtained in step (i) and/or the gas obtained in step (ii) is catalytically converted at elevated temperature and pressure to hydrocarbon products.

Den nye fremgangsmåte er særpreget ved at: The new procedure is characterized by the fact that:

(iv) carbondioxyd skilles fra oppvarmningsgassen fra trinn (iv) carbon dioxide is separated from the heating gas from stage

(ii), (ii),

(v) i det minste en del av reformerproduktet dannet i trinn (i) og/eller gassen oppnådd etter fraskillelse av carbondioxyd i trinn (iv) omdannes katalytisk til (v) at least part of the reformer product formed in step (i) and/or the gas obtained after separation of carbon dioxide in step (iv) is catalytically converted to

normalt væskeformige hydrocarboner, og normally liquid hydrocarbons, and

(vi) det minste en del av carbondioxydet oppnådd i trinn (iv) føres sammen med det hydrocarbonhoIdige tilfør-selsmateriale for minst ett av trinnene (i) og (ii ). (vi) at least part of the carbon dioxide obtained in step (iv) is fed together with the hydrocarbon-containing feed material for at least one of steps (i) and (ii).

En større fordel ved fremgangsmåten ifølge oppfinnelsen består deri at carbondioxyd som i trinn (iii) er blitt skilt fra oppvarmningsgass erholdt i trinn (ii), resirkuleres og føres sammen med hydrocarbonholdig tilførselsmateriale for å oppnå optimal anvendelse av carbonholdige strømmer. A major advantage of the method according to the invention is that carbon dioxide which in step (iii) has been separated from heating gas obtained in step (ii) is recycled and fed together with hydrocarbon-containing feed material to achieve optimal use of carbon-containing streams.

En annen vesentlig fordel ved den foreliggende fremgangsmåte består deri at reformingsonen(e) oppvarmes i trinn (ii) ved hjelp av en oppvarmningsgass som dannes i og benyttes videre i selve prosessen, slik at man unngår å benytte eksterne varmekilder og dermed gjør prosessen mer energibespa-rende enn ikke-integrerte prosesser. Another significant advantage of the present method is that the reforming zone(s) is heated in step (ii) by means of a heating gas that is formed in and used further in the process itself, so that you avoid using external heat sources and thus make the process more energy-efficient -rending than non-integrated processes.

Fortrinnsvis blir det totale reformerprodukt som fåes Preferably, it will be the total reform product that is obtained

i trinn (i) (som inneholder carbonmonoxyd og hydrogen og dessuten vanligvis mindre mengder carbonmonoxyd, vanndamp og/eller uomsatte hydrocarboner) underkastet partiell oxydasjon i trinn (ii), aller helst sammen med den gjenværende del av det hydrocarbonholdige tilførselsmateriale som ikke er blitt katalytisk reformet i trinn (i). in step (i) (containing carbon monoxide and hydrogen and also usually smaller amounts of carbon monoxide, water vapor and/or unreacted hydrocarbons) subjected to partial oxidation in step (ii), most preferably together with the remaining part of the hydrocarbon-containing feed material that has not been catalytically reformed in step (i).

For å oppnå optimal anvendelse av den varmemengde To achieve optimal use of the amount of heat

som dannes under den ovennevnte partielle oxydasjon av reformerprodukt, er oxydasjons- og reformingsonene fortrinnsvis integrert i én reaktor, f.eks. som i den beskrevet i tysk patentsøknad nr. 3 244 252, hvor reformerproduktgasser som strømmer ut fra f.eks. reformer-rør fylt med katalysatorpartikler, blandes med en oxygenholdig gass og, eventuelt, med hydrocarbonholdig tilførselsmateriale og/eller tilbakeløps-gasser, og den resulterende oppvarmningsgass (forbrennings-gass) bringes til å strømme langs med utsiden av reformer-rø-rene. which is formed during the above-mentioned partial oxidation of reformer product, the oxidation and reforming zones are preferably integrated in one reactor, e.g. as in that described in German patent application No. 3,244,252, where reformer product gases flowing out from e.g. reformer tubes filled with catalyst particles are mixed with an oxygen-containing gas and, optionally, with hydrocarbon-containing feed material and/or reflux gases, and the resulting heating gas (combustion gas) is made to flow along the outside of the reformer tubes.

I trinn (i) av fremgangsmåten ifølge oppfinnelsen In step (i) of the method according to the invention

kan det benyttes forskjellige typer reformingkatalysatorer, såsom katalysatorer inneholdende ett eller flere metaller fra gruppe VIII i Det periodiske system, fortrinnsvis nikkel, på en bærer (f.eks. aluminiumoxyd, silica og/eller kombina-sjoner derav). Trinn (i) utføres hensiktsmessig ved en temperatur på 500-1100°C, fortrinnsvis 500-1000°C, og ved et trykk på 3-100 bar, fortrinnsvis 15-40 bar. Romhastigheten for blandingen av gassformig hydrocarbonholdig tilførsels-materiale og vanndamp er hensiktsmessig 1000-8000, og fortrinnsvis 4000-6000 liter (ved standard temperatur og trykk) pr. liter katalysator pr. time. different types of reforming catalysts can be used, such as catalysts containing one or more metals from group VIII in the periodic table, preferably nickel, on a support (e.g. aluminum oxide, silica and/or combinations thereof). Step (i) is conveniently carried out at a temperature of 500-1100°C, preferably 500-1000°C, and at a pressure of 3-100 bar, preferably 15-40 bar. The space velocity for the mixture of gaseous hydrocarbon-containing feed material and water vapor is suitably 1000-8000, and preferably 4000-6000 liters (at standard temperature and pressure) per liter of catalyst per hour.

Den prosentvise andel hydrocarbonholdig tilførsels-materiale som overføres i trinn (i) av fremgangsmåten ifølge oppfinnelsen, er hensiktsmessig 50-99 vekt%, fortrinnsvis 80-95 vekt%. The percentage share of hydrocarbon-containing feed material that is transferred in step (i) of the method according to the invention is suitably 50-99% by weight, preferably 80-95% by weight.

Den katalytiske reforming i trinn (i) kan utføres The catalytic reforming in step (i) can be carried out

i et stasjonært, bevegelig eller fluidisert skikt av katalysatorpartikler. Det foretrekkes å benytte stasjonære skikt av katalysatorpartikler anbrakt inne i flere reformer-rør. in a stationary, moving or fluidized bed of catalyst particles. It is preferred to use stationary layers of catalyst particles placed inside several reformer tubes.

Som oxygenholdig gass for bruk i trinn (ii) kan det benyttes luft. Imidlertid foretrekkes det å anvende en oxygenholdig gass som har et høyere oxygeninnhold enn luft, spesielt praktisk talt rent oxygen, dvs. en oxygengasssom inneholder mindre enn 0,5 vol% forurensninger såsom nitrogen og argon. Tilstedeværelse av de sistnevnte inerte gasser er uønsket, fordi det fører til en gradvis akkumulering av slike gasser i systemet. Air can be used as an oxygen-containing gas for use in step (ii). However, it is preferred to use an oxygen-containing gas which has a higher oxygen content than air, especially practically pure oxygen, i.e. an oxygen gas which contains less than 0.5 vol% of impurities such as nitrogen and argon. Presence of the latter inert gases is undesirable, because it leads to a gradual accumulation of such gases in the system.

Trinn (ii) av fremgangsmåten ifølge oppfinnelsen utfø-res fortrinnsvis ikke-katalytisk ved i det vesentlige det samme trykk som det der anvendes i trinn (i), i den hensikt å muliggjøre den ovenfor omtalte integrering av oxydasjons-og reformingsoner. Temperaturen av oppvarmningsgassen dannet i trinn (ii) er selvfølgelig fortrinnsvis noe høyere enn temperaturen inne i reformingsonen(e) som skal oppvarmes. Egnede temperaturområder for oppvarmningsgassen er 500-1500°C, fortrinnsvis 700-1200°C. Step (ii) of the method according to the invention is preferably carried out non-catalytically at essentially the same pressure as that used in step (i), with the aim of enabling the above-mentioned integration of oxidation and reforming zones. The temperature of the heating gas formed in step (ii) is of course preferably somewhat higher than the temperature inside the reforming zone(s) to be heated. Suitable temperature ranges for the heating gas are 500-1500°C, preferably 700-1200°C.

Spesielt når en relativt stor prosentvis andel hydrocarbonholdig tilførselsmateriale er blitt omdannet i trinn (i), blir en gjenværende del hydrocarbonholdig tilførsels-materiale fortrinnsvis anvendt i trinn (ii) sammen med det totale reformerprodukt fra trinn (i) og i det minste en del av produktgassen (f.eks. inneholdende uomsatt tilførsels-gass og lavere olefiniske forbindelser) som er blitt skilt ut fra de normalt væskeformige hydrocarboner som dannes i trinn (iv). In particular, when a relatively large percentage of hydrocarbon-containing feed material has been converted in step (i), a remaining portion of hydrocarbon-containing feed material is preferably used in step (ii) together with the total reformer product from step (i) and at least part of the product gas (eg containing unreacted feed gas and lower olefinic compounds) which has been separated from the normally liquid hydrocarbons formed in step (iv).

På grunn av den vanligvis høyere temperatur i oxydasjonssonen, sammenlignet med reformingsonen, vil omdannelsen av eventuelt gjenværende hydrocarbonholdig tilførselsmateriale bli enda høyere enn den som oppnåes i trinn (i), selv om damp innføres i oxydasjonssonen sammen med reformerprodukt, med den oxygenholdige gass eller som en separat strøm, for å beskytte brennere i oxydasjonssonen mot å overopphetes. Because of the generally higher temperature in the oxidation zone, compared to the reforming zone, the conversion of any remaining hydrocarbon-containing feed material will be even higher than that obtained in step (i), even if steam is introduced into the oxidation zone together with reformer product, with the oxygen-containing gas or as a separate stream, to protect burners in the oxidation zone from overheating.

Dessuten kan relativt kalde hydrocarbonholdige tilfør-selsstrømmer og/eller andre tilførselsstrømmer tilføres for temperaturreguleringsformål i trinn (i). Mengden av ytterligere hydrocarbonholdig tilførselsmateriale som benyttes i trinn (ii) er fortrinnsvis mellom 0 og 100 vol% og aller helst mellom 10 og 80 vol%, av mengden av hydrocarbonholdig tilførselsmateriale som benyttes i trinn (i). In addition, relatively cold hydrocarbon-containing feed streams and/or other feed streams can be fed for temperature control purposes in step (i). The amount of additional hydrocarbon-containing feed material used in step (ii) is preferably between 0 and 100 vol% and most preferably between 10 and 80 vol%, of the amount of hydrocarbon-containing feed material used in step (i).

Det hydrocarbonholdige tilførselsmateriale for fremgangsmåten ifølge oppfinnelsen er fortrinnsvis methan, f.eks. i form av naturgass. Dersom et tilførselsmateriale med et relativt høyt svovelinnhold (f.eks. i form av hydrogensulfid og/eller organiske svovelforbindelser) anvendes, blir et slikt tilførselsmateriale fortrinnsvis desulfurert i det minste delvis (før det reformes katalytisk), f.eks. i nærvær av hydrogen, med en katalysator omfattende minst ett metall (forbindelse) fra gruppe 6 og/eller 8 i Det periodiske system på The hydrocarbon-containing feed material for the method according to the invention is preferably methane, e.g. in the form of natural gas. If a feed material with a relatively high sulfur content (e.g. in the form of hydrogen sulphide and/or organic sulfur compounds) is used, such a feed material is preferably at least partially desulphurised (before it is catalytically reformed), e.g. in the presence of hydrogen, with a catalyst comprising at least one metal (compound) from group 6 and/or 8 of the Periodic Table of

en tungtsmeltelig bærer, såsom en nikkel/molybden/aluminiumoxyd-katalysator. a low-melting support, such as a nickel/molybdenum/aluminum oxide catalyst.

I det minste en del av, og fortrinnsvis praktisk talt alt, carbondioxydet som er tilstede i oppvarmningsgassen med hvilken reformingsonen(e) er blitt oppvarmet i trinn (ii) fjernes i trinn (iii) ved f.eks. væskeabsorpsjon (med f.eks. organiske aminer) eller adsorpsjon på molekylsiler eller membraner. Damp blir hensiktsmessig fjernet samtidig med carbondioxyd og kan anvendes på ny etter ny oppvarmning. Fortrinnsvis blir alt det således fjernede carbondioxyd ført sammen med det totale hydrocarbonholdige tilførselsmateriale etter det eventuelle desulfureringstrinn. Alternativt blir ulike mengder carbondioxyd, som kan variere fra 0 til 100 At least part of, and preferably practically all, the carbon dioxide present in the heating gas with which the reforming zone(s) has been heated in step (ii) is removed in step (iii) by e.g. liquid absorption (with e.g. organic amines) or adsorption on molecular sieves or membranes. Steam is appropriately removed at the same time as carbon dioxide and can be used again after reheating. Preferably, all the carbon dioxide thus removed is taken together with the total hydrocarbon-containing feed material after the eventual desulfurization step. Alternatively, different amounts of carbon dioxide are produced, which can vary from 0 to 100

vol% av carbondioxydet fjernet i trinn (iii), slått sammen med tilførselsstrømmene for trinn (i) og trinn (ii). Dessuten kan det benyttes ytterligere mengder carbondioxyd fra eksterne kilder. vol% of the carbon dioxide removed in step (iii), combined with the feed streams for step (i) and step (ii). In addition, additional amounts of carbon dioxide from external sources can be used.

I trinn (iv) av fremgangsmåten ifølge oppfinnelsen In step (iv) of the method according to the invention

blir en hydrogen- og carbonmonoxydholdig gass (erholdt i trinn (i) og/eller (iii)) overført i det minste delvis, i ett eller flere trinn, til normalt væskeformige hydrocarboner i nærvær av en katalysator av Fischer-Tropsch-typen som fortrinnsvis omfatter minst ett metall (forbindelse) a hydrogen and carbon monoxide-containing gas (obtained in step (i) and/or (iii)) is converted at least partially, in one or more steps, to normally liquid hydrocarbons in the presence of a Fischer-Tropsch type catalyst which preferably includes at least one metal (compound)

fra gruppe 4b, 6b og/eller 8, såsom zirconium, krom, jern, kobolt, nikkel og/eller ruthenium, på en bærer. from group 4b, 6b and/or 8, such as zirconium, chromium, iron, cobalt, nickel and/or ruthenium, on a support.

I visse tilfeller foretrekkes en ett-trinns syntese In certain cases, a one-step synthesis is preferred

for fremstilling av de væskeformige hydrocarboner. Derved fåes en produktgass inneholdende relativt store mengder lavere olefiniske forbindelser (og uomdannet tilførselsgass) i til-legg til normalt væskeformige hydrocarboner, såsom bensin (med et kokeområde på ca. 40-150°C) og/eller mellomdestil-latfraksjoner (med et kokeområde på omtrent 150-360°C). for the production of the liquid hydrocarbons. This results in a product gas containing relatively large amounts of lower olefinic compounds (and unconverted feed gas) in addition to normally liquid hydrocarbons, such as petrol (with a boiling range of approx. 40-150°C) and/or middle distillate fractions (with a boiling range of of approximately 150-360°C).

Som ovenfor nevnt blir i det minste en del av produktgassen fra trinn (iv) fortrinnsvis tilført i trinn (ii) heller enn i trinn (i), i hvilket det vanligvis er mindre egnet, spesielt når hydrocarbonsyntesen utføres i ett enkelt trinn. En gjenværende andel produktgass som fåes i trinn (iv), blir fortrinnsvis ekspandert i en turboekspansjonsanordning og/eller forbrent (f.eks. i forbrenningskammeret i en gassturbin) for å tilveiebringe energi for komprimering og/eller for å skille ut fra luft det oxygen eller den oxygenhoIdige gass som anvendes i trinn (ii). As mentioned above, at least part of the product gas from step (iv) is preferably supplied in step (ii) rather than in step (i), in which it is usually less suitable, especially when the hydrocarbon synthesis is carried out in a single step. A remaining proportion of product gas obtained in step (iv) is preferably expanded in a turboexpansion device and/or burned (e.g. in the combustion chamber of a gas turbine) to provide energy for compression and/or to separate from air the oxygen or the oxygen-containing gas used in step (ii).

Trinn (iv) av fremgangsmåten ifølge oppfinnelsen kan også med fordel utføres som en to-trinns syntese for fremstilling av væskeformige hydrocarboner, i hvilken i det minste en del av de normalt væskeformige hydrocarboner som fåes i det første trinn, hydrokrakkes katalytisk i det annet trinn. Step (iv) of the method according to the invention can also advantageously be carried out as a two-step synthesis for the production of liquid hydrocarbons, in which at least part of the normally liquid hydrocarbons obtained in the first step is catalytically hydrocracked in the second step .

I det første trinn av en slik to-trinns syntese anvendes fortrinnsvis en klasse av katalysatorer ved hjelp av hvilken det oppnåes et produkt som inneholder en relativt liten mengde olefiniske og oxygenholdige organiske forbindelser og en relativt stor mengde uforgrenede paraffiner som koker ved temperaturer over mellomdestillatkokeområdet. Det første trinn utføres fortrinnsvis ved en temperatur på 125-350°C, spesielt ved 175-275°C, og ved et trykk på 5-100 bar, spesielt 10-75 bar. In the first stage of such a two-stage synthesis, a class of catalysts is preferably used, with the help of which a product is obtained which contains a relatively small amount of olefinic and oxygen-containing organic compounds and a relatively large amount of unbranched paraffins which boil at temperatures above the middle distillate boiling range. The first step is preferably carried out at a temperature of 125-350°C, especially at 175-275°C, and at a pressure of 5-100 bar, especially 10-75 bar.

I det annet trinn av to-trinns syntesen blir fortrinnsvis i det minste den fraksjon av produktet fra det første trinn som koker ved temperaturer over mellomdestillatkokeområdet så hydrokrakket til mellomdestillater med et vesentlig forbedret hellepunkt, sammenlignet med mellomdestillater fremstilt ved en ett-trinns syntese. In the second step of the two-step synthesis, preferably at least the fraction of the product from the first step which boils at temperatures above the middle distillate boiling range is then hydrocracked into middle distillates with a substantially improved pour point, compared to middle distillates produced by a one-step synthesis.

Det foretrekkes spesielt at hele det normalt væskeformige produkt (fraksjonen som inneholder molekyler med minst 5 carbonatomer) fra det første trinn underkastes det annet trinn for å forbedre kvaliteten av de lettere hydrocarboner (f.eks. bensin- og kerosenfraksjoner) som er tilstede i dette. It is particularly preferred that the entire normally liquid product (the fraction containing molecules with at least 5 carbon atoms) from the first stage be subjected to the second stage in order to improve the quality of the lighter hydrocarbons (e.g. gasoline and kerosene fractions) present therein .

