JPS61261488A - Electrolyzing method for alkaline metallic salt of amino acid - Google Patents

Electrolyzing method for alkaline metallic salt of amino acid

Info

Publication number
JPS61261488A
JPS61261488A JP60101567A JP10156785A JPS61261488A JP S61261488 A JPS61261488 A JP S61261488A JP 60101567 A JP60101567 A JP 60101567A JP 10156785 A JP10156785 A JP 10156785A JP S61261488 A JPS61261488 A JP S61261488A
Authority
JP
Japan
Prior art keywords
anolyte
amino acid
alkali metal
catholyte
amino acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60101567A
Other languages
Japanese (ja)
Inventor
Konosuke Kishida
岸田 孝之助
Takatoshi Tanabe
田辺 隆利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Musashino Chemical Laboratory Ltd
Original Assignee
Musashino Chemical Laboratory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Musashino Chemical Laboratory Ltd filed Critical Musashino Chemical Laboratory Ltd
Priority to JP60101567A priority Critical patent/JPS61261488A/en
Priority to EP86106619A priority patent/EP0201925A1/en
Publication of JPS61261488A publication Critical patent/JPS61261488A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds
    • C25B1/16Hydroxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To obtain a free amino acid at a good yield with less electric power consumption by using a cation exchange membrane as a diaphragm, adding the alkaline metallic salt of a neutral amino acid into an anolyte having positive pH and electrolyzing the same with an aq. alkaline metallic hydroxide as a catholyte. CONSTITUTION:An electrolytic cell is constituted by providing a sheet of the cation exchange membrane 3 as the diaphragm between the anode 1 and the cathode 2. The stock soln. F consisting of the alkaline metallic salt of the neutral amino acid having each one amino group and carboxyl group is added to the anolyte A circulated and passed in an anode chamber 4 of the above-mentioned cell and the pH of the above-mentioned anolyte A is maintained at <=9.5, more preferably <=9.0. On the other hand, the catholyte C consisting of the aq. soln. of the alkaline metallic hydroxide is passed through the chamber 5. Electric current is then passed between both electrodes 1 and 2 to form the free amino acid in the anolyte A, the alkaline metallic hydroxide is obtd. in the catholyte C. The amino acid and the alkaline metallic hydroxide are respectively recovered as an ion exchange liquid E and recovered alkali R by gas-liquid separators 6, 7.

Description

【発明の詳細な説明】 本発明は、アミノ基とカルボキシル基を一つずつ有する
いわゆる中性アミノ酸のアルカリ金属塩より遊離のアミ
ノ酸および水酸化アルカリを得る電解法に関する。さら
に詳しくは、電力の消費が少なく、かつアミノ酸の分解
損失を伴わない電解法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolytic method for obtaining free amino acids and alkali hydroxides from alkali metal salts of so-called neutral amino acids having one amino group and one carboxyl group. More specifically, the present invention relates to an electrolytic method that consumes less electricity and does not involve decomposition loss of amino acids.

アミノ酸のうち、グリシン、α−アラニン、β−アラニ
ン、α−フェニルアラニンなト多くのものは、反応など
の工程より得たアミノ酸のアルカリ金属塩(以下アミノ
酸塩と略す)を、イオン交換して遊離のアミノ酸に転化
する工程を経て得られる。
Among amino acids, many of them, such as glycine, α-alanine, β-alanine, and α-phenylalanine, are liberated by ion exchange of alkali metal salts of amino acids (hereinafter abbreviated as amino acid salts) obtained through processes such as reactions. It is obtained through a process of converting it into an amino acid.

このイオン交換の方法としては主に、 (1)H+型の弱酸性陽イオン交換樹脂と接触させる方
法 (2)鉱酸で中和した後、生じた鉱酸塩を分別晶析fた
は電気透析によって分離する方法 のいずれかが行なわれる。
The main methods for this ion exchange are: (1) Contact with a weakly acidic cation exchange resin in the H+ type (2) After neutralization with mineral acid, the resulting mineral salt is subjected to fractional crystallization or electrolysis. Either method of separation by dialysis is performed.

しかし、(1)の方法では使用した樹脂の再生のために
、また(2)の方法では中和のために、原料であるアミ
ノ酸塩溶液中に含まれるアルカリ金属イオンとほぼ等量
の酸を消費する。そして、これらいずれの方法において
も多量の塩を含んだ廃液を生じる。この廃液には通常、
有機物、特に窒素を含むものが比較的高濃度に共存する
ので、その処理は容易では力い。
However, in method (1), in order to regenerate the resin used, and in method (2), for neutralization, acid is added in an amount approximately equivalent to the alkali metal ion contained in the raw amino acid salt solution. Consume. In any of these methods, a waste liquid containing a large amount of salt is produced. This waste liquid usually contains
Since organic substances, especially those containing nitrogen, coexist in relatively high concentrations, it is difficult to treat them easily.

一方、食塩などの無機塩を電解して水酸化アルカリを得
る方法として、イオン交換膜を隔膜に用いる方法が開発
されている。この方法より類推すれば、一枚の陽イオン
交換膜によって陽極室と陰極室を隔離した電解セルの陽
極液としてアミノ酸塩の水溶液を用いて電解すれば、ア
ミノ酸塩はアミノ酸と水酸化アルカリに分解し、陽極液
中にアミノ酸を、陰極液中には水酸化アルカリを得るこ
とが期待される。この方法が期待通シに実現されれば、
酸を必要とせず、またアルカリは回収されるので、多量
の塩を含んだ廃液を生じることもない。
On the other hand, as a method for obtaining alkali hydroxide by electrolyzing inorganic salts such as common salt, a method using an ion exchange membrane as a diaphragm has been developed. By analogy with this method, if an aqueous solution of amino acid salts is used as the anolyte in an electrolysis cell with a single cation exchange membrane separating the anode and cathode chambers, the amino acid salts will be decomposed into amino acids and alkali hydroxide. However, it is expected that amino acids will be obtained in the anolyte and alkali hydroxide will be obtained in the catholyte. If this method is realized as expected,
Since no acid is required and the alkali is recovered, there is no generation of waste liquid containing large amounts of salt.

ところが、アミノ酸塩水溶液を陽極液として電解を行う
と、アミノ酸の分解が起こシ、無視でき表い量のアミノ
酸を失なうばかシでなく、溶液の着色および異臭の発生
を伴うことが多い。カルボン酸類も条件によっては陽極
反応を起して分解するといわれているが、アミノ酸はさ
らに分解し易いものである。
However, when electrolysis is carried out using an aqueous amino acid salt solution as the anolyte, decomposition of the amino acids occurs, which not only results in a negligible loss of amino acids but also often results in coloring of the solution and generation of off-flavors. Carboxylic acids are also said to undergo an anodic reaction and decompose depending on the conditions, but amino acids are even more easily decomposed.

そこで、有機酸塩を電解して遊離の酸とアルカリを得る
ためには、ポーダマ−の提案(特公昭3o−s61s)
に従い、陰極と陽極の間に二枚の陽イオン交換膜を隔膜
として設けた、いわゆる王室法電解セルを用いなければ
なら々いものと考えられてきた。この方法では、陽極室
に鉱酸の水溶液を流通させ、陰極室には水酸化アルカリ
の水溶液を流通させ、二枚の陽イオン交換膜によって両
極より隔離された中間室に有機酸アルカリ金属塩の水溶
液を流通させて電解を行なう。この方法によれば有機酸
およびその塩が陽極と接触することはなく、シたがって
陽極反応によって有機酸が失われることがない。この方
法がアミノ酸塩よジアミノ酸および水酸化アルカリを得
る目的にも用い得ることは本発明者らによってすでに確
認されている(1%公昭58−000755 )aしか
しながら、この王室法電解では二枚のイオン交換膜と三
つの液室を横切って電流を通じなければならないので、
電解に要する電圧が高く、そのために電力の消費が大き
い。また電解槽の構造が複雑になるため、設備費も高い
。本発明者らは、イオン交換膜を一枚だけ用いた、いわ
ゆる二基法の電解セルを用いて電解を行う場合において
も、アミノ酸の分解が起こらない条件があシ、かつその
ような条件を保って運転する方法が有シ得るのではない
かと考えて、鋭意研究を重ねた結果、本発明に到達し得
たものである。以下に第1図によってこれを詳しく説明
する。
Therefore, in order to obtain free acids and alkalis by electrolyzing organic acid salts, Podamer's proposal (Special Publication Publication No. 30-S61S) was proposed.
Accordingly, it has been thought that it is necessary to use a so-called royal method electrolytic cell in which two cation exchange membranes are provided as a diaphragm between a cathode and an anode. In this method, an aqueous solution of mineral acid is passed through the anode chamber, an aqueous solution of alkali hydroxide is passed through the cathode chamber, and an alkali metal salt of an organic acid is placed in an intermediate chamber separated from both electrodes by two cation exchange membranes. Electrolysis is performed by circulating an aqueous solution. According to this method, the organic acid and its salt do not come into contact with the anode, and therefore the organic acid is not lost due to the anodic reaction. It has already been confirmed by the present inventors that this method can also be used for the purpose of obtaining amino acid salts, diamino acids, and alkali hydroxides (1% Publication No. 58-000755). However, in this royal method electrolysis, two sheets of Since the current must be passed across the ion exchange membrane and the three liquid chambers,
The voltage required for electrolysis is high, which results in large power consumption. Furthermore, since the structure of the electrolytic cell is complicated, the equipment cost is also high. The present inventors have determined that there are conditions under which decomposition of amino acids does not occur even when electrolysis is performed using a so-called two-base electrolytic cell that uses only one ion exchange membrane, and that such conditions can be maintained. We thought that there might be a way to maintain and operate the vehicle, and as a result of extensive research, we were able to arrive at the present invention. This will be explained in detail below with reference to FIG.

本発明の方法において使用する電解装置を構成する単位
セルは、陽極1と陰極2の間に一枚の陽イオン交換膜3
を設けることによって、陽極室4と陰極室5を隔離した
ものである。各セルの陽極室に′は陽極液Aとしてアミ
ノ酸およびそのアルカリ金属塩含む水溶液を流通させる
。この陽極液は他に、当該アミノ酸よりも強い酸、たと
えば酢酸などの有機酸や硫酸々どの鉱酸、あるいはこれ
らの酸のアルカリ金属塩を含んでいてもよい。陽極液は
72Hが9.5以下となるような組成でなければカらカ
い。また、陽極中のアルカリ金属イオン濃度CM  )
と水素イオン濃度CH〕の比〔M 〕/〔H〕が50よ
υ大となるような組成であることが望ましい。陰極室に
は陰極液Cとしてアルカリ金属水酸化物の水溶液を流通
させる。ここで用いる水酸化アルカリは原料であるアミ
ノ酸塩を構成するアルカリ金属の水酸化物が望ましい。
The unit cell constituting the electrolyzer used in the method of the present invention has a cation exchange membrane 3 between an anode 1 and a cathode 2.
By providing the anode chamber 4 and the cathode chamber 5, the anode chamber 4 and the cathode chamber 5 are isolated. An aqueous solution containing amino acids and their alkali metal salts as anolyte A is passed through the anode chamber of each cell. The anolyte may also contain an acid stronger than the amino acid, such as an organic acid such as acetic acid, a mineral acid such as sulfuric acid, or an alkali metal salt of these acids. The anolyte is dry unless it has a composition such that 72H is 9.5 or less. Also, the alkali metal ion concentration CM in the anode
It is desirable that the composition be such that the ratio [M]/[H] of hydrogen ion concentration CH] is greater than 50. An aqueous solution of an alkali metal hydroxide is passed through the cathode chamber as a catholyte C. The alkali hydroxide used here is preferably an alkali metal hydroxide constituting the amino acid salt as a raw material.

このような両極液を流通させつつ、両極間に直流を通電
すると、陽極では水の分解に°よって酸素および水素イ
オンを生じる。水素イオンはアミノ酸塩のアルカリ金属
イオンを置換してアミノ酸を生じる。遊離したアルカリ
金属イオンは、陽イオン交換膜を透過して陰極室へ移動
する。酸素は陽極液と共に陽極室を出た後、気液分離器
6において陽極液より分離され、系外へとシ出される。
When a direct current is applied between the two electrodes while circulating such a bipolar liquid, oxygen and hydrogen ions are generated by water decomposition at the anode. Hydrogen ions replace alkali metal ions in amino acid salts to yield amino acids. The liberated alkali metal ions pass through the cation exchange membrane and move to the cathode chamber. After leaving the anode chamber together with the anolyte, oxygen is separated from the anolyte in the gas-liquid separator 6 and pumped out of the system.

酸素と分離した陽極液は陽極室へ循環される。陰極では
水の分解によって水酸イオンと水素が生じる。
The anolyte separated from oxygen is circulated to the anode chamber. At the cathode, water decomposition produces hydroxide ions and hydrogen.

水酸イオンは陽極室より移動して来たアルカリ金属イオ
ンと共に水酸化アルカリを形成する。水素は陰極液と共
に陰啄室を出た後、気液分離器7において陰極液から分
離され、系外にとシ出される。
The hydroxide ions form alkali hydroxide together with the alkali metal ions that have migrated from the anode chamber. After hydrogen leaves the catholyte together with the catholyte, it is separated from the catholyte in the gas-liquid separator 7 and pumped out of the system.

水素と分離した陰極液は陰極室へ循環される。The catholyte separated from hydrogen is circulated to the cathode chamber.

このようにして電解を続けると、陽極液中のアミノ酸塩
は徐々にアミノ酸に転化し、陽極液のアルカリ金属イオ
ン濃度〔M+〕が低下すると同時にpHが低下する。す
なわち、水素イオン濃度+ CM  )が増加する。そこでpHおよび望ましくはC
M  )/(ff”)が先に特定した範囲に保たれるよ
うに、新たに原料であるアミノ酸塩を含む水溶液F(以
下原液と呼ぶ)を陽極液に加える。
When electrolysis is continued in this manner, the amino acid salt in the anolyte is gradually converted to an amino acid, and the alkali metal ion concentration [M+] of the anolyte decreases, and at the same time, the pH decreases. That is, the hydrogen ion concentration + CM ) increases. There the pH and preferably C
A new aqueous solution F (hereinafter referred to as stock solution) containing an amino acid salt as a raw material is added to the anolyte so that M )/(ff'') is maintained within the range specified above.

その結果陽極液の量が増えるので、循環に必要な量を残
して余剰をイオン交換液Eとしてとシ出す。
As a result, the amount of anolyte increases, leaving the amount necessary for circulation and discharging the excess as ion exchange fluid E.

原液を加える操作およびイオン交換液をとシ出す操作は
連続的に行うことが望しいが、陽極液の循環経路の容量
が大きい場合や、経路中に貯槽を設けた場合は、間欠的
に行うこともできる。
It is desirable to perform the operations of adding the stock solution and draining the ion exchange solution continuously, but if the capacity of the anolyte circulation route is large or if a storage tank is installed in the route, it is desirable to perform the operations intermittently. You can also do that.

一方、陰極室においては、水が陰極反応によって失なわ
れると同時に、水酸化アルカリが生成するので、適切な
水酸化アルカリ濃度が保たれるように、陰極液に水を加
える。その結果陰極液の量が増加するので、循環に必要
な量を残して余剰分を回収アルカリRとして系外にとり
出す。得られた回収アルカリはそのまま、または濃縮な
どを行なった後、再び反応工程等において使用すること
ができる。陰極液中の水酸化アルカリ濃度は、イオン交
換膜の性能や回収アルカリの用途などを考慮して決める
が、十分な電導度を持たせるために、少なくとも0.5
N以上であることが望ましい。
On the other hand, in the cathode chamber, water is lost by the cathode reaction and at the same time alkali hydroxide is produced, so water is added to the catholyte so as to maintain an appropriate alkali hydroxide concentration. As a result, the amount of catholyte increases, and the excess amount is taken out of the system as recovered alkali R, leaving only the amount necessary for circulation. The obtained recovered alkali can be used again in a reaction step, etc., as it is or after being concentrated. The alkali hydroxide concentration in the catholyte is determined by considering the performance of the ion exchange membrane and the use of the recovered alkali, but it should be at least 0.5 in order to have sufficient conductivity.
It is desirable that the number is N or more.

一般に中性アミノ酸アルカリ塩の水溶液は11以上のp
Hを示す。これをイオン交換すると、遊離のアミノ酸の
割合が増すにつれてpHは低くなる。けれども、’I’
Hが高い状態で陽極に接すると、先に述べたようにアミ
ノ酸の分解が起き易い。たとえ分解によるアミノ酸の損
失が少ない場合でも、液の着色または異臭の発生という
好ましくない結果をもたらす。
Generally, an aqueous solution of a neutral amino acid alkali salt has a p of 11 or more.
Indicates H. When this is ion-exchanged, the pH decreases as the proportion of free amino acids increases. However, 'I'
If the anode is brought into contact with a high H content, amino acids are likely to be decomposed as described above. Even if the loss of amino acids due to decomposition is small, undesirable results such as coloring of the liquid or generation of off-flavors occur.

それに対して本発明の方法では、比較的大流量で循環流
通している陽極液に、電解の進行にあわせてpHの高い
原液を加えることによって、陽極液のpHを常に9.5
以下に保って電解することが第一の特徴である。こうす
ることによって、アミノ酸の分解を無視できる程度に止
め得ることは、杢発明者らが研究を重ねた結果発見した
ものである。例えば、グリシンナトリウムとグリシンを
種種の割合で含む水溶液に対して存在するグリシン根と
当量の電流を通した場合について、溶液のpHとグリシ
ンの分解損失率との関係は第2図のようであl)、73
H9,5以上で損失率が急激に上昇する。もちろん、分
解の程度はアミノ酸の種類、用いる陽極の種類、電流密
度、共存物質などによっても異なるが、pHの影響が圧
倒的に大きいために、pH=9.5という限界値がおよ
その目安として普遍的に成立するのである。ただしpH
が低い程アミノ酸は安定でおるから、他の条件が許す範
囲でなるべく低いpHを保って運転することが望ましい
。この方法によって、はとんどすべての中性アミノ酸の
アルカリ金属塩を電解することができる。ただし、メチ
オニンのようにチオエーテル結合を持ったアミノ酸は、
pHを低くしても容易に分解し、無視できない程度の損
失を生じるので本発明を適用することはできない。
In contrast, in the method of the present invention, the pH of the anolyte is constantly maintained at 9.5 by adding a high-pH stock solution to the anolyte that is being circulated at a relatively large flow rate as electrolysis progresses.
The first feature is that electrolysis is performed while maintaining the following conditions. The inventors of Moto discovered through repeated research that by doing this, the decomposition of amino acids can be stopped to a negligible level. For example, when a current equivalent to the amount of glycine present is passed through an aqueous solution containing sodium glycine and glycine in various proportions, the relationship between the pH of the solution and the decomposition loss rate of glycine is as shown in Figure 2. l), 73
The loss rate rises rapidly above H9.5. Of course, the degree of decomposition varies depending on the type of amino acid, the type of anode used, current density, coexisting substances, etc., but since the influence of pH is overwhelmingly large, the limit value of pH = 9.5 can be used as a rough guide. It holds true universally. However, the pH
The lower the pH, the more stable the amino acid is, so it is desirable to maintain the pH as low as possible under other conditions. By this method almost all alkali metal salts of neutral amino acids can be electrolyzed. However, amino acids with thioether bonds, such as methionine,
Even if the pH is lowered, the present invention cannot be applied because it easily decomposes and causes non-negligible loss.

本発明の方法によって得られるイオン交換液は陽極液の
一部をとり出したものであるから、陽極液と同じ<pH
が9.5以下となっている。したがってイオン交換液中
に含まれているアミノ酸は、大部分が遊離のアミノ酸と
表っておシ、塩となっているものの割合は小さい。この
割合はpHによって定まるが、例えばα−アラニンナト
リウムとα−アラニンを1:4.1:9.1:99の割
合で含む水溶液の室温におけるpHはそれぞれ9.5.
9.07、a04である。もちろんこれらの値は他の電
解質が共存すると多少異々る場合もある。中性アミノ酸
の等電点pHは約6であるが、この例が示すように1そ
の前後のか々シ広い範囲のpHにおいて、大部分のアミ
ノ酸が遊離のアミノ酸となっている。このように供給さ
れたアミノ酸塩の大部分が遊離のアミノ酸に転化してい
るイオン交換液からは、濃縮、晶析などの方法で容易に
アミノ酸を分離することができる。その際、転化されな
かったアミノ酸塩は母液中に残るので、これを原液に加
えて再び電解することによって回収し得る。ただし、な
るべく等電点に近いpHで運転することによって、遊離
アミノ酸への転化率を極めて高くする方が晶析工程表ど
の操作がし易い場合もある。
Since the ion exchange solution obtained by the method of the present invention is a part of the anolyte, it has the same pH as the anolyte.
is 9.5 or less. Therefore, most of the amino acids contained in the ion exchange solution are free amino acids, and only a small proportion are in the form of salts. This ratio is determined by the pH, but for example, the pH of an aqueous solution containing sodium α-alanine and α-alanine in a ratio of 1:4.1:9.1:99 at room temperature is 9.5.
9.07, a04. Of course, these values may differ somewhat if other electrolytes coexist. The isoelectric point pH of neutral amino acids is about 6, but as this example shows, most amino acids become free amino acids in a wide range of pH around 1. From the ion exchange solution in which most of the amino acid salts supplied in this manner have been converted into free amino acids, amino acids can be easily separated by methods such as concentration and crystallization. At this time, the unconverted amino acid salt remains in the mother liquor, and can be recovered by adding it to the stock solution and electrolyzing it again. However, it may be easier to operate the crystallization process table if the conversion rate to free amino acids is extremely high by operating at a pH as close to the isoelectric point as possible.

工業的な規模で電解を行う場合には、ある程度以上の電
流密度で運転しなければ、大きな電解装置が必要となり
、装置に対する設備投資額が過大になる。本発明で取扱
うアミノ酸の場合においても少なくとも10A/dげ、
できれば15A/dビ以上の電流密度で運転することが
望ましい。けれども、アミノ酸とそのアルカリ金属塩だ
けを含んだ水溶液については、本発明の方法で要求され
るpHl1c保った上で、高い電流密度で運転すると電
解電圧が高くなり過ぎることが多い。特に、高い転化率
を得ようとして、低いpH11C保って運転する場合に
そうである。これはアミノ酸塩の水溶液が比較的高い電
導度を示すのに対して、アミノ酸水溶液の電導度は極め
て低いからである。電解を能率的かつ経済的に行うため
には、陽極液の電導度を高く保って運転することが必要
であり、そのためには他の電解質を支持電解質として共
存させることが有効である。支持電解質としては、例え
ば酢酸、イミノジカルボン酸、リン酸、硫酸など当該ア
ミノ酸より強い酸またはそれらのアルカリ金属塩を用い
得る。支持電解質に含まれるアルカリ金属イオンは原料
アミノ酸塩を構成するものと同じであるととが望ましい
。そうでない場合は回収される水酸化アルカリが二種類
の水酸化アルカリの混合物と表る。もちろん、そのよう
表混合物が利用できる状況にある場合は異種のアルカリ
金属の塩を支持電解質として用いてもよい。
When electrolysis is carried out on an industrial scale, a large electrolyzer is required unless the electrolyzer is operated at a current density above a certain level, resulting in an excessive investment in equipment. In the case of amino acids handled in the present invention, at least 10 A/d,
It is desirable to operate at a current density of 15 A/d Bi or more if possible. However, when an aqueous solution containing only amino acids and their alkali metal salts is operated at a high current density while maintaining the pH l1c required by the method of the present invention, the electrolytic voltage often becomes too high. This is especially the case when operating at a low pH of 11C in order to obtain a high conversion rate. This is because aqueous solutions of amino acid salts exhibit relatively high conductivity, whereas aqueous amino acid solutions have extremely low conductivity. In order to perform electrolysis efficiently and economically, it is necessary to maintain high conductivity of the anolyte during operation, and for this purpose it is effective to coexist with another electrolyte as a supporting electrolyte. As the supporting electrolyte, for example, an acid stronger than the amino acid, such as acetic acid, iminodicarboxylic acid, phosphoric acid, or sulfuric acid, or an alkali metal salt thereof can be used. It is desirable that the alkali metal ions contained in the supporting electrolyte be the same as those constituting the raw material amino acid salt. Otherwise, the recovered alkali hydroxide appears as a mixture of two types of alkali hydroxides. Of course, salts of different alkali metals may be used as supporting electrolytes if such mixtures are available.

ところで、例えばアルデヒドのシアンヒドリンとアンモ
ニアの反応によって生成したアミノニトリルをアルカリ
加水分解することによって得たアミノ酸アルカリ金属塩
溶液中には、通常は副生成物として対応するイミノジカ
ルボン酸のアルカリ金属塩が少量含まれているが、これ
は上に述べた支持電解質としての条件を満たしている。
By the way, for example, in an amino acid alkali metal salt solution obtained by alkaline hydrolysis of aminonitrile produced by the reaction of aldehyde cyanohydrin and ammonia, a small amount of the corresponding alkali metal salt of iminodicarboxylic acid is usually contained as a by-product. However, it satisfies the above-mentioned conditions as a supporting electrolyte.

このような不純物はそのまま共存させて電解すれば支持
電解質として働く。しかし、これだけで十分な場合は少
なく、他の支持電解質を追加した方がよい場合が多い。
If such impurities are allowed to coexist as they are and electrolyzed, they will function as a supporting electrolyte. However, this alone is rarely sufficient, and it is often better to add other supporting electrolytes.

追加する支持電解質としては、硫酸、リン酸、およびこ
れらのアルカリ金属塩など、陽極に接した場合に安定な
ものが望ましい。
The additional supporting electrolyte is preferably one that is stable when in contact with the anode, such as sulfuric acid, phosphoric acid, and alkali metal salts thereof.

支持電解質を含んだ陽極液中では、pHがアミノ酸の等
電点より高い場合は、電解によってアミノ酸塩が優先的
にイオン交換されてアミノ酸に転化し、支持電解質は塩
のままで存在する。支持電解質を含む陽極液のpHはア
ミノ酸の等電点より低い値にもなシ得る。この場合はア
ミノ酸はすべて遊離のアミノ酸に転化し終っているので
、支持電解質の一部が電解されて酸が陽極液中に生成し
、陰極液中には水酸化アルカリが生成する。そして、こ
の酸が新たに加えられた原液中のアミノ酸塩よジアルカ
リ金属イオンを奪って再び塩になシ、アミノ酸を遊離さ
せるので、結果的に遊離のアミノ酸の生成と水酸化アル
カリの生成が順調に進む。
In the anolyte containing the supporting electrolyte, if the pH is higher than the isoelectric point of the amino acid, the amino acid salt is preferentially ion-exchanged and converted to the amino acid by electrolysis, and the supporting electrolyte remains as a salt. The pH of the anolyte containing the supporting electrolyte can be below the isoelectric point of the amino acid. In this case, all the amino acids have been converted to free amino acids, so part of the supporting electrolyte is electrolyzed to produce acid in the anolyte and alkali hydroxide in the catholyte. This acid then removes dialkali metal ions from the newly added amino acid salt in the stock solution, converts it into salt again, and liberates the amino acid, resulting in the smooth production of free amino acids and alkali hydroxide. Proceed to.

しかも、等電点より低いpgではアミノ酸が負に荷電す
ることは全くないので、アミノ酸が陽極に達して分解さ
れる恐れはさらに少ない。
Moreover, since amino acids are not negatively charged at all at pg lower than the isoelectric point, there is even less possibility that the amino acids will reach the anode and be decomposed.

けれども、pHが低くなりすぎてアルカリ金属イオン濃
度〔M 〕と水素イオン濃度〔H〕の比CM  〕/C
H)が小さくなると、尚量電導度の大きい水素イオンが
陽イオン交換膜を透過して陰極室へ移動することによっ
て流れる電流の割合が大きくなる。この電流は本発明の
目的には寄与しない無効電流であるから、その割合が大
きくなると電解の電流効率は低下する。これは、支持電
解質として強酸または強酸の塩を用いた場合に起こシや
すい。本発明者らは、多くの系について検討した結果、
CM  〕/CH)の値を大きく保つように陽極液の組
成を調節することによって、この原因による電流効率の
低下を防ぎ得ることで見い出した。本発明者らの知見に
よればCM  )/〔I 〕の値は少なくとも50でき
れば200以上に保つことが望ましい。例えばpH5に
おいては〔H)=0.001&であるから、この場合に
高い電流効率を保つためには〔M 〕が0.2M以上で
あることが望ましい。また陽極液の7)Hがアミノ酸の
等電点より低くなると、アミノ酸の一部が正に荷電して
陰極室へ移動しようとする。陰極室へ異動したアミノ酸
は、陰極液とし−(取得したアルカリを反応工程におい
て再使用すれば回収されるので損失とはならないが、工
程の管理をより複雑にする。アミノ酸の透過量はその分
子量および膜の種類に左右されるので、膜の選択は重要
である。しかし、通電量当シのアミノ酸の移動を少なく
するためにはCM  〕/CH]の値を大きく保つこと
も有効である。
However, the pH becomes too low and the ratio of alkali metal ion concentration [M] to hydrogen ion concentration [H] is CM ]/C
As H) becomes smaller, hydrogen ions with higher conductivity permeate the cation exchange membrane and move to the cathode chamber, resulting in a larger proportion of current flowing. Since this current is a reactive current that does not contribute to the purpose of the present invention, as its proportion increases, the current efficiency of electrolysis decreases. This is likely to occur when a strong acid or a salt of a strong acid is used as the supporting electrolyte. As a result of studying many systems, the present inventors found that
It has been found that by adjusting the composition of the anolyte so as to maintain a large value of CM ]/CH), it is possible to prevent a decrease in current efficiency due to this cause. According to the findings of the present inventors, it is desirable to keep the value of CM )/[I ] at least 50, preferably 200 or more. For example, at pH 5, [H)=0.001&, so in order to maintain high current efficiency in this case, it is desirable that [M] be 0.2M or more. Furthermore, when 7)H in the anolyte becomes lower than the isoelectric point of the amino acids, some of the amino acids become positively charged and try to move to the cathode chamber. The amino acids transferred to the catholyte chamber are used as the catholyte (if the obtained alkali is reused in the reaction process, it will be recovered, so it will not be lost, but it will make process management more complicated.The amount of amino acids permeated is determined by its molecular weight. The selection of the membrane is important because it depends on the amount of electricity and the type of membrane.However, it is also effective to maintain a large value of CM]/CH] in order to reduce the movement of amino acids in proportion to the amount of current applied.

陽極液中のアミノ酸、アミノ酸塩、および支持電解質の
濃度は高い程、溶液の電導度が高くて好ましいが、溶解
度の制限を受ける。また、一般にアミノ酸の溶解度は温
度を高くすることによって大巾に増大し、同じ濃度の溶
液でも温度が高い程電導度も高いので、装置の構造およ
び材料の耐久性が許す限シ高温で運転することが望まし
い。
The higher the concentration of the amino acid, amino acid salt, and supporting electrolyte in the anolyte, the higher the conductivity of the solution, which is preferable, but is subject to solubility limitations. Additionally, in general, the solubility of amino acids increases greatly by increasing the temperature, and even for solutions with the same concentration, the higher the temperature, the higher the electrical conductivity. This is desirable.

支持電解質の濃度はある程實までは高い方が電解電圧を
下げる効果が大きいが、得られたイオン交換液よジアミ
ノ酸を分離する工程の操作を難しくするおそれがある。
Although the higher the concentration of the supporting electrolyte is to a certain extent, the higher the effect of lowering the electrolytic voltage, the higher the concentration of the supporting electrolyte, the greater the effect of lowering the electrolytic voltage, but this may make it difficult to operate the step of separating diamino acids from the obtained ion exchange solution.

それでも支持電解質を加えることによって得られる電解
電力減少の効果は大きいので、時にはアミノ酸と当量あ
るいはそれ以上の支持電解質が存在する状態で電解を行
うことも望ましい。特に、溶解度の低いアミノ酸を取シ
扱う場合にそうである。このように大量の支持電解質を
含むイオン交換液からでも、分別晶析をくシ返したり電
気透析による脱塩を行ってから晶析するなどの方法によ
って、純度の高いア・ミノ酸を得ることができる。支持
電解質の大部分は、分別晶析や電気透析の工程より、固
体または溶液として回収し再使用することができる。も
ちろん、支持電解質として安価な塩などを用いた場合は
あえて回収しカくてもよい。これらのことをすべて考慮
した上で最適の支持電解質濃度を決めるが、これは通常
(Ll−AO#の範囲にある。
Even so, since the effect of reducing the electrolytic power obtained by adding a supporting electrolyte is significant, it is sometimes desirable to perform electrolysis in the presence of a supporting electrolyte in an amount equivalent to or greater than that of the amino acid. This is especially the case when dealing with amino acids with low solubility. Even from an ion exchange solution containing a large amount of supporting electrolyte, highly pure amino acids can be obtained by repeating fractional crystallization or desalting by electrodialysis before crystallization. I can do it. Most of the supporting electrolyte can be recovered and reused as a solid or solution through fractional crystallization or electrodialysis steps. Of course, if an inexpensive salt or the like is used as the supporting electrolyte, it may be necessary to collect it. Taking all these into consideration, the optimum supporting electrolyte concentration is determined, which is usually in the range of Ll-AO#.

一般に中性アミノ酸のアルカリ金属塩水溶液のpHは1
1あるいはそれ以上であるのに対して、本発明の方法で
は陽極液のpHに9.5以下という制限があるので、原
液を一過的に通過させて電解する、いわゆるワンパス運
転、および原液を循環しながら所定の転化率に達するま
で電解を行う、いわゆるバッチ循環運転を行うことはで
きない。
Generally, the pH of an aqueous solution of an alkali metal salt of a neutral amino acid is 1.
1 or more, whereas in the method of the present invention, the pH of the anolyte is limited to 9.5 or less. It is not possible to perform so-called batch circulation operation in which electrolysis is performed while circulating until a predetermined conversion rate is reached.

本発明の方法で大量のアミノ酸アルカリ塩を電解する場
合は通常、第1図に示すように、陽極液循環系に原液F
を供給しつつ、循環液の余剰分をイオン交換液として取
シ出す、いわゆる部分循環法によって運転しなければな
らない。支持電解質を用いる場合は、これをあらかじめ
原液中に加えておいてもよいし、また単独で陽極液の循
環系に加えてもよい。原液および支持電解質の供給量は
陽極液のpHが常に9.5以下でありかつ望ましくは(
f”)/(H]の値が50以上、さらに望ましくは20
0以上となるように調節しなければならないことは、す
でに述べた通りである。CM  )/〔H〕の値を確認
するためには、その都度分析を行わなくても、取り扱う
系について予めデータを求めておけば、pHと電導度の
測定値より推定することができる。また電導度は電流密
度と電解電圧の関係より推定することもできる。特に、
供給されるアミノ酸塩と支持電解質の比率が定まつてい
る場合は、pH値だけから〔M 〕/+ CH)の値が判る。このように、本発明の要求する条件
を維持するための工程管理は容易である。
When electrolyzing a large amount of alkali amino acid salts using the method of the present invention, normally the stock solution F is added to the anolyte circulation system as shown in Figure 1.
It must be operated using the so-called partial circulation method, in which the excess circulating fluid is taken out as ion exchange fluid while supplying ion exchange fluid. When a supporting electrolyte is used, it may be added to the stock solution in advance, or it may be added alone to the anolyte circulation system. The supply amount of the stock solution and supporting electrolyte is such that the pH of the anolyte is always 9.5 or less and preferably (
f'')/(H] is 50 or more, more preferably 20
As already mentioned, it must be adjusted so that it is 0 or more. In order to confirm the value of CM)/[H], it can be estimated from the measured values of pH and conductivity by obtaining data in advance for the system to be handled, without having to perform analysis each time. Further, the conductivity can also be estimated from the relationship between current density and electrolytic voltage. especially,
If the ratio of supplied amino acid salt and supporting electrolyte is fixed, the value of [M]/+CH) can be determined from the pH value alone. In this way, process control for maintaining the conditions required by the present invention is easy.

なお、循環経路上に貯槽を設けたり、原液の供給を間欠
的に行って陽極液のpHを許容範囲内で変動させたシ、
あるいはイオン交換液の一部と原液を別の貯槽で混合し
大径に循環系に供給するなどの方法も可能であるが、こ
れらはいずれも上に述べた部分循環法の一変法とみなし
得る。
In addition, if the pH of the anolyte is varied within an allowable range by providing a storage tank on the circulation path or by intermittently supplying the stock solution,
Alternatively, it is also possible to mix part of the ion exchange solution and the stock solution in a separate storage tank and supply it to the circulation system in a large diameter, but both of these can be considered as variations of the partial circulation method described above. .

陽極液、陰極液共に電極面より発生する気泡のしゃへい
効果による電気抵抗の増加を防ぐために、なるべく大流
量で循環させることが望ましい。循環流量は電流量iA
H当シに0.517ツトル以上が望ましい。もちろん極
室内部での対流循環および気液分離が行われるようにセ
ルの構造を工夫することによって、外部経路を通じる見
掛けの循環量を少々くすることはできるが、その場合で
も陽極室内に存在する陽極液が先に述べたpHおよび+ CM  :l/[:H]に関する条件範囲内に保たれる
ように、見掛けの循環量を定めなければならない。
It is desirable that both the anolyte and catholyte be circulated at as large a flow rate as possible in order to prevent an increase in electrical resistance due to the shielding effect of bubbles generated from the electrode surface. Circulation flow rate is current amount iA
It is desirable that the H value is 0.517 or more. Of course, by devising the structure of the cell so that convective circulation and gas-liquid separation take place inside the anode chamber, the apparent amount of circulation through the external path can be slightly reduced, but even in this case, the amount of gas that exists inside the anode chamber The apparent circulation rate must be determined in such a way that the anolyte is kept within the above-mentioned conditions for pH and + CM :l/[:H].

本発明の方法で用いる電解装置の陽極には、酸素発生時
の過電圧の小さい電極を用いることが望ましい。表面を
酸化イリジウムを主成分とする触媒層で被覆したチタニ
ウムなどが適している。陽イオン交換膜としては、ノぐ
一70ロカーボン系の陽イオン交換膜、たとえば商品名
ナフィオンで市販されているものなどが適している。陰
極としては多くの金属が用い得るが、ニッケルメッキを
施した鉄が最も安価であシ性能もよい。
As the anode of the electrolyzer used in the method of the present invention, it is desirable to use an electrode with low overvoltage during oxygen generation. Titanium whose surface is coated with a catalyst layer containing iridium oxide as the main component is suitable. Suitable cation exchange membranes include Noguichi 70 carbon type cation exchange membranes, such as those commercially available under the trade name Nafion. Many metals can be used as the cathode, but nickel-plated iron is the cheapest and has the best performance.

このような構成のセルを多数集合して、工業的規模の電
解が行える装置を製作する技術は、食塩電解の分野にお
いてすでに確立されている。
A technique for assembling a large number of cells having such a configuration to produce an apparatus capable of performing electrolysis on an industrial scale has already been established in the field of salt electrolysis.

なお、多孔質の陽極または陰極、あるいは両者を陽イオ
ン交換膜と一体とし、その背後に極液を流通させて電解
をおこなう、いわゆるSPE電解法も上に述べたのと全
く同じ操作条件の下に可能であるが、工業的な規模の電
解に用い得るような材料は未だ市販されておらず、今後
の開発が期待される。
Furthermore, the so-called SPE electrolysis method, in which electrolysis is carried out by integrating a porous anode, cathode, or both with a cation exchange membrane and flowing an electrolyte behind it, can also be carried out under exactly the same operating conditions as described above. However, materials that can be used for industrial-scale electrolysis are not yet commercially available, and further development is expected.

以上の説明を要約すれば、本発明は、 (1)  9.5より低いpHに保たれている陽極液の
循環系に、アミノ酸アルカリ金属塩を含む水溶液を添加
しつつ電解することによって、アミノ酸の分解を無視で
きる程度に抑えでアミノ酸塩をアミノ酸に転化し得るこ
と、 を骨子とするが、さらに、 (2)陽極液中に支持電解質を共存させることによって
、高い電流密度および高い転化率においても低い電圧で
電解が行えること、 (3)  ただし、陽極液中のアルカリ金属イオン濃度
CM  ]と水素イオン濃度〔H+〕の比CM  )/
〔H〕を50以上、さらに望ましくは200以上とする
ことによって、電流効率の低下およびアミノ酸の陰極室
への移動を防ぐことが望ましいこと、 を明らかにしたものである。これらの条件およびその組
合せによる効果は本発明者らが新たに見いだしたもので
あり、その結果、これまでは王室法電解槽を用いなけれ
ば行えないと考えられていた、アミノ酸アルカリ金属塩
の電解イオン交換による遊離アミノ酸の生成が、より簡
単かつ安価な二基法電解槽を用いて、より低い電圧で行
なえるようになったことは大いに意義のあることである
To summarize the above explanation, the present invention (1) electrolyzes amino acids by adding an aqueous solution containing an amino acid alkali metal salt to the circulation system of the anolyte maintained at a pH lower than 9.5. (2) By coexisting a supporting electrolyte in the anolyte, it is possible to convert amino acid salts into amino acids with negligible decomposition. (3) However, the ratio of the alkali metal ion concentration CM ] to the hydrogen ion concentration [H+] in the anolyte CM )/
It has been clarified that it is desirable to prevent a decrease in current efficiency and the movement of amino acids to the cathode chamber by setting [H] to 50 or more, more preferably 200 or more. The effects of these conditions and their combination were newly discovered by the present inventors, and as a result, the electrolysis of amino acid alkali metal salts, which was previously thought to be possible only by using a Royal Law electrolyzer, has become possible. It is of great significance that the production of free amino acids by ion exchange can now be carried out at lower voltages using simpler and cheaper two-base electrolyzers.

次に実例をあげて本発明の実施の態様およびその効果を
さらに詳しく説明する。なお、以下の実施例および比較
例においては、陽極としてイリジウム酸化物で被覆した
チタニウム板、陰極としてニッケルメッキを施した鉄、
陽イオン交換膜としてナフィオン315(商品名、デュ
ポン社製)またはナフィオン901〈商品名、デュポン
社製)を用いた有効断面積1dビの電解セルを用いて実
験を行立った。
Next, embodiments of the present invention and its effects will be explained in more detail by giving examples. In addition, in the following examples and comparative examples, a titanium plate coated with iridium oxide was used as an anode, iron plated with nickel was used as a cathode,
Experiments were conducted using an electrolysis cell with an effective cross-sectional area of 1 dbi using Nafion 315 (trade name, manufactured by DuPont) or Nafion 901 (trade name, manufactured by DuPont) as a cation exchange membrane.

実施例1および比較例1 2Mのα−アラニンナトリウム水溶液に2Mのα−アラ
ニン水溶液を加えることによってα−アラニンナトリウ
ム/α−アラニンの比がそれぞれIlo> 1/1.1
15.1/9.1/19となる様に調製した5s類の水
溶液を陽極液とし、水酸化ナトリウムの2N水溶液を陰
極液として、60℃に保って循環しつつ4Vの電圧で直
流を通電して陽極液のpHが約7.0となるまで電解イ
オン交換した。用いた陽イオン交換膜はナフィオン31
5である。電解前の陽極液のFH%電解後の陽極液およ
び陰極液の分析によって求めたアラニンの陽極液中での
回収率、アラニンの陰極液中への透過率、両者を合せた
全回収率、および電解後の陽極液の性状を表1に示す。
Example 1 and Comparative Example 1 By adding a 2M α-alanine aqueous solution to a 2M α-alanine sodium aqueous solution, the α-alanine sodium/α-alanine ratio was reduced to Ilo > 1/1.1, respectively.
15.1/9.1/19 A 5S aqueous solution prepared to give 1/19 was used as the anolyte, and a 2N aqueous solution of sodium hydroxide was used as the catholyte. DC current was applied at a voltage of 4 V while circulating while maintaining the temperature at 60°C. Then, electrolytic ion exchange was performed until the pH of the anolyte became approximately 7.0. The cation exchange membrane used was Nafion 31.
It is 5. Recovery rate of alanine in the anolyte solution determined by analysis of the anolyte solution and catholyte solution after electrolysis, permeation rate of alanine into the catholyte solution, total recovery rate of both, and FH% of the anolyte solution before electrolysis. Table 1 shows the properties of the anolyte after electrolysis.

pHが9.5を越える溶液を電解すると、分解によるア
ラニンの損失、液の着色、異臭の発生が顕著になること
がわかる。
It can be seen that when a solution with a pH exceeding 9.5 is electrolyzed, loss of alanine due to decomposition, coloring of the solution, and generation of off-odor become noticeable.

実施例2 α−アラニンの製造工程より採取したα−アラニンナト
リウムを含む水溶液(α−アラニン根濃度2.1 M 
)に支持電解質として硫酸ナトリウムを、アラニン根に
対する当量比がα2になるように添加した液を原液とし
た。原液中の硫酸ナトリウムの濃度は約0.42Nであ
る。原液の一部を王室法電解セルによ#)pH6になる
まで電解イオン交換したもの1リツトルを、二基法電解
セルの陽極液循環タンクに仕込み、陰極液循環タンクに
は2N水酸化ナトリウム水溶液を仕込んだ。両極液を6
0℃に保ってポンプ循環し、直流電流15,4(電流密
度15,4/dm”)を通じつつ、陽極液のpHが6−
7の範囲に保たれるように原液を供給した。用いた陽イ
オン交換膜はすフイオン315である。原液9リツトル
を供給し終えた後、陽極液および陰極液を全量回収し分
析した。セル電圧は4.7V、電流効率(水酸化ナトリ
ウムの回収量より求めた)は82%、アラニンの回収率
は陽極液中に99%、陰極液中に1%、合計100%で
あつた。
Example 2 An aqueous solution containing α-alanine sodium collected from the α-alanine manufacturing process (α-alanine root concentration 2.1 M
) to which sodium sulfate was added as a supporting electrolyte so that the equivalent ratio to the alanine root was α2 was used as a stock solution. The concentration of sodium sulfate in the stock solution is approximately 0.42N. A portion of the stock solution was subjected to electrolytic ion exchange using a royal method electrolysis cell until the pH reached 6. 1 liter was charged to the anolyte circulation tank of the dual method electrolysis cell, and a 2N aqueous sodium hydroxide solution was added to the catholyte circulation tank. I prepared it. 6 bipolar fluids
While maintaining the temperature at 0°C and circulating the anolyte with a pump and passing a DC current of 15.4 (current density 15.4/dm), the pH of the anolyte was 6-6.
The stock solution was supplied to maintain a range of 7. The cation exchange membrane used was Sufion 315. After supplying 9 liters of the stock solution, the entire amount of the anolyte and catholyte was collected and analyzed. The cell voltage was 4.7 V, the current efficiency (calculated from the amount of recovered sodium hydroxide) was 82%, and the recovery rate of alanine was 99% in the anolyte and 1% in the catholyte, for a total of 100%.

実施例3 実施例2で用いたのと同じアジニンナトリウム水溶液を
用い、支持電解質は添加せず、その他は実施例2と全く
同じ方法で電解を行った。セル電圧は98V1電流効率
は80%、アラニン回収率は陽極液中に99%、陰極液
中に1%、合計100%であった。
Example 3 Electrolysis was carried out using the same azinine aqueous solution as used in Example 2, without adding a supporting electrolyte, and in the same manner as in Example 2 except for the addition of a supporting electrolyte. The cell voltage was 98V, the current efficiency was 80%, and the alanine recovery rate was 99% in the anolyte and 1% in the catholyte, for a total of 100%.

実施例2,3共にアラニンの分解損失はみられないが、
両者のセル電圧を較べれば、支持電解質として添加した
硫酸す) IJウムの効果がよくわかる。
Although no decomposition loss of alanine was observed in both Examples 2 and 3,
By comparing the cell voltages of the two, the effect of sulfuric acid (IJ) added as a supporting electrolyte can be clearly seen.

実施例4 3Mのグリシンナトリウム水溶液に支持電解質として硫
酸ナトリウムをグリシン根に対して0.5の当量比で添
加した溶液を原液とした。原液中の硫酸ナトリウム濃度
は約0,2Nである。別に、グリシン根および硫酸ナト
リウムの濃度を原液と同じにしたpH6の水溶液を調製
し、オーツく−フローロを設けた陽極液循環タンクに仕
込み、陰槙液循環タンクには2N水酸化ナトリウム水溶
液を仕込んだ。両極液を70℃に保ってポンプ循環し、
直流電流20A(電流密度20 A / d m” )
を通じつつ、陽極液のpHが6−7の範囲に保たれるよ
うに原液を供給し、オーバーフローしてくる陽極液をイ
オン交換液として回収した。用いた陽イオン交換膜はす
フイオン901である。セル電圧は4.4V、電流効率
は95%、グリシン回収率は陽極液中に90%、陰極液
中に9%、合計99%であった。
Example 4 A stock solution was prepared by adding sodium sulfate as a supporting electrolyte to a 3M sodium glycine aqueous solution at an equivalent ratio of 0.5 to the glycine root. The sodium sulfate concentration in the stock solution is approximately 0.2N. Separately, prepare a pH 6 aqueous solution with the same concentrations of glycine and sodium sulfate as the original solution, and charge it into an anolyte circulation tank equipped with oats-fluorocarbons, and a 2N aqueous sodium hydroxide solution into the anode solution circulation tank. is. The bipolar liquid is kept at 70℃ and circulated with a pump.
DC current 20A (current density 20A/dm”)
The stock solution was supplied so that the pH of the anolyte was maintained within the range of 6-7, and the overflowing anolyte was recovered as an ion exchange solution. The cation exchange membrane used was Sufion 901. The cell voltage was 4.4 V, the current efficiency was 95%, and the glycine recovery rate was 90% in the anolyte and 9% in the catholyte, for a total of 99%.

比較例2 陽極液のpHを115に保つ以外は実施例4と同じ操作
してイオン交換液を得た。セル電圧は4.2V、電流効
率は95%、グリシン回収率は陽極液中に97%、陰極
液中に0%、合計97%であった。イオン交換液のイオ
ン交換率は40%であり、遊離したグリシンに対する損
失したグリシンの割合は15%であった。
Comparative Example 2 An ion exchange solution was obtained in the same manner as in Example 4, except that the pH of the anolyte was maintained at 115. The cell voltage was 4.2 V, the current efficiency was 95%, and the glycine recovery rate was 97% in the anolyte and 0% in the catholyte, for a total of 97%. The ion exchange rate of the ion exchange solution was 40%, and the ratio of lost glycine to liberated glycine was 15%.

実施例5 0.12Mのフェニルアラニンナトリウム水溶液中に支
持電解質として硫酸ナトリウムをフェニルアラニン根に
対して2の当量比で添加した溶液(i液中の硫酸ナトリ
ウム濃度は(L24A’)を原液として用い、かつフェ
ニルアラニン根および硫酸ナトリウムの濃度が原液と同
じでpHが6の水溶液を初期の陽極液として仕込み、直
流電流15Aを通じる以外は実施例4と同じに操作した
。セル電圧は5.2V、電流効率は84%、フェニルア
ラニン回収率は陽極液中に100%でおった。
Example 5 A solution in which sodium sulfate was added as a supporting electrolyte to a 0.12M sodium phenylalanine aqueous solution at an equivalent ratio of 2 to phenylalanine roots (the concentration of sodium sulfate in solution i was (L24A') was used as the stock solution, and An aqueous solution with the same concentration of phenylalanine and sodium sulfate as the original solution and a pH of 6 was prepared as the initial anolyte, and the operation was the same as in Example 4 except that a direct current of 15 A was passed.The cell voltage was 5.2 V, and the current efficiency was was 84%, and the recovery rate of phenylalanine in the anolyte was 100%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明において用いる電解装置の一例の概念図
である。第2図はグリシン水溶液のpHと電解による損
失率の関係を示す。 第1図において、1は陽極、2は陰極、6は陽イオン交
換膜、4は陽極室、5は陰極室、6および7は気液分離
器、Aは陽極液、Cは陰極液、Fは原液、Eはイオン交
換液、Rは回収アルカリ土類金属 pH(i基)
FIG. 1 is a conceptual diagram of an example of an electrolysis device used in the present invention. FIG. 2 shows the relationship between the pH of an aqueous glycine solution and the loss rate due to electrolysis. In Figure 1, 1 is an anode, 2 is a cathode, 6 is a cation exchange membrane, 4 is an anode chamber, 5 is a cathode chamber, 6 and 7 are gas-liquid separators, A is an anolyte, C is a catholyte, F is stock solution, E is ion exchange solution, R is recovered alkaline earth metal pH (i group)

Claims (1)

【特許請求の範囲】 1、陽極と陰極の間に隔膜として一枚の陽イオン交換膜
を備えた電解セルの、陽極室を循環流通する陽極液にア
ミノ基とカルボキシル基を一つずつ有するアミノ酸のア
ルカリ金属塩またはその水溶液を加え、陰極室には陰極
液としてアルカリ金属水酸化物の水溶液を流通させつつ
、両極間に直流を通電することによつて陽極液中に遊離
のアミノ酸を生じさせると共に、陰極液中にアルカリ金
属水酸化物を得る際に、陽極液のpHを9.5以下に保
つことを特徴とする、アミノ酸アルカリ金属塩より遊離
のアミノ酸を得る方法。 2、陽極液のpHを9.0以下に保つて行う特許請求の
範囲1記載の方法。 3、陽極液中に当該アミノ酸よりも強い酸またはそのア
ルカリ金属塩を支持電解質として共存させて行う特許請
求の範囲1および2のいずれかに記載の方法。 4、陽極液中の支持電解質の濃度が0.1−3.0Nで
ある特許請求の範囲3に記載の方法。 5、支持電解質が硫酸または硫酸塩である特許請求の範
囲3および4のいずれかに記載の方法。 6、陽極液中のアルカリ金属イオン濃度〔M^+〕と水
素イオン濃度〔H^+〕の比〔M^+〕/〔H^+〕を
50以上に保つて行う特許請求の範囲3乃至5のいずれ
かに記載の方法。 7、アミノ酸がチオエーテル基を含まないものである特
許請求の範囲1乃至6のいずれかに記載の方法。 8、アミノ酸がグリシン、α−アラニン、β−アラニン
またはα−フェニルアラニンである特許請求の範囲1乃
至6のいずれかに記載の方法。
[Claims] 1. An amino acid having one amino group and one carboxyl group in the anolyte that circulates through the anode chamber of an electrolytic cell equipped with a single cation exchange membrane as a diaphragm between the anode and cathode. an alkali metal salt or its aqueous solution is added, and while an aqueous solution of alkali metal hydroxide is passed through the cathode chamber as the catholyte, free amino acids are generated in the anolyte by passing a direct current between the two electrodes. Additionally, a method for obtaining free amino acids from amino acid alkali metal salts, which comprises maintaining the pH of the anolyte at 9.5 or less when obtaining the alkali metal hydroxide in the catholyte. 2. The method according to claim 1, which is carried out by maintaining the pH of the anolyte at 9.0 or less. 3. The method according to any one of claims 1 and 2, which is carried out in the presence of an acid stronger than the amino acid or an alkali metal salt thereof as a supporting electrolyte in the anolyte. 4. The method according to claim 3, wherein the concentration of the supporting electrolyte in the anolyte is 0.1-3.0N. 5. The method according to any one of claims 3 and 4, wherein the supporting electrolyte is sulfuric acid or a sulfate. 6. Claims 3 to 6 are carried out by maintaining the ratio [M^+]/[H^+] of alkali metal ion concentration [M^+] and hydrogen ion concentration [H^+] in the anolyte at 50 or more. 5. The method according to any one of 5. 7. The method according to any one of claims 1 to 6, wherein the amino acid does not contain a thioether group. 8. The method according to any one of claims 1 to 6, wherein the amino acid is glycine, α-alanine, β-alanine, or α-phenylalanine.
JP60101567A 1985-05-15 1985-05-15 Electrolyzing method for alkaline metallic salt of amino acid Pending JPS61261488A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60101567A JPS61261488A (en) 1985-05-15 1985-05-15 Electrolyzing method for alkaline metallic salt of amino acid
EP86106619A EP0201925A1 (en) 1985-05-15 1986-05-15 Process for producing a free amino acid from an alkali metal salt thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60101567A JPS61261488A (en) 1985-05-15 1985-05-15 Electrolyzing method for alkaline metallic salt of amino acid

Publications (1)

Publication Number Publication Date
JPS61261488A true JPS61261488A (en) 1986-11-19

Family

ID=14303985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60101567A Pending JPS61261488A (en) 1985-05-15 1985-05-15 Electrolyzing method for alkaline metallic salt of amino acid

Country Status (2)

Country Link
EP (1) EP0201925A1 (en)
JP (1) JPS61261488A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290404A (en) * 1990-10-31 1994-03-01 Reilly Industries, Inc. Electro-synthesis of alcohols and carboxylic acids from corresponding metal salts
US6110342A (en) * 1998-07-21 2000-08-29 Archer Daniels Midland Company Process for production of amino acid hydrochloride and caustic via electrodialysis water splitting
WO2002062826A1 (en) * 2001-02-07 2002-08-15 Vadim Viktorovich Novikov Method for producing peptides
EP1659197A1 (en) * 2004-11-18 2006-05-24 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO Process for the recovery of acids
CA3224571A1 (en) 2013-09-25 2015-04-02 Lockheed Martin Energy, Llc Electrolyte balancing strategies for flow batteries
EP3765438A1 (en) 2018-03-13 2021-01-20 Taminco Bvba Process for drying n,n-dimethyl glycinate salt

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH185415A (en) * 1935-08-17 1936-07-31 Chem Fab Flora Process for the electrolytic separation of inorganic substances from a solution containing monoamino-monocarboxylic acids, monoamino-dicarboxylic acids and inorganic substances.
BE523563A (en) * 1952-10-17
DE3405522A1 (en) * 1984-02-16 1985-08-29 Basf Ag, 6700 Ludwigshafen Process for extracting carboxylic acids containing structural units of the formula N-CH2-COOH from the alkali metal salts or alkaline earth metal salts thereof

Also Published As

Publication number Publication date
EP0201925A1 (en) 1986-11-20

Similar Documents

Publication Publication Date Title
CN1102073C (en) Electrochemical methods for recovery of ascorbic acid
JPH04224689A (en) Electrolytic method of alkali metal sulfate
US5478448A (en) Process and apparatus for regenerating an aqueous solution containing metal ions and sulfuric acid
JP2013173629A (en) Method of producing high-purity lithium hydroxide
CN110616438A (en) Device and method for electrochemically preparing high-purity battery-grade lithium hydroxide
US5258109A (en) Electrodialytic conversion of complexes and salts of metal cations
EP0149917B1 (en) Electrodialytic conversion of multivalent metal salts
WO2002057185A2 (en) Process for producing potassium sulfate from sodium sulfate
JPH04501885A (en) Purification method of quaternary ammonium hydroxide
JPS61261488A (en) Electrolyzing method for alkaline metallic salt of amino acid
CA1163957A (en) Energy efficient electrolyzer for the production of hydrogen
JPH11226576A (en) Method and apparatus for treating wastewater
JP2002173789A (en) Electrolyzer
JPH01102049A (en) Production of amino acid
US5578182A (en) Electrolytic production of hypophosphorous acid
JPS5855577A (en) Preparation of amino acid
JPH0910769A (en) Production of electrolytic ion water
CN212335350U (en) Device for regenerating noble metal electroplating solution by membrane electrolysis method
US5480517A (en) Electrolytic production of hypophosphorous acid
US4402805A (en) Electrochemical process to prepare p-hydroxymethylbenzoic acid with a low level of 4-CBA
JPS58755B2 (en) Amino acid production method
JP2001262206A (en) Method for producing silver oxide and method for producing silver powder
JPH09202986A (en) Three-compartment electrolytic cell
JP2001192875A (en) Method and apparatus for preparing hydrogen peroxide
JPS61217589A (en) Electrochemical method