MD151Y - Process for growth of GaAs epitaxial layers into a horizontal reactor - Google Patents

Process for growth of GaAs epitaxial layers into a horizontal reactor Download PDF

Info

Publication number
MD151Y
MD151Y MDS20090001A MDS20090001A MD151Y MD 151 Y MD151 Y MD 151Y MD S20090001 A MDS20090001 A MD S20090001A MD S20090001 A MDS20090001 A MD S20090001A MD 151 Y MD151 Y MD 151Y
Authority
MD
Moldova
Prior art keywords
epitaxial layers
reactor
growth
horizontal reactor
temperature
Prior art date
Application number
MDS20090001A
Other languages
Romanian (ro)
Inventor
Vasile Botnariuc
Leonid Gorceac
Simion Raevschii
Iurii Jiliaev
Leonid Fiodorov
Original Assignee
Universitatea De Stat Din Moldova
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitatea De Stat Din Moldova filed Critical Universitatea De Stat Din Moldova
Priority to MDS20090001A priority Critical patent/MD151Z/en
Publication of MD151Y publication Critical patent/MD151Y/en
Publication of MD151Z publication Critical patent/MD151Z/en

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The invention relates to processes for growth of epitaxial layers, particularly a process for growth of GaAs epitaxial layers into a horizontal reactor. The process, according to the invention, includes placement of the prepared substrate and of gallium source into a reactor, sealing of the reactor and hydrogen blowing thereof with an output of 1000 cm3/min during one hour, heating of the gallium source up to the temperature of 800?C, of the deposition zone up to 715à750?C with the maintenance of a temperature increase gradient of 1.7à2.1?C/cm and deposition of epitaxial layers at a linear velocity of the hydrogen flow with Ga-AsCl3 vapours equal to 33à35 cm/min.

Description

Invenţia se referă la procedeele de creştere a straturilor epitaxiale, în particular la un procedeu de creştere a straturilor epitaxiale GaAs într-un reactor orizontal. The invention relates to epitaxial layer growth processes, in particular to a process for growing GaAs epitaxial layers in a horizontal reactor.

Este cunoscut un procedeu de creştere a straturilor epitaxiale GaAs în fază gazoasă, la o concentraţie a componentelor (Ga-AsCl3) de 1013…1014 cm-3, în faza mobilă (H2) cu o mobilitate la temperatura azotului lichid de 1·105…2·105 cm2/V·s [1]. A process for growing GaAs epitaxial layers in the gas phase is known, at a concentration of components (Ga-AsCl3) of 1013…1014 cm-3, in the mobile phase (H2) with a mobility at liquid nitrogen temperature of 1·105…2·105 cm2/V·s [1].

Dezavantajul acestui procedeu constă în suprafaţa mică a zonei de depunere a stratului epitaxial, fapt ce limitează productivitatea procedeului. The disadvantage of this process is the small surface area of the epitaxial layer deposition area, which limits the productivity of the process.

Cea mai apropiată soluţie este procedeul de creştere a straturilor epitaxiale de arsenură de galiu la temperaturi joase în sistemul Ga-AsCl3-H2 [2]. Straturile epitaxiale GaAs au fost obţinute într-un reactor cu o lungime a zonei de depunere de 10…12 cm, la o temperatură de 650…710°C în zona de depunere şi un gradient de creştere a temperaturii de 2°C/cm, iar suporturile au fost aranjate sub un unghi de 70° faţă de fluxul de gaze. The closest solution is the process of growing epitaxial layers of gallium arsenide at low temperatures in the Ga-AsCl3-H2 system [2]. The epitaxial GaAs layers were obtained in a reactor with a deposition zone length of 10…12 cm, at a temperature of 650…710°C in the deposition zone and a temperature increase gradient of 2°C/cm, and the supports were arranged at an angle of 70° to the gas flow.

Dezavantajul acestui procedeu constă în faptul că nu permite obţinerea unor straturi epitaxiale cu aceiaşi grosime de-a lungul întregii zone de depunere. The disadvantage of this process is that it does not allow obtaining epitaxial layers with the same thickness along the entire deposition area.

Problema pe care o soluţionează invenţia constă în prepararea straturilor epitaxiale A3B5 (GaAs) de aceiaşi grosime în zona de depunere. The problem solved by the invention consists in preparing A3B5 (GaAs) epitaxial layers of the same thickness in the deposition area.

