KR930006732B1 - Semiconductor substrate having the structure assembly varied and method of the same - Google Patents

Semiconductor substrate having the structure assembly varied and method of the same Download PDF

Info

Publication number
KR930006732B1
KR930006732B1 KR1019910007454A KR910007454A KR930006732B1 KR 930006732 B1 KR930006732 B1 KR 930006732B1 KR 1019910007454 A KR1019910007454 A KR 1019910007454A KR 910007454 A KR910007454 A KR 910007454A KR 930006732 B1 KR930006732 B1 KR 930006732B1
Authority
KR
South Korea
Prior art keywords
polycrystalline silicon
wafer
insulating
layer
semiconductor substrate
Prior art date
Application number
KR1019910007454A
Other languages
Korean (ko)
Inventor
강상원
유현규
강원구
Original Assignee
재단법인 한국전자통신연구소
경상현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국전자통신연구소, 경상현 filed Critical 재단법인 한국전자통신연구소
Priority to KR1019910007454A priority Critical patent/KR930006732B1/en
Priority to JP4116093A priority patent/JPH0821621B2/en
Priority to US07/880,892 priority patent/US5286670A/en
Application granted granted Critical
Publication of KR930006732B1 publication Critical patent/KR930006732B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/74Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
    • H01L21/743Making of internal connections, substrate contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76248Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using lateral overgrowth techniques, i.e. ELO techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/535Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including internal interconnections, e.g. cross-under constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/012Bonding, e.g. electrostatic for strain gauges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/135Removal of substrate

Abstract

The method comprises (a) forming a 1st insulation film (27) on the seed wafer (21), (b) forming a 2nd insulation film (29) on (27) and defining substrate contact (28), (c) depositing a 1st polycrystalline silicon (30) on (28), (d) forming fine pattern on (30) to define electric structural body (31), (e) growing or depositing insulation film (32) for (31), (f) depositing a 2nd polycrystalline silicon layer (33) and grinding (33) into mirror plane to remove surface unevenness, (g) forming insulation film (35) on handle wafer (36) and joining the mirror plane (34b) with the film (35), and (h) grinding the wafer (21) into thin film until the film (27) appears from the rear side (21a) of (21).

Description

전기적 특성을 갖는 구조물이 매립된 반도체기판 및 그 제조방법Semiconductor substrate with embedded structure having electrical characteristics and manufacturing method thereof

제1도는 종래의 실리콘-실리콘 웨이퍼 접합제조 공정을 나타낸 단면도.1 is a cross-sectional view showing a conventional silicon-silicon wafer bonding process.

제2도는 종래의 다결정 실리콘-실리콘 웨이퍼 접합제조 공정을 나타낸 단면도.2 is a cross-sectional view showing a conventional polycrystalline silicon-silicon wafer bonding process.

제3도는 본 발명의 다결정 실리콘-실리콘 웨이퍼 접합제조 공정을 나타낸 단면도.3 is a cross-sectional view showing a polycrystalline silicon-silicon wafer bonding process of the present invention.

제4도는 본 발명에 의한 소자배치의 효율성이 증대된 것을 나타낸 개략도.4 is a schematic view showing that the efficiency of the device arrangement according to the present invention is increased.

제5도는 구조물로서 커패시터가 형성된 본 발명의 실시예를 나타낸 단면도.5 is a cross-sectional view showing an embodiment of the present invention in which a capacitor is formed as a structure.

제6도는 구조물로서 연결선 또는 저항이 형성된 본 발명의 다른 실시예를 나타낸 단면도.6 is a cross-sectional view showing another embodiment of the present invention in which a connecting line or a resistance is formed as a structure.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1,17,21 : 시드웨이퍼 2,4,6,11,15 : 실리콘 산화막1,17,21: seed wafer 2,4,6,11,15: silicon oxide film

3,16,36,56,70 : 핸들웨이퍼3,16,36,56,70: Handle Wafer

8,14,37,41,57a,57b,57c,62a,62b,62c : 기판활성영역8,14,37,41,57a, 57b, 57c, 62a, 62b, 62c: substrate active area

27,29,32,35,45,46,47,48,49,52,55,63a,63b,64,67,69,71a,71b,71c : 절연막27,29,32,35,45,46,47,48,49,52,55,63a, 63b, 64,67,69,71a, 71b, 71c

31,43,51,66 : 다결정 실리콘 구조물31,43,51,66: Polycrystalline Silicon Structures

33,53,68 : 다결정 실리콘33,53,68: Polycrystalline Silicon

본 발명은 에스오아이(SOI : Silicon On Insulator)기판 제조에 관한 것으로 종래의 기판접합(WaferBonding)과는 달리 커패시터, 저항, 연결선 등의 임의의 구조물을 미리 형성한 상태에서 기판접합을 수행 함으로써 웨이퍼의 효율성을 극대화 하고, 소자구조의 다양성을 증가시킬 수 있도록 고안된 다결정 실리콘을 이용한 SIO 기판 제조방법 및 그 장치에 관한 것이다.The present invention relates to the fabrication of a silicon on insulator (SOI) substrate, unlike a conventional wafer bonding, a substrate bonding is performed in a state in which arbitrary structures such as capacitors, resistors, and connecting lines are formed in advance. The present invention relates to a method and apparatus for manufacturing an SIO substrate using polycrystalline silicon designed to maximize efficiency and increase diversity of device structures.

실리콘과 실리콘 웨이퍼를 직접 접합시켜 SOI 기판을 형성하는 종래의 SDB(Silicon Direct Bonding) 기술을 일본 후찌사의 히로시코토 등이 1988년 개발한 것으로 첨부된 제1도에 따라 간단히 설명하면 다음과 같다.The conventional SDB (Silicon Direct Bonding) technology for directly bonding silicon and silicon wafers to form an SOI substrate was developed in 1988 by Hiroshikoto et al., Fuchi, Japan.

제1a도는 웨이퍼에 산화막을 증착하는 과정이 돤료된 상태를 나타낸 것이다. 소자가 형성될 시드웨이퍼(1)와 지지용 핸들웨이퍼(3) 각각의 전표면 약 5000Å 두께로 산화막(2,4)을 증착한다. 다음, 시드웨이퍼(1)와 헨들웨이퍼(3)를 접촉시킨 상태로 약 800℃ 온도에서 100-5OOV 전압펄스를 인가하여 접합한 후, 접합상태를 더욱 강하게 하기 위하여 900-1100℃의 온도로 질소 또는 산소 내에서 약 30분 동안 열처리하여 시드웨이퍼(1)와 핸들웨이퍼(3)가 결합되도록 한다.FIG. 1A illustrates a state in which an oxide film is deposited on a wafer. Oxide films 2 and 4 are deposited to a thickness of approximately 5000 Å on the entire surface of each of the seed wafer 1 and the support handle wafer 3 on which the device is to be formed. Next, after bonding the seed wafer 1 and the handle wafer 3 in contact with 100-5OOV voltage pulses at a temperature of about 800 ° C., the nitrogen at a temperature of 900-1100 ° C. to further strengthen the bonding state. Alternatively, the seed wafer 1 and the handle wafer 3 are combined by heat treatment in oxygen for about 30 minutes.

이와같은 과정이 완료된 상태가 제1b도에 도시되어 있다.The state in which this process is completed is shown in FIG.

상기 과정을 통하여 상기 두 웨이퍼(1,3)가 결합된 웨이퍼(5)는 약 100㎏/㎠ 이상의 강한 결합력을 갖게 된다.Through the above process, the wafer 5 to which the two wafers 1 and 3 are combined has a strong bonding force of about 100 kg / cm 2 or more.

제1c도는 연마(polishing) 과정을 나타낸 것으로, 기계적 및 화학적 연마과정을 통하여 산화막(6)상의 시드웨이퍼(1)를 연마하고, 약 1㎛ 정도 두께의 산화막(6)에 의해 시드웨이퍼(1)와 핸들웨이퍼(3)가 분리된 형태의 OSI 기판(8)이 형성된다.FIG. 1C illustrates a polishing process, wherein the seed wafer 1 on the oxide film 6 is polished through mechanical and chemical polishing processes, and the seed wafer 1 is formed by the oxide film 6 having a thickness of about 1 μm. And the OSI substrate 8 in which the handle wafer 3 is separated.

또한, 1989년 고체소자 자료회의(Selid State Device and Materials)에서 일본 소니사의 마시보 등은 다결정 실리콘을 이용한 P-SDB(Polycystalline to Sillicon Direct Bonding) 방법을 개시하였다. 그것을 첨부된 제2도에 따라 설명하면 다음과 같다.Also, in 1989, at the Solid State Device and Materials, Japan's Sony Corp., etc., disclosed a P-SDB (Polycystalline to Sillicon Direct Bonding) method using polycrystalline silicon. It will be described according to the attached Figure 2 as follows.

제2a도는 다결정 실리콘을 증착하는 과정을 도시한 것으로 우선 원하는 SOI는 두께(약 1000Å)만큼 시드웨이퍼(17)에 메사(mesa : 10)를 형성하고 메사(10)의 상면에 산화막(11)을 1㎛ 두께 정도로 증착한 후 상기 산화막(11)의 상면에 다결정 실리콘(12)을 5.0㎛ 정도의 두께로 증착한다.FIG. 2A illustrates a process of depositing polycrystalline silicon. First, a desired SOI is formed by forming a mesa (10) on the seed wafer 17 by a thickness (about 1000 mW) and forming an oxide film 11 on the upper surface of the mesa 10. After depositing about 1 μm thick, polycrystalline silicon 12 is deposited on the upper surface of the oxide film 11 to about 5.0 μm thick.

제2b도에 나타낸 바와같이 다결정 실리콘(12)이 증착된 표면의 요철을 연마과정을 통하여 경면(mirror surface) 처리하여 다결정 실리콘의 표면요철을 제거한다. 시드웨이퍼와 다결정 실리콘 경면(13)과 핸들웨이퍼(16)에 산화막(15)을 입히고 전술한 것과 동힐한 P-SDB 과정을 통하여 다결정 실리콘 경면(13)과 핸들웨이퍼(16)를 접합시킨 후 제2c도에 나타난 바와같이 시드웨이퍼(17)를 위로 향하도록 배열한다.As shown in FIG. 2B, the surface irregularities of the surface on which the polycrystalline silicon 12 is deposited are subjected to a mirror surface treatment to remove surface irregularities of the polycrystalline silicon. After the oxide film 15 is applied to the seed wafer, the polycrystalline silicon mirror surface 13 and the handle wafer 16, and the polycrystalline silicon mirror surface 13 and the handle wafer 16 are bonded through the P-SDB process described above, Arrange the seed wafer 17 upward as shown in FIG. 2C.

제2d도는 시드웨이퍼(17)의 실리콘 박막화를 위한 연마과정을 나타낸 것으로, 시드웨이퍼(16)를 기계적, 화학적 연마과정을 통해 연마해 내려가다가 메사패턴(10)에 채워져 있는 산화막(11)에 이르러 연마작업을 중단한 상태를 도시한 것이다. 상기 산화막(11)은 연마중지(Polishing Stop) 역활을 하게 되므로 SOI(14)의 두께는 메시식각(10)의 깊이에 의해 조절될 수 있다.2d illustrates a polishing process for thinning the silicon wafer of the seed wafer 17. The seed wafer 16 is polished by mechanical and chemical polishing, and then the oxide film 11 filled in the mesa pattern 10 is reached. It shows a state where the polishing operation is stopped. Since the oxide film 11 plays a role of polishing stop, the thickness of the SOI 14 may be controlled by the depth of the mesh etching 10.

상기와 같이 종래의 P-SDB 제조방법에서 사용된 다결정 실리콘층(12)은 시드웨이퍼에 형성된 메사패턴으로 인하여 발생되는 표면의 요철을 제거하여 접착계면을 평탄화(planarization)함으로써 시드웨이퍼와 핸들웨이퍼의 접착을 용이하게 한다.As described above, the polycrystalline silicon layer 12 used in the P-SDB manufacturing method of the seed wafer and the handle wafer is planarized by removing the irregularities of the surface caused by the mesa pattern formed on the seed wafer. Facilitates adhesion.

본 발명은 시드웨이퍼와 핸들웨이퍼를 접착시키기 전에 시드웨이퍼의 상면에 전도성막 또는 저항성막(본원에서는 다결정 실리콘막을 그 한예로 설명함)을 다층으로 증착하여 전기적 특성을 갖는 임의의 구조물, 예를들면 커패시터(capacitor), 저항, 연결선(interconnector)등을 개별적 또는 복합적으로 형성한 후 시드웨이퍼의 구조물이 형성된 면과 핸들웨이퍼를 접착시켜 SOI 기판을 제조함으로써, 시드웨이퍼와 핸들웨이퍼 사이에 전기걱 특성을 갖는 임의의 구조물이 매몰되어 있는 새로운 형태의 SOI 기판을 형성하여 웨이퍼의 효율성을 극대화하고 소자구조의 다양성을 증가시키는 것을 목적으로 한다.The present invention relates to any structure having electrical properties by depositing a conductive film or a resistive film (herein described as a polycrystalline silicon film as one example) on the top surface of the seed wafer before bonding the seed wafer and the handle wafer, for example, a capacitor. (capacitor), resistance, and interconnector are formed individually or in combination, and then the surface of the seed wafer structure is bonded to the handle wafer to manufacture the SOI substrate, which has a spatula characteristic between the seed wafer and the handle wafer. The purpose is to form a new type of SOI substrate in which an arbitrary structure is buried to maximize the efficiency of the wafer and increase the diversity of device structures.

본 발명을 첨부된 도면을 참고로 하여 설명하면 다음과 같다.Hereinafter, the present invention will be described with reference to the accompanying drawings.

제3a도는 제1다결정 실리콘(30)을 증착하는 공정이 완료된 상태를 도시한 것이다. 그 과정을 단계적으로 설명하면 다음과 같다.3A illustrates a state in which a process of depositing the first polycrystalline silicon 30 is completed. The process is described step by step as follows.

먼저, 시드웨이퍼(21)의 상면에 제1격리용 절연막(27)을 소정의 두께로 형성한다. 다음 상기 제1격리용 절연막(27)의 상면에 제2격리용 절연막(29)를 형성한 후 기판 콘택 마스크로 기판콘택(28)을 식각한다. 마지막으로 상기 제2격리용 절연막(29)과 상기 기판콘택(28)의 상면에 제1다결정 실리콘(30)을 소정의 두께로 증착하고 도핑한다.First, the first isolation insulating film 27 is formed on the top surface of the seed wafer 21 to have a predetermined thickness. Next, the second insulating insulating layer 29 is formed on the upper surface of the first insulating insulating layer 27, and the substrate contact 28 is etched using the substrate contact mask. Finally, the first polycrystalline silicon 30 is deposited and doped to the upper surface of the second isolation insulating layer 29 and the substrate contact 28.

이때, SOI의 두께는 제1격리용 절연막(27)이 시드웨이퍼(21)에 침투된 깊이가 되므로 상기 제1격리용 절연막(27)의 두께 조정에 주의하여야 한다. 또한, 제1다결정 실리콘(30)의 두께는 형성되는 구조물의 전기적 특성에 따라서 결정된다. 특히, 구조물이 연결선으로 응용될 경우에는 제1다결정 실리콘(30) 대신 내화금속(refractory metal)이나 폴리사이드(Polycide) 또는 실리사이드(silicide)등으로 대체할 수도 있다.At this time, the thickness of the SOI becomes a depth in which the first isolation insulating layer 27 penetrates the seed wafer 21, so care should be taken in adjusting the thickness of the first isolation insulating layer 27. In addition, the thickness of the first polycrystalline silicon 30 is determined according to the electrical characteristics of the structure to be formed. In particular, when the structure is applied as a connection line, it may be replaced with refractory metal, polycide, or silicide instead of the first polycrystalline silicon 30.

제3b도는 전기적 구조물을 형성하는 공정을 완료한 상태를 도시한 것으로 단계별로 설명하면 다음과 같다.3b illustrates a state in which a process of forming an electrical structure is completed and described in stages.

먼저, 제1다결정 실리콘층(30)에 미세패턴을 형성하여 전기적 구조물(31)을 정의한 후 상기 전기적 구조물을 위한 격리용 절연막(32)을 증착한 후 표면의 요철을 제거하기 위하여 제2다결정 실리콘층을 연마작업에 의한 평탄화 작업을 수행하여 경면(34b)으로 처리한다.First, after forming a fine pattern on the first polycrystalline silicon layer 30 to define the electrical structure 31, and then depositing the insulating insulating film 32 for the electrical structure, the second polycrystalline silicon to remove the surface irregularities The layer is subjected to the flattening operation by polishing to treat the mirror surface 34b.

이때 제3a 및 b도에서 제1다결정 실리콘(30) 및 제2다결정 실리톤(33)은 필요에 따라 N형 또는 P형 불순물으로 도핑된다. 또한, 상기한 바대로 제1다결정 실리콘(30)은 응용분야에 따라 다른 재질로 대체될 수 있다.In this case, the first polycrystalline silicon 30 and the second polycrystalline silicide 33 are doped with N-type or P-type impurities as necessary. In addition, as described above, the first polycrystalline silicon 30 may be replaced with another material according to an application.

제3c도는 제3b도의 전기적 구조물의 형성이 완료된 시드웨이퍼를 뒤집어서 핸들웨이퍼(36)에 접착시킨 상태를 도시한 것으로 그 공정을 설명하면 다음과 같다. 핸들웨이퍼(36) 위에 절연막(35)을 형성하고, 시드웨이퍼(21)의 다결정 실리콘 경면(34b)과 상기 절연막(35)을 접촉시킨 후, 열처리 과정을 통하여 두 웨이퍼(21,36)를 결합시킨다. 이때 절연막(35)은 시드웨이퍼의 제2다결정 실리콘층(33)과 헨들웨이퍼(36)를 전기적으로 분리시키는 역할을 한다. 경우에 따라서는 상기 절연막(35)을 형성시키는 공정은 생략함으로써 핸들웨이퍼와 제2다결정 실리콘층(33)이 전기적으로 연결되게 하여 제2다결정 실리콘층(33)에 인가되어야 할 전기적 포텐실(potential)을 핸들웨이퍼로부터 제공받을 수도 있다.FIG. 3c illustrates a state in which the seed wafer having completed the formation of the electrical structure of FIG. 3b is inverted and bonded to the handle wafer 36. The process will be described below. An insulating film 35 is formed on the handle wafer 36, the polycrystalline silicon mirror surface 34b of the seed wafer 21 is brought into contact with the insulating film 35, and then the two wafers 21 and 36 are bonded through a heat treatment process. Let's do it. In this case, the insulating layer 35 serves to electrically separate the second polycrystalline silicon layer 33 and the handle wafer 36 of the seed wafer. In some cases, the process of forming the insulating layer 35 is omitted to allow the handle wafer and the second polycrystalline silicon layer 33 to be electrically connected to each other, thereby providing an electrical potential to be applied to the second polycrystalline silicon layer 33. ) May be provided from the handle wafer.

상기한 접착공정이 완료되면, 즉 제3c도의 상태에서 시드웨이퍼(21)의 상면으로부터 제1격리용 절연막(27)이 만나는 지점(38)까지 기계적 및 화학적 연마과정을 통하여 시드웨이퍼(21)를 제거함으로써 상기 제1다결정 실리콘을 증착하는 공정에서 설명한 바와같이, 제1격리용 절연막(27)이 시드웨이퍼(21)에 침투된 깊이만큼의 실리콘 박막 두께를 갖는 SOI 기판을 제조할 수 있다.When the above bonding process is completed, that is, the seed wafer 21 is subjected to mechanical and chemical polishing from the top surface of the seed wafer 21 to the point 38 where the first isolation insulating film 27 meets in the state shown in FIG. 3C. As described above, the SOI substrate having the silicon thin film thickness as much as the depth of the first isolation insulating film 27 penetrated into the seed wafer 21 can be manufactured as described in the process of depositing the first polycrystalline silicon.

제3d도는 구조물이 매몰된 형태의 SOI 기판에 대한 단면도를 나타낸 것이다. 시드웨이퍼(21)의 최초 표면은 참조번호 39로 표시된 부분이었으나 SDB 과정 및 연마과정을 거치면서 활성소자가 형성될 실리콘 박막의 두번째 표면(40)이 형성된다.3d illustrates a cross-sectional view of an SOI substrate having a buried structure. Although the initial surface of the seed wafer 21 was indicated by reference numeral 39, the second surface 40 of the silicon thin film on which the active element is to be formed is formed through the SDB process and the polishing process.

본 발명의 제조과정을 통하여 구조물(31)을 미리 형성한 시드웨이퍼(21)와 핸들웨이퍼(36)를 결합시키고 다시 시드웨이퍼의 뒷면을 연마하여 박막화 함으로써 다층의 다결정 실리콘층을 이용한 P-SDB에 의해 새로운 구조의 SOI 기판을 구현한다.Through the fabrication process of the present invention, the seed wafer 21 and the handle wafer 36, which are previously formed of the structure 31, are bonded to each other, and the back surface of the seed wafer is polished and thinned to a P-SDB using a multilayer polycrystalline silicon layer. By implementing a new structure of the SOI substrate.

종래의 기술과 비교할 때 본 발명은 동일 면적내에 보다 효율적으로 소자를 배치할 수 있다. 그와 같은 고밀화 할 수 있는 형태를 개념적으로 구성한 것을 제4도에 나타냈다.Compared with the prior art, the present invention can arrange elements more efficiently in the same area. Figure 4 shows the conceptual construction of such a densable form.

제4a도는 본 발명에 의한 구조물의 배치상태를 나타낸 것이다. 활성영역(41) 내부에 구조물(43)과 그 구조물을 활성영역(41)에 연결하는 기판콘텍(42)이 함께 중첩되게 배치된다.Figure 4a shows the arrangement of the structure according to the present invention. The structure 43 and the substrate contact 42 connecting the structure to the active region 41 are disposed to overlap each other in the active region 41.

제4b도는 제4a도의 단면도로써 SOI 기판 즉, 활성영역(41)과 구조물(43)이 기판콘택(42)을 통해 수직으로 연결되어 있음을 보이고 있다.FIG. 4B is a cross-sectional view of FIG. 4A showing that the SOI substrate, that is, the active region 41 and the structure 43 are vertically connected through the substrate contact 42.

상기 활성영역(41) 상호간을 제1격리용 절연막(46)에 의해 격리된다. 상기 활성영역(11)과 매몰된 구조물(43)은 필요한 위치에 기판콘택(42)을 형성함으로써 그 위치에서는 그들 상호간 전기적으로 연결되지만 그밖의 위치에서는 제2격리용 절연막(47)에 의해 상호 전기적으로 격리된다. 또한, 형성된 구조물을 제3격리용 절연막(45)를 이용하여 전기적으로 격리시킨다.The active regions 41 are separated from each other by the first insulating insulating layer 46. The active region 11 and the buried structure 43 are electrically connected to each other at the required position by forming the substrate contact 42 at the required position, but are electrically connected to each other by the second insulating insulating film 47 at other positions. Are isolated. In addition, the formed structure is electrically isolated using the third isolation insulating layer 45.

상기 배치도(제4도)에서 알 수 있듯이 본 발명에 의한 SOI 구조는 매몰된 층에 전기적 특성을 갖는 소자 예를들면, 커패시터, 저항, 연결선 등을 개별적 또는 복합적으로 형성할 수 있게 되어 실리콘 박막층(41)이 형성되는 소자와 수직적으로 배치가 이루어지게 되므로 소자의 고밀도가 가능해진다.As can be seen from the layout (FIG. 4), the SOI structure according to the present invention can form elements having electrical characteristics, for example, capacitors, resistors, and connection lines, individually or in combination, in a buried layer. Since the arrangement is made perpendicular to the element to be formed 41), high density of the element is possible.

이와같이 소자들이 수직적으로 배치됨으로써 3차원적 소자 배치가 가능하게 되어 새로운 형태의 3차원 집적회로(3-Dimensional Integrated Circuit)가 실현된다.As the devices are arranged vertically, a three-dimensional device arrangement is possible, thereby realizing a new type of 3-Dimensional Integrated Circuit.

제5도는 본 발명에 따른 실시예로써 매립된 구조물이 커패시터 인 경우를 나타낸 단면도이다. 커패시터의 전하축전 전극(51)은 기판콘택(50)을 통하여 활성영역(57a,57b,57c)과 수직적으로 연결되어 있으며, 또한 커패시터의 유전막(52)을 사이에 두고 상기 전하축전 전극(51) 아래에 커패시터의 플레이트 전극(50)으로서 다결정 실리콘층이 형성되어 있다.5 is a cross-sectional view showing a case in which the buried structure is a capacitor according to an embodiment of the present invention. The charge storage electrode 51 of the capacitor is vertically connected to the active regions 57a, 57b, 57c through the substrate contact 50, and the charge storage electrode 51 is disposed with the dielectric film 52 of the capacitor interposed therebetween. A polycrystalline silicon layer is formed below as the plate electrode 50 of the capacitor.

이런 구조에 대한 제조공정 순서를 설명하면 다음과 같다. 먼저, 시드웨이퍼의 활성영역(57a,57b,57c)간의 격리를 위하여 L0COS 방법에 의하여 제1격리용 절연막(48a,48b,48c)을 형성하고, 활성영역(57a,57b,57c)을 OSI화 하기 위하여 제2격리용 절연막(49a,49b,49c)을 형성한 후, 필요한 부분에 기판콘택(50)을 정의한다. 그다음, 커패시터의 전하축전 전극용 다결정 실리콘층(51)을 증착 정의한 후 커패시터 유전막(52)을 형성하고 그위에 플레이트 전극용 다결정 실리콘층(53)을 충분한두께로 증착한다.The manufacturing process sequence for this structure is as follows. First, in order to isolate between the active regions 57a, 57b, and 57c of the seed wafer, the first isolation insulating layers 48a, 48b, and 48c are formed by the L0COS method, and the active regions 57a, 57b, and 57c are OSIized. In order to form the second isolation insulating film 49a, 49b, and 49c, the substrate contact 50 is defined in the required portion. Next, after defining the polycrystalline silicon layer 51 for the charge storage electrode of the capacitor, the capacitor dielectric film 52 is formed, and the polycrystalline silicon layer 53 for the plate electrode is deposited thereon to a sufficient thickness.

이와같이 플레이트 전극용 다결정 실리콘층을 증착한 후 그 표면(54)을 경면처리 하여 표면에 절연막(55)이 형성되어 있는 핸들웨이퍼(56)를 접착시킨다. 그 접착공정이 완료된 후 시드웨이퍼를 화학적, 기계적으로 연마하여 시드웨이퍼의 박막화 공정을 수행한다. 시드웨이퍼의 박막화는 제1격리용 절연막(48a,48b,49c)이 나타나는 지점에서 중단되어 일정한 두께의 실리콘 박막이 활성영역으로 남게된다.After depositing the polycrystalline silicon layer for the plate electrode in this manner, the surface 54 is mirror-treated to bond the handle wafer 56 having the insulating film 55 to the surface. After the bonding process is completed, the seed wafer is chemically and mechanically polished to perform a thinning process of the seed wafer. The thinning of the seed wafer is stopped at the point where the first isolation insulating films 48a, 48b, and 49c appear, leaving a silicon thin film of a constant thickness as an active region.

이와같이 활성영역이 형성된 후 노드콘택(60) 및 플레이트 콘택(59)을 형성하고 금속막을 이용하여 플레이트 전극(61a)과 노드전극(61b)을 형성한다.After the active region is formed, the node contact 60 and the plate contact 59 are formed, and the plate electrode 61a and the node electrode 61b are formed using a metal film.

상기의 공정들을 통하여 매립된 형태의 커패시터 구조물이 형성된다. 본 실시예에 대한 변형예로써, 플레이트 전극용 다결정 실리콘을 절연막(55)이 형성되어 있지 않은 핸들웨이퍼와 접착시킴으로써 핸들웨이퍼를 통하여 바이어스(bias)를 직접 인가할 수도 있다. 또한, 전하축전 전극용 다결정 실리콘(51)은 기판콘택(50)을 통하여 수직으로 연결되어 있는 활성영역에 제조될 반도체 소자 즉, MOSFET 또는 쌍극형 트랜지스터와도 직접 연결이 가능하다.Through the above processes, a capacitor structure having a buried shape is formed. As a modification to the present embodiment, a bias may be directly applied through the handle wafer by bonding the polycrystalline silicon for plate electrode with the handle wafer on which the insulating film 55 is not formed. In addition, the polycrystalline silicon 51 for the charge storage electrode can be directly connected to a semiconductor device, that is, a MOSFET or a bipolar transistor, to be manufactured in an active region vertically connected through the substrate contact 50.

아울러 본 실시예의 커패시터는 전하축전 전극용 다결정 실리콘(51)의 두께가 수천 Å정도로 비교적 얇은 매립형 스택 커패시터(stack capacitor)를 구조물로 표시하였으나 매립형 트랜치 커패시터(trench capacitor) 구조도 상기의 제조공정과 동일한 방법으로 제조할 수 있다.In addition, the capacitor of the present embodiment is a structure of a buried stack capacitor having a relatively thin thickness of the polycrystalline silicon (51) for the charge storage electrode as thousands of 수천, but the buried trench capacitor structure is the same as the manufacturing process It can manufacture by a method.

제6도는 본 발명에 의한 또다른 실시예로써 매립된 구조물이 반도체 집적회로의 필요부분 상호간을 전기적으로 연결하는 도선(interconnection) 또는 저항(resistor)으로 사용된 경우를 나타내는 단면도이다.FIG. 6 is a cross-sectional view illustrating a case in which a buried structure is used as an interconnection or a resistor that electrically connects necessary portions of a semiconductor integrated circuit as another embodiment according to the present invention.

활성영역(62a,62b,62c) 상호간은 제1격리용 절연막(63a,63b)으로 서로 분리되어 있으며, 활성영역(62a)과 또다른 활성영역(62c)을 전기적으로 연결시키기 위하여 불순물이 도핑된 제1다결정 실픽콘(66)이 매립된 구조물 형태로 형성되어 있다. 이러한 경우 연결선(interconnector) 또는 저항으로 사용되는 제1다결정 실리콘(66)은 제2격리용 절연막(64)에 의하여 활성영역 부분들과 전기적으로 분리되어 있으며, 또한 연결이 필요한 부분에서는 기판콘택(65a,65b)을 통하여 활성영역과 전기적으로 연결이 이루어져 있다.The active regions 62a, 62b, and 62c are separated from each other by the first isolation insulating layers 63a and 63b, and are doped with impurities to electrically connect the active region 62a and another active region 62c. The first polycrystalline silpiccon 66 is formed in a buried structure. In this case, the first polycrystalline silicon 66, which is used as an interconnector or a resistor, is electrically separated from the active region portions by the second isolation insulating film 64, and the portion of the substrate contact 65a where the connection is necessary. 65b) is electrically connected to the active area.

이러한 제1다결정 실리콘(66)에 불순물을 주입시킨뒤 연결선 또는 저항으로서 필요한 패턴을 정의한 후 제3격리용 절연막(67)과 제2다결정 실리콘(68)을 형성한다. 제2다결정 실리콘(68) 표면을 경면 처리한 후 절연막(69)가 형성되어 있는 핸들웨이퍼(70)와 접착시킨다. 이때 절연막(69)을 생략함으로써 제2다결정 실리콘에 핸들웨이퍼를 통하여 백 바이어스(back bias)를 인가할 수도 있다.After the impurity is injected into the first polycrystalline silicon 66, a necessary pattern is defined as a connection line or a resistance, and then the third isolation insulating layer 67 and the second polycrystalline silicon 68 are formed. The surface of the second polycrystalline silicon 68 is mirror-polished and then adhered to the handle wafer 70 on which the insulating film 69 is formed. In this case, the back bias may be applied to the second polycrystalline silicon through the handle wafer by omitting the insulating layer 69.

이와같이 기판접착이 이루어진 후 시드웨이퍼는 상기 제3도 에서 설명된 바와같이 화학적 및 기계적인 연마과정을 통하여 제1격리용 절연막(63a,63b)을 만날때 까지 박막화 된다. 이러한 과정을 수행하여 형성된 활성영역중 제1다결정 실리콘(66)과 연결되어 있는 활성영역(62a) 및 활성영역(62c)에 콘텍(72a) 및 콘텍(72b)을 전연막(71a,72b,71c)을 이용하여 형성한 후 도체(73a) 및 도체(73b)들과 각각 연결시킴으로써 제1다결정 실리콘(66)이 매립된 구조물로써 연결선 또는 저항의 역할을 하게 된다.After the substrate is bonded as described above, the seed wafer is thinned until the first isolation insulating layers 63a and 63b are met through chemical and mechanical polishing processes as described in FIG. 3. The contact films 72a and 72b are connected to the active regions 62a and 62c of the active regions 62a and 72c which are connected to the first polycrystalline silicon 66. After forming by using the () and by connecting to the conductors (73a) and the conductors (73b), respectively, the first polycrystalline silicon 66 is a buried structure to act as a connection line or a resistance.

본 실시예에 대한 변형예로써, 연결선 또는 저항으로 이용되는 제1다결정 실리콘(66)은 기판콘텍(65a,65b)을 통하여 전기적으로 연결되어 있는 활성영역(62a,62b)에 제조될 반도체 소작 즉 MOSFET 또는 쌍극형 트렌지스터 등과도 직접 연결이 가능하다. 아울러 매립된 구조물 박막 대신 폴리사이드(polycide) 또는 실리사이드(silicide) 박막을 사용하므로써 연결선의 저항을 감소시킬 수도 있다.As a modification to the present embodiment, the first polycrystalline silicon 66 used as a connection line or a resistor is a semiconductor cauterization to be manufactured in the active regions 62a and 62b electrically connected through the substrate contacts 65a and 65b. Direct connection to MOSFETs or bipolar transistors is also possible. In addition, by using a polycide (silcide) or silicide (silicide) thin film in place of the buried structure thin film it is possible to reduce the resistance of the connection line.

본 발명에 의한 상기의 제조방법과 그 실시예에서 볼 수 있듯이 두장의 실리콘 웨이퍼를 접착시켜 SOI 기판을 제조할 때, 한장의 웨이퍼 즉 시드웨이퍼에 다층의 전도성 박막 혹은 절연막을 이용하여 커패시터, 연결선 또는 저항등을 전기적 특성을 갖는 구조물을 단층 또는 다층으로 형성하거나 혹은 개별적 또는 2가지 이상의 종류가 복합적으로 구성된 형태의 구조물을 형성한 후 다른 한장의 웨이퍼 즉 핸들웨이퍼와 접착시킴으로써 전기적 특성을 갖는 구조물이 매립된 형태의 새로운 SOI 기판을 제조할 수 있다.As can be seen from the above-described manufacturing method and the embodiment of the present invention, when fabricating an SOI substrate by bonding two silicon wafers, a capacitor, a connecting line or the like using a multilayer conductive thin film or insulating film on one wafer, that is, a seed wafer, A structure having electrical characteristics is embedded by forming a structure having electrical characteristics such as resistance in a single layer or a multilayer, or by forming a structure in which an individual or a combination of two or more kinds is formed, and then bonding it with another wafer, that is, a handle wafer. It is possible to manufacture new types of SOI substrates.

이러한 형태의 새로운 SOI 기판 제조기술을 이용하면 반도체 칩(chip) 면적의 효율성을 증가시킬 수 있으며, 특히 매립된 구조물이 커패시터인 경우 DRAM(Dynamic Random Access Memory)의 기억세포(Cell) 등을 보다 작은 면적에서 용이하게 제작할 수 있게 된다.Using this type of new SOI substrate manufacturing technology, the efficiency of semiconductor chip area can be increased. In particular, when embedded structures are capacitors, memory cells of DRAM (Dynamic Random Access Memory) can be made smaller. It can be easily produced in the area.

Claims (10)

다결정 실리콘을 이용한 SOI(Sillicon On Insulate) 기판 제조방법에 있어서, 시드웨이퍼(21)상에 소정 두께로 제1격리용 절연막(27)을 형성하고 상기 제1격리용 절연막(27)의 상면에 제2격리용 절연막(29)을 형성한 후 기판콘택(28)을 정의하고 상기 기판콘택(28)의 상면에 제1다결정 실리콘(30)을 증착 및 도핑하는 제1공정과, 상기 제1다결정 실리콘층(30)에 미세패턴을 형성하여 전기적 구조물(31)을 정의한 후 상기 전기적 구조물(31)을 위한 격리용 절연막(32)을 성장시키거나 증착시키는 제2공정과, 상기 제2공정이 완료된 후 제2다결정 실리콘층(33)을 증착 및 도핑하고 표면의 요철을 제거하기 위해 상기 제2다결정 실리콘층(33)을 연마하여 경면으로 처리하는 제3공정과, 핸들웨이퍼(36)에 절연막(35)을 형성한 후 상기 전기적 구조물(31)이 형성된 상기 시드웨이퍼(21)의 다결정 실리콘 경면(34b)과 상기 핸들웨이퍼(36)상의 상기 절연막(35)을 접착시키는 제4공정 및, 접합된 상기 두 웨이퍼(21,36)에 있어서 상기 시드웨이퍼(21)의 후면(21a)으로 부터 상기 제1격리용 절연막(27)이 나타날때 까지 화학적 연마작업 또는 기계적 연마작업을 통하여 상기 시드웨이퍼(21)를 박막화 하는 제5공정을 포함하는 것을 특징으로 하는 전기적 특성을 갖는 구조물이 매립된 반도제 기판 제조방법.In the method of manufacturing a silicon on insulate (SOI) substrate using polycrystalline silicon, a first insulating insulating layer 27 is formed on the seed wafer 21 at a predetermined thickness, and a first insulating insulating layer 27 is formed on the top surface of the first insulating insulating layer 27. Forming a second insulating insulating film 29, defining a substrate contact 28, and depositing and doping the first polycrystalline silicon 30 on the upper surface of the substrate contact 28, and the first polycrystalline silicon. After forming a fine pattern on the layer 30 to define the electrical structure 31, the second process of growing or depositing the insulating insulating film 32 for the electrical structure 31, and after the second process is completed In order to deposit and do the second polycrystalline silicon layer 33 and to remove surface irregularities, a third process of polishing the second polycrystalline silicon layer 33 by mirror surface treatment, and the insulating film 35 on the handle wafer 36 ) And then the seed wafer 21 having the electrical structure 31 formed thereon. A fourth step of adhering the crystalline silicon mirror surface 34b and the insulating film 35 on the handle wafer 36 and the rear surface 21a of the seed wafer 21 in the bonded two wafers 21 and 36. And a fifth process of thinning the seed wafer 21 by chemical polishing or mechanical polishing until the first isolation insulating layer 27 appears from the buried structure. Semiconductor substrate manufacturing method. 제1항에 있어서, 활성영역(1)에 형성되는 소자의 하부에 임의의 구조물이 중첩되게 함을 특징으로 하는 전기적 특성을 갖는 구조물이 매립된 반도체 기판 제조방법.The method of manufacturing a semiconductor substrate with a structure having electrical properties according to claim 1, wherein an arbitrary structure is superimposed on a lower portion of the device formed in the active region (1). 제1항에 있어서, SOI 기판의 활성영역(37) 상호간에는 상기 제1격리용 절연막(27)을, 상기 활성영역(37)과 상기 구조물(31) 간에는 제2격리용 절연막(29)을, 상기 구조물(31)과 상기 제2다결정 실리콘(33) 간에는 구조물 절연막(32)을, 상기 제2다결정 실리콘(33)과 상기 헨들웨이퍼(36) 사이에는 접착용 절연막(35)을 각각 형성하여 상기 활성영역(37)과 상기 구조물(31)과 상기 제2다결정 실리콘(33) 및 상기 핸들웨이퍼(36) 상호간을 수직 및 수평적으로 절연시킨 것을 특징으로 하는 전기적 특성을 갖는 구조물이 매립된 반도체 기판 제조방법.The insulating layer 27 for isolation between the active region 37 of the SOI substrate, and the insulating layer 29 for isolation between the active region 37 and the structure 31. A structure insulating film 32 is formed between the structure 31 and the second polycrystalline silicon 33, and an adhesive insulating film 35 is formed between the second polycrystalline silicon 33 and the handle wafer 36, respectively. A semiconductor substrate in which a structure having electrical characteristics is embedded, wherein the active region 37, the structure 31, the second polycrystalline silicon 33, and the handle wafer 36 are vertically and horizontally insulated from each other. Manufacturing method. 제1항에 있어서, 상기 구조물(31)에 커패시터 유전막(52)을 형성하고 기판 콘택(50)과 노드콘택(60)및 플레이트 콘택(59)을 연결함으로써 매몰된 상기 구조물(37)이 커패시터로 사용됨을 특징으로 하는 전기적 특성을 갖는 구조물이 매립된 반도체 기판 제조방법.The structure 37 of claim 1, wherein the structure 37 is buried by forming a capacitor dielectric layer 52 in the structure 31 and connecting the substrate contact 50, the node contact 60 and the plate contact 59. A method of manufacturing a semiconductor substrate in which a structure having electrical characteristics is embedded. 제1항에 있어서, 상기 제1다결정 실리콘(30)이 기하학적 크기 및 불순물 도핑농도를 조정한 제1다결정 실리콘(66)이 소자간의 저항선으로 사용됨을 특징으로 하는 전기적 특성을 갖는 구조물이 매립된 반도체기판 제조방법.The semiconductor with embedded structure having electrical characteristics according to claim 1, wherein the first polycrystalline silicon (66) having the geometric size and the impurity doping concentration is used as a resistance line between the elements. Substrate manufacturing method. 제1항에 있어서, 상기 제1다결정 실리콘(30)의 기하학적 크기 및 불순물 농도를 조정한 제1다결정실리콘(66)이 소자간의 연결선으로 사용됨을 특징으로 하는 전기적 특성을 갖는 구조물이 매립된 기판 반도체 제조방법.2. The semiconductor substrate of claim 1, wherein the first polycrystalline silicon 66 having the geometric size and the impurity concentration of the first polycrystalline silicon 30 is used as a connection line between the devices. Manufacturing method. 제5항 또는 제6항에 있어서, 상기 제1다결정 실리콘(66) 대신 폴리사이드, 실리사이드 또는 내열 금속을 사용함을 특징으로 하는 전기적 특성을 갖는 구조물이 매립된 반도체 기판 제조방법.7. A method according to claim 5 or 6, wherein a structure having electrical properties is embedded in the semiconductor substrate, wherein polysilicon, silicide or heat-resistant metal is used instead of the first polycrystalline silicon (66). 제5항 또는 제6항에 있어서, 상기 저항선 및 연결선을 다층으로 연결시킴으로써 배선의 효율을 극대화시킴을 특징으로 하는 전기적 특징을 갖는 구조물이 매립된 반도체 기판 제조방법.The method of manufacturing a semiconductor substrate with a structure having an electrical characteristic according to claim 5 or 6, wherein the resistance line and the connecting line are connected in a multi-layer to maximize the efficiency of the wiring line. 시드웨이퍼(21)의 전면에 전도성 또는 저항성 막을 이용한 임의의 전기적 특성을 갖는 구조물(31)을 형성하고 다시 상기 구조물(31)상에 다결정 실리콘층(33)을 증착한 후 상기 다결정 실리콘층(33)의 표면(34a)을 경면처리하여 핸들웨이퍼 (36)와 상기 시드웨이퍼(21)의 경면(34b)을 접합시킴으로써 상기 시드웨이퍼(21)와 상기 핸들웨이퍼(36) 사이에 전기적 특성을 갖는 임의의 구조물이 단층 또는 다층으로 삽입되어 있음을 특징으로 하는 전기적 특성을 갖는 구조물이 매립된 반도체 기판.After forming a structure 31 having any electrical characteristics using a conductive or resistive film on the front surface of the seed wafer 21, and again depositing a polycrystalline silicon layer 33 on the structure 31, the polycrystalline silicon layer 33 Surface 34a of the < RTI ID = 0.0 >) < / RTI > to bond the handle wafer 36 and the mirror surface 34b of the seed wafer 21 to any electrical properties between the seed wafer 21 and the handle wafer 36. A semiconductor substrate in which a structure having electrical characteristics is embedded, wherein the structure is inserted in a single layer or a multilayer. 제9항에 있어서, 핸들웨이퍼(36,56,70)와 제2다결정 실리콘(33,53,68) 사이의 절연막(35,55,69)을 생략함으로써 상기 핸들웨이퍼와 상기 제2다결정 실리콘을 전기적으로 연결시켜 상기 제2다결정 실리콘에 인가되어야 할 전기적 포텐셜을 상기 핸들웨이퍼로 부터 제공되는 것을 특징으로 하는 전기적 특성을 갖는 구조물이 매립된 반도체 기판.10. The handle wafer and the second polycrystalline silicon of claim 9 are omitted by omitting the insulating films 35, 55 and 69 between the handle wafers 36, 56 and 70 and the second polycrystalline silicon 33, 53 and 68. A semiconductor substrate having a structure having electrical characteristics embedded therein, the electrical potential being provided from the handle wafer to be electrically connected to the second polycrystalline silicon.
KR1019910007454A 1991-05-08 1991-05-08 Semiconductor substrate having the structure assembly varied and method of the same KR930006732B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019910007454A KR930006732B1 (en) 1991-05-08 1991-05-08 Semiconductor substrate having the structure assembly varied and method of the same
JP4116093A JPH0821621B2 (en) 1991-05-08 1992-05-08 Method for manufacturing semiconductor substrate in which structure having electrical characteristics is buried
US07/880,892 US5286670A (en) 1991-05-08 1992-05-08 Method of manufacturing a semiconductor device having buried elements with electrical characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019910007454A KR930006732B1 (en) 1991-05-08 1991-05-08 Semiconductor substrate having the structure assembly varied and method of the same

Publications (1)

Publication Number Publication Date
KR930006732B1 true KR930006732B1 (en) 1993-07-23

Family

ID=19314230

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019910007454A KR930006732B1 (en) 1991-05-08 1991-05-08 Semiconductor substrate having the structure assembly varied and method of the same

Country Status (3)

Country Link
US (1) US5286670A (en)
JP (1) JPH0821621B2 (en)
KR (1) KR930006732B1 (en)

Families Citing this family (206)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3526058B2 (en) * 1992-08-19 2004-05-10 セイコーインスツルメンツ株式会社 Semiconductor device for light valve
DE69329376T2 (en) * 1992-12-30 2001-01-04 Samsung Electronics Co Ltd Method of making an SOI transistor DRAM
US5413955A (en) * 1993-12-21 1995-05-09 Delco Electronics Corporation Method of bonding silicon wafers at temperatures below 500 degrees centigrade for sensor applications
DE4418430C1 (en) * 1994-05-26 1995-05-11 Siemens Ag Method for producing a silicon capacitor
US5429981A (en) * 1994-06-30 1995-07-04 Honeywell Inc. Method of making linear capacitors for high temperature applications
DE4433330C2 (en) * 1994-09-19 1997-01-30 Fraunhofer Ges Forschung Method for producing semiconductor structures with advantageous high-frequency properties and a semiconductor wafer structure
KR100389754B1 (en) * 1994-11-22 2003-10-17 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Semiconductor device with a carrier body on which a substrate with a semiconductor element is fastened by means of a glue layer and on which a pattern of conductor tracks is fastened
EP0759634A1 (en) * 1995-08-17 1997-02-26 Shin-Etsu Handotai Company Limited SOI wafer and method for the preparation thereof
US5889306A (en) * 1997-01-10 1999-03-30 International Business Machines Corporation Bulk silicon voltage plane for SOI applications
US6121659A (en) * 1998-03-27 2000-09-19 International Business Machines Corporation Buried patterned conductor planes for semiconductor-on-insulator integrated circuit
DE19960563B4 (en) * 1999-12-15 2005-11-03 Infineon Technologies Ag Semiconductor structure and corresponding manufacturing method
US6908361B2 (en) * 2002-09-10 2005-06-21 Winbond Electronics Corporation Method of planarization of semiconductor devices
FR2884050B1 (en) * 2005-04-01 2007-07-20 St Microelectronics Sa INTEGRATED CIRCUIT COMPRISING SUBSTRATE AND RESISTANCE
US7354809B2 (en) * 2006-02-13 2008-04-08 Wisconsin Alumi Research Foundation Method for double-sided processing of thin film transistors
US7910450B2 (en) * 2006-02-22 2011-03-22 International Business Machines Corporation Method of fabricating a precision buried resistor
US7960218B2 (en) 2006-09-08 2011-06-14 Wisconsin Alumni Research Foundation Method for fabricating high-speed thin-film transistors
KR101548173B1 (en) * 2008-09-18 2015-08-31 삼성전자주식회사 Wafer temporary bonding method using Si direct bondingSDB and semiconductor device and fabricating method thereof using the same bonding method
US8754533B2 (en) * 2009-04-14 2014-06-17 Monolithic 3D Inc. Monolithic three-dimensional semiconductor device and structure
US7986042B2 (en) 2009-04-14 2011-07-26 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8373439B2 (en) 2009-04-14 2013-02-12 Monolithic 3D Inc. 3D semiconductor device
US8427200B2 (en) 2009-04-14 2013-04-23 Monolithic 3D Inc. 3D semiconductor device
US8362482B2 (en) * 2009-04-14 2013-01-29 Monolithic 3D Inc. Semiconductor device and structure
US8058137B1 (en) 2009-04-14 2011-11-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US9577642B2 (en) 2009-04-14 2017-02-21 Monolithic 3D Inc. Method to form a 3D semiconductor device
US20110031997A1 (en) * 2009-04-14 2011-02-10 NuPGA Corporation Method for fabrication of a semiconductor device and structure
US8258810B2 (en) 2010-09-30 2012-09-04 Monolithic 3D Inc. 3D semiconductor device
US8362800B2 (en) 2010-10-13 2013-01-29 Monolithic 3D Inc. 3D semiconductor device including field repairable logics
US9711407B2 (en) * 2009-04-14 2017-07-18 Monolithic 3D Inc. Method of manufacturing a three dimensional integrated circuit by transfer of a mono-crystalline layer
US9509313B2 (en) 2009-04-14 2016-11-29 Monolithic 3D Inc. 3D semiconductor device
US8405420B2 (en) * 2009-04-14 2013-03-26 Monolithic 3D Inc. System comprising a semiconductor device and structure
US8395191B2 (en) * 2009-10-12 2013-03-12 Monolithic 3D Inc. Semiconductor device and structure
US8384426B2 (en) 2009-04-14 2013-02-26 Monolithic 3D Inc. Semiconductor device and structure
US8669778B1 (en) 2009-04-14 2014-03-11 Monolithic 3D Inc. Method for design and manufacturing of a 3D semiconductor device
US8378715B2 (en) 2009-04-14 2013-02-19 Monolithic 3D Inc. Method to construct systems
US11374118B2 (en) 2009-10-12 2022-06-28 Monolithic 3D Inc. Method to form a 3D integrated circuit
US11018133B2 (en) 2009-10-12 2021-05-25 Monolithic 3D Inc. 3D integrated circuit
US10157909B2 (en) 2009-10-12 2018-12-18 Monolithic 3D Inc. 3D semiconductor device and structure
US10910364B2 (en) 2009-10-12 2021-02-02 Monolitaic 3D Inc. 3D semiconductor device
US9099424B1 (en) 2012-08-10 2015-08-04 Monolithic 3D Inc. Semiconductor system, device and structure with heat removal
US8450804B2 (en) 2011-03-06 2013-05-28 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US10366970B2 (en) 2009-10-12 2019-07-30 Monolithic 3D Inc. 3D semiconductor device and structure
US10388863B2 (en) 2009-10-12 2019-08-20 Monolithic 3D Inc. 3D memory device and structure
US8476145B2 (en) 2010-10-13 2013-07-02 Monolithic 3D Inc. Method of fabricating a semiconductor device and structure
US8581349B1 (en) 2011-05-02 2013-11-12 Monolithic 3D Inc. 3D memory semiconductor device and structure
US8536023B2 (en) 2010-11-22 2013-09-17 Monolithic 3D Inc. Method of manufacturing a semiconductor device and structure
US8742476B1 (en) 2012-11-27 2014-06-03 Monolithic 3D Inc. Semiconductor device and structure
US8294159B2 (en) 2009-10-12 2012-10-23 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US10043781B2 (en) 2009-10-12 2018-08-07 Monolithic 3D Inc. 3D semiconductor device and structure
US10354995B2 (en) 2009-10-12 2019-07-16 Monolithic 3D Inc. Semiconductor memory device and structure
US8492886B2 (en) 2010-02-16 2013-07-23 Monolithic 3D Inc 3D integrated circuit with logic
US8461035B1 (en) 2010-09-30 2013-06-11 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US9099526B2 (en) 2010-02-16 2015-08-04 Monolithic 3D Inc. Integrated circuit device and structure
US8026521B1 (en) 2010-10-11 2011-09-27 Monolithic 3D Inc. Semiconductor device and structure
US8373230B1 (en) 2010-10-13 2013-02-12 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8298875B1 (en) 2011-03-06 2012-10-30 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8541819B1 (en) 2010-12-09 2013-09-24 Monolithic 3D Inc. Semiconductor device and structure
US9219005B2 (en) 2011-06-28 2015-12-22 Monolithic 3D Inc. Semiconductor system and device
US8901613B2 (en) 2011-03-06 2014-12-02 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US8642416B2 (en) 2010-07-30 2014-02-04 Monolithic 3D Inc. Method of forming three dimensional integrated circuit devices using layer transfer technique
US10217667B2 (en) 2011-06-28 2019-02-26 Monolithic 3D Inc. 3D semiconductor device, fabrication method and system
US9953925B2 (en) 2011-06-28 2018-04-24 Monolithic 3D Inc. Semiconductor system and device
US10497713B2 (en) 2010-11-18 2019-12-03 Monolithic 3D Inc. 3D semiconductor memory device and structure
US8163581B1 (en) 2010-10-13 2012-04-24 Monolith IC 3D Semiconductor and optoelectronic devices
US11482440B2 (en) 2010-12-16 2022-10-25 Monolithic 3D Inc. 3D semiconductor device and structure with a built-in test circuit for repairing faulty circuits
US8273610B2 (en) 2010-11-18 2012-09-25 Monolithic 3D Inc. Method of constructing a semiconductor device and structure
US11315980B1 (en) 2010-10-11 2022-04-26 Monolithic 3D Inc. 3D semiconductor device and structure with transistors
US11257867B1 (en) 2010-10-11 2022-02-22 Monolithic 3D Inc. 3D semiconductor device and structure with oxide bonds
US10896931B1 (en) 2010-10-11 2021-01-19 Monolithic 3D Inc. 3D semiconductor device and structure
US11469271B2 (en) 2010-10-11 2022-10-11 Monolithic 3D Inc. Method to produce 3D semiconductor devices and structures with memory
US11227897B2 (en) 2010-10-11 2022-01-18 Monolithic 3D Inc. Method for producing a 3D semiconductor memory device and structure
US8114757B1 (en) 2010-10-11 2012-02-14 Monolithic 3D Inc. Semiconductor device and structure
US11018191B1 (en) 2010-10-11 2021-05-25 Monolithic 3D Inc. 3D semiconductor device and structure
US11158674B2 (en) 2010-10-11 2021-10-26 Monolithic 3D Inc. Method to produce a 3D semiconductor device and structure
US11024673B1 (en) 2010-10-11 2021-06-01 Monolithic 3D Inc. 3D semiconductor device and structure
US10290682B2 (en) 2010-10-11 2019-05-14 Monolithic 3D Inc. 3D IC semiconductor device and structure with stacked memory
US11600667B1 (en) 2010-10-11 2023-03-07 Monolithic 3D Inc. Method to produce 3D semiconductor devices and structures with memory
US11164898B2 (en) 2010-10-13 2021-11-02 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11437368B2 (en) 2010-10-13 2022-09-06 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US8379458B1 (en) 2010-10-13 2013-02-19 Monolithic 3D Inc. Semiconductor device and structure
US10833108B2 (en) 2010-10-13 2020-11-10 Monolithic 3D Inc. 3D microdisplay device and structure
US11163112B2 (en) 2010-10-13 2021-11-02 Monolithic 3D Inc. Multilevel semiconductor device and structure with electromagnetic modulators
US11063071B1 (en) 2010-10-13 2021-07-13 Monolithic 3D Inc. Multilevel semiconductor device and structure with waveguides
US11133344B2 (en) 2010-10-13 2021-09-28 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US11404466B2 (en) 2010-10-13 2022-08-02 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US11605663B2 (en) 2010-10-13 2023-03-14 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11694922B2 (en) 2010-10-13 2023-07-04 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US10978501B1 (en) 2010-10-13 2021-04-13 Monolithic 3D Inc. Multilevel semiconductor device and structure with waveguides
US8283215B2 (en) 2010-10-13 2012-10-09 Monolithic 3D Inc. Semiconductor and optoelectronic devices
US11043523B1 (en) 2010-10-13 2021-06-22 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US9197804B1 (en) 2011-10-14 2015-11-24 Monolithic 3D Inc. Semiconductor and optoelectronic devices
US11869915B2 (en) 2010-10-13 2024-01-09 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11855100B2 (en) 2010-10-13 2023-12-26 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US10943934B2 (en) 2010-10-13 2021-03-09 Monolithic 3D Inc. Multilevel semiconductor device and structure
US10998374B1 (en) 2010-10-13 2021-05-04 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11855114B2 (en) 2010-10-13 2023-12-26 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11327227B2 (en) 2010-10-13 2022-05-10 Monolithic 3D Inc. Multilevel semiconductor device and structure with electromagnetic modulators
US10679977B2 (en) 2010-10-13 2020-06-09 Monolithic 3D Inc. 3D microdisplay device and structure
US11929372B2 (en) 2010-10-13 2024-03-12 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11355380B2 (en) 2010-11-18 2022-06-07 Monolithic 3D Inc. Methods for producing 3D semiconductor memory device and structure utilizing alignment marks
US11211279B2 (en) 2010-11-18 2021-12-28 Monolithic 3D Inc. Method for processing a 3D integrated circuit and structure
US11610802B2 (en) 2010-11-18 2023-03-21 Monolithic 3D Inc. Method for producing a 3D semiconductor device and structure with single crystal transistors and metal gate electrodes
US11355381B2 (en) 2010-11-18 2022-06-07 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11615977B2 (en) 2010-11-18 2023-03-28 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11164770B1 (en) 2010-11-18 2021-11-02 Monolithic 3D Inc. Method for producing a 3D semiconductor memory device and structure
US11482438B2 (en) 2010-11-18 2022-10-25 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11735462B2 (en) 2010-11-18 2023-08-22 Monolithic 3D Inc. 3D semiconductor device and structure with single-crystal layers
US11804396B2 (en) 2010-11-18 2023-10-31 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11508605B2 (en) 2010-11-18 2022-11-22 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11121021B2 (en) 2010-11-18 2021-09-14 Monolithic 3D Inc. 3D semiconductor device and structure
US11569117B2 (en) 2010-11-18 2023-01-31 Monolithic 3D Inc. 3D semiconductor device and structure with single-crystal layers
US11094576B1 (en) 2010-11-18 2021-08-17 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11482439B2 (en) 2010-11-18 2022-10-25 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device comprising charge trap junction-less transistors
US11443971B2 (en) 2010-11-18 2022-09-13 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11521888B2 (en) 2010-11-18 2022-12-06 Monolithic 3D Inc. 3D semiconductor device and structure with high-k metal gate transistors
US11495484B2 (en) 2010-11-18 2022-11-08 Monolithic 3D Inc. 3D semiconductor devices and structures with at least two single-crystal layers
US11901210B2 (en) 2010-11-18 2024-02-13 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11004719B1 (en) 2010-11-18 2021-05-11 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11923230B1 (en) 2010-11-18 2024-03-05 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11107721B2 (en) 2010-11-18 2021-08-31 Monolithic 3D Inc. 3D semiconductor device and structure with NAND logic
US11018042B1 (en) 2010-11-18 2021-05-25 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11031275B2 (en) 2010-11-18 2021-06-08 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11862503B2 (en) 2010-11-18 2024-01-02 Monolithic 3D Inc. Method for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11854857B1 (en) 2010-11-18 2023-12-26 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11784082B2 (en) 2010-11-18 2023-10-10 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US8975670B2 (en) 2011-03-06 2015-03-10 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US10388568B2 (en) 2011-06-28 2019-08-20 Monolithic 3D Inc. 3D semiconductor device and system
US8687399B2 (en) 2011-10-02 2014-04-01 Monolithic 3D Inc. Semiconductor device and structure
US9029173B2 (en) 2011-10-18 2015-05-12 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US9000557B2 (en) 2012-03-17 2015-04-07 Zvi Or-Bach Semiconductor device and structure
US11694944B1 (en) 2012-04-09 2023-07-04 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11088050B2 (en) 2012-04-09 2021-08-10 Monolithic 3D Inc. 3D semiconductor device with isolation layers
US11164811B2 (en) 2012-04-09 2021-11-02 Monolithic 3D Inc. 3D semiconductor device with isolation layers and oxide-to-oxide bonding
US11881443B2 (en) 2012-04-09 2024-01-23 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US10600888B2 (en) 2012-04-09 2020-03-24 Monolithic 3D Inc. 3D semiconductor device
US11410912B2 (en) 2012-04-09 2022-08-09 Monolithic 3D Inc. 3D semiconductor device with vias and isolation layers
US11735501B1 (en) 2012-04-09 2023-08-22 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US8557632B1 (en) 2012-04-09 2013-10-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US11616004B1 (en) 2012-04-09 2023-03-28 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11594473B2 (en) 2012-04-09 2023-02-28 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11476181B1 (en) 2012-04-09 2022-10-18 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US8574929B1 (en) 2012-11-16 2013-11-05 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US8686428B1 (en) 2012-11-16 2014-04-01 Monolithic 3D Inc. Semiconductor device and structure
US11018116B2 (en) 2012-12-22 2021-05-25 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US11916045B2 (en) 2012-12-22 2024-02-27 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11063024B1 (en) 2012-12-22 2021-07-13 Monlithic 3D Inc. Method to form a 3D semiconductor device and structure
US11217565B2 (en) 2012-12-22 2022-01-04 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US11309292B2 (en) 2012-12-22 2022-04-19 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11784169B2 (en) 2012-12-22 2023-10-10 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US8674470B1 (en) 2012-12-22 2014-03-18 Monolithic 3D Inc. Semiconductor device and structure
US10600657B2 (en) 2012-12-29 2020-03-24 Monolithic 3D Inc 3D semiconductor device and structure
US10651054B2 (en) 2012-12-29 2020-05-12 Monolithic 3D Inc. 3D semiconductor device and structure
US9871034B1 (en) 2012-12-29 2018-01-16 Monolithic 3D Inc. Semiconductor device and structure
US10115663B2 (en) 2012-12-29 2018-10-30 Monolithic 3D Inc. 3D semiconductor device and structure
US11087995B1 (en) 2012-12-29 2021-08-10 Monolithic 3D Inc. 3D semiconductor device and structure
US11430667B2 (en) 2012-12-29 2022-08-30 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11004694B1 (en) 2012-12-29 2021-05-11 Monolithic 3D Inc. 3D semiconductor device and structure
US11430668B2 (en) 2012-12-29 2022-08-30 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US10892169B2 (en) 2012-12-29 2021-01-12 Monolithic 3D Inc. 3D semiconductor device and structure
US9385058B1 (en) 2012-12-29 2016-07-05 Monolithic 3D Inc. Semiconductor device and structure
US11177140B2 (en) 2012-12-29 2021-11-16 Monolithic 3D Inc. 3D semiconductor device and structure
US10903089B1 (en) 2012-12-29 2021-01-26 Monolithic 3D Inc. 3D semiconductor device and structure
US8902663B1 (en) 2013-03-11 2014-12-02 Monolithic 3D Inc. Method of maintaining a memory state
US11869965B2 (en) 2013-03-11 2024-01-09 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and memory cells
US10325651B2 (en) 2013-03-11 2019-06-18 Monolithic 3D Inc. 3D semiconductor device with stacked memory
US11935949B1 (en) 2013-03-11 2024-03-19 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and memory cells
US10840239B2 (en) 2014-08-26 2020-11-17 Monolithic 3D Inc. 3D semiconductor device and structure
US11088130B2 (en) 2014-01-28 2021-08-10 Monolithic 3D Inc. 3D semiconductor device and structure
US11398569B2 (en) 2013-03-12 2022-07-26 Monolithic 3D Inc. 3D semiconductor device and structure
US8994404B1 (en) 2013-03-12 2015-03-31 Monolithic 3D Inc. Semiconductor device and structure
US11923374B2 (en) 2013-03-12 2024-03-05 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US9117749B1 (en) 2013-03-15 2015-08-25 Monolithic 3D Inc. Semiconductor device and structure
US10224279B2 (en) 2013-03-15 2019-03-05 Monolithic 3D Inc. Semiconductor device and structure
US11574109B1 (en) 2013-04-15 2023-02-07 Monolithic 3D Inc Automation methods for 3D integrated circuits and devices
US11341309B1 (en) 2013-04-15 2022-05-24 Monolithic 3D Inc. Automation for monolithic 3D devices
US11720736B2 (en) 2013-04-15 2023-08-08 Monolithic 3D Inc. Automation methods for 3D integrated circuits and devices
US11030371B2 (en) 2013-04-15 2021-06-08 Monolithic 3D Inc. Automation for monolithic 3D devices
US11487928B2 (en) 2013-04-15 2022-11-01 Monolithic 3D Inc. Automation for monolithic 3D devices
US9021414B1 (en) 2013-04-15 2015-04-28 Monolithic 3D Inc. Automation for monolithic 3D devices
US11270055B1 (en) 2013-04-15 2022-03-08 Monolithic 3D Inc. Automation for monolithic 3D devices
US10297586B2 (en) 2015-03-09 2019-05-21 Monolithic 3D Inc. Methods for processing a 3D semiconductor device
US11031394B1 (en) 2014-01-28 2021-06-08 Monolithic 3D Inc. 3D semiconductor device and structure
US11107808B1 (en) 2014-01-28 2021-08-31 Monolithic 3D Inc. 3D semiconductor device and structure
US10381328B2 (en) 2015-04-19 2019-08-13 Monolithic 3D Inc. Semiconductor device and structure
US11011507B1 (en) 2015-04-19 2021-05-18 Monolithic 3D Inc. 3D semiconductor device and structure
US11056468B1 (en) 2015-04-19 2021-07-06 Monolithic 3D Inc. 3D semiconductor device and structure
US10825779B2 (en) 2015-04-19 2020-11-03 Monolithic 3D Inc. 3D semiconductor device and structure
CN115942752A (en) 2015-09-21 2023-04-07 莫诺利特斯3D有限公司 3D semiconductor device and structure
US10522225B1 (en) 2015-10-02 2019-12-31 Monolithic 3D Inc. Semiconductor device with non-volatile memory
US11296115B1 (en) 2015-10-24 2022-04-05 Monolithic 3D Inc. 3D semiconductor device and structure
US11114464B2 (en) 2015-10-24 2021-09-07 Monolithic 3D Inc. 3D semiconductor device and structure
US10418369B2 (en) 2015-10-24 2019-09-17 Monolithic 3D Inc. Multi-level semiconductor memory device and structure
US10847540B2 (en) 2015-10-24 2020-11-24 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11114427B2 (en) 2015-11-07 2021-09-07 Monolithic 3D Inc. 3D semiconductor processor and memory device and structure
US11937422B2 (en) 2015-11-07 2024-03-19 Monolithic 3D Inc. Semiconductor memory device and structure
US11869591B2 (en) 2016-10-10 2024-01-09 Monolithic 3D Inc. 3D memory devices and structures with control circuits
US11251149B2 (en) 2016-10-10 2022-02-15 Monolithic 3D Inc. 3D memory device and structure
US11329059B1 (en) 2016-10-10 2022-05-10 Monolithic 3D Inc. 3D memory devices and structures with thinned single crystal substrates
US11711928B2 (en) 2016-10-10 2023-07-25 Monolithic 3D Inc. 3D memory devices and structures with control circuits
US11930648B1 (en) 2016-10-10 2024-03-12 Monolithic 3D Inc. 3D memory devices and structures with metal layers
US11812620B2 (en) 2016-10-10 2023-11-07 Monolithic 3D Inc. 3D DRAM memory devices and structures with control circuits
US10546915B2 (en) 2017-12-26 2020-01-28 International Business Machines Corporation Buried MIM capacitor structure with landing pads
US11296106B2 (en) 2019-04-08 2022-04-05 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11018156B2 (en) 2019-04-08 2021-05-25 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11763864B2 (en) 2019-04-08 2023-09-19 Monolithic 3D Inc. 3D memory semiconductor devices and structures with bit-line pillars
US10892016B1 (en) 2019-04-08 2021-01-12 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11158652B1 (en) 2019-04-08 2021-10-26 Monolithic 3D Inc. 3D memory semiconductor devices and structures

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308386A (en) * 1987-01-30 1988-12-15 Sony Corp Semiconductor device and manufacture thereof
JPH01120847A (en) * 1987-11-05 1989-05-12 Fujitsu Ltd Semiconductor device
JPH02208952A (en) * 1989-02-08 1990-08-20 Mitsubishi Electric Corp Semiconductor device and its manufacture
KR930000718B1 (en) * 1990-05-21 1993-01-30 삼성전자 주식회사 Method for fabricating semiconductor device
JP2913785B2 (en) * 1990-07-12 1999-06-28 富士通株式会社 Method for manufacturing semiconductor device
US5091330A (en) * 1990-12-28 1992-02-25 Motorola, Inc. Method of fabricating a dielectric isolated area

Also Published As

Publication number Publication date
JPH0661339A (en) 1994-03-04
JPH0821621B2 (en) 1996-03-04
US5286670A (en) 1994-02-15

Similar Documents

Publication Publication Date Title
KR930006732B1 (en) Semiconductor substrate having the structure assembly varied and method of the same
US5442223A (en) Semiconductor device with stress relief
US6429074B2 (en) Semiconductor memory device and method for fabricating the same
US5631186A (en) Method for making a dynamic random access memory using silicon-on-insulator techniques
US6538330B1 (en) Multilevel semiconductor-on-insulator structures and circuits
US6096621A (en) Polysilicon filled trench isolation structure for soi integrated circuits
US6004406A (en) Silicon on insulating substrate
JPH1074921A (en) Semiconductor device and manufacturing method thereof
JP2004179506A (en) Semiconductor substrate having soi structure, method for manufacturing semiconductor substrate and semiconductor device
US6037239A (en) Method for making a contact structure for a polysilicon filled trench isolation
JPH08509841A (en) Semiconductor device with current connection for high integration density
JPH05315564A (en) Semiconductor device and manufacture thereof
US5589419A (en) Process for fabricating semiconductor device having a multilevel interconnection
JP2839088B2 (en) Semiconductor device
US5847438A (en) Bonded IC substrate with a high breakdown voltage and large current capabilities
JP2861120B2 (en) Method for manufacturing semiconductor device
JPH06204440A (en) Soi type semiconductor device and manufacture thereof
KR100282216B1 (en) Soi DRAM and its manufacturing method
US5726089A (en) Semiconductor device and method for fabricating the same
JP2668873B2 (en) Semiconductor storage device
KR910002306B1 (en) Method for production of dram
JPH03104163A (en) Semiconductor storage device and manufacture thereof
JP2674570B2 (en) SO1 substrate and manufacturing method thereof
JPH0529574A (en) Manufacture of semiconductor device
JPH03270164A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19980616

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee