MXPA05007039A - Metodo de produccion para mejorar la conductividad de ion de oxigeno. - Google Patents

Metodo de produccion para mejorar la conductividad de ion de oxigeno.

Info

Publication number
MXPA05007039A
MXPA05007039A MXPA05007039A MXPA05007039A MXPA05007039A MX PA05007039 A MXPA05007039 A MX PA05007039A MX PA05007039 A MXPA05007039 A MX PA05007039A MX PA05007039 A MXPA05007039 A MX PA05007039A MX PA05007039 A MXPA05007039 A MX PA05007039A
Authority
MX
Mexico
Prior art keywords
oxygen ion
conducting material
manufacturing
ion conducting
ion conductivity
Prior art date
Application number
MXPA05007039A
Other languages
English (en)
Inventor
Andrew Lane Jonathan
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Publication of MXPA05007039A publication Critical patent/MXPA05007039A/es

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

Un metodo para producir un conductor ionico para mejorar la conductividad de ion de oxigeno que, de otra manera, se reduce por la presencia de impurezas daninas que comprenden silicio o compuestos que contienen silicio. De acuerdo con la invencion, una sal disuelta de un adulterante que consiste de un metal alcalino-terreo, se aplica a un material de conduccion de ion de oxigeno compuesto de oxido de cerio adulterado, circona adulterada, o galato de lantano adulterado, y que tiene impurezas. La solucion tambien se puede aplicar con igual exito a oxidos y sales de cation utilizadas en la produccion del material de conduccion de ion de oxigeno. El material de conduccion de ion de oxigeno con la solucion aplicada al mismo se mezcla completamente y luego se calienta para evaporar el solvente y para descomponer la sal alcalino-terrea y asi formar dicho conductor ionico.
MXPA05007039A 2002-12-27 2003-12-22 Metodo de produccion para mejorar la conductividad de ion de oxigeno. MXPA05007039A (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/329,440 US6838119B2 (en) 2002-12-27 2002-12-27 Manufacturing method to improve oxygen ion conductivity of an ionic conductor
PCT/US2003/040796 WO2004062000A2 (en) 2002-12-27 2003-12-22 Manufacturing method to improve oxygen ion conductivity

Publications (1)

Publication Number Publication Date
MXPA05007039A true MXPA05007039A (es) 2005-11-23

Family

ID=32654310

Family Applications (1)

Application Number Title Priority Date Filing Date
MXPA05007039A MXPA05007039A (es) 2002-12-27 2003-12-22 Metodo de produccion para mejorar la conductividad de ion de oxigeno.

Country Status (11)

Country Link
US (1) US6838119B2 (es)
EP (1) EP1601469A2 (es)
JP (1) JP2006512737A (es)
KR (1) KR20050089080A (es)
CN (1) CN1732050A (es)
AU (1) AU2003299774A1 (es)
BR (1) BR0317639A (es)
CA (1) CA2511942C (es)
MX (1) MXPA05007039A (es)
TW (1) TW200417517A (es)
WO (1) WO2004062000A2 (es)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080138669A1 (en) * 2005-03-24 2008-06-12 Ohio University Sulphur-Tolerant Anode For Solid Oxide Fuel Cell
US20080124598A1 (en) * 2006-11-29 2008-05-29 Monika Backhaus-Ricoult Activation of solid oxide fuel cell electrode surfaces
EP2031677B1 (en) * 2007-08-31 2011-10-12 Technical University of Denmark Removal of impurity phases from electrochemical devices
WO2009090419A2 (en) * 2008-06-13 2009-07-23 Ceres Intellectual Property Company Limited Method for deposition of ceramic films
JP5190809B2 (ja) * 2008-08-28 2013-04-24 Toto株式会社 耐蝕性部材およびその製造方法
WO2010024353A1 (ja) * 2008-08-28 2010-03-04 Toto株式会社 耐蝕性部材およびその製造方法
CN104737342A (zh) * 2012-10-19 2015-06-24 丹麦技术大学 由渗透产生的电极及方法
US11495817B2 (en) * 2018-11-29 2022-11-08 Kyocera Corporation Cell, cell stack device, module, and module housing device
TWI764262B (zh) * 2019-09-05 2022-05-11 日商日置電機股份有限公司 測量裝置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7381A (en) * 1850-05-21 Improvement in machines for sawing wood
US4861345A (en) * 1988-05-13 1989-08-29 Westinghouse Electric Corp. Method of bonding a conductive layer on an electrode of an electrochemical cell
DE59806553D1 (de) * 1998-11-13 2003-01-16 Eidgenoess Tech Hochschule Verfahren zur Herstellung von dotierter Ceroxidkeramik

Also Published As

Publication number Publication date
KR20050089080A (ko) 2005-09-07
WO2004062000A2 (en) 2004-07-22
CA2511942A1 (en) 2004-07-22
TW200417517A (en) 2004-09-16
JP2006512737A (ja) 2006-04-13
US6838119B2 (en) 2005-01-04
WO2004062000A3 (en) 2005-02-03
AU2003299774A1 (en) 2004-07-29
CA2511942C (en) 2009-10-20
BR0317639A (pt) 2005-12-20
AU2003299774A8 (en) 2004-07-29
EP1601469A2 (en) 2005-12-07
CN1732050A (zh) 2006-02-08
US20040126488A1 (en) 2004-07-01

Similar Documents

Publication Publication Date Title
Jung et al. Effect of temperature and dopant concentration on the conductivity of samaria-doped ceria electrolyte
Di Paola et al. Electrochromism in anodically formed tungsten oxide films
MXPA05007039A (es) Metodo de produccion para mejorar la conductividad de ion de oxigeno.
CA2703708A1 (en) Methods of synthesizing an oxidant and applications thereof
ATE527015T1 (de) Verfahren zur akne- und rosaceabehandlung durch elektrochemische erzeugung von zinkionen
WO2006029228A3 (en) Memory using mixed valence conductive oxides
ATE297874T1 (de) Wasserstoffdurchlässigkeit durch protonen- und elektronenleitende mischwerkstoffe
Ishihara et al. Improved oxide ion conductivity of Co doped La0. 8Sr0. 2Ga0. 8Mg0. 2O3 perovskite type oxide
Hanf et al. Accessing copper oxidation states of dissolved negative electrode current collectors in lithium ion batteries
Nowick Dielectric relaxation from a network of charged defects in dilute CeO2: Y2O3 solid solutions
TW201723229A (zh) 蝕刻液組成物及蝕刻方法
Wang et al. Nonstoichiometric (La0. 95Sr0. 05) xGa0. 9Mg0. 1O3− δ electrolytes and Ce0. 8Nd0. 2O1. 9–(La0. 95Sr0. 05) xGa0. 9Mg0. 1O3− δ composite electrolytes for solid oxide fuel cells
TW200716481A (en) Composite oxides comprising strontium, lantanium, yttrium and ionic conductors using the same
KR940003862A (ko) 전해조의 조작방법
TW200718645A (en) Composite oxides comprising strontium, lantanium, tungsten and ionic conductors using the same
KR100365369B1 (ko) 가스 혼합물 중의 산소분리에 사용되는 세라믹 물질
Alizadeh et al. Electrochemical Study of the Micellization of Hexadecylpyridinium Bromide in Binary Methanol-Water Mixtures.
TW200710039A (en) Novel metal composite oxides containing strontium and ionic conductors using the same
DE69219511T2 (de) Keramische Anode für Sauerstoffentwicklung, Herstellungsverfahren und Anwendung davon
AU2002356839A8 (en) Amine oxide coating compositions
Okazaki et al. Trivalent Sc3+ ion conduction in the Sc2 (WO4) 3–Sc2 (MoO4) 3 solid solution
Gharbage et al. Electrochemical permeability of La0. 9Sr0. 1Ga1− xFexO3− δ
Ren et al. Effects of alkali solution treatment on the electrochemical activity of the strontium doped LaMnO3-based electrode for solid oxide fuel cells
Lebedeva et al. Comparison of the Electrochemical Behavior of Iodide Ion in Hydrophobic/Hydrophilic Ionic Liquids
JP2517870B2 (ja) 複合酸化物超伝導薄膜の製造方法

Legal Events

Date Code Title Description
FG Grant or registration