MD974Z - Process for producing lactic acid from fermented whey - Google Patents
Process for producing lactic acid from fermented whey Download PDFInfo
- Publication number
- MD974Z MD974Z MDS20150123A MDS20150123A MD974Z MD 974 Z MD974 Z MD 974Z MD S20150123 A MDS20150123 A MD S20150123A MD S20150123 A MDS20150123 A MD S20150123A MD 974 Z MD974 Z MD 974Z
- Authority
- MD
- Moldova
- Prior art keywords
- lactic acid
- whey
- fermented whey
- chamber
- cathode
- Prior art date
Links
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 239000005862 Whey Substances 0.000 title claims abstract description 43
- 102000007544 Whey Proteins Human genes 0.000 title claims abstract description 43
- 108010046377 Whey Proteins Proteins 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 34
- 239000004310 lactic acid Substances 0.000 title claims abstract description 24
- 235000014655 lactic acid Nutrition 0.000 title claims abstract description 24
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims abstract description 20
- 235000017557 sodium bicarbonate Nutrition 0.000 claims abstract description 10
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims abstract description 10
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 9
- 238000012545 processing Methods 0.000 claims abstract description 6
- 239000012528 membrane Substances 0.000 claims abstract description 5
- 238000000926 separation method Methods 0.000 claims abstract description 5
- 239000008267 milk Substances 0.000 abstract description 2
- 210000004080 milk Anatomy 0.000 abstract description 2
- 235000013336 milk Nutrition 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 15
- 239000012141 concentrate Substances 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- -1 Hydroxyl ions Chemical class 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 235000011121 sodium hydroxide Nutrition 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910017464 nitrogen compound Inorganic materials 0.000 description 2
- 150000002830 nitrogen compounds Chemical group 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010021036 Hyponatraemia Diseases 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000007785 strong electrolyte Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
Landscapes
- Dairy Products (AREA)
Abstract
Invenţia se referă la industria laptelui, şi anume la un procedeu de obţinere a acidului lactic din zer fermentat.Procedeul, conform invenţiei, include prelucrarea electrolitică a zerului fermentat cu aciditate titrabilă de 100…200ºT în camera catodică a unui electrolizor cu membrană ionoselectivă şi catod sub formă de plasă. În camera anodică a electrolizorului se debitează soluţie de hidrogenocarbonat de sodiu NaHCO3. Procesul de electroliză se efectuează la un pH de 4…6 şi la o densitate a curentului anodic de 0,01...0,02 А/cm2, cu separarea acidului lactic din soluţie.The invention relates to the milk industry, namely to a process for obtaining lactic acid from fermented whey. The process according to the invention includes the electrolytic processing of fermented whey with titratable acidity of 100… 200ºT in the cathode chamber of an electrolyzer with ionoselective membrane and cathode. in the form of a net. NaHCO3 sodium hydrogen carbonate solution is charged into the anode chamber of the electrolyzer. The electrolysis process is carried out at a pH of 4 ... 6 and an anodic current density of 0.01 ... 0.02 А / cm2, with the separation of lactic acid from the solution.
Description
Invenţia se referă la industria laptelui, şi anume la un procedeu de obţinere a acidului lactic din zer fermentat. The invention relates to the milk industry, namely to a process for obtaining lactic acid from fermented whey.
Este cunoscut un procedeu de purificare a zerului de impurităţi minerale. Zerul fermentat este încălzit, centrifugat, răcit, trecut printr-o coloană umplută cu cationitul KU-2-8, apoi zerul cu conţinut de acid lactic se concentrează prin evaporare în vacuum [1]. A process for purifying whey from mineral impurities is known. The fermented whey is heated, centrifuged, cooled, passed through a column filled with KU-2-8 cationite, then the whey containing lactic acid is concentrated by evaporation in vacuum [1].
Dezavantajul acestui procedeu constă în utilizarea unui utilaj costisitor. The disadvantage of this process is the use of expensive equipment.
De asemenea, este cunoscut un procedeu de separare a acidului lactic din zer într-un electrodializator cu şase camere: două camere electrodice, două pentru zer şi două camere pentru concentrare. Camera anodică se umple cu soluţie de acid sulfuric 0,1 N, iar cea catodică cu soluţie 0,1 N de sodă caustică. În camerele pentru zer este admis zerul fermentat cu concentraţia acidului lactic de 2%, densitatea curentului se menţine la 0,02 A/cm2 [2]. Also, a process for separating lactic acid from whey in an electrodialyzer with six chambers is known: two electrode chambers, two for whey and two chambers for concentration. The anode chamber is filled with 0.1 N sulfuric acid solution, and the cathode chamber with 0.1 N caustic soda solution. Fermented whey with a lactic acid concentration of 2% is admitted into the whey chambers, the current density is maintained at 0.02 A/cm2 [2].
Dezavantajele acestui procedeu constau în necesitatea utilizării unui filtru de vid pentru separarea preventivă a fracţiei de albumină prin amestecarea în rezervor cu un coagulant (10% soluţie de NaOH), urmată de sedimentare şi filtrare. Astfel, procedeul prevede utilizarea electroliţilor puternici, cum ar fi acidul sulfuric şi soda caustică. The disadvantages of this process are the need to use a vacuum filter for the preventive separation of the albumin fraction by mixing in the tank with a coagulant (10% NaOH solution), followed by sedimentation and filtration. Thus, the process requires the use of strong electrolytes, such as sulfuric acid and caustic soda.
În calitate de cea mai apropiată soluţie serveşte procedeul de separare a acidului lactic din soluţie în electrodializator. Conform acestui procedeu zerul este fermentat cu bacterii lactice până la pH=4,5 şi este admis în camera catodică. Camera anodică se umple cu soluţie de 1...2% de acid lactic pentru a asigura conductibilitatea soluţiei la etapa iniţială de funcţionare a electrodializatorului. Blocul pentru titrarea automată se reglează în intervalul pH-lui de 4,5...6,0. Pe parcursul procesului de electrodializă are loc trecerea acidului lactic din camera catodică a electrodializatorului în camera anodică, unde se concentrează. Înlocuirea zerului prelucrat cu altul proaspăt se realizează periodic [3]. The closest solution is the process of separating lactic acid from the solution in the electrodialyzer. According to this process, the whey is fermented with lactic bacteria to pH=4.5 and is admitted to the cathode chamber. The anode chamber is filled with a 1...2% solution of lactic acid to ensure the conductivity of the solution at the initial stage of the electrodialyzer operation. The automatic titration block is adjusted in the pH range of 4.5...6.0. During the electrodialysis process, lactic acid passes from the cathode chamber of the electrodialyzer to the anode chamber, where it is concentrated. The replacement of the processed whey with fresh whey is carried out periodically [3].
Dezavantajul acestui procedeu constă în necesitatea reglării automate a pH-ului zerului. The disadvantage of this process is the need to automatically adjust the pH of the whey.
Problema tehnică pe care o rezolvă invenţia propusă este reducerea duratei tratării zerului fermentat fără supraîncălzirea lui şi obţinerea acidului lactic în stare pură L(+) la regimuri optime. The technical problem solved by the proposed invention is to reduce the duration of fermented whey treatment without overheating it and to obtain pure L(+) lactic acid at optimal regimes.
Problema se rezolvă prin aceea că procedeul de obţinere a acidului lactic din zer fermentat include prelucrarea electrolitică a zerului fermentat cu aciditate titrabilă de 100…200ºT în camera catodică a unui electrolizor cu membrană ionoselectivă şi catod sub formă de plasă, cu debitarea în camera anodică a electrolizorului a soluţiei de 0,1% de hidrogenocarbonat de sodiu NaHCO3. Procesul de electroliză se efectuează la un pH de 4…6 şi la o densitate a curentului anodic de 0,01...0,02 А/cm2, cu separarea acidului lactic din soluţie. The problem is solved by the fact that the process of obtaining lactic acid from fermented whey includes electrolytic processing of fermented whey with titratable acidity of 100…200ºT in the cathode chamber of an electrolyzer with an ionoselective membrane and a cathode in the form of a mesh, with the discharge into the anode chamber of the electrolyzer of a 0.1% solution of sodium hydrogen carbonate NaHCO3. The electrolysis process is carried out at a pH of 4…6 and at an anode current density of 0.01...0.02 А/cm2, with the separation of lactic acid from the solution.
Invenţia se explică cu ajutorul desenelor din fig. 1-4, care reprezintă: The invention is explained with the help of the drawings in Fig. 1-4, which represent:
˗ fig. 1, schema instalaţiei pentru electroliză, ˗ Fig. 1, diagram of the electrolysis installation,
˗ fig. 2, schimbarea acidităţii active în timpul prelucrării electrolitice a zerului fermentat (camera catodică), ˗ Fig. 2, change in active acidity during electrolytic processing of fermented whey (cathode chamber),
˗ fig. 3, rezultatul spectroscopiei mostrei din camera catodică a zerului fermentat până la aciditatea titrabilă de 150°T (pH=3,7), ˗ fig. 3, the result of the spectroscopy of the sample from the cathode chamber of fermented whey up to the titratable acidity of 150°T (pH=3.7),
˗ fig. 4, rezultatul spectroscopiei mostrei din camera catodică a zerului fermentat până la aciditatea titrabilă de 100°T (pH=3,85). ˗ Fig. 4, the result of the spectroscopy of the sample from the cathode chamber of fermented whey up to the titratable acidity of 100°T (pH=3.85).
În fig. 1 schematic este prezentată instalaţia care funcţionează conform procedeului propus. Aceasta conţine corpul 1 din dielectric, catodul 2 din oţel sub formă de plasă, membrana ionoselectivă 3, anodul din grafit 4, ştuţul 5 de admisie a zerului fermentat, ştuţul 6 pentru evacuarea soluţiei de acid lactic, ştuţurile 7 pentru admisia electrolitului (0,1% soluţie de NaHCO3), ştuţurile 8 pentru evacuarea zerului prelucrat. Fig. 1 schematically shows the installation that operates according to the proposed process. It contains the dielectric body 1, the steel cathode 2 in the form of a mesh, the ionoselective membrane 3, the graphite anode 4, the fermented whey inlet 5, the lactic acid solution outlet 6, the electrolyte inlet 7 (0.1% NaHCO3 solution), the processed whey outlet 8.
Scopul multor cercetări ale procesului formării acidului lactic este optimizarea obţinerii produsului finit, efectuând reacţia în soluţii apoase. Astfel este necesară determinarea limitei superioare a valorii acidităţii zerului preventiv fermentat, la care procesul obţinerii acidului lactic prin electroliză este optim. The goal of many researches on the process of lactic acid formation is to optimize the final product by performing the reaction in aqueous solutions. Thus, it is necessary to determine the upper limit of the acidity value of the preventively fermented whey, at which the process of obtaining lactic acid by electrolysis is optimal.
Ionii hidroxilici se formează la catod cu aceeaşi viteză cu care la anod se consumă ionii carboxilaţi, pe parcursul electrolizei concentraţia ionilor carboxilaţi va rămâne aproximativ constantă datorită surplusului de acid, pH-ul electrolitului va fi slab acid aproape pe tot parcursul electrolizei şi va creşte brusc numai spre finalul ei, indicând finalizarea reacţiei. Acest proces este numit metoda deficitului de sare. La fel este cunoscut că grupa carboxil se formează la suprafaţa electrodului în rezultatul reacţiei de recombinare în intervalul pH-ului de 2...7. În aceste condiţii are loc reducerea acidului lactic, ceea ce poate fi folosit cu succes la separarea lui prin procesul de electroliză (Томилов А. П., Феоктистов Л. Г. Электрохимия органических соединений. Москва, 1976, p. 296). Hydroxyl ions are formed at the cathode at the same rate as carboxylate ions are consumed at the anode, during electrolysis the concentration of carboxylate ions will remain approximately constant due to the excess acid, the pH of the electrolyte will be weakly acidic almost throughout the electrolysis and will increase sharply only towards its end, indicating the completion of the reaction. This process is called the salt deficiency method. It is also known that the carboxyl group is formed on the electrode surface as a result of the recombination reaction in the pH range of 2...7. Under these conditions, the reduction of lactic acid occurs, which can be successfully used for its separation by the electrolysis process (Томилов А. П., Феоктистов Л. Г. Электрохимия органических соединения. Москва, 1976, p. 296).
