LU87494A1 - Transformateur sec a enroulements enrobes,conducteurs et installations electriques analogues,et procede de preparation de leur resine d'enrobage - Google Patents

Transformateur sec a enroulements enrobes,conducteurs et installations electriques analogues,et procede de preparation de leur resine d'enrobage Download PDF

Info

Publication number
LU87494A1
LU87494A1 LU87494A LU87494A LU87494A1 LU 87494 A1 LU87494 A1 LU 87494A1 LU 87494 A LU87494 A LU 87494A LU 87494 A LU87494 A LU 87494A LU 87494 A1 LU87494 A1 LU 87494A1
Authority
LU
Luxembourg
Prior art keywords
flame retardant
water
resin
temperature
coated
Prior art date
Application number
LU87494A
Other languages
English (en)
Inventor
Pidancet Brigitte
Vazquez Miguel
Cordier Philippe
Original Assignee
France Transfo Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Transfo Sa filed Critical France Transfo Sa
Publication of LU87494A1 publication Critical patent/LU87494A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)
  • Organic Insulating Materials (AREA)
  • Insulating Of Coils (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Housings And Mounting Of Transformers (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)

Description

* ____- , BL-4227
1 . ~ *7 7 ffJL GRAND-DUCHE DE LUXEMBOURG
Brevet N°.3.....7.........Ώ...-...Μ. t * .
w Monsieur le Ministre du.................................................Φ...ΐΑΐ-ί989 ' de l’Économie et des Classes Moyennes
Service de la Propriété Intellectuelle
litre délivré--------- j . (gS) LUXEMBOURG
Demande de Brevet d’invention ...........................................................................................................................................................—:---------------------------:_____(i) I. Requête
La société dite FRANCE TRANSFO S.A. - Voie Romaine - ^ 2) ...R.Qnt„„..de,...S.em.é.ci.Q,uX-t......-.....E“5J2.1û.._..MAXZIERES.=LES-ME.T.X.„-..._Éxa.nce_______ représentée par E.T.FREYLINGER & E.MEYERS, Ing»cons.en P.I. -46, rue du Cimetière - L—ï338 Luxembourg _____(3) dénosefnt) ce......six.......avril.....mil.......neuf.....Oant._..g.ua.tre.=.v.ing.t._..iie.uf______( 4) à........1.5... 00.. heures, au Ministère de l’Économie et des Classes Moyennes, à Luxembourg: 1. la présente requête pour l’obtention d’un brevet d’invention concernant: "Transformateur sec à enroulements enrobés, conducteurs et ^ installations électriques analogues, et procédé de préparation de......leur’ résine d1enroBageT® ...............................................................................
2. la description en langue................................£.r§.AÇ..§i.se................................de l’invention en trois exemplaires; 3. ................i.................................................planches de dessin, en trois exemplaires; 4. la quittance des taxes versées au Bureau de l’Enregistrement à Luxembourg, le 0 6.0 3.19 8 9____: 5. la délégation de pouvoir, datée de ...................................................................................... le___________________________________________________; 6. le document d’ayant cause (autorisation); déclare(nt) en assumant la responsabilité de cette déclaration, que l’(es) inventeur(s) est (sont): ( 6) „PID.AN.C.E.T.......Brlg.i..fc.t.a..._r........15, rue des Jardins sous.....la.....Fontaine -_____ ...............F-57158......Montigny.....les......Metz - France___________________________________________________________ VÀZQÜËZ......Miguel - 1, rue du Pré de la' Darne äSILLY surlfllED.....- F-5753Ö CourceÎïës Chaussy - France CÜRD'TER......Pli'iïippe - 9, au ôranà' Éoirlër du Vigy.......
...........-France.........—------------------------------------------------------------------------------------ revendïque(nt) pour la susdite demande de brevet la priorité d’une (des) demande(s) de ( 7) -----------------------déposées en (δ) ------------------------------ ie (9) — :—:---------------------------------------------------------------------------:---------------------------- sous le N° (10)__8 8 0 5, 6. 41___________________________________________________________________ au nom de (U) ,.........grance..,,^an^____________________________________________________________ élit(élisent) domicile pour lui (elle) et, si désigné, pour son mandataire, à Luxembourg_________________________ .4.6.., rue du Cimetière—.=...-..L-133.8.._Luxembourg·------------------------------------ (12) sollicite(nt) la délivrance d’un brevet d’invention pour l’objet décrit et représenté dans les annexes susmentionnées, avec ajournement de cette délivrance à ..... _______S-____ ___________mois. (13)
Le déotjsatrty mandataire : i._________ ________________________________________________________________________________________________________________________ (14) \ Π. Procès-verbal de Dépôt
La susdite demande de brevet d’invention a été déposée au Ministère de l’Économie et des Classes Moyennes, Service de la Propriété Intelleptuëfle aTfcrembourg, en date du: 06 04 1989 \1ji\ Pr. le Ministre de l’ÉcodWie et des Classes Moyennes, à heures jj/ ψρΜ \"| / Mfe.d.
j^J Le chef du servi^aeha,propriété intellectuelle, W, j -J A68007__A- /\l_
* · EXPLICATIONS RELATIVES AU FORMUUU^I^OTPtÆ // ]/ B
(1) s’il y a lieu "Demande de certiGcat d’addition au brevet principal, à la demande de brevet principal No....... Arou... .1.......” - (2) inscrire les nom, prénom, profession, adresse du demandeur, lorsque celui-ci est un particulier ou les dénomination sociale, forme juridique, adresse dureiège sfcial, lorsque le demandeur est une personne morale -(3) inscrite les nom, prénom, adresse du mandataire agrée, conseil en propriété industrielle, muni d’un pouvoir spécial, s’il/a lieu:/représente par............agissant en qualité de mandataire” - (4) date de dépôt en toutes lettres - (5) titre de l'invention - (6) inscrire les noms, prénoms, adresses des inventeurs on l’indication "(voir) désignation séparée (suivra)”, lorsque la dési- anation se fait ou se fera dans un document séoaré. ou encore l’indication ”ne nas mentionner”, lorsaue l’inventeur siene ou sienera un document de non-mention à ioindre à une désignation ,ϊ · * f BL-4227
Revendication de la priorité de la demande de brevet déposée en France le 22 avril 1988 sous le numéro 88 05641 Mémoire descriptif déposé à l'appui d'une demande de brevet d'invention pour "TRANSFORMATEUR SEC A ENROULEMENTS ENROBES, CONDUCTEURS ET INSTALLATIONS ELECTRIQUES ANALOGUES, ET PROCEDE DE PREPARATION DE LEUR RESINE D'ENROBAGE"
FRANCE TRANSFO Voie Romaine Pont de Semécourt F-57210 MAIZIERES-LES-METZ
» TRANSFORMATEUR SEC A ENROULEMENTS ENROBES. CONDUCTEURS OU INSTALLATIONS ELECTRIQUES ANALOGUES ET PROCEDE DE freparation.de LEUR.RESINE D'ENROBAGE.
5 L'invention a trait à l’amélioration de la tenue au feu des conducteurs électriques enrobés mis en service à chaud.
Elle s’applique en particulier aux transformateurs secs de puissance ou de distribution,dont les températures de travail dépassent classiquement de plus d’une centaine de degrés 10 centigrades la température ambiante(température de travail de l’ordre de 140-150°C généralement). Aussi, et pour des raisons de commodité uniquement, on se référera pour la suite de l’exposé à l’exemple des transformateurs précités.
Dans ce type de transformateurs, réservés habituellement 15 à une gamme de tension allant de 3 à 36 kV, le bobinage est noyé dans une résine synthétique isolante à propriétés diélectriques et présentant plusieurs millimètres d’épaisseur (de 2à 5 mm par ex.). On rappelle, qu’outre sa fonction d’isolation électrique, la résine a un rôle de protection contre 20 l’humidité et les poussières qui pourraient faire baisser la tension de claquage.Elle protège également les bobinages élec triques contre un milieu ambiant pollué par des agents chimiques agressifs et joue un rôle important de tenue mécanique en assurant la fixité des spires entre-elles dans le bobinage 25 On sait néanmoins que, dans des conditions d’usage « extrêmes accidentelles,ou à la suite d’une anomalie,les trans formateurs peuvent brûler.L’étude de leur comportement au feu a permis de se rendre compte que, lorsque la résine d’enrobage brûle, elle continue souvent à brûler, même si l’incendie qui 30 en est la cause a cessé, car, à partir d’une température critique qui lui est propre,la résine devient inflammable àl’air À ce stade, quelques rappels concernant la constitution de ces résines peuvent s’avérer utiles pour la suite.
Les enrobages actuels pour transformateurs secs sont 35 des résines thermodurcissables, obtenues par chauffage d’un mélange initial composé d'une résine proprement-dite (un epo-xyde généralement) et d’un durcisseur,tel que de l’anhydride. Un exemple classique est fourni par les dérivés diglycidi- 2 ques jgthers du bis-phénol A, plus couramment appelés DGEBA, et formés par réaction entre le bis-phénol A et l'hépichloro-hydrine (voir l'USP 3,202,947 par ex.). Ces résines sont le plus souvent réticulées et rendues infusibles et insolubles 5 par addition d'amines et de polysulfures de basse masse molé-culaire(résine ARALDITE(R> par exemple).On trouve des exemples autres parmi les polyesters thermodurcissables. Les proportions pondérales sont classiquement de 50 % pour la résine et de 50 % pour le durcisseur.
10 Généralement, on utilise des résines chargées:1a résine ». liquide de départ reçoit, avant l'addition du durcisseur, une charge, souvent minérale, par exemple de la farine de quartz (silice),ou de la laine de verre, dans des proportions pondérales qui sont de l'ordre de 3 de charge pour 1 de résine. On 15 aura alors dans le mélange initial par exemple 20% de résine, 6Ö % de silice et 20% de durcisseur.
Cette charge a pour rôle d'améliorer le comportement thermomécanique et d'absorber une partie déjà de la chaleur de polymérisation de la résine, ce qui permet d'éviter la 20 formation de fissures. Elle a également un rôle de renfort mécanique, car la résine non chargée peut rester de consistance molle à la température de fonctionnement des transformateurs .
D'un autre coté,on utilise plutôt des élastomères, comme des résines de silicone, ou des résines polyesters, qui sont 25 des thermoplastiques, dans le cas notamment d'enrobage de cables ou de fils, afin de leur autoriser une certaine souplesse. Des exemples sont donnés par l'E.P.R (Ethylène-propy-lène-rubber,ΙΈ.V.A.(Ethylène vinyl acetate), ou le Polyéthylène réticulé).
30 L'invention ne distingue pas selon le type de résine (thermodurcissable, thermoplastique ou élastomère), dans la mesure où cette résine est un matériau isolant destiné à être utilisé "à chaud" et présente donc de ce fait un bon comportement thermo-mécanique aux températures de travail élevées 35 indiquées auparavant. Aussi, par commodité de language, on appellera indifféremment "résine d'enrobage" ou "résine chargée" la matière constitutive de l'enrobage isolant final formée par le mélange: résine proprement-dite, charge de renfort (le cas échéant), et durcisseur éventuel (adjuvants 40 habituels compris,tels qu'accélérateur,flexibilisateur,etc.).
3 f
Le but de l'invention est d'améliorer le comportement au feu des conducteurs électriques enrobés, notamment les enroulements des transformateurs secs, en accroissant, à leur température de service, la stabilité thermique de la résine 5 d'enrobage ignifuge utilisée.
A cet effet, l'invention a pour objet un conducteur ou enroulement électriques enrobés dans une résine isolante char gée contenant une substance ignifuge par formation d'eau quand la température s'élève,telle que de l'alumine hydratée, 10 caractérisés en ce que une fraction de la charge, égale à au moins 20% du poids total de la résine d'enrobage, est constituée par ladite substance ignifuge, qui a été préalablement deshydratée partiellement d'une quantité telle qu'elle ne provoque pas de formation intempestive d'eau dans la résine 15 tant que le conducteur enrobé est en service dans ses conditions normales de température.
L'invention a encore pour objet un procédé de préparation d'une résine isolante chargée de ce type pour l'enrobage des enroulements des transformateurs secs, selon lequel on 20 ajoute à la résine liquide initiale une charge dont une fraction, égale à au moins 20% du poids total de la résine d'enrobage, est constituée par une substance ayant des propriétés ignifugeantes par formation d’eau lorsque la température s’élève, telle que de l'alumine hydratée, mais ce,après avoir 25 au préalable deshydraté partiellement la substance ignifuge, par chauffage de préférence, afin que, lors de l'utilisation du transformateur à sa température de fonctionnement nominal il n’y ait pas de formation intempestive d'eau au sein de la résine pouvant nuire à sa qualité.
30 L'invention a également pour objet un transformateur sec enrobé, dont au moins un enroulement électrique est enrobé dans une masse de résine isolante ignifuge conforme à celle obtenue par le procédé spécifié ci-avant.
35 Le rôle ignifugeant de l'alumine trihydratée, en tant qu'adjuvant aux résines d'enrobage pour cables électriques ou pour transformateurs, est déjà connu, par exemple du document USP 3,202,947 déjà mentionné(et dont l'enseignement est incor poré ici par référence). Mais, jamais jusqu'ici,à la connais-40 sance des inventeurs,on a pu mettre en lumière l'avantage que 4 a on pouvait paradoxalement attendre d'une meilleure stabilité thermique de la résine en déshydratant préalablement partiellement un tel adjuvant,alors qu’il agit comme ignifuge précisément en formant de l’eau.
5 L’invention sera bien comprise, et d’autres aspects et avantages apparaîtront plus clairement, au vu de la description détaillée qui suit, donnée en référence: - aux tableaux I, II et III présentés dans le corps du texte 10 et exprimant la bonne tenue au feu d’une résine d’enrobage selon l’invention; - au tableau IV, également présenté dans le corps de la description, et donnant les caractéristiques principales du profil du départ d’eau avec la montée en température 15 pour un certain nombre de substances ignifuges; - aux figures 1 et 2 montrant l’évolution dans le temps de la perte de poids de différentes substances ignifuges utilisables, par formation et élimination d’eau, résultant de leur instabilité "à chaud" lorsqu’on les chauffe à température 20 constante.
On reprend successivement les deux caractéristiques essentielles de l'invention énoncées auparavant: 25 1) AJOUT EN QUANTITE SUFFISANTE D’UNE SUBSTANCE IGNIFUGEANTE PAR FORMATION D’EAU DUE A UNE INSTABILITE A CHAUD.
La substance ignifuge ajoutée peut être de l'alumine hydratée AlzOs, nHzO avec n=l,2, ou 3 de la magnésie bihydra-tée,du borate de zinc, ou tout autre matière connue pour ses 30 propriétés d’autoextinguibilité par élimination d’eau et, de préférence, capable en outre, tout comme la silice,de renforcer la résine. On pourra donner préférence à l’alumine trihy-dratée, qui s’est avérée être l’ignifuge le plus efficace, et qui, de surcroît, ne dégage pas, ou peu de fumée.
35 La réaction de formation d’eau peut s’écrire :
2 Al (OH)*----> AlzOs + 3 HzO
La vitesse de cette réaction augmente dans le sens de la flèche avec la température, et son endothermicité retarde, voire empêche,l’atteinte du seuil d’allumage de la résine.
r 5
On verra plus loin que cette vitesse n'évolue pas linéairement avec la température, mais qu’il se forme un pic de départ intense d’eau caractéristique de la substance, et dont un intérêt déterminant est qu’il apparaît à des températures 5 situées précisément dans la zone de surchauffe à risque, donc en deçà de la température critique d’inflammibilité de la résine d’enrobage.
L’AI(OH)? peut être aisément mélangé à la charge minérale de départ,puisqu’ils se présentent,tous deux, sous forme 10 de matière solide en poudre ou de grains fins.
Au lieu de 60% en poids de S1O2 dans la résine finale, on y substitue, pour majeure part, de la substance ignifuge. On réalise ainsi, par exemple, un mélange représentant 50 % d’Al(0H)3 et 10 % seulement de Si0= . L’expérience a cependant 15 montré que l’on pouvait baisser la quantité d’Al(0H)3 jusqu’à 25 %(donc 35% de Si02), sans nuire de façon significative aux qualités de bonne tenue au feu de l’enrobage, dues à la présence de la substance ignifuge.
Ces valeurs, établies pour une charge initiale de 60 % 20 en poids peuvent bien entendu être modifiées si cette proportion varie.
Les tableaux I,II et III ci-après fournissent des indications et des résultats chiffrés d’essais réalisés en labo-25 ratoire sur un transformateur sec, montrant l’effet de substances ignifuges (ici A1(0H)3 et Borate de Zinc) sur les valeurs de paramètres reconnus comme représentatifs de la tenue au feu des matériaux et en particulier des résines d’enrobage des enroulements des transformateurs secs,à savoir 30 l’Indice d’Oxygène, la Vitesse de Combustion et le Pouvoir Calorifique Supérieur.
5 TABLEAU I : Indices d*Oxygène fl.O.)
iTempérature de mesure j 20°C ! 80eC ! 150°Ci 200°CJ
I_______________________I______I______I______I __I
I ( I t I I
5 : Indice d'Qz (1.0.) i 30 ! 27 ! 23,5 ! 21 | {minimal imposé ! ! ! ! !
I---------------------------------------------------I
I-------- I
! ALUMINE TEI-HYDRATÉ |
l_______________________________ I
I I
10 !™u* oE|707o de Si0z i " 30 !" 28 ! " 24 !" 19 ! r I CHARGE I____ _ __ I ____I ____I______l______i if i I I t ( j-ro-r^ <20% de Si0z et j ~ sg j - 37 ; " 32 ! ~ 31 ! ! /ο» i50% d’Al(0H)3 ! ! ! ! !
I_______l „„_____________ί______I______i______I______I
il i i i i i 15 ! ! 60% de SiOz !" 26 ! / ! / \ / \ I I_______________I______i__.____I______l______l
<1 I I I I I
! ! 50% de SiOz et !" 25 ! / ! / ! / ! ! ! 10% d’AMOH)* ! ! ! ! ! ! I_______________l______I______I_____I______l
fl I I I i I
20 ! ! 40% de SiOz et !" 27 ! / ! / ! / ! ! ! 20% d’Al(OH>3 ! ! ! ! ! I I_______________I______I______I______I_____| t t l i i i i jt«ux o=j35% de SiOz et !" 30 !" 28 !" 25 !" 20 ! |25% d/Al(OH)3 ! ! ! ! ! o p; * total i_______________i______i______i______i_____i 6 v | i i | i l i ! MX ! 25% de SiOz et ! 28-31 ! 28-31 [24-27 ! 19-22 ! ! !35% dJAl(OH>3 ! ! ! ! ! I I________________I______I______J _____ I _ __ t II ((lit ! ! 20¾ de SiOz et ! 30-33 ! 29-33 ! 25-28 ! 23-24 ! 30 ! !40% d'AKOH)^ ! ! ! ! !
I I _________________I______I ______1______I______I
II I I I I I
! ! 10% de SiOz et ! 32-35 ! 30-32 ! 27-29 ! 24-26 ! ! ',50% d'Al(0H>3 11 ! ! ! i------------------------------------------------ l
i------------—--—--—--------------------------------I
35 ! BORATE DE ZINC !
I_____________________________________,_________„_________I
i 1 1 TAUX GH ! 10% de SiOz et !" 32.5! ! ίτστ.όβχ!55% de Borate ! ! pas de valeurs !
I___________________________ ________________________I
( i 40 !taux dej10% de SiOz et !" 30. 3 ! ! [charoe [50% de Borate ! ! pas de valeurs !
I I I
| TOTAL 1-------------------------------------------1 ! Μ» î60% de Borate !" 33.6! pas de valeurs ! « 7
La matière d'enrobage a été préparée de la manière suivante: la charge minérale (ici de la silice), après avoir été mélangée à la substance ignifuge en quantité adéquate, a été malaxée,pour moitié, avec la résine liquide (résine époxy-5 dique commercialisée par la firme Suisse CIBA-GEIGY sous la dénomination "ARALDITE CY 225") et, pour l'autre moitié, avec le durcisseur, également à l’état liquide (anhydride commercialisé par la firme précitée sous la dénomination"DURCISSEUR HY 227"). Les deux mélanges ont ensuite été réunis et le tout 10 a été malaxé,puis mis au four(80 à 150°C)pour prise en masse.
Pour ces essais,les méthodes de mesure ont été conformes aux normes UTE NF T51-071 à 20eC et EDF HN20 M40 à 80, 150 et 200°C.
Rq.- Les fourchettes de valeurs traduisent le fait que 15 l'I.O. mesuré dépendait, dans ce cas, de l'origine de l’Alumine du commerce qui a été utilisée.
- Les cases marquées d’un "/" traduisent des mesures jugées inutiles.Les valeurs correspondantes,compte tenu de celle obtenue à 20eC, sont d’emblée non-ac-20 ceptables,car trop en deçà de l’I.O.minimal imposé -
On voit immédiatement que pour une charge totale de 60% la teneur minimale d’Al(0H)3à respecter est de 20-25%.En deçà lés valeurs minimales' imposées à l’Indice d’Qz ne sont plus efficacement assurées. Des mesures complémentaires,non consi-25 gnées içi,ont permis de montrer,qu’avec une charge globale de 70% en poids(lre partie du tableau),la valeur seuil d’Al(0H)3 descend à 20%. On observe également, qu’en ce qui concerne le Borate de Zinc, le seuil minimal est bien plus élevé: 50 % en poids au minimum, ce qui traduit,comme on le savait, une effi-30 cacité plus grande de l’Alumine trihydratée.
Les Vitesses de Combustion consignées dans le tableau II ci-après ont été mesurées dans l’appareil utilisé pour la détermination d’indices d’Oxygène sur des éprouvettes en forme de plaquettes allongées, de 100 mm de long, 6.5 mm de 35 large et de 4 mm d’épaisseur. Les éprouvettes comportent deux repères à la suite l'un de l’autre selon la longueur, le premier étant situé à 10mm d’une extrémité,le second à 60 mm.
On note, à la température ambiante, le temps de combustion de l’éprouvette entre les deux repères et on en déduit la 40 Vitesse moyenne de Combustion (en mm/s) en fonction du taux 8 TABLEAU II : Vitesses de Combustion.
! Taux d’02 1 35% 40% ! 45% ! 50% ! 60% ! I_____________________I_______I______I_______{______I__ i
I I I I I I ~ I
J Vitesse de Combustion! J ! ! ! ! 5 ! maximale autorisée ! 0.15 | 0.30 ! 0.45 ! 0.6 ! 0.9 ! ! (en mm/s) ! ! ! ! ! \ ! ALUMINE TEI-HYDEATEE !
I___________________________________________________________I
10 !TrtlJX ~=!70% de SiOz 1 0.28 ! 0.37 ! 0.47 ! 0.58 ! 1.05 ! I CHARGE I_____________I ______I _ I_____ | _ _ | ____ |
II I I I I I I
!TOTfiL i 20% de SiOz + ‘ 0.06 ! 0.10 ! 0. 13 ! 0.19 ! 0.25 ! ! 70¾ 150% d-’ÄKOH)^! ! ! ! ! ! I _______I_____________l_______I______I_______I______I_______(
II I I I I I I
15 ! 160% de SiCh !~0.35 !"0.50 !"0.60 !~0.75 !~1.0 ! I I_____________I________ I______I________I__ _ I ___|
I I I II I “* I I
! 150% de SiOz + ',"0.35 Γ0.45 'Γ0.60 !"0.75 ! "1.0 ! ! ! 10% d'Al(0H)3| ! ! ! ! ! I I_____________,__I _______I_______I_______I______I_______t
II I I I I I I
20 ! |40% de SiOz +!"0.20 ί"0.35 Γ0.45 !"0.55 ! "1.0 ! ! |20% d'Al(0H)3| ! ! ! !
1 I I I I I I I
!™ux ! 35% de SiOz +!"0.18 Γ0.28 |~0.38 !~0.49 ! "0.95 ! !CHftTOB ! 25% d5Al(OH)®! ! ! ! ! !
O C I TOTAL I _ ______ I_______I______I_______I______î_______I
6v | i “ “* | | | j I i ! 60-, !25% de SiOz +! 0.14- ! 0.20-! 0.27- ! 0.34-! 0.56- ! ! i35% d’Al(OH)3 ! 0.17 ! 0.23 ! 0.30 ! 0.37 ! 0.59 !
I I____ I_______I______I_______I______I_______ I
il 1 1 1 1 1 1 ! !20% de SiOz +| 0.13- ! 0.19-î 0.24- ! 0.30-i 0.48- ! 30 ! 140% d’AKOH)*! 0.16 j 0.20 ! 0.27 ! 0.35 j 0.56 !
I I___ I_______I______I_______I______I I
I I “ I II II I
! 110% de SiOz + 1 0.07- J 0.14-', 0.20- ! 0.26-| 0.37- ! ! 50% d’Al(0H)3 j 0.10 ! 0.16 j 0.23 ! 0.29 ! 0.40 ! 35 ! BOKATE DE ZINC !
I___________________________________________________________I
i I
|T«ux GM.10% de SiOz +! ! "0.161 "0.21 1 "0.301 ~0.8 1 !TOT-6S5!!553â de Borate! ! ! ! ! !
t___________________________________________________________I
1 1 40 !tAux »e! 10% de SiOz +! ! "0.25! "0.43 !"0.65 !" 0.98 ! !charge [50% de Borate! ! ! ! ! !
I I . I
l TOTAL (------------------------------- 1 ! 160% de Borate! ! "0.25! "0.31 ! "0.52! "0.96 ! 9 «
Rq. les indications de couples de valeurs ont môme signification que dans le tableau précédent.
Comme on peut aisément le constater,les valeurs données dans le Tableau II corroborent celles du tableaul en montrant 5 que, à l’égard du critère "Vitesse de combustion" également,la valeur "plancher" à respecter pour la quantité d’Al(OH)3 dans le mélange de départ est sensiblement de 25% en poids (un peu moins de 50% pour le Borate).
Ces conclusions demeurent entièrement valides au vu du 10 tableau III ci-dessous consignant les résultats de la série d’essais effectués sur le 3ème paramètre retenu, le Pouvoir Calorifique Supérieur(P.C.S.). Comme on pourra le constater, la valeur maximale admise de 11 MJ par kg de matière n’est jamais dépassée.
15 TABLEAU III : Pouvoir Calorifique Supérieur (P.C.S.) (Méthode d’essai: calorimétrie adiabatique selon la norme UTE NF M 03-005.)
Taux de chargelj Taux de charge total : 60% 20 total: 70% j
ALUMINE TRI-HYDRATE
_ n- f Γ I 1 70%Si02 1 20%SiQ* || 60% SiQ*. 40%Si0z |35% SiOa |25%SiQ2 |10% Si02: 25 | + If . + ί + + | + -------------4-------1-------J--------1------j--------- ~ 8 ~ 7 II ~ 11 , ~ 11 I ~ 11 I - 11 I - 11
1 II I I I I
30 -------L------Ji--------i-------Il-------i-------1---------
BORATE DI ZINC
il ~ i 10%Si0z+55%Bor. |j 10% SiQ* + 50% de Borate| 60% de Borate ---------------j, -------------------------|----------------- ______________1_________________________i_________________
On voit donc clairement apparaître sur ces tableaux l’influence sur la tenue au feu de l’ajout à la résine de départ, dans des proportions adéquates,d’une matière ignifugeante par 40 formation et élimination d’eau, conformément à l’invention.
10'
Ces résultats traduisent une forte libération d’eau de la part de la résine d’enrobage, lorsque celle-ci atteint des températures anormalement élevées. Un tel phénomène agit en absorbeur de chaleur autocontrôlé, qui retarde et freine la 5 combustion de la résine chargée, et confère à celle-ci le caractère d’auto-extinguibilité recherché.
Bien entendu,une formation abondante de molécules d’eau au sein même de la masse n’est pas sans conséquences sur la 10 qualité de la résine d’enrobage. Celle-ci se dégrade au cours d’un tel processus et, généralement, ne peut plus être réutilisée pour la suite. Le transformateur doit alors être remplacé ou reconditionné.
15 La perte en poids de la substance ignifugeante au cours de la montée en température est un bon indicateur de sa capacité à former de l’eau.On notera,comme le montrent les spécifications des fournisseurs, que, dans le cas de l’Al(OH)s, la perte de poids est déjà proche de 30% à 300eC. Elle s’opère 20 d’ailleurs pratiquement uniquement à cette température sous la forme d’un pic étroit et de grande amplitude,ce qui témoigne de la vivacité et de l’intensité du phénomène, lorsque ce niveau de température, caractéristique de l’agent ignifuge utilisé, est atteint.
. 25
Ceci se vérifie quelle que soit la variété d’alumine tri hydratée du commerce utilisée, comme le montre plus précisément le tableau IV ci-après.
Ce tableau de valeurs est donné à simple titre d’infor-30 mation, à partir des indications des fournisseurs de l’Al(0H)3 vendue sous la dénomination "ALCOA" selon des variétés, dont les références commerciales sont reprises dans les colonnes du tableau pour les identifier.
11 TABLEAP IV:Analyse des pics endothermigués de formation d'eau (les montées en température ont été opérées de 25 à 600°C sous une progression constante de 10°C/min.)
5 M15 S65/40 C31 M6 M15S S65/150 MEDIUM
SODA
____ __________________________________
Temp. début 196 205 216 180 195 188 197 du pic (°C) 10 Temp. fin 372 385 353 382 355 370 353 du pic (°C)
Temp. max. 316 312 314 314 ‘ 311 309 312 du pic (°C) 15 ----------------------------------------------------------- . AH du pic 1.03 1.01 1.07 1.06 1.03 1.0 1.02 (en kJ/g)
Pour que les effets attendus par le type de substance 20 ignifuge préconisée par l'invention soient pleinement satisfaisants, il faut, non seulement que le pic de départ intense d'eau se développe à des températures adéquates, c'est à dire entre le point de fonctionnement normal à chaud et celui où l’enrobage peut s'enflammer, mais encore qu’une formation 25 d'eau ne se réalise véritablement qu'en cas de surchauffe anormale. Autrement-dit, il convient d’éviter tout risque de dégradation prématurée de la résine d'enrobage qui pourrait être occasionnée par une formation intempestive d'eau depuis la température ambiante jusqu’à celle du fonctionnement 30 normal à chaud du transformateur.
C'est cette difficulté qui est résolue par la seconde caractéristique principale de l’invention, à savoir, un prévieillissement modéré de la résine, comme on va le voir plus en détails ci-après : 35 2)DESHYDRATATION PARTIELLE PREALABLE DE LA QUANTITE DE SUBSTANCE. IGNIFUGE AJOUTEE.
Il s'agit içi de provoquer une déshydratation préalable pour éviter qu'elle se produise ultérieurement dans le trans- 12 tielle, puisqu'on la recherche par ailleurs à haute température, quand le transformateur chauffe anormalement et que des risques d'inflammation sont à craindre.
Cette déshydratation peut avantageusement s'opérer par 5 chauffage préalable del'Al(OH)*. L’objectif à atteindre est, non pas une élimination totale de l’eau susceptible de se former dans une gamme de températures allant de l’ambiante à ; la température de fonctionnement "à chaud" du transformateur (et que l’on appellera de façon imagée "eau volatile” pour 10 marquer le fait qu'elle doit partir à basse température),mais une élimination suffisante afin que l’eau "volatile" résiduelle soit présente en trop faible quantité pour conduire à une dégradation de la résine. On a pu observer, en effet,que, lorsque l'alumine trihydratée n'avait pas été préchauffée 15 avant d’être ajoutée à la charge minérale, des éclatements de la résine enrobant les bobinages électriques de transformateurs d’essais intervenaient à la température de fonctionnement, qui obligaient à la mise au rebut de ces derniers.
Une façon commode de parvenir à réaliser la déshydrata-20 tion partielle de la substance ignifuge par préchauffage est de considérer sa courbe de perte de poids en fonction du temps. Pour une substance utilisée pour la première fois, on pourra avantageusement procéder en deux étapes: - Une première, sur échantillon d’analyse, destinée à 25 déterminer la quantité d’eau qui s’élimine lors d’un séjour prolongé à température constante, qui est celle(ou voisine de celle) du fonctionnement normal à chaud du transformateur; - Une seconde étape, de traitement cette fois de la totalité de la matière, consistant à la chauffer à relati- 30 vement haute température afin d’atteindre rapidement, donc dans des conditions industrielles, une perte de poids correspondant à la valeur d'élimination d'eau déterminée dans la phase précédente.
Bien entendu, cette seconde étape sera répétée à chaque 35 préparation de résine, alors que la première n'est réellement nécessaire qu’une seule fois pour caractériser un type de substance ignifuge que l’on avait jamais utilisée auparavant.
Les courbes des figures 1 et 2 illustrent bien cette première phase d’étude sur échantillons en montrant l'allure, 13 à certaines valeurs de température,de l'évolution de la perte de poids en fonction du temps pour certaines valeurs de la température. Les courbes sont paramétrées sur certaines des variétés d'Alumine trihydratée "ALCOA" du Tableau IV repérées 5 par leur références commerciales à l'extrémité droite de chaque courbe. Trois valeurs de température ont été considérées: 140, 160 et 180eC afin de bien couvrir les conditions ; de marche habituelle "à chaud" des transformateurs. Pour éviter des surcharges inutiles, les trois familles correspon-10 dantes de courbes ont été séparées sur les deux figures: la figure 1 regroupe les familles à 140°C(traits discontinus) et 160°C (trait plein); la famille à 180eC apparaît seule en trait plein sur la figure 2.
Comme on le voit, toutes ces courbes sont avantageuse-15 ment d'allure générale logarithmique avec une croissance très rapide au début, suivie d'un palier légèrement incliné sur 1'horizontale, ce palier étant d’autant plus tôt atteint que la température de travail est élevée. Ainsi à 180eC (fig. 2), la majeure part de l'eau " volatile “ (80% environ) est déjà 20 formée au bout de 140 h. seulement, sur les plus de 700 h. de durée totale des tests., La perte de poids s'échelonne alors entre 5,3% et 2,5% environ, selon le type d'alumine
On vérifie l’existence et la stabilité des paliers en testant des Alumines préalablement chauffées à plus haute 25 température. Des tests ont ainsi été faits sur deux échantillons de la variété "M15" maintenus pendant 18 h.,l'un à 180°C l'autre à 200°C. Les résultats apparaissent sur la fig.l sous la forme de deux droites (A) et (B) ayant des ordonnées à
l'origine de 1.6% et 4.2% de perte de poids pour 180 et 200°C
30 respectivement. On constate leur quasi-horizontalité, ce qui reflète bien l’insensibilité des échantillons à un second chauffage à plus basse température, en raison du fait que la quasi-totalité de leur " eau volatile " à 140° ou à 160°C a effectivement été éliminée au cours du premier chauffage.
35 On observe, par ailleurs, sur la fig. 2, qu'au bout de 18 h. à 180eC, un échantillon " M15 " se trouve à peine à mi- hauteur de sa courbe de croissance rapide de perte de poids par élimination d’eau 14
On aura immédiatement compris que ces courbes ont une allure caractéristique favorable qui permet de déduire très aisément le degré de déshydratation partielle préalable auquel on doit parvenir.On pourra ainsi, par exemple, choisir 5 comme critère, le début du palier et retenir comme proportion d'eau "volatile" à éliminer, la valeur donnée par l'ordonnée de ce début de palier.
Ainsi, les figures montrent que, pourla variéte“S65/40" on pourra retenir 2.5% de perte en poids,pour une température 10 de fonctionnement du transformateur de 140°C,de 4% à 160°C et de 5.5% à 180°C.
De même, la variété"M15,,s'accomodera d’une perte en poids préalable de 2 % pour un fonctionnement du transformateur à 160°C et de 3.5 % à 180°C.
15 A 140°C, la courbe de cette variété a une allure moins typée. On notera, toutefois, que la valeur de 0.7% obtenue au bout de 500 h. environ pourra parfaitement convenir.
Pour fixer les idées, on peut donc dire globalement que la perte en poids préalable à viser s’échellonne entre 0.5 % 20 et 10 % environ pour l’ensemble des substances ignifuges retenues pour la mise eh oeuvre de l’invention.
Le passage ensuite à la phase industrielle consiste simplement à deshydrater en conséquence la masse de substance ignifuge par des techniques de chauffage rapide au four, avec 25 surveillance de la perte de poids,par exemple par gravimétrie à l'aide d’une balance automatique dont le plateau est placé dans l’enceinte du four.
A titre d’information, dans le cas d'Alumines de type "M15", la perte de poids de 3,5%, recherché pour un fonction-30 nement du transformateur à 180°C, a pu être atteint au terme de 6 heures de chauffage seulement à 200°C.
Cette opération de chauffage sera bien entendu d’autant plus rapide que la température de chauffe sera élevée. Toutefois, pour des raisons évidentes de préservation d'un fort 35 potentiel de formation d’eau, nécessaire en cas de surchauffe anormale, on prendra soin de ne pas dépasser de beaucoup, et de préférence de rester dessous, la température de début du pic d’élimination intense d’eau caractéristique de la substance ignifuge utilisée et dont quelques valeurs sont consi- Λ Ί a Aaii TXT ai_v>4* 15
Si l'on ne souhaite pas devoir opérer par gravimétrie,en raison notamment de quantités trop importantes de matière qui pourraient être éventuellement à traiter, on aura avantage à procéder par une étape intermédiaire permettant de traduire 5 la perte de poids visée en une durée de chauffage.Ceci pourra se faire à l'aide d'un second échantillon de mesure de la substance ignifuge concernée, dont on connaît la proportion pondérale d'eau à éliminer et que l'on soumet à un chauffage rapide à une température élevée déterminée. Ce chauffage 10 s'opérera avec une pesée en continu de l'échantillon afin de pouvoir mesurer le temps nécessaire pour parvenir à une perte de poids correspondant à la proportion connue d'eau à éliminer. La valeur de la mesure définit la durée de l’opération de chauffage, à une température rigoureusement identique à celle 15 de l'opération intermédiaire ci-dessus, à laquelle on soumettra la masse de substance ignifuge devant être traitée.
Au besoin, on pourra s'assurer de la bonne exécution de l'opération en déterminant par gravimétrie à température élevée, 1200°C par exemple, la teneur en eau restante d'un 20 échantillon prélevé à cet effet à la masse de substance ignifuge traitée. Par comparaison avec la teneur en eau totale initiale ( habituellement de l’ordre de 20 à 35 % en poids environ) que l’on aura déterminé auparavant de façon analogue sur un échantillon de référence, on en déduit que la quantité 25 d'eau "volatile" effectivement éliminée est bien conforme à celle visée.
On notera que le temps de chauffage n'est pas tout à fait indépendant de la granulométrie de la matière. Il a pu être observé, au coursdes essais, qu'une granulométrie gros-30 sière occasionnait une perte en poids plus importante qu’une granulométrie fine pour un temps de chauffage donné.
On observera également que les valeurs de perte en poids déterminées ci-avant, par lecture des courbes de tests faites à partir d'échantillons, ne représentent nullement une limite 35 supérieure à ne pas dépasser. Seulement, comme ces valeurs correspondent au début du palier, il n’y a en principe aucune utilité à poursuivre longuement le chauffage pour gagner quelques lOèmes de pourcent, qui,de toute façon,sont probablement trop peu significatifs pour provoquer un départ d’eau λ y\____i_ -I - J_ · ' 1 _ J ~ Ί A Λ > 16
On aura certainement compris que ces courbes, valables aux températures de fonctionnement normal du transformateur à chaud, reflètent le comportement de l'eau dite "volatile", à ces températures. A des températures supérieures, les paliers 5 se situent à des niveaux plus élevés et sont atteints plus rapidement, notamment à la température du pic caractéristique de la substance ignifuge utilisée et qui,comme on l'a vu, se situe au voisinage de 300°C pour toute les variétés d'Al(0H)3 étudiées.
’ 10 La substance ignifuge ainsi prétraitée devient prête à l'emploi.Il reste à achever la préparation de la résine d'enrobage de la manière habituelle: la charge minérale, après avoir été intimement mélangée à une quantité adéquate de subs tance ignifuge partiellement pré-déshydratée, est divisée en 15 deux parts égales. L'une est alors introduite dans le bain de résine pûre, et l'autre dans le durcisseur,également à l'état liquide.Les deux mélanges sont malaxés séparément pour former deux suspensions solide - liquide, puis réunis en un seul mélange que l'on malaxe à son tour pour assurer une bonne 20 homogénéité. La pulpe résultante est ensuite coulée dans un moule,dans lequel on a préalablement disposé le bobinage élec trique du transformateur que l'on désire enrober.Après coulée le moule est mis au four pour prise en masse de la résine. Après défournement et refroidissement, le bloc de résine 25 incorporant le bobinage est démoulé et peut alors être monté dans le transformateur prévu pour le recevoir.
Il va de soi que l'invention ne saurait se limiter aux exemples décrits ci-avant, mais s'étend à de nombreuses * 30 variantes ou équivalents, dans la mesure où sont respectées les caractéristiques énoncées dans les revendications qui suivent.
En particulier, l'invention ne se limite pas aux transformateurs proprement-dit.Il faut en effet entendre,par cette 35 dénomination utilisée ici, plus largement l'ensemble des appareils ou équipements électriques inductifs pouvant travailler à des températures relativement élevées, de 100 à 200eC comme on l'a vu, et dont les enroulements électriques peuvent être noyés dans un bloc de résine isolante.
·· 17
De même, bien que l’invention ait été initialement conçue pour les applications des résines thermodurcissables (enrobage des bobinages inductifs,dans les transformateurs en particulier),elle concerne en fait tous les matériaux diélec-5 triques d’enrobage. Elle présente un intérêt spécialement marqué dans le cas d'installations électriques ayant un fonctionnement nominal de longue durée à température élevée ou moyennement élevée. C’est dire, que l’on trouvera particulièrement avantage à l’utiliser pour les résines d’enrobage possédant déjà des aptitudes de bonne tenue thermomécanique.

Claims (11)

1. Transformateur sec enrobé, ou installation électrique 5 analogue, dont au moins un enroulement est enrobé dans une résine isolante chargée contenant une substance ignifuge par formation d'eau quand la température s'élève, caractérisés en * ce que une fraction de la charge, au moins égale à 20 % du poids total de la résine d'enrobage,est constituée par ladite 10 substance ignifuge, qui a été préalablement déshydratée partiellement d'une quantité telle qu’elle ne provoque pas de formation intempestive d'eau dans la résine d’enrobage pouvant dégrader la qualité de celle-ci, tant que le transformateur est utilisé dans ses conditions normales de tempé-15 rature.
2. Conducteur électrique enrobé dans une résine isolante chargée contenant une substance ignifuge par formation d’eau quand la température s’élève, caractérisé en ce que une frac- 20 tion de la charge, au moins égale à 20 % du poids total de la résine d’enrobage, est constituée par ladite substance ignifuge, qui a été préalablement déshydratée partiellement d’une quantité telle qu’elle ne provoque pas de formation intempestive d'eau dans la résine d’enrobage pouvant dégrader 25 la qualité de celle-ci, tant que le conducteur est utilisé dans ses conditions normales de température.
3. Transformateur sec, ou conducteur, enrobés selon la revendication 1, ou selon la revendication 2, caractérisé en 30 ce que ladite substance ignifuge présente, par rapport à son * état initial non déshydraté, une perte en poids de 0.5 à 10% environ.
4. Transformateur sec, ou conducteur, enrobés selon la 35 revendication 1, ou selon la revendication 2, caractérisé en ce que la substance ignifuge est de l’alumine trihydratée. 19 r *
5. Procédé de préparation d’une résine isolante chargée pour enrobage de copnducteurs ou d’enroulements électriques, de transformateurs secs enrobés, ou d’autres installations électriques analogues, selon lequel on ajoute à la résine 5 initiale,en plus de la charge, une substance ignifuge par formation d’eau quand la température s’élève, procédé caractérisé en ce que on ajoute ladite substance à raison d’au moins à 20% du poids total de la résine d’enrobage,et en ce que auparavant on a déshydraté partiellement ladite subs-10 tance en quantité telle que il n’y ait pas de formation intempestive d’eau pouvant préjudicier à la tenue de la résine d’enrobage,tant que l’installation électrique reste en service à sa température nominale de fonctionnement. 15
6) Procédé selon la revendication 5 , caractérisé en ce que l'on soumet la substance ignifuge à un traitement de déshydratation partiel préalable jusqu’à ce qu’elle présente une perte en poids comprise entre 0.5 à 10 % environ de son poids initial. 20
7} Procédé selon la revendication 5 et 6, caractérisé en ce que l’on utilise, comme substance ignifuge, de l'alumine trihydratée. 25
8) Procédé selon la revendication 5,caractérisé en ce que l’on détermine le degré de déshydratation partielle préalable de la substance ignifuge que l’on utilise pour la première 5 fois, en prélevant un échantillon de mesure que l’on soumet à un chauffage prolongé à température constante, inférieure à 30 celle du pic d’élimination d’eau propre de la substance ignifuge utilisée, et en considérant l’allure de l’évolution de la perte de poids dudit échantillon dans le temps.
9. Procédé selon la revendication 5 ou 8, caractérisé en 35 ce que l’on effectue la déshydratation partielle préalable de la substance ignifuge en la soumettant à un chauffage rapide jusqu'à ce que sa perte en poids corresponde à la quantité d’eau à éliminer selon une proportion préalablement déterminée sur un échantillon de mesure dont on a suivi l’évolution de la perte en poids en fonction du temps,lors d’un chauffage prolongé à température inférieure à celle du pic d’élimination d’eau propre à la substance ignifuge utilisée. 20 V »- *
10. Procédé selon la revendication 9, caractérisé en ce que l'on effectue ledit chauffeige rapide pendant une durée qui a été prédéterminée par une opération de chauffage menée sous une température identique et effectuée avec pesée d'un 5 échantillon de la substance ignifuge utilisée jusqu'à ce que celui-ci présente une perte en poids correspondant à la quantité d’eau que l'on souhaite éliminer.
11. Procédé selon la revendication 10, caractérisé en ce 10 que l’on a préalablement déterminé ladite quantité d’eau à éliminer par un suivi de l'évolution dans le temps de la perte de poids d'un échantillon de mesure que l'on a soumis à un chauffage prolongé à température constante, inférieure à celle du pic d'élimination d’eau propre à la substance igni-15 fuge utilisée.
LU87494A 1988-04-22 1989-04-06 Transformateur sec a enroulements enrobes,conducteurs et installations electriques analogues,et procede de preparation de leur resine d'enrobage LU87494A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8805641A FR2630578B1 (fr) 1988-04-22 1988-04-22 Transformateur sec enrobe a comportement au feu ameliore et procede de preparation de sa resine d'enrobage
FR8805641 1988-04-22

Publications (1)

Publication Number Publication Date
LU87494A1 true LU87494A1 (fr) 1989-09-12

Family

ID=9365755

Family Applications (1)

Application Number Title Priority Date Filing Date
LU87494A LU87494A1 (fr) 1988-04-22 1989-04-06 Transformateur sec a enroulements enrobes,conducteurs et installations electriques analogues,et procede de preparation de leur resine d'enrobage

Country Status (16)

Country Link
JP (1) JP2722405B2 (fr)
AT (1) AT402242B (fr)
BE (1) BE1006158A4 (fr)
CA (1) CA1325072C (fr)
CH (1) CH678988A5 (fr)
DE (1) DE3912874C2 (fr)
DK (1) DK192089A (fr)
ES (1) ES2010928A6 (fr)
FR (1) FR2630578B1 (fr)
GB (1) GB2217719B (fr)
IE (1) IE64367B1 (fr)
IT (1) IT1234438B (fr)
LU (1) LU87494A1 (fr)
NL (1) NL8900954A (fr)
PT (1) PT90346B (fr)
SE (1) SE508250C2 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2630578B1 (fr) * 1988-04-22 1990-07-27 France Transfo Sa Transformateur sec enrobe a comportement au feu ameliore et procede de preparation de sa resine d'enrobage
DE50014006D1 (de) 1999-03-16 2007-03-15 Huntsman Adv Mat Switzerland Härtbare zusammensetzung mit besonderer eigenschaftskombination
US11955258B2 (en) 2018-09-03 2024-04-09 Sumitomo Seika Chemicals Co., Ltd. Laminate of conductor and insulating coating, coil, rotating electric machine, insulating paint, and insulating film
JP6567797B1 (ja) * 2018-09-03 2019-08-28 住友精化株式会社 導体と絶縁被膜の積層体、コイル、回転電機、絶縁塗料、及び絶縁フィルム
CN111623884B (zh) * 2020-05-28 2021-05-18 山东大学 基于改进热网络模型的变压器热点温度识别方法及系统

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1072285B (fr) * 1959-12-31
US2945912A (en) * 1953-06-15 1960-07-19 Moser Glaser & Co Ag High voltage insulator
DE1121670B (de) * 1955-07-21 1962-01-11 Gen Electric Kriechstromfestes Isoliermaterial fuer elektrische Geraete
US2990497A (en) * 1959-06-04 1961-06-27 Deluxe Coils Inc Power pack encapsulation
US3202947A (en) * 1961-02-16 1965-08-24 Jefferson Electric Co Epoxy insulated transformer having tris-beta-chloroethylphosphate and hydrated alumina in the insulation
US3626083A (en) * 1968-01-12 1971-12-07 Westinghouse Electric Corp High-voltage insulation and insulated high-voltage apparatus
US3733283A (en) * 1971-05-10 1973-05-15 Du Pont Flameproof polylactam composition and process for its manufacture
US4059560A (en) * 1976-05-05 1977-11-22 The Firestone Tire & Rubber Company Smoke and flame retarded styrene polymers
GB1576879A (en) * 1976-09-20 1980-10-15 Hitachi Ltd Flame-retardant epoxy resin compositions
JPS5442603A (en) * 1977-09-09 1979-04-04 Hitachi Ltd Plastic resin moulded electric motor
US4193908A (en) * 1978-09-20 1980-03-18 Aluminum Company Of America Method of reducing the viscosity of polyester-alumina _trihydrate dispersions by slight dehydration of trihydrate
US4361620A (en) * 1979-03-08 1982-11-30 Wing Industries, Inc. Total energy exchange medium and method of making the same
JPS5685806A (en) * 1979-12-14 1981-07-13 Hitachi Ltd Stabilizer for resin molded fluorescent lamp
US4361668A (en) * 1981-03-31 1982-11-30 The Firestone Tire & Rubber Company Polmers having reduced carbon monoxide generation upon burning
US4454280A (en) * 1981-03-31 1984-06-12 The Firestone Tire & Rubber Company Polymers having reduced carbon monoxide generation upon burning
JPS6047410A (ja) * 1983-08-26 1985-03-14 Hitachi Ltd フライバックトランスの製造法
JPS6131416A (ja) * 1984-07-25 1986-02-13 Hitachi Ltd 熱硬化性レジン組成物
US4668718A (en) * 1984-10-05 1987-05-26 Ciba-Geigy Corporation Self-extinguishing, track-resistant epoxy resin moulding composition and use thereof
JPS61113641A (ja) * 1984-11-09 1986-05-31 Sumitomo Bakelite Co Ltd 耐電食性用フエノ−ル樹脂組成物
GB8610067D0 (en) * 1986-04-24 1986-05-29 Steetley Refractories Ltd Coated magnesium hydroxide
JPS62290718A (ja) * 1986-06-11 1987-12-17 Hitachi Ltd エポキシ樹脂組成物とこれらを用いてフライバツクトランスを製造する方法
US4772654A (en) * 1987-07-21 1988-09-20 E. I. Du Pont De Nemours And Company Fire resistant polymers containing magnesium oxychloride
FR2630578B1 (fr) * 1988-04-22 1990-07-27 France Transfo Sa Transformateur sec enrobe a comportement au feu ameliore et procede de preparation de sa resine d'enrobage

Also Published As

Publication number Publication date
SE8901148L (sv) 1989-10-23
SE8901148D0 (sv) 1989-04-03
CA1325072C (fr) 1993-12-07
NL8900954A (nl) 1989-11-16
IE891229L (en) 1989-10-22
GB2217719A (en) 1989-11-01
PT90346B (pt) 1994-04-29
FR2630578B1 (fr) 1990-07-27
DE3912874C2 (de) 1996-12-12
FR2630578A1 (fr) 1989-10-27
IT1234438B (it) 1992-05-18
SE508250C2 (sv) 1998-09-21
PT90346A (pt) 1989-11-10
DK192089D0 (da) 1989-04-20
CH678988A5 (fr) 1991-11-29
ES2010928A6 (es) 1989-12-01
ATA94689A (de) 1996-07-15
BE1006158A4 (fr) 1994-05-31
AT402242B (de) 1997-03-25
GB2217719B (en) 1991-12-11
DK192089A (da) 1989-10-23
GB8909009D0 (en) 1989-06-07
JP2722405B2 (ja) 1998-03-04
DE3912874A1 (de) 1989-11-09
JPH0212904A (ja) 1990-01-17
IE64367B1 (en) 1995-07-26
IT8909403A0 (it) 1989-04-14

Similar Documents

Publication Publication Date Title
Saha et al. Investigating the effects of oxidation and thermal degradation on electrical and chemical properties of power transformers insulation
Li et al. Study of flame‐retarded silicone rubber with ceramifiable property
LU87494A1 (fr) Transformateur sec a enroulements enrobes,conducteurs et installations electriques analogues,et procede de preparation de leur resine d&#39;enrobage
He et al. Research on mechanical and dielectric properties of XLPE cable under accelerated electrical‐thermal aging
Cheng et al. Effects of ammonium polyphosphate microencapsulated on flame retardant and mechanical properties of the rigid polyurethane foam
FR2837494A1 (fr) Composition intumescente non-hallogenee pour gaine de cable de telecommunication
Huang et al. Mechanical properties of polyimide coated optical fibers at elevated temperatures
FR2472820A1 (fr) Matieres de remplissage pour cable de telecommunication
Mohd et al. Potential application of palm oil products as electrical insulating medium in oil‐immersed transformers
EP2560880B1 (fr) Materiau de protection thermique
Prashanth PVS et al. Characterization study of flax/strontium titanate/polypropylene composite for low‐k dielectric applications
Ikyumbur et al. Analysis of the breakdown voltage of soyabean oil as an alternative to mineral oil
WO2016026967A1 (fr) Element de boitier d&#39;appareillage electrique comprenant une composition ignifuge specifique
FR2475279A1 (fr) Cable d&#39;allumage perfectionne
Pamuk Identification of critical values based on natural ester oils as potential insulating liquid for high voltage power transformers
Fraser et al. Swelling of solution-grown crystals of polyethylene: Some observations made by use of small-angle x-ray diffraction and low-frequency Raman spectroscopy
EP0601906B1 (fr) Matériau à base de silicones, notamment pour l&#39;isolation d&#39;un câble électrique, câble électrique dont l&#39;isolation comporte un tel matériau
EP3967721A1 (fr) Fluide d&#39;imprégnation pour câbles d&#39;alimentation haute tension recouverts de papier
Duval et al. Paraffinic transformer oils for use at low temperatures
Vermeer et al. TENAX, a new low-loss high-temperature resistant synthetic paper for EHV cables and other electrical equipment
Finholt A new insulating material for traction motors
KR100465363B1 (ko) 전기절연적층지,이의제조방법및이를함유하는오일함침전력케이블
JPS593812A (ja) 絶縁体を有する電気機器
Meyer Fluid filling-media for electrical apparatus
Takeshita et al. Dual‐phase polymer electrolyte with enhanced mechanical strength