Procedeul, conform invenţiei, include amplasarea unui substrat pregătit şi a unei surse de galiu într-un reactor, ermetizarea reactorului şi suflarea lui cu hidrogen cu un debit de 1000 cm3/min timp de o oră, încălzirea sursei de galiu până la temperatura de 800°C, a zonei de depunere până la 715…740°C cu menţinerea unui gradient de creştere a temperaturii de 1,7…2,1°C/cm şi depunerea straturilor epitaxiale la o viteză lineară de 33…35 cm/min a fluxului de hidrogen cu vapori de Ga-AsCl3. The process, according to the invention, includes placing a prepared substrate and a gallium source in a reactor, sealing the reactor and blowing it with hydrogen at a flow rate of 1000 cm3/min for one hour, heating the gallium source to a temperature of 800°C, the deposition zone to 715…740°C while maintaining a temperature increase gradient of 1.7…2.1°C/cm and depositing epitaxial layers at a linear velocity of 33…35 cm/min of the hydrogen flow with Ga-AsCl3 vapor.

Rezultatul invenţiei constă în prepararea straturilor epitaxiale A3B5 (GaAs) de aceeaşi grosime de-a lungul zonei de depunere într-un reactor orizontal, ceea ce permite creşterea productivităţii lor. Acest lucru se datorează faptului că în zona de depunere a straturilor epitaxiale se stabileşte un gradient de creştere a temperaturii de 1,7…2,1°C/cm, o viteza liniară a fluxului de hidrogen şi a vaporilor de Ga-AsCl3 de 33…35 cm/min, care permit echilibrarea vitezelor de creştere a straturilor epitaxiale de-a lungul zonei de depunere. The result of the invention consists in the preparation of A3B5 (GaAs) epitaxial layers of the same thickness along the deposition zone in a horizontal reactor, which allows increasing their productivity. This is due to the fact that in the epitaxial layer deposition zone a temperature growth gradient of 1.7…2.1°C/cm is established, a linear velocity of the hydrogen flow and Ga-AsCl3 vapor of 33…35 cm/min, which allow balancing the growth rates of the epitaxial layers along the deposition zone.

Exemplu de realizare Example of implementation

Straturile epitaxiale au fost crescute într-un reactor orizontal la o presiune apropiată de cea atmosferică. În calitate de material pentru depunere au fost folosite - clorura de arseniu (AsCl3) şi galiul de puritate 99,999%, iar în calitate de gaz purtător - hidrogenul, dublu purificat prin filtre de paladiu de tip FTV-4. În calitate de substrat au fost folosite plachetele monocristaline de arsenură de galiu orientate în direcţia cristalografică (100) cu o dezorientare de (3…5)° în direcţia (110). The epitaxial layers were grown in a horizontal reactor at a pressure close to atmospheric. Arsenic chloride (AsCl3) and gallium of 99.999% purity were used as the deposition material, and hydrogen, doubly purified through palladium filters of type FTV-4, was used as the carrier gas. Single-crystalline gallium arsenide wafers oriented in the crystallographic direction (100) with a misorientation of (3…5)° in the direction (110) were used as the substrate.

Plachetele de GaAs se prelucrează cu toluen, alcool izopropilic şi cu soluţie compusă din H2O : H2O2 : NH4OH, luate într-un raport de 5:1:1, apoi se spală cu apă deionizată, se usucă în vapori de alcool izopropilic şi se amplasează într-un reactor orizontal pe o lungime de 20 cm. Reactorul se ermetizează şi se suflă cu hidrogen timp de o oră cu un debit de 1000 cm3/min. Apoi se stabilesc temperaturile de creştere, în zona sursei de galiu - 800°C şi în zona de depunere 715…740°C, cu menţinerea unui gradient de creştere a temperaturii de la 1,7…2,1°C/cm, după care se micşorează fluxul de hidrogen ce trece prin barbotorul cu AsCl3 până la viteza liniară de 33…35 cm/min şi se efectuează procesul de depunere a stratului epitaxial cu o grosime necesară. The GaAs wafers are processed with toluene, isopropyl alcohol and a solution composed of H2O: H2O2: NH4OH, taken in a ratio of 5:1:1, then washed with deionized water, dried in isopropyl alcohol vapors and placed in a horizontal reactor over a length of 20 cm. The reactor is hermetically sealed and blown with hydrogen for one hour with a flow rate of 1000 cm3/min. Then the growth temperatures are established, in the gallium source area - 800°C and in the deposition area 715…740°C, maintaining a temperature growth gradient of 1.7…2.1°C/cm, after which the hydrogen flow passing through the AsCl3 bubbler is reduced to a linear velocity of 33…35 cm/min and the epitaxial layer deposition process with a required thickness is carried out.

Straturile epitaxiale obţinute astfel posedă o grosime omogenă de-a lungul zonei de depunere, asigurând astfel o productivitate sporită la confecţionarea dispozitivelor optoelectronice. The epitaxial layers obtained in this way have a homogeneous thickness along the deposition area, thus ensuring increased productivity in the fabrication of optoelectronic devices.

1. Dilorenzo J. V. Vapor growth of epitaxial GaAs: a summary of parameters which influence the purity and morphology of epitaxial layers. J. Crystal Growth, 1972, vol. 17, p. 189…206. 1. Dilorenzo J. V. Vapor growth of epitaxial GaAs: a summary of parameters which influence the purity and morphology of epitaxial layers. J. Crystal Growth, 1972, vol. 17, p. 189...206.

2. Ботнарюк В.М. Исследование арсенидгаллиевых структур для силовых приборов полученных низкотемпературной эпитаксией в системе Ga-AsCl3-H2. Диссертация на соискание ученой степени кандидата физико-математических наук, 1986, Кишинёв, c. 93…94. 2. Botnaryuk V.M. Research of arsenide gallium structures for power devices obtained by low-temperature epitaxy in the Ga-AsCl3-H2 system. Диссертация на соискание ученой страница начидата физико-математических наук, 1986, Kishinev, c. 93...94.

Claims (1)

Procedeu de creştere a straturilor epitaxiale GaAs într-un reactor orizontal, care include amplasarea unui substrat pregătit şi a unei surse de galiu într-un reactor, ermetizarea reactorului şi suflarea lui cu hidrogen cu un debit de 1000 cm3/min timp de o oră, încălzirea sursei de galiu până la temperatura de 800°C, a zonei de depunere până la 715…740°C cu menţinerea unui gradient de creştere a temperaturii de 1,7…2,1°C/cm şi depunerea straturilor epitaxiale la o viteză liniară de 33…35 cm/min a fluxului de hidrogen cu vapori de Ga-AsCl3.Process for growing GaAs epitaxial layers in a horizontal reactor, which includes placing a prepared substrate and a gallium source in a reactor, sealing the reactor and blowing it with hydrogen at a flow rate of 1000 cm3/min for one hour, heating the gallium source to a temperature of 800°C, the deposition zone to 715…740°C while maintaining a temperature increase gradient of 1.7…2.1°C/cm and depositing epitaxial layers at a linear velocity of 33…35 cm/min of the hydrogen flow with Ga-AsCl3 vapor.
MDS20090001A 2008-12-30 2008-12-30 Process for growth of GaAs epitaxial layers into a horizontal reactor MD151Z (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MDS20090001A MD151Z (en) 2008-12-30 2008-12-30 Process for growth of GaAs epitaxial layers into a horizontal reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
MDS20090001A MD151Z (en) 2008-12-30 2008-12-30 Process for growth of GaAs epitaxial layers into a horizontal reactor

Publications (2)

Publication Number Publication Date
MD151Y true MD151Y (en) 2010-02-26
MD151Z MD151Z (en) 2010-09-30

Family

ID=43568921

Family Applications (1)

Application Number Title Priority Date Filing Date
MDS20090001A MD151Z (en) 2008-12-30 2008-12-30 Process for growth of GaAs epitaxial layers into a horizontal reactor

Country Status (1)

Country Link
MD (1) MD151Z (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4554B1 (en) * 2017-10-18 2018-02-28 Государственный Университет Молд0 Process for increasing the efficiency of photovoltaic cells based on p+InP-p-InP-n+CdS

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4280C1 (en) * 2013-09-04 2014-10-31 Государственный Университет Молд0 pInP-nCdS structure growth method
MD972Z (en) * 2015-02-19 2016-06-30 Государственный Университет Молд0 Method for p+InP-p-InP-n+CdS structure growth for photovoltaic cells
MD4510C1 (en) * 2016-06-23 2018-03-31 Государственный Университет Молд0 Method for growth of n+-p-p+ InP structure for solar cells

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1118579A (en) * 1967-04-21 1968-07-03 Standard Telephones Cables Ltd A method of and apparatus for growing an epitaxial layer of semiconductive material on a surface of a semiconductive substrate
JPS5635411A (en) * 1979-08-31 1981-04-08 Fujitsu Ltd Epitaxial wafer of gallium arsenide and its manufacture
JPH04354325A (en) * 1991-05-31 1992-12-08 Nikko Kyodo Co Ltd Epitaxial growth method for compound semiconductors
JPH04359509A (en) * 1991-06-06 1992-12-11 Sumitomo Electric Ind Ltd Epitaxial growth method of ternary compound semiconductor
JPH0684803A (en) * 1992-09-01 1994-03-25 Toshiba Corp Vapor phase epitaxial growth system
JPH06172084A (en) * 1992-12-08 1994-06-21 Sumitomo Electric Ind Ltd Method for epitaxial growth of compound semiconductor and apparatus therefor
MD499G2 (en) * 1993-12-30 1997-05-31 Государственный Университет Молд0 Process of epitaxial layer grouing AIII BV in chloride system
MD673G2 (en) * 1994-05-24 1997-08-31 Государственный Университет Молд0 Process for InP layers production
MD627G2 (en) * 1994-07-25 1997-06-30 Государственный Университет Молд0 The method of making epitaxy layers of phosphide indium from gaz phase
MD930G2 (en) * 1997-04-09 1999-01-31 Государственный Университет Молд0 Process for obtaining semiconducter layer materials from the gas phase
  • 2008

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4554B1 (en) * 2017-10-18 2018-02-28 Государственный Университет Молд0 Process for increasing the efficiency of photovoltaic cells based on p+InP-p-InP-n+CdS

Also Published As

Publication number Publication date
MD151Z (en) 2010-09-30

Similar Documents

Publication Publication Date Title
RU2764040C2 (en) Growing epitaxial 3c-sic on monocrystalline silicon
CN106757324B (en) A kind of manufacturing method of silicon epitaxial wafer
CN104911690B (en) A kind of growth method and growth device of indium phosphide single crystal
CN110578171B (en) Method for manufacturing large-size low-defect silicon carbide single crystal
CN106711022B (en) A kind of preparation method of growing silicon carbide epitaxial thin film with clear doped interface
CN107574479A (en) A kind of multi-functional hydride vapor phase epitaxy growth system and application
MD151Y (en) Process for growth of GaAs epitaxial layers into a horizontal reactor
KR101682307B1 (en) Method of growing transition metal dichalcogenide in large scale and apparatus for the method
CN104867818B (en) A kind of method for reducing silicon carbide epitaxy material defect
JPS6329928A (en) Method of making gallium arsenite grow on silicon by epitaxial growth
CN103422164A (en) Method for controlling N-type 4H-SiC homogenous epitaxial doping
WO2023125227A1 (en) Method for preparing aluminum nitride crystals by means of vapor transport
CN104962985A (en) Growth process for crystal-size-controllable DAST (4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate) crystals
CN115161615A (en) Preparation method of two-dimensional molybdenum-tungsten sulfide alloy film
Haacke et al. Control of residual impurity incorporation in tertiarybutylarsine-grown GaAs
MD4280C1 (en) pInP-nCdS structure growth method
CN102828240B (en) A kind of method preparing GaN film material
CN106757323A (en) A kind of unstressed InN nanowire growth methods
CN106087039A (en) A kind of accessory processing method of carbide epitaxial furnace
Clarke Indium phosphide vapor phase epitaxy: A review
CN206814882U (en) A Hydride Vapor Phase Epitaxial Graphite Boat Structure
MD4510C1 (en) Method for growth of n+-p-p+ InP structure for solar cells
Yamashita et al. Homoepitaxial chemical vapor deposition of 6H-SiC at low temperatures on {0114} substrates
MD972Z (en) Method for p+InP-p-InP-n+CdS structure growth for photovoltaic cells
CN103031597A (en) The method of growing p-ZnO film by Na-Be co-doping

Legal Events

Date Code Title Description
KA4Y Short-term patent lapsed due to non-payment of fees (with right of restoration)