Exemplul 1 Example 1
Camera catodică a instalaţiei se umple cu zer fermentat până la aciditatea titrabilă de 100ºT, grade Thorner, (aciditatea activă pH=3,85), iar camera anodică se umple cu 0,1% soluţie de NaHCO3. Prelucrarea se realizează la tensiunea de 30 V şi densitatea curentului de 0,02 A/cm2. Schimbarea acidităţii active în camerele catodice ale electrolizorului sunt prezentate în fig. 2. În momentul iniţial are loc creşterea valorii pH-ului, legată de eliminarea componentelor ionogene. Ulterior, în experimente creşte gradul de ionizare, pH-ul în camera catodică la fel creşte. The cathode chamber of the installation is filled with fermented whey up to the titratable acidity of 100ºT, Thorner degrees, (active acidity pH=3.85), and the anode chamber is filled with 0.1% NaHCO3 solution. The processing is carried out at a voltage of 30 V and a current density of 0.02 A/cm2. The change in active acidity in the cathode chambers of the electrolyzer is shown in Fig. 2. Initially, there is an increase in the pH value, related to the elimination of ionogenic components. Later, in the experiments, the degree of ionization increases, the pH in the cathode chamber also increases.
Exemplul 2 Example 2
Camera catodică a instalaţiei se umple cu zer fermentat până la aciditatea titrabilă de 150ºT (pH=3,7), iar camera anodică se umple cu 0,1% soluţie de NaHCO3. Prelucrarea se realizează la tensiunea de 30 V şi densitatea curentului de 0,02 A/cm2. În acest caz (zerul are o aciditate mai înaltă) pH-ul în camera catodică după o creştere neesenţială la începutul procesului rămâne la nivelul 4,1...4,2. Acest proces se numeşte metoda deficitului de sare. The cathode chamber of the installation is filled with fermented whey up to the titratable acidity of 150ºT (pH=3.7), and the anode chamber is filled with 0.1% NaHCO3 solution. The processing is carried out at a voltage of 30 V and a current density of 0.02 A/cm2. In this case (whey has a higher acidity) the pH in the cathode chamber after an insignificant increase at the beginning of the process remains at the level of 4.1...4.2. This process is called the salt deficit method.
Exemplul 3 Example 3
Metoda deficitului de sare poate fi realizată, având pH-ul iniţial al zerului fermentat mai mare decât 4,3 (caracteristic pentru fermentarea cu drojdii), cum este descris în cea mai apropiată soluţie. Astfel camera catodică se umple cu zer fermentat până la aciditatea titrabilă de 200ºT (nivelul pH=4,3), iar camera anodică se umple cu 0,1% soluţie de NaHCO3. Procesul se realizează la densitatea curentului de 0,01 A/cm2. Aciditatea activă după o mică creştere se menţine la nivelul 4,8...5,15. The salt deficit method can be performed, having the initial pH of the fermented whey higher than 4.3 (characteristic for yeast fermentation), as described in the closest solution. Thus the cathodic chamber is filled with fermented whey up to the titratable acidity of 200ºT (pH level=4.3), and the anodic chamber is filled with 0.1% NaHCO3 solution. The process is carried out at a current density of 0.01 A/cm2. The active acidity after a small increase is maintained at the level of 4.8...5.15.
Concentraţia acidului lactic în camera anodică (camera concentratului) atinge valori maxime de 9...10% în primele 10...15 min (tab. 2, 3 şi 4). The lactic acid concentration in the anode chamber (concentrate chamber) reaches maximum values of 9...10% in the first 10...15 min (tab. 2, 3 and 4).
După componenţa fracţiilor ce conţin azot şi indicele de aciditate, la o oră de tratare electrică, se observă următoarea deosebire: componenţa compuşilor azotoşi în procesul electrolizei în cazul unor valori mai mici ai acidităţii titrabile se micşorează cu 35%, ceea ce poate fi explicat prin eliminarea compuşilor azotoşi micromoleculari, care disociază în soluţii apoase, cu sporirea gradului de ionizare (tab. 1). Ca urmare a electronegativităţii diferite a atomilor de oxigen şi azot, a capacităţii la influenţa reciprocă în grupul COOH, disociaţia legăturilor -N-H-, -O-H şi -COOH se deosebeşte pentru variantele prezentate în tab. 1. According to the composition of nitrogen-containing fractions and the acidity index, after one hour of electrical treatment, the following difference is observed: the composition of nitrogen compounds in the electrolysis process in the case of lower values of titratable acidity decreases by 35%, which can be explained by the elimination of micromolecular nitrogen compounds, which dissociate in aqueous solutions, with increasing ionization degree (tab. 1). As a result of the different electronegativity of oxygen and nitrogen atoms, the capacity for mutual influence in the COOH group, the dissociation of the -N-H-, -O-H and -COOH bonds differs for the variants presented in tab. 1.
Rezultatele analizei mostrelor primelor două exemple (zerul fermentat până la 100 şi 150ºT) prin metoda spectroscopiei după o oră de tratare electrică sunt prezentate în fig. 3 şi 4, din care se observă un avantaj evident al mostrei cu zer mai acid, în diagrama acestuia se observă picuri mai înalte. The results of the analysis of the samples of the first two examples (whey fermented up to 100 and 150ºT) by the spectroscopy method after one hour of electrical treatment are presented in Fig. 3 and 4, from which an obvious advantage of the sample with more acidic whey is observed, higher peaks are observed in its diagram.
Pentru a preveni oxidarea anodică a acidului lactic în acid acetic se recomandă utilizarea membranei cationice în camera anodului. To prevent anodic oxidation of lactic acid to acetic acid, it is recommended to use a cationic membrane in the anode chamber.
Astfel procedeul propus este ecologic pur, iar acidul lactic se obţine în stare pură L(+) la regimuri optime. Thus, the proposed process is ecologically pure, and lactic acid is obtained in pure L(+) state at optimal regimes.
Tabelul 1 Table 1
Schimbarea conţinutului zerului Changing whey content
pH Indice de aciditate mg/l mg/l Substanţe superfecial active, mg/l Zerul nefermentat fără tratare electrică 4,6 1150 121,5 0,92 Zerul cu pH iniţial 3,7, după tratare electrică (1oră) 4,2 1020 118,2 1,15 Zerul cu pH iniţial 3,85, după tratare electrică (1oră) 10,3 1715 79,0 0,97 0,63pH Acidity index mg/l mg/l Surfactants, mg/l Unfermented whey without electrical treatment 4.6 1150 121.5 0.92 Whey with initial pH 3.7, after electrical treatment (1 hour) 4.2 1020 118.2 1.15 Whey with initial pH 3.85, after electrical treatment (1 hour) 10.3 1715 79.0 0.97 0.63
Tabelul 2 Table 2
Schimbarea parametrilor zerului fermentat (рН 3,85) în procesul tratării electrolitice Change in parameters of fermented whey (pH 3.85) in the process of electrolytic treatment
Timpul, min Zer fermentat până la 100ºT (рН - 3,85) pH-ul camerei catodice Tempe-ratura camerei catodi-ce, ºC pH-ul camerei concen-tratului Temperatura camerei concentratului, ºC Conţinutul acidului lactic, % Camera catodică Camera concentratului 5 4,3 20 7,0 23 63,1 81,1 20 5,8 26 3,5 30 59,3 77,7 30 7,5 38 3,45 41 50,4 75,0 40 9,0 42 2,4 43 50,2 72,9 55 10.3 44 2,0 45 50,0 72,5Time, min Fermented whey up to 100ºT (рН - 3.85) pH of the cathode chamber Temperature of the cathode chamber, ºC pH of the concentrate chamber Temperature of the concentrate chamber, ºC Lactic acid content, % Cathode chamber Concentrate chamber 5 4.3 20 7.0 23 63.1 81.1 20 5.8 26 3.5 30 59.3 77.7 30 7.5 38 3.45 41 50.4 75.0 40 9.0 42 2.4 43 50.2 72.9 55 10.3 44 2.0 45 50.0 72.5
Tabelul 3 Table 3
Schimbarea parametrilor zerului fermentat (рН 3,7) în procesul tratării electrolitice Change in the parameters of fermented whey (pH 3.7) in the electrolytic treatment process
Timpul, min Zer fermentat până la 150ºT (рН - 3,7) pH-ul camerei catodice Tempe-ratura camerei catodi-ce, ºC pH-ul camerei concen-tratului Temperatura camerei concentratului, ºC Conţinutul acidului lactic, % Camera catodică Camera concentratului 5 3,7 20 6,5 23 67,0 100 20 3,9 23 3,3 27 67,5 88,2 30 4,0 25 2,9 28 66,5 83,8 40 4,1 23 2,4 28 62,4 83,2 55 4,2 24 2,2 30 60,7 83,1Time, min Fermented whey up to 150ºT (рН - 3.7) pH of the cathode chamber Temperature of the cathode chamber, ºC pH of the concentrate chamber Temperature of the concentrate chamber, ºC Lactic acid content, % Cathode chamber Concentrate chamber 5 3.7 20 6.5 23 67.0 100 20 3.9 23 3.3 27 67.5 88.2 30 4.0 25 2.9 28 66.5 83.8 40 4.1 23 2.4 28 62.4 83.2 55 4.2 24 2.2 30 60.7 83.1
Tabelul 4 Table 4
Schimbarea parametrilor zerului fermentat (рН 4,3) în procesul tratării electrolitice Change in the parameters of fermented whey (pH 4.3) in the process of electrolytic treatment
Timpul, min Zer fermentat până la 200ºT (рН - 4,3) pH-ul camerei catodice Tempe-ratura camerei catodi-ce, ºC pH-ul camerei concen-tratului Temperatura camerei concentratului, ºC Conţinutul acidului lactic, % Camera catodică Camera concentratului 5 4,3 15 6,2 20 63,4 90,9 20 4,7 26 3,0 30 63,7 89,0 30 4,85 28 2,6 31 60,7 83,8 40 5,0 33 2,6 33 59,2 82,9 55 5,15 34 2,4 35 60,2 81,1Time, min Fermented whey up to 200ºT (рН - 4.3) pH of the cathode chamber Temperature of the cathode chamber, ºC pH of the concentrate chamber Temperature of the concentrate chamber, ºC Lactic acid content, % Cathode chamber Concentrate chamber 5 4.3 15 6.2 20 63.4 90.9 20 4.7 26 3.0 30 63.7 89.0 30 4.85 28 2.6 31 60.7 83.8 40 5.0 33 2.6 33 59.2 82.9 55 5.15 34 2.4 35 60.2 81.1
1. RU 2084162 C1 1997.07.20 1. RU 2084162 C1 1997.07.20
2. Болога М., Котелев В., Литинский Г., Рудаков А., Кирилова Л., Лащевская Е., Пономарь Т. Электробиотехнология переработки молочной сыворотки, 1987, № 10, p. 15-16 2. Bologa M., Kotelev V., Litinskiy G., Rudakov A., Kirilova L., Laschevskaya E., Ponomar T. Електробиотехнология переработки молохной сыворотки, 1987, № 10, p. 15-16
3. SU 1293218 A1 1987.02.28 3. SU 1293218 A1 1987.02.28
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20150123A MD974Z (en) | 2015-09-08 | 2015-09-08 | Process for producing lactic acid from fermented whey |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20150123A MD974Z (en) | 2015-09-08 | 2015-09-08 | Process for producing lactic acid from fermented whey |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| MD974Y MD974Y (en) | 2015-12-31 |
| MD974Z true MD974Z (en) | 2016-08-31 |
Family
ID=55068712
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| MDS20150123A MD974Z (en) | 2015-09-08 | 2015-09-08 | Process for producing lactic acid from fermented whey |
Country Status (1)
| Country | Link |
|---|---|
| MD (1) | MD974Z (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3794949A1 (en) * | 2019-09-23 | 2021-03-24 | DMK Deutsches Milchkontor GmbH | Process for the coupled production of sweet whey and lactic acid from acid whey |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SU626751A1 (en) * | 1977-04-08 | 1978-10-05 | Всесоюзный Научно-Исследовательский Институт Молочной Промышленности | Method of obtaining coagulant from milk serum for making curds |
| SU1293218A1 (en) * | 1984-12-26 | 1987-02-28 | Институт биохимии АН БССР | Electrodialyzer for isolating lactic acid from solution |
| SU1358891A1 (en) * | 1986-03-11 | 1987-12-15 | Всесоюзный Научно-Исследовательский Институт Молочной Промышленности | Method of preparing whey for production of food staff |
| RU2084162C1 (en) * | 1995-10-10 | 1997-07-20 | Всероссийский научно-исследовательский институт химической технологии | Method of purification of curd whey and/or subcheese whey from mineral impurities with ionites |
| MD3496F1 (en) * | 2006-06-29 | 2008-02-29 | Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei | Diaphragm cell |
| MD3793F1 (en) * | 2008-03-20 | 2009-01-31 | Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei | Process for whey processing |
| MD3924B1 (en) * | 2008-10-31 | 2009-06-30 | Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei | Process for whey processing |
| MD139Y (en) * | 2009-04-23 | 2010-02-26 | Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei | Process for whey processing |
-
2015
- 2015-09-08 MD MDS20150123A patent/MD974Z/en not_active IP Right Cessation
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SU626751A1 (en) * | 1977-04-08 | 1978-10-05 | Всесоюзный Научно-Исследовательский Институт Молочной Промышленности | Method of obtaining coagulant from milk serum for making curds |
| SU1293218A1 (en) * | 1984-12-26 | 1987-02-28 | Институт биохимии АН БССР | Electrodialyzer for isolating lactic acid from solution |
| SU1358891A1 (en) * | 1986-03-11 | 1987-12-15 | Всесоюзный Научно-Исследовательский Институт Молочной Промышленности | Method of preparing whey for production of food staff |
| RU2084162C1 (en) * | 1995-10-10 | 1997-07-20 | Всероссийский научно-исследовательский институт химической технологии | Method of purification of curd whey and/or subcheese whey from mineral impurities with ionites |
| MD3496F1 (en) * | 2006-06-29 | 2008-02-29 | Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei | Diaphragm cell |
| MD3793F1 (en) * | 2008-03-20 | 2009-01-31 | Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei | Process for whey processing |
| MD3924B1 (en) * | 2008-10-31 | 2009-06-30 | Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei | Process for whey processing |
| MD139Y (en) * | 2009-04-23 | 2010-02-26 | Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei | Process for whey processing |
Non-Patent Citations (1)
| Title |
|---|
| Болога М., Котелев В., Литинский Г., Рудаков А., Кирилова Л., Лащевская Е., Пономарь Т. Электробиотехнология переработки молочной сыворотки, 1987, № 10, p. 15-16 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3794949A1 (en) * | 2019-09-23 | 2021-03-24 | DMK Deutsches Milchkontor GmbH | Process for the coupled production of sweet whey and lactic acid from acid whey |
Also Published As
| Publication number | Publication date |
|---|---|
| MD974Y (en) | 2015-12-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| MX2011005159A (en) | Recovery of lithium from aqueous solutions. | |
| US20220144673A1 (en) | Electrodialyzer and electrodialysis system for co2 capture from ocean water | |
| CN101906654B (en) | Method for purifying copper electrolyte with minimal chemical reacting dose | |
| JP2001508925A (en) | Lithium recovery and purification | |
| JP2013173629A (en) | Method of producing high-purity lithium hydroxide | |
| CN107022769B (en) | A kind of method and device for extracting high-purity monohydrate lithium hydroxide from the material containing lithium carbonate | |
| CN103952718A (en) | Method for preparing stable tin methanesulfonate solution | |
| RU2620228C1 (en) | Method of electrochemical regeneration of cupro-ammonium pickling solution | |
| CN104694978A (en) | Waste electrolyte treatment method and device | |
| MD974Z (en) | Process for producing lactic acid from fermented whey | |
| JP2018150596A (en) | Organic substance generation system and organic substance production method | |
| US7217349B2 (en) | Method of separating multivalent ions and lactate ions from a fermentation broth | |
| CN114477568B (en) | Method for recycling bromine-containing wastewater | |
| RU2481425C2 (en) | Method of cleaning chromium plating electrolytes | |
| WO2009000050A1 (en) | Electrolytic method for controlling the precipitation of alumina | |
| RU2372399C2 (en) | Method of extracting tartrate compounds from grape pomace | |
| US2159074A (en) | Process for varying the ph value of solutions | |
| TWI428279B (en) | Recovery of lithium from aqueous solutions | |
| RU2635106C1 (en) | Method of producing concentrate of adipic acid and sodium alkaline from alkaline drains of caprolactam production | |
| JPS61261488A (en) | Electrolyzing method for alkaline metallic salt of amino acid | |
| RU2681195C1 (en) | Method for obtaining adipinic acid concentrate and sodium alkali from alkaline wastewater from caprolactam production facilities | |
| MD1562Z (en) | Process for producing acetic acid from fermented whey | |
| JP2010142203A (en) | Method for producing feed or fertilizer comprising use of fermented residue | |
| RU2114687C1 (en) | Method of preparing sparingly soluble metal compounds | |
| CN111302387A (en) | Preparation method of high-purity potassium stannate |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FG9Y | Short term patent issued | ||
| KA4Y | Short-term patent lapsed due to non-payment of fees (with right of restoration) |