Dersom produktet fra det første trinn fortsatt inneholder tilstrekkelig med uomsatt hydrogen for utførelse av det annet trinn, kan de to trinn med fordel utføres i serie, uten fraskillelse eller tilsetning av bestanddeler mellom de to trinn, ved anvendelse av praktisk talt samme trykk i de to trinn. Temperaturen i det annet trinn er fortrinnsvis 200-450°C, spesielt 250-350°C. I det annet trinn benyttes det fortrinnsvis en katalysator som inneholder minst ett edelmetall fra gruppe 8 (spesielt platina og/eller palla-dium) på en bærer (spesielt silica-aluminiumoxyd). Fortrinnsvis inneholder slike katalysatorer 0,1-2 vekt%, spesielt 0,2-1 vekt%, edelmetall(er). If the product from the first stage still contains sufficient unreacted hydrogen to carry out the second stage, the two stages can advantageously be carried out in series, without separation or addition of components between the two stages, using practically the same pressure in the two steps. The temperature in the second stage is preferably 200-450°C, especially 250-350°C. In the second step, a catalyst is preferably used which contains at least one noble metal from group 8 (especially platinum and/or palladium) on a carrier (especially silica-aluminium oxide). Preferably, such catalysts contain 0.1-2% by weight, especially 0.2-1% by weight, of precious metal(s).

Hydrogenholdig gass blir fortrinnsvis gjenvunnet fra produktgass erholdt i det minste i ett av trinnene (i-iv) Hydrogen-containing gas is preferably recovered from product gas obtained in at least one of the steps (i-iv)

av fremgangsmåten ifølge oppfinnelsen for derved å tilveiebringe hydrogen for det annet trinn av hydrocarbonsyntesen og/eller hydrodesulfureringen av det hydrocarbonholdige til-førselsmateriale, dersom en slik hydrodesulfurering er på-krevet. of the method according to the invention to thereby provide hydrogen for the second stage of the hydrocarbon synthesis and/or the hydrodesulfurization of the hydrocarbon-containing feed material, if such hydrodesulfurization is required.

Dersom det etter fraskillelse av carbondioxyd i trinn (iii) fåes en gass med et molforhold H2/CO som er høyere enn det foretrukne område på 1,0-2,5 (spesielt 1,25-2,25) If, after separation of carbon dioxide in step (iii), a gas is obtained with a mole ratio H2/CO that is higher than the preferred range of 1.0-2.5 (especially 1.25-2.25)

for tilførselsmateriale som skal tilføres i trinn (iv), blir hydrogen fortrinnsvis utvunnet fra gassen for å senke molfor-holdet H2/CO i denne. for feed material to be supplied in step (iv), hydrogen is preferably extracted from the gas in order to lower the molar ratio H2/CO in it.

Hydrogen utvinnes fortrinnsvis ved adsorpsjon i svinge-skikt under trykk, under anvendelse av molekylsiler i hvilke andre bestanddeler enn hydrogen adsorberes selektivt ved et høyere trykk og desorberes ved et lavere trykk, hvorved hydrogenet fåes ved omtrent samme trykk som tilførselstryk-ket. Alternativt kan hydrogen utvinnes ved hjelp av semiperme-able membraner i hvilke hydrogen av relativt høy renhet utvinnes ved et lavt trykk, mens den gjenværende del av strøm-men får et trykk som er praktisk talt likt tilførselstrykket. Hydrogen is preferably extracted by fluidized bed adsorption under pressure, using molecular sieves in which components other than hydrogen are selectively adsorbed at a higher pressure and desorbed at a lower pressure, whereby the hydrogen is obtained at approximately the same pressure as the supply pressure. Alternatively, hydrogen can be extracted using semipermeable membranes in which hydrogen of relatively high purity is extracted at a low pressure, while the remaining part of the stream is given a pressure that is practically equal to the supply pressure.

Oppfinnelsen skal illustreres ved hjelp av figuren, som skjematisk viser en foretrukken utførelsesform av fremgangsmåten (hjelpeutstyr såsom pumper og ventiler er ikke vist) . The invention shall be illustrated by means of the figure, which schematically shows a preferred embodiment of the method (auxiliary equipment such as pumps and valves are not shown).

Et hydrocarbonholdig tilførselsmateriale tilføres gjennom rørledning 1, sammen med carbondioxydholdig gass resirkulert gjennom rørledning (2). Denne blanding deles i strømmer (3) og' (4). Strøm (3) føres sammen med damp tilført gjennom: rørledning (5), og blandingen føres via rørledning A hydrocarbon-containing feed material is supplied through pipeline 1, together with carbon dioxide-containing gas recycled through pipeline (2). This mixture is divided into streams (3) and (4). Stream (3) is fed together with steam supplied through: pipeline (5), and the mixture is fed via pipeline

(6) (og eventuelt en varmeveksler som ikke er vist på figuren) til reformingsone (7), hvor trinn (i) av fremgangsmåten ifølge oppfinnelsen utføres. Strøm (4) føres sammen med produkt- (6) (and optionally a heat exchanger that is not shown in the figure) to the reforming zone (7), where step (i) of the method according to the invention is carried out. Current (4) is fed together with product

gass inneholdende uomsatt syntesegass og lavere olefiniske forbindelser som resirkuleres gjennom rørledning (8), og med praktisk talt ren oxygengass (fra et på tegningen ikke vist luftseparasjonsanlegg) innført via rørledning (9). Den således erholdte gassblanding føres via rørledning (10) til oxydasjonssone (11) i hvilken gassblandingen føres sammen med reformerprodukt fra reformingsonen (7) og oxyderes partielt for dannelse av oppvarmningsgass, med hvilken reformingsonen oppvarmes i trinn (ii) av fremgangsmåten ifølge oppfinnelsen. gas containing unreacted synthesis gas and lower olefinic compounds which are recycled through pipeline (8), and with practically pure oxygen gas (from an air separation plant not shown in the drawing) introduced via pipeline (9). The gas mixture thus obtained is fed via pipeline (10) to the oxidation zone (11) in which the gas mixture is fed together with reformer product from the reforming zone (7) and is partially oxidized to form heating gas, with which the reforming zone is heated in step (ii) of the method according to the invention.

Oppvarmningsgass dannet i trinn (ii) føres via rørled-ning (12) til carbondioxydutskillelsesenhet (13) (trinn (iii)), fra hvilken den totale mengde utvunnet carbondioxydholdig gass resirkuleres (trinn (v)) gjennom rørledning (2) til det hydrocarbonholdige tilførselsmateriale. Vann fjernes fra enheten (13) gjennom rørledning (14) og oppvarmes på Heating gas formed in step (ii) is led via pipeline (12) to the carbon dioxide separation unit (13) (step (iii)), from which the total amount of recovered carbon dioxide-containing gas is recycled (step (v)) through pipeline (2) to the hydrocarbon-containing supply material. Water is removed from the unit (13) through pipeline (14) and heated up

ny i prosessens energianlegg (ikke vist på figuren). new in the process's energy system (not shown in the figure).

Gassen som fåes etter fraskillelse av carbondioxyd The gas obtained after separation of carbon dioxide

i trinn (iii), innføres via rørledning (15) i hydrogensyn-teseenhet (16) (trinn (iv)), eventuelt via en hydrogenut-skillelsesenhet (ikke vist på figuren), fra hvilken hydro- in step (iii), is introduced via pipeline (15) into the hydrogen synthesis unit (16) (step (iv)), possibly via a hydrogen separation unit (not shown in the figure), from which hydro-

gen for bruk i enhet (16) og/eller for bruk ved hydrodesulfurering av det hydrocarbonholdige tilførselsmateriale kan fåes. Normalt væskeformige hydrocarboner taes ut fra enheten (16) via rørledning (17), mens produktgass taes ut via rør-ledning (18) og føres delvis via rørledning (19) som brensel-gass til en gassturbin som driver en luftseparasjonskompres-sor (ikke vist på tegningen), mens den gjenværende del av produktgassen resirkuleres via rørledninger (8) og (10) til oxydasjonssone (11). gene for use in unit (16) and/or for use in hydrodesulfurization of the hydrocarbon-containing feed material can be obtained. Normally liquid hydrocarbons are taken out from the unit (16) via pipeline (17), while product gas is taken out via pipeline (18) and is partly fed via pipeline (19) as fuel gas to a gas turbine which drives an air separation compressor (not shown in the drawing), while the remaining part of the product gas is recycled via pipelines (8) and (10) to oxidation zone (11).

Oppfinnelsen illustreres ytterligere i det følgende eksempel. The invention is further illustrated in the following example.

Eksempel Example

I et anlegg i det vesentlige som vist på figuren blir In a facility essentially as shown in the figure will be

en naturgasstilførselsstrøm (1) omfattende 137 Mmol/dag (Mmol = 10 mol) methan og 3 Mmol/dag nitrogen ført sammen med en 61 Mmol/dag carbondioxyd (strøm (2)) og 205 Mmol/dag av vanndampstrøm ( 5) innført i reformingsone (7), som drives ved en temperatur på 900°C og ved et trykk på 25 bar abs., og hvor tilførselsmaterialet bringes i kontakt med en katalysator bestående av Ni på A^O^ som bærer. Reformerproduktet oxy- a natural gas feed stream (1) comprising 137 Mmol/day (Mmol = 10 mol) methane and 3 Mmol/day nitrogen fed together with a 61 Mmol/day carbon dioxide (stream (2)) and 205 Mmol/day water vapor stream (5) introduced into reforming zone (7), which is operated at a temperature of 900°C and at a pressure of 25 bar abs., and where the feed material is brought into contact with a catalyst consisting of Ni on A^O^ as carrier. The reformer product oxy-

deres partielt i oxydasjonssone (7) med 76 Mmol/dag praktisk talt rent oxygen (strøm (9)) og ledes deretter til enhet (13) i hvilken de ovennevnte 61 Mmol/dag carbondioxyd (strøm (2)) skilles ut. Den resulterende i det vesentlige carbondi-oxydfrie gasstrøm (15) inneholder 245 Mmol/dag hydrogen, their partially in oxidation zone (7) with 76 Mmol/day practically pure oxygen (stream (9)) and then led to unit (13) in which the above-mentioned 61 Mmol/day carbon dioxide (stream (2)) is separated. The resulting essentially carbon dioxide-free gas stream (15) contains 245 Mmol/day hydrogen,

136 Mmol/dag carbonmonoxyd, 3 Mmol/dag nitrogen og 10 Mmol/dag damp og overføres i hydrocarbonsynteseenheten (16) til 7 Mmol/dag normalt væskeformige hydrocarboner (strøm 17) og 136 Mmol/day carbon monoxide, 3 Mmol/day nitrogen and 10 Mmol/day steam and are transferred in the hydrocarbon synthesis unit (16) to 7 Mmol/day normally liquid hydrocarbons (stream 17) and

en produktgasstrøm (18). a product gas stream (18).

Claims (4)

1. Fremgangsmåte for fremstilling av væskeformige hydrocarboner fra et gassformig hydrocarbonholdig tilfør-selsmateriale, hvor (i) i det minste en del av det hydrocarbonholdige tilfør-selsmateriale reformes katalytisk ved forhøyet temperatur og trykk med damp i minst én reformingsone, (ii) reformingsonen(e) oppvarmes ved hjelp av en oppvarmningsgass omfattende et produkt oppnådd ved partiell oxydasjon av reformerprodukt oppnådd i trinn (i) eller av en gjenværende del av det hydrocarbonholdige tilførselsmateriale eller av en blanding derav med en oxygenholdig gass i en oxydasjonssone, og (iii ) i det minste en del av reformerproduktet oppnådd i trinn (i) og/eller gassen oppnådd i trinn (ii) omdannes katalytisk ved forhøyet temperatur og trykk til hydrocarbonprodukter, karakterisert ved at (iv) carbondioxyd skilles fra oppvarmningsgassen fra trinn (ii), (v) i det minste en del av reformerproduktet dannet i trinn (i) og/eller gassen oppnådd etter fraskillelse av carbondioxyd i trinn (iv) omdannes katalytisk til normalt væskeformige hydrocarboner, og (vi) det minste en del av carbondioxydet oppnådd i trinn (iv) føres sammen med det hydrocarbonholdige tilfør-selsmateriale for minst ett av trinnene (i) og (ii).1. Process for producing liquid hydrocarbons from a gaseous hydrocarbon-containing feed material, where (i) at least part of the hydrocarbon-containing feed material is catalytically reformed at elevated temperature and pressure with steam in at least one reforming zone, (ii) the reforming zone ( e) is heated by means of a heating gas comprising a product obtained by partial oxidation of reformer product obtained in step (i) or by a remaining part of the hydrocarbon-containing feed material or by a mixture thereof with an oxygen-containing gas in an oxidation zone, and (iii) at least part of the reformer product obtained in step (i) and/or the gas obtained in step (ii) is catalytically converted at elevated temperature and pressure into hydrocarbon products, characterized in that (iv) carbon dioxide is separated from the heating gas from step (ii), (v) at least part of the reformer product formed in step (i) and/or the gas obtained after separation of carbon dioxide in step (iv) is catalytically converted to normal liquid hydrocarbons, and (vi) at least part of the carbon dioxide obtained in step (iv) is fed together with the hydrocarbon-containing feed material for at least one of steps (i) and (ii). 2. Fremgangsmåte ifølge krav 1, karakterisert ved at den totale mengde reformerprodukt dannet i trinn (i) underkastes partiell oxydasjon i trinn (ii) sammen med den gjenværende del av det hydrocarbonholdige tilførselsmateriale.2. Method according to claim 1, characterized in that the total amount of reformer product formed in step (i) is subjected to partial oxidation in step (ii) together with the remaining part of the hydrocarbon-containing feed material. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at det anvendes en praktisk talt ren oxygengass i trinn (ii).3. Method according to claim 1 or 2, characterized in that a practically pure oxygen gas is used in step (ii). 4. Fremgangsmåte ifølge krav 1-3, karakterisert ved at produktgass oppnådd i trinn (iv) anvendes i trinn (ii).4. Method according to claims 1-3, characterized in that product gas obtained in step (iv) is used in step (ii).
NO864921A 1985-12-09 1986-12-08 PROCEDURE FOR THE MANUFACTURE OF LIQUID HYDROCARBONS FROM A GASFUL HYDROCARBON CONTAINING SUPPLY MATERIAL NO169647C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB858530272A GB8530272D0 (en) 1985-12-09 1985-12-09 Producing liquid hydrocarbons

Publications (4)

Publication Number Publication Date
NO864921D0 NO864921D0 (en) 1986-12-08
NO864921L NO864921L (en) 1987-06-10
NO169647B true NO169647B (en) 1992-04-13
NO169647C NO169647C (en) 1992-07-29

Family

ID=10589454

Family Applications (1)

Application Number Title Priority Date Filing Date
NO864921A NO169647C (en) 1985-12-09 1986-12-08 PROCEDURE FOR THE MANUFACTURE OF LIQUID HYDROCARBONS FROM A GASFUL HYDROCARBON CONTAINING SUPPLY MATERIAL

Country Status (6)

Country Link
CN (1) CN1016700B (en)
AU (1) AU590645B2 (en)
CA (1) CA1288781C (en)
GB (2) GB8530272D0 (en)
MY (1) MY100111A (en)
NO (1) NO169647C (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2767317B1 (en) * 1997-08-14 1999-09-10 Air Liquide PROCESS FOR CONVERTING A FLOW CONTAINING HYDROCARBONS BY PARTIAL OXIDATION
KR20000024769A (en) * 1998-10-01 2000-05-06 윤종용 Apparatus for driving switched reluctance motor
FR2789691B1 (en) * 1999-02-11 2001-04-27 Inst Francais Du Petrole METHOD FOR SYNTHESIS OF ATMOSPHERIC DISTILLATE INCLUDING THE USE OF FISCHER-TROPSCH TECHNOLOGY
EP1069070B1 (en) * 1999-07-15 2011-11-30 Haldor Topsoe A/S Process for the catalytic steam reforming of a hydrocarbon feedstock
MY139324A (en) * 2001-06-25 2009-09-30 Shell Int Research Integrated process for hydrocarbon synthesis
EP1794083A1 (en) * 2004-10-04 2007-06-13 Shell Internationale Research Maatschappij B.V. Integrated process for hydrocarbon synthesis
EP1650160A1 (en) * 2004-10-20 2006-04-26 Stichting Energieonderzoek Centrum Nederland Process for the production of synthesis gas and reactor for such process
RU2430140C2 (en) 2006-03-07 2011-09-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Method of obtaining fischer-tropsch synthesis product
WO2008006787A2 (en) * 2006-07-11 2008-01-17 Shell Internationale Research Maatschappij B.V. Process to prepare a synthesis gas
BR112015003539A2 (en) * 2012-08-30 2018-04-17 Steeper Energy Aps improved method for process stop preparation and liquid hydrocarbon production equipment

Also Published As

Publication number Publication date
AU6616486A (en) 1987-06-11
GB8629289D0 (en) 1987-01-14
CN1016700B (en) 1992-05-20
NO864921L (en) 1987-06-10
NO864921D0 (en) 1986-12-08
GB2183672B (en) 1989-10-18
NO169647C (en) 1992-07-29
GB8530272D0 (en) 1986-01-22
CN86108198A (en) 1987-07-29
CA1288781C (en) 1991-09-10
GB2183672A (en) 1987-06-10
MY100111A (en) 1989-12-18
AU590645B2 (en) 1989-11-09

Similar Documents

Publication Publication Date Title
US3828474A (en) Process for producing high strength reducing gas
CA2256224C (en) Production of synthesis gas by mixed conducting membranes
US7879919B2 (en) Production of hydrocarbons from natural gas
CA2282142C (en) Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products
KR20210151778A (en) chemical synthesis plant
RU2437830C2 (en) Method of producing synthetic gas
NO336963B1 (en) Process for the production of hydrocarbons
NO153564B (en) PROCEDURE FOR THE PREPARATION OF SYNTHESIC GAS FROM A SULFULATED HYDROCARBON CONTAINING CHARGE.
RU2404117C2 (en) Method of preparing mixture of carbon monoxide and hydrogen
US11702336B2 (en) Process and plant for producing pure hydrogen
EP2944606A1 (en) Process for generating hydrogen from a fischer-tropsch off-gas
NO169647B (en) PROCEDURE FOR THE MANUFACTURE OF LIQUID HYDROCARBONS FROM A GASFUL HYDROCARBON CONTAINING SUPPLY MATERIAL
NO160033B (en) DEVICE FOR CONNECTING A SERIES OF DATA COLLECTION DEVICES WITH A REMOTE RECEIVING AND RECORDING SYSTEM.
EP0926097B2 (en) Utilization of synthesis gas produced by mixed conducting membranes
KR20210151776A (en) chemical synthesis plant
US6993911B2 (en) System for power generation in a process producing hydrocarbons
US6593377B1 (en) Method and apparatus for producing high molecular weight liquid hydrocarbons from methane and/or natural gas
US6852762B2 (en) Integrated process for hydrocarbon synthesis
AU2002317859A1 (en) Integrated process for hydrocarbon synthesis
US3975169A (en) Process for producing a natural gas substitute
WO2024105814A1 (en) Method for producing high calorific value fuel gas
WO2023114825A1 (en) Process for generating a purified hydrogen product from heavy hydrocarbon feedstocks
GB2299341A (en) Raw synthesis gas

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees