KR970001159B1 - 신규 1,8-나프티리딘 유도체 및 그의 제조방법 - Google Patents

신규 1,8-나프티리딘 유도체 및 그의 제조방법 Download PDF

Info

Publication number
KR970001159B1
KR970001159B1 KR1019930011208A KR930011208A KR970001159B1 KR 970001159 B1 KR970001159 B1 KR 970001159B1 KR 1019930011208 A KR1019930011208 A KR 1019930011208A KR 930011208 A KR930011208 A KR 930011208A KR 970001159 B1 KR970001159 B1 KR 970001159B1
Authority
KR
South Korea
Prior art keywords
group
compound
alkyl
formula
substituted
Prior art date
Application number
KR1019930011208A
Other languages
English (en)
Other versions
KR950000696A (ko
Inventor
남두현
최훈
장재혁
임현주
Original Assignee
주식회사 엘지화학
성재갑
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학, 성재갑 filed Critical 주식회사 엘지화학
Priority to KR1019930011208A priority Critical patent/KR970001159B1/ko
Publication of KR950000696A publication Critical patent/KR950000696A/ko
Application granted granted Critical
Publication of KR970001159B1 publication Critical patent/KR970001159B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Abstract

내용 없음.

Description

신규 1,8,-나프티리딘 유도체 및 그의 제조방법
본 발명은 탁월한 항균력을 나타내는 신균 퀴놀론계 화합물 및 그의 제조방법에 관한 것이다.
1962년 날리딕신산이 호기성 그람 음성균에 대하여 우수한 항균작용이 있다는 사실이 알려져(G.Y. Lesher, et al., J. Med. Chem. 5, 1063-65(1962)), 요로감염의 치료약으로 처음 등장한 퀴놀론 카르복실산계 항균제는 계속하여 옥솔리닉산(oxolinicacid)이나 시녹사신(Chinoxacin) 등의 개발로 이어졌으나, 그람 양성균에 대해서는 활성이 거의 없었고 균들의 내성 문제 해결에도 별다른 진전이 없었다.
그 후 이러한 단점을 해결하기 위한 꾸준한 연구가 진행되었으며, 그 결과 6번 위치에 불소를 첨가함으로써 매우 향상된 항균력을 갖는 노르플록사신(Norflo-xacin ; H. Koga, et al., J. Med. Chem. 23, 1358-63(1980))이 나오게 되었고, 이어서 개발된 시프로플록사신(Ciprofloxacin) 및 오플록사신(Ofloxacin)은 앞서 개발된 노프플록사신보다도 증강된 항균력으로 오늘날 실제로 임상에 널리 사용되고 있다.
또한 8번 위치에 불소를 첨가하여도 항균력을 향상시킬 수 있다는 새로운 사실이 도마칼라 등에 의하여 보고되었고(J.M. Domagala, et al., J. Med. Chem. 31, 983-91(1988)), 이러한 연구결과 로메플록사신(Lome-floxacin)을 비롯하여 CI-934, PD-117558, PD-117596 등의 다양한 퀴놀론 카르복실산 유도체들이 개발되었다.
이와 함께 8번 위치에 염소기를 첨가하여도 항균력이 증가한다는 사실이 알려져(J.P.Sanchez, et al., J. Med. Chem 31, 983091(1988)), 8번 위치에는 염소기를, 7번 위치에는 다양한 아민 유도체를 도입함으로써 그람 양성균, 그람 음성균 및 혐기성 균에 대하여 광범위한 항균력을 나타내는 DU-6859, AM-1091 등이 개발되었다.
한편, 전술한 퀴놀론계 카르복실산 항균제와 더불어 1,8-나프티리딘 카르복실산 항균제의 개발도 진행되어 1984년 에녹사신(Enoxacin)이 개발되었으며(J.Matsumoto, et la., J. Med. Chem. 27, 292-301(1984)), 이후 연구가 계속되어 기존의 퀴놀론계 항균제인 시프로플록사신이나 오플록사신보다 그람 양성균, 그람 음성균 및 혐기성균에 대하여 더욱 증강된 항균력을 나타내는 토수플록사신(Tosufloxacin : D.T. Chu, et al. J. Med. Chem. 28, 1558-1564(1985)) 및 BMY 40062(P.Remuzonm, et al., J. Med. Chem, 35, 2898-2909(1992)) 등이 개발되었다.
그러나, 전술한 기존의 항균제들은 그람 음성균에 대한 항균력은 상당히 우수하지만, 그람 양성균이나 혐기성균에 대해서는 상대적으로 항균력이 약할 뿐만 아니라 몇몇 퀴놀린 내성을 나타내 균들에 대해서는 취약하다는 단점이 있다.
한편, 3번 위치의 카르복실산 치환체를 포스폰산(H. Yanagisawa, et al., Chem . Pharm. Bull(1973), 21, 1080), 술폰산(R.Albrecht, et al., Chem. Ther.(1973), 8, 45 ; H. Yanagisawa, et al., Chem. Pharm. Bull (1973), 21, (1080), 아세트산(M. Pesson et al., CR Acad. Sci. ser. C(1971), 273, 907), 하이드록삼산(M.Pesson, et al., Eur. J. Med. Chem(1974), 9, 585), 술폰사이드(H. Yanagisawa, et al., Chem. Pharm, Bull (1973), 21, 1080) 등으로 변형해 보려는 시도가 있었으나 항균효능을 나타내지는 않았으며, 다만 카르복실산을 포밀기(formyl group)로 변형시킨 경우에만 약간의 항균력을 보여주었을 뿐이었다(H.Kondo, et al., J. Med. Chem. (19 88), 31, 221)
이에 본 발명자들은 하기 구조식(가)로 표시되는 퀴놀론계 화합물의 경우, A환고리에서 3번 위치의 카르복시기와 4번 위치와 카르보닐기가 일반적으로 DNA 자이라제(DNA Gyrase)와 작용하는데 필수적인 요소(R. Albrecht, et al., Prog. Drug Res. (1977), 21, 9 ; Res. Clin. Forums)라는 점에 착안하여, 종래 퀴놀론계 항균제들의 취약점을 개선할 수 있는 3번 위치의 바람직한 치환제에 대하여 연구를 거듭한 결과, 그람 음성균과 그람 양성균은 물론 녹농균을 포함한 혐기성 균들에 이르기까지 보다 강력하고 광범위한 항균활성을 나타내며 퀴놀론계 내성균에 대해서도 우수한 항균활성을 갖는 새로운 나프티리딘 유도체의 개발에 성공함으로써 본 발명을 완성하게 되었다.
본 발명의 목적은 항균제로서 유용한 하기 구조식(I)로 표시되는 신규 1,8-나프티리딘 유도체를 제공하는데 있다.
상기 식에서, A는 퀴놀론계 화합물에 일반적으로 도입될 수 있는 식(식중, n은 0, 1, 2 또는 3이고, R은 C1-C4알킬 ; 히드록시 ; C1-C4알킬 또는 C1-C4알콕시카르보닐기로 치환될 수 있는 아미노기 ; C1-C4알킬 또는 C1-C4알콕시카르보닐기로 치환될 수 있는; C1-C4알킬 또는 C1-C4알콕시카르보닐기로 치환될 수 있은 아미노메틸기이다)을 갖는 4-7원의 시클로아민기(바람직하게는 피페라지닐 또는 피롤리디닐)을 나타내며, R1및 R2는 동일 또는 상이하며 각각 수소원자, 할로겐원자(바람직하게는 F, Cl, 또는 Br), C1-C4알킬(바람직하게는 메틸 또는 에틸), C3-C4알케닐(바람직하게는 알릴), 벤질기이건, R1및 R2은 그들이 부착되어 있는 탄소원자와 함께 C3-C7시클로알킬기를 형성하거나 옥심 또는 C1-C4알킬(바람직하게는 메틸 또는 에틸)옥심이 될 수 있고, R3는 수소원자, 할로겐원자(바람직하게는 F, Cl 또는 Br), 히드록시, C1-C4알킬(바람직하게는 메틸 또는 에틸), C3-C4알케닐(바람직하게는 알릴), 벤질, 니트로 또는 시아노기를 나타내거나, 식(식중, R4는 히드록시, 하나 이상의 할로겐 원자로 치환될 수 있는 C1-C4알킬(바람직하게는 메틸 또는 에틸) 또는 C1-C4알콕시(바람직하게는 메톡시 또는 에톡시), C1-C4알킬(바람직하게는 메틸 또는 에틸)카르복실기를 나타낸다)을 갖는 카르보닐 잔기를 나타내며, B는 시클로알킬기이거나 1 또는 2이상의 할로겐 원자(바람직하게는 불소 원자)로 치환된 방향족 고리를 나타낸다.
상기 식에서 7위치의 치환기 A가 1개의 치환기를 갖는 시클로아민인 일반식(Ⅰ)의 화합물은 경우에 따라서 (R)- 또는 (S)-이성질체이거나 그 혼합물일 수 있다. 또한 2 이상의 치환기를 갖는 시클로아민기인 경우에는 시스 또는 트란스 이성질체이거나 그 혼합물이 될 수 있다. 또한 R1와 R2가 다른 경우, 이들이 부착되어 있는 탄소원자는 비대칭 중심이 되고, 이 경우 상기 구조식(I)의 화합물은 (R)-이성질체 또는 (S)-이성질체이거나 (R),(S)-이성질체의 혼합물이 되며 이들도 본 발명의 범위에 포함된다. 예컨데 치환기 A가 3-아미노피롤리딘인 경우 화합물(I)의 바람직한 형태는 (S)-이성질체이다.
치환기 A의 바람직한 예로는 치환/비치환 피페라지닐 또는 치환/비치환 피롤리디닐이며, 보다 바람직하기로는 피페라지닐, N-메틸피페라지닐, 3-메틸피페라지닐, 3,5-디메틸피페라지닐, 3-아미노메틸피롤리디닐, 3-(N-모노/디 C1-C4알킬) 아미노메틸피롤리디닐, 3-아미노피롤리디닐, 3-(N-모너/디 C1-C4알킬)아미노피롤리디닐, 3-아미노-4-히드록시피롤리디닐기 등이며, 치환기 B의 바람직한 예로는 시클로프로필기 또는 2,4-디플루오로페닐기이다.
또한, 상기 구조식(I)로 표시되는 화합물의 약제학적 허용가능한 무독성염, 수화물 및 용매 화합물 등과 같이 본 발명의 분야에서 통상적인 조작에 의하여 얻어지는 변형물들도 본 발명의 범위에 포함된다.
구조식(I)의 화합물의 약제학적으로 허용되는 무독성 염은, 염산, 브롬산, 인산, 황산과 같은 무기산과의 염 또는 아세트산, 트리플루오로 아세트산, 구연산, 포름산, 말레인산, 수산, 호박산, 벤조인산, 주석산, 푸말산, 만데린산, 아스코르빈산, 말린산과 같은 유기 카르복실산 또는 메탄술폰산, 파라-톨루엔 술폰산 같은 술폰산과의 염 및 퀴놀론계 기술분야에서 공지되어 사용되고 있는 다른 산들과의 염을 포함한다. 이들 산부가 염들은 통상의 기술에 의하여 제조된다.
본 발명의 일반식(I)의 화합물은 하기 반응도식 1과 같은 방법에 의해 제조할 수 있다.
상기 식에서, R1, R2및 R3는 전술한 바와 동일한 의미이며, L 및 W는 통상적으로 잘 알려진 이탈기(leaving group)을 나타낸다.
상기 반응도식에서 일반식(IV)의 화합물은 일반식(II)의 화합물과 일반식(III)의 화합물을 불활성 용매중에서 10 내지 180oC 의 온도로 10분 내지 24시간 동안 혼합 교반함으로써 제조할 수 있다. 이때 일반식(III)의 화합물은 경우에 따라 산과의 염의 형태로 반응시킬 수 있다. 이 경우 산은 염산, 황산, 인산, 초산, 포밀산 등이 적당하다.
본 발명에 사용되는 불활성요매로는 에탄올과 같은 알콜류, 디옥산, 테트라하이드로퓨란, 1,2-디메톡시에탄과 같은 에테르류, 벤젠, 톨루엔, 크실렌과 같은 방향족 탄화수소류, 아세토니트릴, 디메틸포름아미드, 디미틸술폭사이드, 피리딘, 물 등을 사용할 수 있다.
상기 반응은 일반적으로 산수용체의 존재하에서 원료 화합물(III)을 화합물(II)에 대하여 동량 또는 과량 사용하여 수행하는데, 이때 사용 가능한 산수용체의 예로는 탄산수소나트륨, 탄산나트륨, 트리에틸아민, 피리딘, 피콜린, DBU(1,8-디아지바이시클로[5,4,0]-7-운데센 등이 있었다.
상기 반응에 사용되는 원료 화합물(III)은 특히 질소 또는 산소와 같은 헤테로 원자를 2 이상 포함한 경우 하기 반응도식 2 및 3에서 보여주듯이 필요하다면 보호시킨 형태로 사용하여 반응시키거나, 보호기를 도입하지 않은 상태에서 원료 혼합물(II)와 먼저 반응시킨 후 보호기를 도입할 수 있다.
상기 식에서, P는 보호기를 나타낸다.
이러한 목적으로 사용될 수 있는 적당한 보호기는 반응결과 수득되는 목적 화합물의 구조를 파괴함이 없이 제거될 수 있는 것이면 어떠한 것이어도 무방하며, 펩티드, 아미노당, 핵산 또는 β-락탐계 화합물의 기술분야에서 아미노기의 보호기를 통상 사용되는 기가 사용될 수 있다. 이러한 보호기의 구체적인 예로는 포르밀, 아세틸, 트리플루오로아세틸, 메톡시카르보닐, t-부톡시카르보닐, 벤질옥시카르보닐, p-메톡시벤질옥시카르보닐, β-(p-톨루엔술포닐)에톡시카르보닐, 트리틸, 트리메틸실릴, 디페닐포스피닐, 테트라히드로피라닐기 등이 있다.
반응이 끝난 후 아미노 보호기의 제거는 해당기의 성질에 따라서, 가수분해를 비롯한 가용매 분해 또는 환원 반응을 이용하여 수행할 수 있다 예컨대, 용매중에서 0 내지 130℃의 온도에서 산 또는 여기 존재하 또는 부재하에서 수행된다. 이때 사용가능한 무기산으로는 염산, 브롬화수소산, 황산, 인산 등을 들 수 있고, 아세트산, 트리플루오로아세트산, 포름산, 톨루엔설폰산과 같은 유기산이나 3브롬화붕소, 여화알루미늄 등의 루이스산도 사용될 수 있다. 또한 염기로는 수산화나트륨, 수산화바륨 등의 알칼리금속 수산화물이나, 탄산 나트륨, 탄산칼륨 등의 알칼리금속 탄산염과 나트륨 메톡시드, 나트륨에톡시드 등의 알칼리금속 알콕시드나 아세트산나트륨 등을 사용할 수 있다. 용매로서는 물이나, 화합물에 따라 에탄올, 디옥산, 에틸렌글리콜, 디메틸에테르벤젠, 아세트산 등의 용매 또는 이들 용매와 물의 혼합용매를 사용할 수도 있고, 경우에 따라서는 용매없이 반응시킬 수도 있다.
또한, 보호기가 p-톨루엔술포닐, 벤질, 트리틸, 벤질옥시메틸기, 벤질옥시카르보닐, p-메톡시벤질옥시카르보닐, β,β,β-트리클로로에톡시카르보닐, β-요오도에톡시카르보닐기 등일 때에는 환원반응을 이용하여 효과적으로 제거할 수 있다. 환원반응에 의한 보호기의 제거는 보호기의 성질에 따라 반응조건이 조금씩 다를 수 있으나 불활성 용매내에서 백금, 팔라듐, 라니니켈 등과 같은 촉매의 존재하에 10 내지 10oC 의 온도로 수소기류를 불어넣어 수행하거나 -50 내지 -10oC 온도의 액체 아모니아에서 금속나트륨이나 금속리튬이나 처리하여 수행하는 것이 일반적이다.
상기 반응도식 1에서 일반식(VI)의 화합물은 상기 반응에서 얻어진 화합물(VI)와 혼합물(V)를 전술한 바와 동일한 불활성 용매 중에서 -30 내지 50oC 온도로 10분 내지 24시간 동안 혼합 교반함으로써 제조된다.
상기 반응은 일반적으로 염기 존재하에서 원료 화합물(V)를 원료 화합물(IV)에 대하여 등몰량 내지 약간 과량으로 수행하며, 화합물(V)를 용매하에서 염기와 혼합한 후 화합물(IV)를 첨가하거나, 반대로 화합물(IV)를 염기와 혼합한 후 화합물(V)를 처가하여 반응시킨다. 이때 사용되는 염기는 LDA( 리튬디이소프로필아미드), n-부틸리튬, 메틸리튬, HMDS와 같은 알킬리튬 또는 아민리튬이나 나트륨에 톡시드, 나트륨메톡시드와 같은 알킬리금속 알콕시드 등을 사용할 수 있다.
상기 반응에서 화합물(V)의 이탈기 L은 C1-C4알킬(바람직하게는 메틸 또는 에틸)알콕시, C1-C4알킬(바람직하게는 메틸 또는 에틸)티오이거나 불소, 염소, 브롬과 같은 할로겐 원자가 적당하며, 화합물(V)은 무수물 형태(R4COCR4)나 카보네이트(R4OCOR4,R4OCOR5)가 사용될 수 있다(여기서, R4및 R5은 각각 독립적으로 C1-C4알킬기이거나 페닐기이다).
R4가 히드록시이거나 카르복실산기인 경우에는 이에 상응하는 화합물(VI)의 에스테르를 염기로 가수분해 함으로써 얻을 수도 있다. 이때 염기는 수산화나트륨, 수산화리튬, 수산화바륨 등과 같은 알칼리 금속 수산화물이 사용되며, 용매로는 물이나 메탄올, 에탄올 등의 테트라히드로푸란, 디메틸포름아미드, 아세토니트릴 등이나 또는 이들 용매와 물과의 혼합물을 사용할 수 있다.
본 발명의 목적 화합물인 일반식(I)의 화합물은 화합물(VI)를 전술한 바와 동일한 불활성 용매중에서 R1-W 및 R2-W(여기서, W는 할로겐 원자, 토실기 또는 메실기와 같이 통상적으로 유기화학분야에서 널리 사용되는 이탈기를 타나낸다)와 -50 내지 120oC (바람직하게는 -10 내지 60oC )의 온도로 30분 내지 24시간 동안 혼합 교반함으로써 제조된다.
상기 반응은 일반적으로 염기 존재하에서 R1-W 및 R2-W를 원료 화합물(VI)에 대하여 등몰량 내지 약간 과량으로 사용하여 수행할 수 있는데, 이때 R1-W 및 R2-W는 치환기의 종류에 따라 동시에 투입하거나 순차적으로 투입하여 반응시키며, 사용되는 염기는 전술한 바와 동일하다.
또한 안도 등에 의하여, 통상의 엔올 형태(enol form)에서는 포타슘-셀라이트(KF-Celite)를 사용하면 C-알킬화가 O-알킬화보다 매우 우세하다는 것이 알려져 있는데(T. Ando, et al. Chem. Lett, 755-8(1979)), 이 방법은 본 발명에서도 유용하게 적용될 수 있다.
본 발명에서 출발물질로 사용되는 상기 일반식(II)의 화합물은 하기 반응도식 4에 나타나 있는 바와 같이, Chu 등에 의해 보고된 방법(D.T. Chu et al., J. Med. Chem., 28, 1558-1564(1987))을 응용한 방법에 따라 합성된 하기 일반식(Ⅶ)의 아실클로라이드 화합물로부터 대한민국 특허공개 제89-2146호에 기재된 방법에 따라 반응을 수행함으로써 제조할 수 있다.
상기 식에서, B는 전술한 바와 동일한 의미이다.
즉, 에틸플루오로아세테이트와 에틸포르메이트 및 2-시아노아세트아미드를 반응시켜 3-시아노-5-플루오로-2,6-디히드록시피리딘을 제조하고, 이를 포스포러스옥시클로라이드와 포스포러스펜타클로라이드로 처리하여 히드록시기를 염소로 치환시킨 다음 이를 가수분해하고 옥살릴클로라이드와 반응시키면 일반식(VII)의 아실클로라이드 화합물이 수득된다. 이어서 이 반응생성물을 t-부틸 아세토아세테이트의 마그네슘염으로 처리한 후, 트리플루오로아세트산으로 보호기를 제거하고 동시에 탈이산화탄소화 반응에 의하여 1,3-부탄디온 화합물을 만들고, 이를 트리에틸오르토포르메이트로 처리한 다음 아민 유도체(B-NH2)와 치환반응 시킨 후, 그 생성물을 디메틸포름아미드 용매중에서 포타슘플루오라이드로 환화 반응시키면 일반식(II)의 화합물이 제조된다.
이상에서 언급한 본 발명에 따른 화합물들은 여러가지 그람-양성 및 그람-음성균을 포함하는 병원균에 대하여 광범위한 항균스펙트럼과 보다 강력한 항균활성을 나타내는데, 그람 음성균에 대해서는 기존의 약제(예컨데, 노르플록사신, 시프로플록사신 등)와 동등 또는 그 잇아의 항균활성을 나타내고, 특히 그람 양성균에 대해서는 기존 약제에 비하여 탁월한 활성을 보일 뿐만 아니라 슈도모나스 균주에 대해서도 상당히 우수한 활성을 나타내고 있다. 더우기 본 발명에 따른 화합물은 3번 위치에 특징적인 치환기를 도입함으로써 3번 위치에 카르복실기를 갖고 있는 기존의 퀴놀론계 화합물들에 내성을 보이는 균주에 대해서도 매우 우수한 항균력을 보이고 있으며, 또한 물에 대한 용해도가 매우 높고 동시에 유기용매에도 용해되는 강점을 갖고 있을 뿐만 아니라 약동력학적인 면에서도 기존의 퀴놀론계 화합물보다 높은 흡수율과 긴 생체내 반감기를 나타내고 있으므로 인간을 포함한 동물의 박테리아 감염에 의한 질병의 예방 및 치료목적으로 매루 효과적으로 사용될 수 있다.
또한, 본 발명의 화합물들의 이들의 치료학적 유효량과 약학적으로 허용될 수 있는 담체, 부형체 또는 기타 첨가제등을 구성시켜 약학 조성물로 제공될 수 있으며, 이러한 조성물은 알려진 제약용 담체와 부형제를 이용하는 공지의 방법으로 제제화될 수 있다.
이하 본 발명을 실시예에 의거 보다 구체적으로 설명하지만, 이들 실시예로 본 발명의 기술적 범위가 제한되는 것은 아니다.
제조예 1 :
3-시아노-5-플루오로-2,6-디히드록시 피리딘의 제조
반응 용기에 나트륨메톡시드 178.2g과 에틸에테르 2L를 넣고 0oC 로 냉각시킨 다음 에틸플루오로아세테이트 250g과 에틸포메이트 227g을 에틸에테르 1L로 묽혀서 30분 동안 첨가하였다. 반응 혼합물을 실온에서 잔사를 무수 메탄올 0.8L에 녹인 다음 2-시아노아세트아미드 198.12g을 무수 메탄올 2L에 녹여 첨가한 후 13시간 동안 가열환류시켰다.
반응 혼합물을 여과하여 얻은 고체를 증류수와 에테르로 씻어준 다음 건조시켜 표제화합물 315g(수율 : 76%)을 얻었다.
1H NMR(DMSO-d6) δ 10.11(1H,s), 7.06(1H,d,J=12.21Hz),
Mass(FAB,m/e) : 155
제조예 2 :
2,6-디클로로-3-시아노-5-플루오로피리딘의 제조
건조된 반응용기에 제조예 1에서 합성한 화합물 10.79g을 넣고 0oC 로 냉각시킨 다음 포스포러스 펜타클로리드 43.73g과 포스포러스 옥시클로리드 32.62ml를 첨가하였다. 반응 혼합물을 16시간 동안 가열 환류시킨 다음 얼음물로 처리한 후 생성된 고체를 여과하였다. 여과된 고체를 디클로로메탄에 녹인 다음 포화 소금물로 씻어주고 무수 마그네슘 술페이트로 건조, 여과한 후 감압 증류하여 표제화합물 7.87(수율 ; 59%)을 얻었다.
1H NMR(CDCl3) δ 7.79(1H,d,J=6.7Hz),
Mass(FAB,m/e) : 191
제조예 3 :
2,6-디클로로-3-에톡시카보닐-5-플루오로피리딘의 제조
제조예 2의 화합물 7.87g과 에탄올 50ml를 반응 용기에 넣고 증류수 0.74g을 첨가한 후 황산 20.21g을 천천히 가하였다. 반응 혼합물을 25시간 동안 가열 환류시킨 다음 실온으로 냉각시키고 에탄올을 감압 증류하여 제거하였다. 잔사에 포타슘카보네이트 수용액을 넣어 염기 수용액으로 만든 다음 디클로로메탄으로 여러번 추출한 후 무수 마그네슘 술페이트로 건조, 여과하였다. 여과액을 감압증류하여 표제화합물 8.12g(수율 : 83%)을 얻었다.
1H NMR(CDCl3) δ 7.99(1H,d,J=7.32Hz), 4.42(2H,q,J=7.33Hz),1.41( 3H,t,J=7.33Hz)
Mass(FAB,m/e) : 238
제조예 4 :
2,6-디클로로-2-카복실-5-플루오로피리딘의 제조
제조예 3의 화합물 4.89g과 아세트산 24ml를 반응 용기에 넣고 3N 염산 수용액 15ml를 첨가한 후 가열 환류시켰다. 25시간 후에 반응 혼합물을 감압, 증류하여 농축시킨 다음 나트륨비카보네이트로 염기 수용액을 만들었다. 염기 수용액을 에틸아세테이트로 씻어준 후 진한 염산 수용액으로 산성 수용액으로 만든 다음 에틸아세테이트로 추출하였다. 유기층을 무수 마그네슘 술페이트로 건조, 여과한 후 감압증류하여 표제화합물 2.89(수율 : 79%)을 얻었다.
1H NMR(DMSO-d6) δ 8.38(1H,d,J=7.32Hz)
Mass(FAB,m/e) : 178
제조예 5 :
3-(2,6-디클로로-5-플루오로)피리디노일 클로라이드의 제조
반응 용기에 제조예 4의 표제화합물 3.0g을 무수 디클로로메탄 75ml에 녹인 다음 옥살릴클로라이드 1.62ml를 첨가한 후 디메틸포름아미드 2방울을 가하고 실온에서 3시간 교반하였다. 반응 혼합물을 감압 증류하여 표제화합물 3.02g(수율 : 91%)을 얻었다.
1H NMR(CDCl3) δ 8.21(1H,d,J=7.31Hz)
Mass(FAB,m/e) : 197
제조예 6 :
1-[3'-(2',6'-디클로로-5'-플루오로)피리디닐]-2-t-부톡시카보닐-1,3-부탄디온의 합성
반응 용기에 마그네슘 0.49g을 무수 에탄올 1.55g을 넣고 카본테트라 클로라이드 2방울을 첨가하여 50 내지 60oC 로 가열시킨 다음 t-부틸아세토아세테이트 2.93g을 톨루엔 5ml에 녹여 1시간 동안 첨가하였다. 반응 혼하물을 16시간 동안 가열 교반시킨 후 제조예 5의 화합물 3.58g을 톨루엔 7ml로 묽혀서 반응 혼합물에 첨가한 다음 실온에서 1시간 동안 교반시켰다.
반응 혼합물을 얼음으로 처리한 후 5N 염산 수용액으로 산성화시킨 다음 에틸아세테이트로 추출하였다. 유기층을 무수 마그네슘술페이트로 건조, 여과한 후 감압 증류하여 표제화합물 4.27g(수율 73%)을 얻었다.
1H NMR(CDCl3) δ 7.44(1H,d,J=7.32Hz), 2.56(3H,s), 3.35(1H,s),1.27( 9H,s)
Mass(FAB,m/e) : 350
제조예 7 :
1-[3'-(2',6'-디클로로-5'-플루오로)피리디닐]-1,3-부탄디온의 합성
제조예 6의 화합물 5.77g을 반응 요기에 넣고 0℃로 냉각시킨 다음 트리플루오로아세트산 15ml를 첨가하였다. 반응 혼합물을 30분 동안 교반시켜준 후 감압증류하여 표제화합물 4.12g(수율 : 99%)을 얻었다.
1H NMR(CDCl3) δ 7.83(1H,d,J=7.33Hz), 6.21(1H,s), 2.26(3H,s)
Mass(FAB,m/e) : 250
제조예 8 :
1-[3'-(2',6'-디클로로-5'-플루오로)피리디닐]-2-(2',4'-디플루오로페닐아미노메틸리딘)-1,3-부탄디온의 합성
반응 용기에 제조예 7의 화합물 3.00g과 트리에틸오로토포메이트 2.67g을 무수초산 2.94g에 녹인 다음 5시간 동안 가열 환류시킨 후 감압 증류하여 용매를 제거하였다. 잔사를 에탄올 6ml에 녹인 다음 0oC 로 냉각시킨 후 2,4-디플루오로아닐린 1.24g을 첨가하였다. 반응 혼합물을 1시간 동안 교반시킨 후 생성된 고체를 여과, 건조하여 표제화합물 4.16g(수율 : 89%)을 수득하였다.
1H NMR(CDCl3) δ 12.97(1H,d), 7.66(1H,d,J=15.23Hz), 7.53(1H,d),6.9 8 (3H,m), 2.64(3H,s)
Mass(FAB,m/e) : 389
제조예 9 :
1-[3'-(2',6;-디클로로-5'-플루오로)피리디닐]-2-(시클로프로필아미노메틸리딘)-1,3-부탄디온의 합성
제조예 8과 같은 방법으로 제조예 7의 화합물과 시클로프로필아민으로부터 표제화합물을 75%의 수율로 합성하였다.
1H NMR(CDCl3) δ 11.24(1H,d), 7.47(1H,d), 7.31(1H,d), 2.85(1H,m), 2.54(3H,s), 0.80(4H,m)
Mass(FAB,m/e) : 317
제조예 10 :
3-아세틸-8-클로로-5-플루오로-1-(2,4-디플루오로페닐)-1,4-디히드로-4-옥소-1,8-나프티리딘의 제조
제조예 8의 표제화합물 2.64g과 칼륨플로리드 0.79g을 디메틸포름아미드 27ml에 녹인 다음 150oC 로 2.5시간 동안 가열교반시켰다.
반응 혼합물을 여과한 후 여과액을 감압 증류하여 잔사를 얻고, 이 잔사를 증류수로 씻어준 후 건조하여 표제화합물 2g(수율 : 84%)을 얻었다.
1H NMR(CDCl3) δ 8.7-8.4(2H,m), 7.40(1H,m), 7.10(2H,m),2.78(3H,s)
Mass(FAB,m/e) : 353
제조예 11 :
3-아세틸-8-클로로-1-시클로프로필-5-플루오로-1,4-디히드로-4-옥소-1,8-나프티리딘의 제조
제조예 10과 동일한 방법으로 실시하여 제조예 9의 표제화합물로부터 상기 표제화합물을 78%의 수율로 합성하였다.
1H NMR(CDCl3) δ 8.53(2H,m), 4.21(1H,m), 2.74(3H,s), 1.30-1.00(4H,m)
Mass(FAB,m/e) : 281
제조예 12 :
3-아세틸-1-(2,4-디플루오로페닐)-5-플루오로-7-(N-t-부톡시카보닐피페라지닐)-1,4-디히드로-4-옥소-1,8-나프티리딘의 제조
제조예 10에서 얻은 화합물 352mg과 피페라진 130mg을 피리딘 5ml에 녹여 반응 용기에 넣고 1.8-디아자비시클로[5,4,0]-7-운데센(DBU) 820mg을 첨가한 후 50 내지 60oC 에서 15시간 동안 가열 교반시켰다. 반응 혼합물을 감압 증류하여 농축시킨 다음 디클로로메탄으로 묽히고 물로 씻어 주었다, 유기층을 마그네슘 술페이트로 건조, 여과하여 여과액을 감압 증류한 후 건조하였다.
제조산 잔사를 클로로포름 6ml에 녹이고 트리에틸아민 1ml를 첨가한 후 디-t-부톡시카보닐 디카보네이트 350mg을 3ml의 클로로포름에 녹여 반응 혼합물에 첨가하였다. 반응 혼합물을 실온에서 1시간 동안 교반시킨 후 소디움비카보네이트 수용액으로 씻어주었다. 유기층을 마그네슘술페이트로 건조한 후 여과하고, 여과액을 감압증류하여 표제화합물 446mg(수율 : 89%)을 얻었다.
1H NMR(CDCl3) δ 8.56(1H,s), 8.10(1H,d,J=12.73Hz), 7.32(1H,m), 7.0 0(2H,m), 3.50-3.10(8H,m), 2.71(3H,s), 1.42(9H,s)
Mass(FAB,m/e) : 503
제조예 13 :
3-아세틸-7-(N-t-부톡시카보닐피페라지닐-1-시클로프로필-5-플루오로-1,4-디히드로-4-옥소-1,8-나프티리딘의 제조
제조예 12와 유사한 방법으로 제조예 11에서 합성한 화합물로부터 표제 화합물을 86%의 수율로 합성하였다.
1H NMR(CDCl3) δ 8.61(1H,s), 7.98(1H,d,J=13.2Hz), 3.87(1H,m), 3.50-3.20(8H,m), 2.70(3H,s), 1.41(9H,s), 1.20-0.95(4H,m)
Mass(FAB,m/e) : 431
제조예 14 :
3-아세틸-1-(2,4-디플루오로페닐)-5-플루오로-7-(N-메틸피레라지닐)-1,4-디히드로-4-옥소-1,8-나프티리딘의 제조
반응 용기에 제조예 10에서 합성한 화합물 352mg과 DBU 680mg 및 N-메틸 피페라진 150mg을 피리딘 4ml에 녹인 다음 반응 혼합물을 80oC 에서 15시간 동안 가열 교반시켰다.
반응 혼합물을 감압 증류하여 농축시킨 다음 에틸아세테이트로 묽히고 3% 염산 수용액으로 씻어 주었다. 유기층을 무수 마그테슘 술페이트로 건조, 여과하고 여과액을 감압 증류한 다음 잔사를 컬럼 크로마토그라피로 정제하여 표제 화합물 344mg(수율 : 83%)을 얻었다.
1H NMR(CDCl3) δ 8.57(1H,d), 8.00(1H,d,J=13.72Hz), 7.32(1H,m), 7.0 0(2H,m), 3.41(4H,m), 2.73(3H,s), 2.58(4H,m), 2.40(3H,s)
Mass(FAB,m/e) : 417
제조예 15 내지 23
제조예 14와 유사한 방법에 의하여 제조예 10과 제조예 11로부터 수득한 화합물을 하기 표 1에 나타내었다.
제조예 24
7-(N-t-부톡시카보닐피페라지닐)-1-(2,4-디플루오로페닐)-5-플루오로-3-트리플루오로아세토아세틸-1,4-디히드로-4-옥소-1,8-나프티리딘의 제조
건조한 반응 용기에 소디움하이드라이드 133mg 및 무수 테트라히드로퓨란 2.0ml를 넣고 0oC 로 냉각시킨 다음 에틸 트리플루오로아세테이트 0.63ml를 첨가하였다. 여기에 제조예 12에서 합성한 화합물 670mg을 무수 테트라히드로퓨란 4ml에 녹여 천천히 첨가하면서 교반시켰다. 반응 혼합물을 실온에서 1.5시간 동안 교반시킨 후 소량의 물을 첨가한 후 감압 증류하여 농축시켰다. 농축액을 에틸아세테이트로 묽히고 묽은 염산 수용액으로 씻어준 다음 마그테슘술페이트로 건조, 여과하였다. 여과액을 감압 증류하여 표제 화합물 138mg(수율 : 87%)을 얻었다.
1H NMR(CDCl3) δ 8.68(1H,s), 8.06(1H,d,J=14.34Hz), 7.38(1H,s), 7.80(1H,s), 7.00(2H,m), 3.56(4H,m), 3.27(4H,m), 1.44(9H,m)
Mass(FAB,m/e) : 599
제조예 25 내지 35
제조예 24와 유사한 방법에 의하여 제조예 13 내지 23으로부터 수득한 화합물을 하기 표 2에 나타내었다.
제조예 36
7-(N-t-부톡시카보닐피페라지닐)-1-(2,4-디플루오로페닐)-5-플루오로-3-(2-메톡시카보닐아세틸)-1,4-디히드로-4-옥소-1,8-나프티리딘의 제조
환류장치를 한 반응 용기에 60% NaH 0.07몰과 헥사메틸포스포릭아미드 120ml 및 디메틸카보네이트 0.6ml를 넣은 뒤 가열 환류하였다. 여기에 제조예 12에서 얻은 화합물 11.59g(0.023몰)을 디메틸카보네이트 30ml에 녹여 천천히 가하였다. 반응 혼합물을 1시간 동안 가열 환류시킨 후 0oC 로 냉각하고 15% 아세트산 수용액을 천천히 가한 다음 물과 에틸아세테이트를 넣고 층분리하였다. 유기층을 포화 소디움카보네이트 수용액으로 씻어주고 물로 다시 씻어준 다음 무수 마그네슘 설페이트로 건조 여과한 후 감압 증류하여 잔사를 얻었다. 잔사를 컬럼 크로마토그라피로 정제하여 표제 화합물 9.28g(수율 : 72%)을 얻었다.
1H NMR(CDCl3) δ 8.63(1H,s), 8.01(1H,d,J=13.30Hz), 7.30(1H,m), 7.00(2H,m), 4.25(2H,s), 3.90(1H,s), 3.75(3H,s), 3.52(4H,m), 3.24(4H,m), 1.45(9H,s), 1.30-1.10(4H,m)
Mass(FAB,m/e) : 561
제조예 37 내지 41
제조예 36과 유사한 방법에 의하여 제조예 13, 15, 17, 20 및 22로부터 수득한 화합물을 하기 표 3에 나타내었다.
제조예 42
7-(N-t-부톡시카보닐피페라지닐)-1-(2,4-디플루오로페닐)-5-플루오로-3-(2-펜타플루오로에틸카보닐아세틸)-1,4-디히드로-4-옥소-1,8-나프티리딘의 제조
건조된 반응용기에 60% 소디움하이드리드 0.2g과 페닐펜타플루오로에틸아세테이트 2g을 무수 테트라히드로퓨란 30ml로 묽힌 다음 0oC 로 냉각시켰다. 여기에 제조예 12에서 합성한 화합물 0.94g을 무수 테트라히드로퓨란 25ml에 녹여 30분 동안 첨가한 뒤 실온에서 1시간 더 교반시켰다. 반응 혼합물을 클로로포름으로 묽히고 5% 염산 수용액과 물로 씻어 준 다음, 유기층을 무수 마그네슘 술페이트로 건조, 여과하였다. 여과액을 감압 증류한 후 잔사를 컬럼 크로마토그래피로 정제하여 표제 화합물 0.837g(수율 : 69%)을 얻었다.
1H NMR(CDCl3) δ 8.68(1H,s), 8.14(1H,d,J=13.30Hz), 7.51(1H,s), 7.36(1H,m), 7.02(2H,m), 3.43(4H,m), 3.21(4H,m), 1.41(9H,s)
Mass(FAB,m/e) : 649
제조예 43 내지 47
제조예 42와 유사한 방법에 의하여 제조예 13, 15, 17, 20 및 22로부터 수득한 화합물을 하기 표 4에 나타내었다.
실시예 1
7-(N-t-부톡시카보닐피페라지닐)-1-(2,4-디플루오로페닐)-3-[2,2-디메틸-2-(트리플루오로아세토)아세틸]-5-플루오로-4-옥소-1,8-나프티리딘의 제조
반응 용기에 제조예 24에서 합성한 화합물 567mg과 칼륨플루오리드-셀라이트(1:1) 1.1g을 N,N-디메틸포름아미드 5ml로 묽힌 다음 실온에서 10분간 교반시킨 후 메틸아이오다이드 1.18ml를 첨가하였다. 반응 혼합물을 실온에서 15시간 동안 교반시킨 후 여과하여 셀라이트로 묽힌 다음 물로 여러번 씻어주고, 유기층을 무수 마그네슘술페이트로 건조, 여과하였다. 여과액을 감압 증류하여 얻은 잔사를 컬럼 크로마토그래피로 정제하여 표제 화합물 445mg(수율 : 75%)을 얻었다.
1H NMR(CDCl3) δ 8.45(1H,s), 8.05(1H,d,J=12.41Hz), 7.36(1H,m), 7.04(2H,m), 3.53(4H,m), 3.23(4H,m), 1.42(9H,s), 1.50(6H,m)
Mass(FAB,m/e) : 627
실시예 2 내지 12
실시예 1과 동일한 방법에 의하여 제조예 25 내지 35로부터 수득한 화합물을 하기 표 5에 나타내었다.
실시예 13
7-(N-t-부톡시카보닐피페라지닐)-1-(2,4-디플루오로페닐)-5-플루오로-3-[2-메틸-2-(트리플루오로아세토)아세틸]-1,4-디히드로-4-옥소-1,8-나프티리딘의 제조
반응 용기에 제조예 24에서 합성한 화합물 285mg과 칼륨풀루오리드-셀라이트(1:1) 560mg을 N,N-디메틸포름아미드 3ml로 묽힌 다음 실온에서 10분간 교반시켰다. 여기에 메틸아이오다이드 0.6ml를 첨가한 후 2시간 동안 실온에서 교반시킨 후 여과하여 셀라이트를 제거하였다. 여과액을 감압 증류하여 농축시킨 다음 농축액을 에틸아세테이트로 묽히고 여러번 씻어준 후, 유기층을 무수 마그네슘술페이트로 건조 여과하였다. 여과액을 감압 증류하여 표제 화합물 533mg(수율 : 93%)을 얻었다.
1H NMR(CDCl3) δ 8.46(1H,s), 8.03(1H,d,J=12.24Hz), 7.35(1H,m), 7.0 6(2H,m), 4.96(1H,9,J=7.26Hz), 3.52(4H,m), 3.24(4H,m), 1.43(9H,s), 1.30(3 H,d,J=7.26Hz)
Mass(FAB,m/e) : 613
실시예 14 내지 30
실시예 13과 유사한 방법에 의하여 제조예 24, 26, 28, 30, 32 및 34에서 합성한 화합물과 알킬아이오다이드(예컨대 메틸아이오다이드, 에틸아이오다이드, 알릴아이오다이드)를 반응시켜 수득한 화합물을 하기 표 6에 나타내었다.
실시예 31
7-(N-t-부톡시카보닐피페라지닐)-1-(2,4-디플루오로페닐)-5-플루오로-3-[2,2-디메틸-2-(메독시카보닐)아세틸]-1,4-디히드로-4-옥소-1,8-나프티리딘의 제조
반응 용기에 60% 소디움하이리드 5밀리몰과 헥사메틸포스포릭아미드 1ml 및 N,N-디메틸포름아미드 1ml를 넣고 제조예 36에서 합성한 화합물 2밀리몰을 N,N-디메틸포름아미드 20ml에 녹여 첨가하였다. 반응 혼합물을 30분간 교반시킨 후 메틸 아이오다이드 0.01몰을 서서히 가하고 60oC 중탕에서 6시간 동안 교반하였다. 반응이 끝난뒤 반응 혼합물을 에틸아세테이트로 묽히고 얼음물로 씻어준 뒤 농축하였다. 농축액을 컬럼크라마토그라피로 정제하여 표제화합물 0.870g(수율 : 74%)을 얻었다.
1H NMR(CDCl3) δ 8.44(1H,s), 8.03(1H,d,J=12.36Hz), 7.35(1H,m), 7.04(2H,m), 3.73(3H,s), 3.52(4H,m), 3.24(4H,m), 1.44(15H,s)
Mass(FAB,m/e) : 589
실시예 32 내지 50
실시예 31과 유사한 방법에 의하여 제조예 36 내지 41에서 합성한 화합물과 알킬아이오다이드(예컨대 메틸아이오다이드, 에틸아이오다이드, 알릴아이오다이드,1,2- 디요오도에탄)를 반응시켜 수득한 화합물을 하기 표 7에 나타내었다.
실시예 51
7-(N-t-부톡시카보닐피페라지닐)-1-(2,4-디플루오로페닐)-5-플루오로-3-[2,2-디메틸-2-(펜타플루오로에틸카보닐)아세틸]-1,4-디히드로-4-옥소-1,8-나프티리딘의 제조
반응 용기에 제조예 42에서 합성한 화합물 2밀리몰과 칼륨플루오리드 10밀리몰을 N,N-디메틸포름아미드 5ml로 묽힌 다음 실온에서 교반시키면서 메틸아이오다이드 20밀리몰을 첨가하였다. 반응 혼합물을 실온에서 7시간 교반시킨 후 에틸아세테이트로 묽히고 5%염산 수용액으로 씻어준 후 감압증류하여 잔사를 얻었다. 잔사를 컬럼 크라마토그라피로 정제하여 표제화합물 0.986g(수율 : 73%)을 얻었다.
1H NMR(CDCl3) δ 8.52(1H,s), 8.10(1H,d,J=12.32Hz), 7.34(1H,m), 7.05(2H,m), 3.40(4H,m), 3.15(4H,m), 1.46(6H,s), 1.42(9H,s)
Mass(FAB,m/e) : 677
실시예 52 내지 56
실시예 51과 유사한 방법에 의하여 제조예 43 내지 47 화합물로부터 수득한 화합물을 하기 표 8에 나타내었다.
실시예 57
1-(2,4-디플루오로페닐)-5-플루오로-3-[2,2-디메틸-2-(트리플루오로아세토)아세틸]-7-피페라지닐-1,4-디히드로-4-옥소-1,8-나프티리딘 염산염의 제조
반응 용기에 실시예 1에서 합성한 화합물 365mg을 메탄올 5ml에 녹인 다음 0℃로 냉각시켰다. 반응물에 아세틸클로리드 2ml를 천천히 가하면서 교반시켜준 후 실온에서 10분간 더 교반시켰다.
반응 혼합물을 감압 증류하여 얻은 잔사를 에틸에스테르로 씻어준 후 건조하여 표제 화합물 0.309g(수율 : 91%)을 얻었다.
1H NMR(D2O) δ 8.57(1H,s), 8.13(1H,d,J=12.31Hz), 7.42(1H,m), 7.1 2(2H,m), 3.36(4H,m), 3.20(4H,m), 1.23(6H,s)
Mass(FAB,m/e) : 527
실시예 58 내지 112
실시예 57과 동일한 방법으로 실시예 2 내지 56 화합물로부터 수득한 화합물을 하기 표 9에 나타내었다.
생물학적 실시예 1
시험관내(in vitro) 항균력 검정
본 발명에 따른 화합물들의 유용성은 공지의 화합물인 사이프로플록사신(Ciprofloxacin) 및 노르플록사신(Norfloxacin)을 대조 약제로 하여 표준 균주에 대한 최소 억제 농도(Minimum Inhibitory Concentration: MIC, ㎍/ml)를 구하여 평가하였다. 최소억제농도는 시험 화합물을 2배 희석법에 의해 희석시킨 후 뮐리-흰톤 아가(Mueller-Hinton agar)배지에 분산시킨 다음, ml당 10 CFU를 갖는 표준 시험균주를 5㎕씩 접종하고 37 C 에서 18시간 배양하여 구하였으며, 그 결과는 표 10에 나타내었다.
상기 표 10의 검정에서 사용된 미생물들은 다음과 같다.
바실루스 세레우스(Bacillus cereus) ATCC 11778, 바실루스 메카테리움(Bacillus megaterium) ATCC 9885, 마이크로코커스 루테우스(Micrococcus luteus) ATCC 9341, 스타필로코커스 아우레우스(Staphylococus aureus) ATCC 65389, 스타필로코커스 아우레우스 ATCC 10537, 스타필로코커스 에피더미디스(Staphylococus epidermidis) ATCC 12228, 스트랩토코커스 패카리스(Streptococcus faecalis) ATCC 29212, 아시네토박터 칼코아세티커스(Acinetobacter calcoaceticus) ATCC 15437, 시트로박터 프레운디(Citrobacter freundii) ATCC 8090, 엔테로박터 애로게네스(Enterobacter aerogenes) ATCC 29751, 엔테로박터 크로캐마(Enterobacter cloacae) ATCC 27508, 에세리치아 콜라이 (Escherichia coli) ATCC 10536, 에세리치아 콜라이 ATCC 25922, 클레브시엘라 프네우모니애(Klebsiella pneumoniae) ATCC 10031, 모르가넬라 모르가니(Morganella morganii) ATCC 8076h, 프로테우스 미라비리스(Proteus mirabilis) ATCC 25933, 프로테우스 벌가리스(Proteus vulgaris) ATCC 6059, 프로비덴시아 레트게리(Providencia rettgeri) ATCC 9250, 살모넬라 티피무륨(Saomonella typhimurium) ATCC 14028, 세라티아 마세센스(Serratia marcescens) ATCC 27117, 시겔라 플랙스네리(Shigella flexneri) ATCC 11836, 시겔라 손네이(Shigella sonnei) ATCC 11060, 슈도모나스 아루기노사(Pseudomonas aeruginosa) ATCC 25619, 슈도모나스 아루기노사 ATCC 27853, 슈도모나스 아루기노사 ATCC 10145.
생물학적 실시예 2
급성 경구 독성시험
본 발명의 화합물(실시예 59 및 67) 급성 경구독성을 조사하기 위해 화합물을 각기 다른 여러 농도로 함유하는 용액을 ICR 계통의 수컷 생쥐에게 체중 1kg당 10ml의 투약양으로 경구투여한다. 경구투여 후 치사율 및 7일 동안의 증상을 관측하고, 리츠필드-윌콕슨(Litchfield-Wilcoxon) 방법에 따라 중등 치사량치(LD,mg/kg)을 계산하고 그 결과를 표 11에 나타내었다.

Claims (12)

  1. 하기 구조식(Ⅰ)로 표시되는 신규의 1,8-나프티리딘 유도체와 약제학적으로 허용가능한 그의 무독성염, 수화물, 용매화물 및 그의 이성질체.
    상기 식에서, A는 퀴놀론계 화합물에 일반적으로 도입될 수 있는 식(식중, n은 0,1,2 또는 3이고 R은 C1-C4알킬 ; 히드록시 ; C1-C4알킬 또는 C1-C4알콕시카르보닐기로 치환될 수 있는 아미노기 ; C1-C4알킬 또는 C1-C4알콕시카르보닐기로 치환될 수 있는 아미노메틸기이다)을 갖는 4-7원의 시클로아민기를 나타내며, R1및 R2는 동일 또는 상이하며 각각 수소원자, 할로겐원자, C1-C4알킬, C2-C4알케닐, 벤질이거나, R1및 R2은 그들이 부착되어 있는 탄소원자와 함께 C3-C7시클로알킬기를 형성하거나 옥심 또는 C1-C4알킬옥심이 될 수 있으며, R3은 수소원자, 할로겐원자, 히드록시, C1-C4알킬, C3-C4알케닐, 벤질, 니트로, 시아노기를 나타내거나(식중, R4는 히드록시, 하나이상의 할로겐원자로 치환될 수 있는 C1-C4알킬 또는 C1-C4알콕시, C1-C4알킬티오, C1-C4알킬카르복실기를 나타낸다)을 갖는 카르보닐 잔기를 나타내며, B는 시클로알킬기 또는 1 이상의 할로겐 원자로 치환된 방향족 고리를 나타낸다.
  2. 제1항에 있어서, B가 시클로프로필기 또는 플루오르가 치환된 페닐기임을 특징으로 하는 구조식(I)화합물.
  3. 제1항에 있어서, A는 피페라지닐 또는 페롤리디닐기로서 치환되지 않거나 1 내지 3개의 치환기 R(이때, R은 메틸, 에틸, 히드록시, 아미노, 아미노메틸, C1-C4알킬아미노기 또는 C1-C4알킬아미노메틸기이다)로 치환될 수 있고 ; R1및 R2는 동일 또는 상이하며 각각 수소원자, F, 메틸 에틸, 알릴 또는 벤질기이거나, R1및 R2은 그들이 부착되어 있는 탄소원자와 함께 시클로프로필기 또는 시클로헥실기를 형성하며 ; R3및 R4로 치환된 카르보닐 잔기(이때, R4는 히드록시, 하나 이상의 불소원자로 치환될 수 있는 C1-C2알킬기, C1-C2알콕시기, C1-C2알킬티오, C1-C2알킬카르복실기를 나타낸다)이고 ; B는 시클로프로필 또는 2개의 불소원자로 치환된 페닐기임을 특징으로 하는 구조식(Ⅰ)의 화합물.
  4. 제1항 내지 3항 중의 어느 한 항에 있어서, A는 3위치에 아미노, 메틸아미노, 에틸아미노, 아미노메틸, N-메틸아미노메틸 또는 N-에틸아미노메틸로 치환된 피롤리디닐기이거나 피페라지닐, 3-메틸피페라지닐, 4-메틸피페라지닐 또는 3,5-디메틸피페라지닐기이고 ; R1은 불소원자, 메틸, 에틸 또는 알킬기이며 ; R2는 수소원자, 메틸 또는 에틸이거나 R1및 R2는 그들이 부착되어 있는 탄소원자와 함께 형성된 시클로프로필기이며 ; R3는 트리플루오로아세틸, (펜타플루오로에틸)카르보닐 또는 메톡시카르보닐기임을 특징으로 하는 구조식(I)의 화합물.
  5. 제4항에 있어서, 약제학적으로 허용되는 염은 염화수소산염 또는 삼불화초산염임을 특징으로 하는 구조식(I)의 화합물.
  6. 다음 구조식(VI) 화합물과 R1-W 및 R2-W를 반응시킴을 특징으로 하는 구조식(I)의 화합물, 그의 염, 용매화물 및 그의 이성질체를 제조하는 방법.
    상기 식에서, A는 퀴놀론계 화합물에 일반적으로 도입될 수 있는 식(식중, n은 0,1,2 또는 3이고 R은 C1-C4알킬 ; 히드록시 ; C1-C4알킬 또는 C1-C4알콕시카르보닐기로 치환될 수 있는 아미노기 ; C1-C4알킬 또는 C1-C4알콕시카르보닐기로 치환될 수 있는 아미노메틸기이다)을 갖는 4-7원의 시클로아민기를 나타내며, R1및 R2는 동일 또는 상이하며 각각 수소원자, 할로겐원자, C1-C4알킬, C3-C4알케닐, 벤질이거나, R1및 R2은 그들이 부착되어 있는 탄소원자와 함께 C3-C7시클로알킬기를 형성하거나 옥심 또는 C1-C4알킬옥심이 될 수 있으며, R3은 수소원자, 할로겐원자, 히드록시, C1-C4알킬, C3-C4알케닐, 벤질, 니트로, 시아노기를 나타내거나(식중, R4는 히드록시, 하나이상의 할로겐원자로 치환될 수 있는 C1-C4알킬 또는 C1-C4알콕시, C1-C4알킬티오, C1-C4알킬카르복실기를 나타낸다)을 갖는 카르보닐 잔기를 나타내며, B는 시클로알킬기 또는 1 이상의 할로겐 원자로 치환된 방향족 고리를 나타내며, W는 이탈기를 나타낸다.
  7. 제6항에 있어서, W가 할로겐원자, 토실기 또는 메실기임을 특징으로 하는 제조방법.
  8. 제6항 또는 7항에 있어서, 반응을 물, 알콜, 테트라하이드로푸란, 디메틸포름아미드 및 아세토니트릴 중에서 선택된 1 또는 2 이상의 용매중에서 수행함을 특징으로 하는 방법.
  9. 제8항에 있어서, 반응온도가 -50∼120oC 임을 특징으로 하는 방법.
  10. 제9항에 있어서, 반응온도가 -10∼60oC 임을 특징으로 하는 방법.
  11. 제6항에 있어서, 사용된 원료물질(VI)이 다음 구조식(IV)의 화합물을 다음 구조식(V)의 화합물과 반응시켜 제조된 것임을 특징으로 하는 방법.
    상기 식에서, R, n, B 및 R3는 각각 제6항에서 정의한 바와 같고, L은 이탈기를 나타낸다.
  12. 제11항에 있어서, 사용된 원료물질(IV)이 다음 구조식(II)의 화합물을 다음 구조식(III)의 화합물과 반응시켜 제조된 것임을 특징으로 하는 방법.
    상기 식에서, B, R, 및 n은 각각 제6항에서 정의한 바와 같다.
KR1019930011208A 1993-06-18 1993-06-18 신규 1,8-나프티리딘 유도체 및 그의 제조방법 KR970001159B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930011208A KR970001159B1 (ko) 1993-06-18 1993-06-18 신규 1,8-나프티리딘 유도체 및 그의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930011208A KR970001159B1 (ko) 1993-06-18 1993-06-18 신규 1,8-나프티리딘 유도체 및 그의 제조방법

Publications (2)

Publication Number Publication Date
KR950000696A KR950000696A (ko) 1995-01-03
KR970001159B1 true KR970001159B1 (ko) 1997-01-29

Family

ID=19357654

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930011208A KR970001159B1 (ko) 1993-06-18 1993-06-18 신규 1,8-나프티리딘 유도체 및 그의 제조방법

Country Status (1)

Country Link
KR (1) KR970001159B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020054292A (ko) * 2002-06-03 2002-07-06 김선익 원적외선 방사 축열 마그네타이트 벽돌 제조방법
KR20020054293A (ko) * 2002-06-03 2002-07-06 김선익 축열 마그네타이트 벽돌 제조방법

Also Published As

Publication number Publication date
KR950000696A (ko) 1995-01-03

Similar Documents

Publication Publication Date Title
JP2742248B2 (ja) 7−(4−アミノメチル−3−オキシム)ピロリジン置換体を持つ新規なキノリンカルボン酸誘導体およびその製造方法
EP0132845B1 (en) Novel 1,8-naphthyridine derivatives, and process for preparation thereof
KR950010325B1 (ko) 4-옥소퀴놀린-3-카르복실산 유도체, 그의 제조방법
EP0324298B1 (fr) Dérivés des acides 7-(1-azétidinyl)-1,4-dihydro-4-oxoquinoléine-3-carboxyliques, leur préparation et leur application en tant que médicaments
KR870001693B1 (ko) 1,4-디하이드로-4-옥소나프티리딘 유도체의 제조방법
EP0690862B1 (en) Quinolone derivatives and processes for preparing the same
SK2212000A3 (sk) Enantiomérne čisté deriváty kyseliny chinolónkarboxylovej a naftyridónkarboxylovej, spôsob ich výroby, liečivá tieto látky obsahujúce a ich použitie
KR890005199B1 (ko) 트리플루오로 퀴놀린-3-카복실산
US4771055A (en) 7-[[3-(aminomethyl)-3-alkyl]-1-pyrrolidinyl]-quinoline-carboxylic acids
NO312032B1 (no) Nye kinolon- eller naftylidonkarboksylsyre-derivater eller salter derav samt anvendelse derav
US4840956A (en) Novel disubstituted-7-pyrrolidinoquinoline antibacterial agents
JPH0637490B2 (ja) キノロンカルボン酸誘導体
JPS61205258A (ja) キノロンカルボン酸誘導体及びその製造方法
EP0713487B1 (en) Novel quinolone carboxylic acid derivatives
EP0314362B1 (en) Azetidinyl quinolone carboxylic acids and esters
EP0388298B1 (fr) Dérivés d'acides pyridone carboxyliques azétidinyl substitues, leur préparation et leur application en tant que médicaments
KR970001159B1 (ko) 신규 1,8-나프티리딘 유도체 및 그의 제조방법
KR900009024B1 (ko) 퀴놀론카르복실산 화합물 및 이의 약학적 용도
JPH0564955B2 (ko)
JPH07188230A (ja) 1−(2−フルオロシクロプロピル)−キノロンカルボン酸および1−(2−フルオロシクロプロピル)−ナフチリドンカルボン酸誘導体
KR960004825B1 (ko) 신규한 퀴놀론계 화합물 및 그의 제조방법(ⅲ)
JPH07300472A (ja) 新規キノロンカルボン酸誘導体およびその製造方法
JPS6270370A (ja) キノロンカルボン酸誘導体およびその製造方法
KR100245982B1 (ko) 신규한 퀴놀론카르복실산 유도체
KR960004824B1 (ko) 신규한 퀴놀론계 화합물 및 그의 제조방법(ii)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20031219

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee