NL2024231B1 - Anisotropic seismic imaging method - Google Patents

Anisotropic seismic imaging method Download PDF

Info

Publication number
NL2024231B1
NL2024231B1 NL2024231A NL2024231A NL2024231B1 NL 2024231 B1 NL2024231 B1 NL 2024231B1 NL 2024231 A NL2024231 A NL 2024231A NL 2024231 A NL2024231 A NL 2024231A NL 2024231 B1 NL2024231 B1 NL 2024231B1
Authority
NL
Netherlands
Prior art keywords
imaging
anisotropic
seismic
point
window center
Prior art date
Application number
NL2024231A
Other languages
Dutch (nl)
Inventor
Sun Hui
Original Assignee
Univ Southwest Jiaotong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Southwest Jiaotong filed Critical Univ Southwest Jiaotong
Application granted granted Critical
Publication of NL2024231B1 publication Critical patent/NL2024231B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/301Analysis for determining seismic cross-sections or geostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/62Physical property of subsurface
    • G01V2210/626Physical property of subsurface with anisotropy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/67Wave propagation modeling
    • G01V2210/671Raytracing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/67Wave propagation modeling
    • G01V2210/679Reverse-time modeling or coalescence modelling, i.e. starting from receivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

ANISOTROPIC SEISMIC IMAGING METHOD 5 The present invention discloses an anisotropic seismic imaging method comprising the steps described in Fig. 1. According to the anisotropic seismic imaging method, the proportion of contribution of effective signals to the final imaging result is increased, and the calculation accuracy of the anisotropic migration method is improved. 10 Fig. l

Description

ANISOTROPIC SEISMIC IMAGING METHOD
TECHNICAL FIELD The present invention belongs to the field of seismic migration imaging and particularly relates to an anisotropic seismic imaging method.
BACKGROUND In a conventional migration imaging method, a target geological body is considered as an isotropic medium, but anisotropy is common in geological bodies. When seismic data with long offset distance and wide azimuth is processed, the problems that migration energy cannot be better focused, and the migration noise is increased, easy to cause by influence of anisotropy, are ignored. Due to the problems, the accuracy of seismic imaging can be reduced, and certain difficulty can be caused to oil and gas exploration.
Kirchhoff Type Dynamic Focusing Beam Migration was disclosed in doctoral thesis of Jilin University in 2017, in the thesis, an anisotropic Kirchhoff type beam migration method is introduced, and anisotropic ray tracing is introduced into the anisotropic beam migration by the method to treat anisotropic geological bodies. In addition, an imaging test is performed on an anisotropic Hess model by the anisotropic Kirchhoff beam migration method, and good migration results are obtained.
In Issue 4 of 2017 of Geophysical and Geochemical Exploration Calculation Technology, “Application of Pseudo-Acoustic Prestack Reverse-Time Migration and Imaging Conditions of Anisotropic Medium’ written by Ayizemuguli Ruze and the like was disclosed, an anisotropic reverse-time migration imaging method was introduced, an acoustic wave equation of a VTI (Variable Timing Injection) media was studied, optimized normalized mutual correlation imaging conditions were applied, the method was verified by the anisotropy Hess model, and a good imaging effect was achieved.
From the above examples, it can be observed that anisotropic data bodies can be well imaged to a certain extent by a conventional imaging method, but the imaging accuracy still needs to be improved.
SUMMARY In order to improve the calculation accuracy of an anisotropic seismic imaging method, the present invention provides an anisotropic seismic imaging method.
The anisotropic seismic imaging method comprises the following steps of step 1, reading in an anisotropic parameter model, a P-wave velocity model and a parameter file; step 2, performing anisotropic ray tracing on a shot point by a Runge-Kutta method in different directions, and calculating the information of a beam corresponding to each ray; step 3, dividing single-shot seismic records into a plurality of data bodies with a window as a unit; step 4, calculating the partial derivative of the data bodies in the windows to time and the partial derivative of the data bodies to space, and performing local plane wave decomposition on the seismic records in the windows; step 5, performing anisotropic ray tracing on the window center in different directions, and calculating the information of the beam corresponding to each ray; step 6, performing imaging calculation on all beam pairs in the shot point and the window center by a new imaging formula with a weight function added; and step 7, adding up imaging results of all beam pairs, so as to obtain a final migration imaging result.
Further, the anisotropic parameter model in the step 1 comprises an anisotropic parameter model and an anisotropic parameter model; the parameter file comprises the size of a grid, the initial beam width, the number of seismic channels, channel spacings, the number of sampling points in each channel and minimum and maximum frequencies. Further, the ray tracing equations in the step 2 are as follows: dx; _ ar Ai P18 8x dp, __ 10a de, PPE wherein x; represents the spatial position of discrete points; p,, p, and p, represent the slowness component; 7 represents the seismic travel time; 4,4 is calculated by the formula 4,4 = ¢u!p, Ca represents the elasticity modulus, and p represents the density, g, and £, represent feature vector components, and Ô is a partial derivative symbol; Information of corresponding beams of rays is obtained by a calculation formula of beam width after the information of central rays is known, wherein the calculation formula of the beam width w 1s shown as follows: Cc w=2A0— Vv, wherein J represents the velocity value at the shot point and o represents the integral of a ray path based on velocity; further, in the step 3, the central spacing of the windows is usually selected from 200m to 500m, and the persistence length of the windows is 1.5 times of the initial beam width; further, in the step 6, the imaging formula with a weight function added is as follows: Is(x) = > [dp,[dp,4 WoD (L, p17") 7 wherein /, represents the single-shot imaging value; x represents the position of an imaging point, p, and p, respectively represent slowness parameters of rays launched from the shot point and the window center point; A represents the amplitude; D, represents the local plane wave decomposition result; /. represents the position of the window center; p’ and 7’ represent the slowness and travel time parameters for local tilt superposition; the expression of the weight coefficient J". in the imaging formula is shown as follows: | 2 Wo = Ne VRCHRTACHA] re 2 2 > (i, yeh’ YW; (x; Ny )| > (‚jew Ws (x, Ny )| wherein {/ represents the seismic records, ¥/, and Y, respectively represent the partial derivatives of the seismic records to time and space, W represents a set of points meeting requirements of slowness and travel time, and /, represents seismic travel time. Compared with the prior art, the anisotropic seismic imaging method has the beneficial effects that a new weight coefficient is added to an imaging formula, so that the proportion of contribution of effective signals to a final imaging result is increased, and the anti-interference ability and the calculation accuracy of an anisotropic Kirchhoff type beam migration method are improved.
BRIEF DESCRIPTION OF DRAWINGS
Fig. 1 is a flow chart of an anisotropic Kirchhoff type beam migration imaging method; Fig. 2 is a distribution diagram of a P-wave velocity value of a Hess model; Fig. 3 is a distribution diagram of an anisotropic parameter & of the Hess model; Fig. 4 1s a distribution diagram of an anisotropic parameter ¢ of the Hess model, Fig. 5 is an enlarged view of a local imaging result of an original anisotropic Kirchhoff type beam migration method of the Hess model; Fig. 6 is an enlarged view of a local imaging result of a novel anisotropic Kirchhoff type beam migration method of the Hess model.
DETAILED DESCRIPTION The present invention is further described in details through combination with drawings and specific implementation modes. A flow chart of an anisotropic seismic imaging method is shown as Fig. 1 and specifically comprises the following steps:
1. reading in an anisotropic parameter model, a P-wave velocity model and a parameter file, wherein the anisotropic parameter model comprises an anisotropic parameter ¢ model and an anisotropic parameter 2 model; the parameter file comprises the size of a grid, the initial beam width, the number of seismic channels, channel spacings, the number of sampling points in each channel and minimum and maximum frequencies;
2. launching rays from a shot point in different directions, wherein the angle range of the rays 1s -70 degrees to 70 degrees, and the angle spacing A6 of the rays is usually selected as 2 degrees to 4 degrees; anisotropic kinematics ray tracing equations are solved by a Runge-kutta method, and the equation group is shown as follows: ax; _ ar Ai P18 8
A = To ppg 8 wherein x represents the spatial position of discrete points; p, represents the slowness component, 7 represents the seismic travel time; 4,4 is calculated by the formula 4,4 = Ca1/P, Cy represents the elasticity modulus, and p represents the density, g, and g,
represent feature vector components; obtaining information of corresponding beams of rays by a calculation formula of beam width after the information of central rays is known, wherein the calculation formula of the beam width w is shown as follows: oc 5 w=2A0— V.
wherein J represents the velocity value at the shot point and o represents the integral of a ray path based on velocity;
3. dividing single-shot seismic records into a plurality of data bodies with a window as a unit, wherein the central spacing of the windows is usually selected from 200m to 500m, and the persistence length of the windows is 1.5 times of the initial beam width;
4. calculating the partial derivative of the data bodies in the windows to time and the partial derivative of the data bodies to space, and performing local plane wave decomposition on the seismic records in the windows;
5. performing anisotropic ray tracing on the window center in different directions and calculating the information of the beam corresponding to each ray, wherein Step 5 1s similar to Step 2, and Step 5 and Step 2 have the only difference that the coordinate positions of the shot point and the window center point are different;
6. performing imaging calculation on all beam pairs in the shot point and the window center by a new imaging formula with a weight function added, wherein an imaging formula of original anisotropic Kirchhoff type beam migration is shown as follows: 1,(6)= > [dp dp, A D(L, pT") T, wherein /, represents the single-shot imaging value, Xx represents the position of an imaging point, p, and p, respectively represent slowness parameters of rays launched from the shot point and the window center point, A represents the amplitude; 1), represents the local plane wave decomposition result; represents the position of the window center; p' and 7’ represent the slowness and travel time parameters for local tilt superposition; In the original imaging formula, 7—p domain data bodies obtained by the local plane wave decomposition, can generate an effect on a final imaging result with equal weight and without difference so long as imaging conditions are met, however, invalid 7—p domain data can be introduced into the steps of the local plane wave decomposition due to issues such as a truncation effect, and the data has a negative effect on the final imaging result; In the present invention, a new weight coefficient is added in the original imaging formula, so that the proportion of contribution of effective signals to a final migration result is increased, and the new imaging formula is shown as follows: I(x) = > [ap [dp A W,D,(L, p'‚7') wherein an expression of the weight coefficient Ww, in the imaging formula is shown as follows: 2 po Zana) ’ > (ij)elF Yi (x; ’ l )| > (jer Ws (x, ’ { )| wherein y represents the seismic records, , and YW, respectively represent the partial derivatives of the seismic records to time and space, and W represents a set of points meeting requirements of slowness and travel time; and
7. adding up imaging results of all beam pairs, so as to obtain a final migration imaging result. Simulation Verification: The scheme and the beneficial effects of the present invention are verified by an anisotropic Hess model. Fig. 2, Fig. 3 and Fig. 4 respectively represent the distribution of a P-wave velocity value, the distribution of a parameter § and the distribution of a parameter ¢ of the anisotropic Hess model. The model has 3,617 grid points horizontally, and the grid spacing is 20m; the model has 1,501 grid points longitudinally, and the grid spacing is 20m. The data set comprises 720 shots, the shooting mode is unilateral shooting, the shot spacing is 100m, and the channel spacing is 40m; and each channel comprises 1,333 sampling points, and the sampling interval is 6ms. FIG. 5 is an original anisotropic Kirchhoff type beam migration imaging result, and FIG. 6 is a migration result of the method according to the present invention. It can be seen from a contrast result diagram that the imaging result of the present invention is less in migration noise, higher in signal-to-noise ratio and clearer in reflected geological structure.
The method disclosed by the present invention is an important prestack depth migration method of an anisotropic medium; invalid data in local tilt superposition is not specially processed according to the original imaging formula; a new weight coefficient is added in the original imaging formula, so that the proportion of contribution of effective signals to the final imaging result is increased, and the calculation accuracy of the anisotropic migration method is improved.

Claims (2)

CONCLUSIESCONCLUSIONS 1.- Werkwijze voor anisotrope seismische beeldvorming, gekenmerkt door het omvatten van de volgende stappen van stap 1, het lezen in een anisotroop parametermodel, van een P-golf-snelheidsmodel en een parameterbestand; stap 2, het uitvoeren van anisotrope straalopsporing op een schotpunt door een Runge-Kutta-werkwijze in verschillende richtingen, en het berekenen van de informatie over een stralenbundel die met elke straal overeenstemt; stap 3, het verdelen van seismische bestanden van enkelvoudige schoten in een veelheid van gegevenslichamen met een venster als een eenheid; stap 4, het berekenen van de gedeeltelijke afgeleide van de gegevenslichamen in de vensters naar tijd en de gedeeltelijke afgeleide van de gegevenslichamen naar ruimte, en het uitvoeren van lokale vlakgolfontbinding op de seismische bestanden in de vensters; stap 5, het uitvoeren van anisotrope straalopsporing op het venstermiddelpunt in verschillende richtingen, en het berekenen van de informatie over een stralenbundel die met elke straal overeenstemt; stap 6, het uitvoeren van beeldvormingsberekening op alle stralenbundelparen in het schotpunt en het venstermiddelpunt door een nieuwe beeldvormingsformule met een toegevoegde weegfunctie, en stap 7, het samenvoegen van beeldvormingsresultaten van alle stralenbundelparen, om zo een definitief migratiebeeldvormingsresultaat te verkrijgen.1. Method for anisotropic seismic imaging, characterized by comprising the following steps of step 1, reading in an anisotropic parameter model, a P-wave velocity model and a parameter file; step 2, performing anisotropic beam detection on a shot point by a Runge-Kutta method in different directions, and calculating the information on a beam of beam corresponding to each beam; step 3, dividing single shot seismic files into a plurality of data bodies with one window as a unit; step 4, calculating the partial derivative of the data bodies in the windows by time and the partial derivative of the data bodies by space, and performing local plane wave decomposition on the seismic files in the windows; step 5, performing anisotropic beam search on the window center in different directions, and calculating the information on a beam of beam corresponding to each ray; step 6, performing imaging calculation on all ray beam pairs in the shot point and window center by a new imaging formula with an added weighting function, and step 7, merging imaging results of all ray beam pairs, so as to obtain a final migration imaging result. 2.- Werkwijze voor anisotrope seismische beeldvorming volgens conclusie 1, gekenmerkt doordat de beeldvormingsformule met een toegevoegde weegfunctie in stap 6 hierin ligt dat 1,(x)=Y [dp [dp AW, D(L, pt")Anisotropic seismic imaging method according to claim 1, characterized in that the imaging formula with an added weighting function in step 6 is 1, (x) = Y [dp [dp AW, D (L, pt ") T waarbij [; staat voor de beeldvormingswaarde van een enkelvoudig schot; X staat voor de positie van een beeldvormingspunt; Ps en p, respectievelijk staan voor traagheidsparameters van stralen afgevuurd vanuit het schotpunt en het venstermiddelpunt; A staat voor de amplitude; D, staat voor het lokale vlakgolfontbindingsresultaat; L staat voor de positie van het venstermiddelpunt p' en 7’ staan voor de traagheids- en bewegingsparameters voor lokale hellingsuperpositie; de uitdrukking van de weegcoëfficiënt W, in de beeldvormingsformule wordt getoond als volgt: 2 Ww, _ > (‚jer VACHRTACHD] DIZ CRD DI ZC RD) waarbij YW staat voor de seismische bestanden, YW, en i, respectievelijk staan voor de gedeeltelijke afgeleiden van de seismische bestanden naar tijd en ruimte, W staat voor een reeks van punten die voldoen aan de vereisten van traagheid en bewegingstijd, Xx, staat voor de ruimtelijke positie van discrete punten, en l; staat voor de seismische bewegingstijd.T where [; represents the imaging value of a single shot; X represents the position of an imaging point; Ps and p, respectively, represent inertial parameters of rays fired from the firing point and the window center; A represents the amplitude; D, represents the local plane wave decomposition result; L represents the position of the window center point p 'and 7' represents the inertia and motion parameters for local slope superposition; the expression of the weighting coefficient W, in the imaging formula is shown as follows: 2 Ww, _> (‚jer VACHRTACHD] DIZ CRD DI ZC RD) where YW stands for the seismic files, YW, and i, respectively, represent the partial derivatives of the seismic files by time and space, W represents a series of points meeting the requirements of inertia and time of movement, Xx, represents the spatial position of discrete points, and l; represents the seismic movement time.
NL2024231A 2019-10-15 2019-11-13 Anisotropic seismic imaging method NL2024231B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910977970.XA CN110780341B (en) 2019-10-15 2019-10-15 Anisotropic seismic imaging method

Publications (1)

Publication Number Publication Date
NL2024231B1 true NL2024231B1 (en) 2021-01-27

Family

ID=68807915

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2024231A NL2024231B1 (en) 2019-10-15 2019-11-13 Anisotropic seismic imaging method

Country Status (3)

Country Link
CN (1) CN110780341B (en)
BE (1) BE1027342B1 (en)
NL (1) NL2024231B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630825B (en) * 2020-12-02 2022-08-26 中国海洋大学 Common offset domain Beam prestack time migration imaging method, system, medium and application
CN112904418B (en) * 2021-01-22 2021-08-17 西南交通大学 Self-adaptive ray encryption type kirchhoff type beam migration seismic wave imaging method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105549081A (en) * 2016-01-29 2016-05-04 中国石油大学(华东) Anisotropic medium common shot domain Gaussian beam migration imaging method
CN106291687A (en) * 2016-07-21 2017-01-04 中国地质科学院地质研究所 Anisotropy many ripples Gaussian beam pre-stack depth migration imaging method
NL2020152A (en) * 2017-11-06 2018-01-25 Univ Southwest Jiaotong Kirchhoff Beam Migration Method Under Complex Topography
CN108363101A (en) * 2018-02-02 2018-08-03 西安石油大学 A kind of inclined shaft crosshole seismic Gaussian beam pre-stack depth migration imaging method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495426B (en) * 2011-12-02 2014-10-22 北京中科联衡科技有限公司 Kirchhoff integral seismic imaging method
US9594176B1 (en) * 2012-08-01 2017-03-14 Z Terra Inc. Fast beam migration using plane-wave destructor (PWD) beam forming
CN103984019B (en) * 2014-06-07 2017-01-11 吉林大学 Local relevant weighted earthquake beam synthesis method
US11041972B2 (en) * 2017-06-14 2021-06-22 Pgs Geophysical As Methods and systems to enhance resolution of seismic images

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105549081A (en) * 2016-01-29 2016-05-04 中国石油大学(华东) Anisotropic medium common shot domain Gaussian beam migration imaging method
CN106291687A (en) * 2016-07-21 2017-01-04 中国地质科学院地质研究所 Anisotropy many ripples Gaussian beam pre-stack depth migration imaging method
NL2020152A (en) * 2017-11-06 2018-01-25 Univ Southwest Jiaotong Kirchhoff Beam Migration Method Under Complex Topography
CN108363101A (en) * 2018-02-02 2018-08-03 西安石油大学 A kind of inclined shaft crosshole seismic Gaussian beam pre-stack depth migration imaging method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Advances in Wave Propagation in Heterogenous Earth", vol. 48, 1 January 2007, ELSEVIER, ISBN: 978-0-12-018850-5, ISSN: 0065-2687, article VLASTISLAV CERVENÝ ET AL: "Seismic ray method: Recent developments", pages: 1 - 126, XP055706556, DOI: 10.1016/S0065-2687(06)48001-8 *
QIANG LIU ET AL: "The revised ray tracing in anisotropic VTI media and its application of Gaussian beam migration", SPG/SEG 2016 INTERNATIONAL GEOPHYSICAL CONFERENCE, BEIJING, CHINA, 20-22 APRIL 2016, 22 April 2016 (2016-04-22), pages 728 - 730, XP055707480, DOI: 10.1190/IGCBeijing2016-222 *
QINGDA LV ET AL: "Efficient Gaussian beam method in time domain for anisotropic media", INTERNATIONAL GEOPHYSICAL CONFERENCE, QINGDAO, CHINA, 17-20 APRIL 2017, 31 May 2017 (2017-05-31), pages 558 - 560, XP055707466, DOI: 10.1190/IGC2017-142 *

Also Published As

Publication number Publication date
CN110780341B (en) 2021-08-20
BE1027342B1 (en) 2021-01-07
CN110780341A (en) 2020-02-11

Similar Documents

Publication Publication Date Title
CN108241173B (en) A kind of seismic data offset imaging method and system
CN108594302B (en) A kind of extracting method and processing terminal of seismic wavelet
NL2024231B1 (en) Anisotropic seismic imaging method
NL2020152B1 (en) Kirchhoff Beam Migration Method Under Complex Topography
CN102944894B (en) Earthquake prestack migration imaging method
CN109856679B (en) Method and system for imaging elastic wave Gaussian beam offset of anisotropic medium
CN112034520B (en) Anisotropic medium dynamic focusing beam offset imaging method and system
CN111045077B (en) Full waveform inversion method of land seismic data
CN110687617A (en) Seismic exploration air gun array far-field wavelet simulation method, facial makeup evaluation method and device
CN107807393B (en) Separate unit station collection preliminary wave Enhancement Method based on seismic interference method
CN116068493A (en) Passive sound source positioning method for deep sea large-depth vertical distributed hydrophone
CN114265118A (en) Method, device and system for extracting time difference of offshore acoustic logging while drilling
CN111352153B (en) Microseism interference positioning method based on instantaneous phase cross-correlation weighting
CN110046326B (en) Time-frequency DOA estimation method
Zhai et al. Passive source depth estimation in shallow water using two horizontally separated hydrophones
CN113721245B (en) Submarine horizontal array shape correction method and processor
CN112305615B (en) Seismic data angle domain common imaging point gather extraction method and system
CN114942472A (en) Offset imaging method and equipment based on uplink ray tracing strategy
Nie et al. SRP-PHAR combined velocity scanning for locating the shallow underground acoustic source
CN112327356A (en) Aliasing record separation method based on inphase axis iterative tracking extraction
CN114966676B (en) Multi-circle space target three-dimensional imaging method based on improved OMP algorithm
CN111999769B (en) Complex surface anisotropy multicomponent seismic data prestack depth migration method
CN112379431B (en) PS wave seismic data migration imaging method and system under complex surface condition
CN112327361B (en) Inclination interference elimination method based on linear same-phase axis iterative tracking attenuation
CN113704685B (en) Deep sea blind deconvolution method based on vertical line array

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20221201