KR910008122B1 - Semiconductor memory device having stacked capacitor and method of fabricating thereof - Google Patents

Semiconductor memory device having stacked capacitor and method of fabricating thereof Download PDF

Info

Publication number
KR910008122B1
KR910008122B1 KR1019890004351A KR890004351A KR910008122B1 KR 910008122 B1 KR910008122 B1 KR 910008122B1 KR 1019890004351 A KR1019890004351 A KR 1019890004351A KR 890004351 A KR890004351 A KR 890004351A KR 910008122 B1 KR910008122 B1 KR 910008122B1
Authority
KR
South Korea
Prior art keywords
conductive material
charge storage
electrode
forming
dielectric film
Prior art date
Application number
KR1019890004351A
Other languages
Korean (ko)
Other versions
KR900017086A (en
Inventor
김재갑
Original Assignee
현대전자산업 주식회사
정몽헌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대전자산업 주식회사, 정몽헌 filed Critical 현대전자산업 주식회사
Priority to KR1019890004351A priority Critical patent/KR910008122B1/en
Priority to US07/503,228 priority patent/US5059548A/en
Priority to JP2090041A priority patent/JPH07118521B2/en
Publication of KR900017086A publication Critical patent/KR900017086A/en
Priority to US07/726,863 priority patent/US5162249A/en
Application granted granted Critical
Publication of KR910008122B1 publication Critical patent/KR910008122B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

The semiconductor memory device having double stacked capacitor structure is manufactured by forming a dielectric layer even at the side wall of contact hole formed at cell plate electrode (16) above the drain electrode (6). When charge storage electrode (10,14) is connected with drain electrode. This method provides sufficient capacitance through increase in capacitor surface area to reduce memory cell.

Description

2중 적층 캐패시터 구조를 갖는 반도체 기억장치 및 그 제조방법Semiconductor memory device having double stacked capacitor structure and manufacturing method thereof

제1도는 종래방법에 따라 제조된 2중 적층캐패시터 구조를 갖는 반도체 기억장치 단면도.1 is a cross-sectional view of a semiconductor memory device having a double stacked capacitor structure manufactured according to a conventional method.

제2a도 내지 제2g도는 본 발명에 따라 2중 적층캐패시터 구조를 갖는 반도체 기억장치의 제조과정을 나타내는 단면도.2A to 2G are cross-sectional views showing the fabrication process of a semiconductor memory device having a double stacked capacitor structure according to the present invention.

제3a도 내지 제3g도는 본 발명의 일실시예를 따라 2중 적층캐패시터 구조를 갖는 반도체 기억장치의 제조과정을 나타내는 단면도.3A to 3G are cross-sectional views illustrating a manufacturing process of a semiconductor memory device having a double stacked capacitor structure in accordance with an embodiment of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 실리콘 기판 2 : 소자분리 산화막1 silicon substrate 2 device isolation oxide film

3 : 게이트 산화막 4 및 4' : 게이트전극 및 게이트 전극선3: gate oxide films 4 and 4 ': gate electrode and gate electrode line

5 및 17 : 산화막 스페이서 6 및 6' : 소오스 및 드레인영역5 and 17: oxide spacer 6 and 6 ': source and drain regions

7 및 20 : 산화막 8 및 16 : 셀플레이트전극7 and 20: oxide film 8 and 16: cell plate electrode

9, 12 및 15 : 유전체막 10 및 14 : 전하보존전극9, 12, and 15: dielectric films 10 and 14: charge storage electrode

13 : 전도물질 스페이서 13' : 전도물질13: conductive material spacer 13 ': conductive material

11 및 19 : 감광물질 18 : 질화막11 and 19: photosensitive material 18: nitride film

본 발명은 전하보존전극을 중심으로 위,아래로 셀플레이트전극이 둘러싼 2중 적층캐패시터 구조를 갖는 반도체 기억장치 및 그 제조방법에 관한 것으로, 특히 전하보존전극을 드레인 전극에 접속하기 위해 셀플레이트전극에 형성할 때 홈벽면에도 유전체막을 형성하여 캐패시터 용량을 증대시키는 2중 적층캐패시터 구조를 갖는 반도체 기억장치 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory device having a double stacked capacitor structure surrounded by cell plate electrodes up and down around a charge storage electrode, and a method of manufacturing the same. Particularly, a cell plate electrode is used to connect a charge storage electrode to a drain electrode. The present invention relates to a semiconductor memory device having a double stacked capacitor structure in which a dielectric film is also formed on the groove wall surface to increase the capacitor capacity when formed in the trench.

DRAM 반도체 기억장치는 집적도 증가에 따라 캐패시터 구조가 트렌치형 및 적층형 구조로 크게 분류되어 지금까지 여러가지 구조들이 개발되어져 왔다. 적층형 캐패시터 구조의 경우, 집적도 증가에 따른 단위셀의 면적이 축소되어 캐패시터의 용량측면에서 한계에 도달되어, 이러한 캐패시터 용량에 대한 한계를 극복하기 위하여 단위구조에서 셀플레이트전극이 전하보존전극을 중심으로 위 아래로 둘러싼 2중 적층캐패시터 구조로 구성하여 캐패시터 용량을 증대시키고자 하였다.As DRAM semiconductor memory devices have increased in density, capacitor structures have been largely classified into trench and stacked structures, and various structures have been developed so far. In the case of the stacked capacitor structure, the area of the unit cell is reduced due to the increase in the density, and thus the limit is reached in terms of the capacitance of the capacitor. In order to overcome the limitation on the capacitor capacity, the cell plate electrode is centered on the charge storage electrode in the unit structure. In order to increase the capacity of the capacitor by constructing a double stacked capacitor structure surrounding the top and bottom.

2층 적층캐패시터의 구조를 구성하기 위해서는 전하보존전극은 셀플레이트전극을 지나 드레인전극과 연결되어야 한다. 그러므로 전하보존전극과 드레인전극을 접촉시키기 위한 콘택의 크기만큼은 캐패시터 전극의 표면적에서 제외되었다.In order to construct the structure of the two-layer stacked capacitor, the charge storage electrode must be connected to the drain electrode through the cell plate electrode. Therefore, the size of the contact for contacting the charge storage electrode and the drain electrode was excluded from the surface area of the capacitor electrode.

종래의 2중 적층캐패시터의 형성방법은 전하보존전극과 드레인전극을 접촉시키기 위해 드레인전극위의 셀플레이트전극 부분에 콘택(홈)을 형성한후, 콘택의 측벽(셀플레이트 측벽)에 산화막 스페이서를 형성함으로써 셀플레이트전극과 전하보존전극과의 접촉을 방지하면서 전하보존전극을 드레인전극에 연결시켰다. 그러므로 캐패시터전극의 표면적은 이 콘택크기만큼 감소하게 된다.In the conventional method of forming a double stacked capacitor, a contact (groove) is formed in the cell plate electrode portion on the drain electrode to contact the charge storage electrode and the drain electrode, and then an oxide spacer is formed on the sidewall (cell plate sidewall) of the contact. By forming, the charge storage electrode was connected to the drain electrode while preventing contact between the cell plate electrode and the charge storage electrode. Therefore, the surface area of the capacitor electrode is reduced by this contact size.

따라서, 본 발명은 동일면적에서 캐패시터 용량을 높이도록 전하보존전극과 드레인전극을 연결하는 공정에서 드레인전극 위의 셀플레이트전극에 콘택을 형성한 후 콘택의 측벽(셀플레이트 측벽)에도 캐패시터 유전체막을 형성하여 이루어지는 2중 적층캐패시터 구조를 갖는 반도체 기억장치 및 그 제조방법을 제공하는데 그 목적이 있다.Therefore, the present invention forms a capacitor dielectric film on the sidewall (cell plate sidewall) of the contact after forming a contact on the cell plate electrode on the drain electrode in the process of connecting the charge storage electrode and the drain electrode to increase the capacitor capacity in the same area. SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor memory device having a double stacked capacitor structure and a method of manufacturing the same.

종래의 방법에 비해 본 발명은 콘택의 측벽표면적만큼 더 캐패시터 용량을 증가시킬 수 있다.Compared to the conventional method, the present invention can increase the capacitor capacity by the side wall surface area of the contact.

이하, 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, described in detail with reference to the accompanying drawings.

제1도는 종래의 방법에 따라 형성된 2중 적층캐패시터 구조를 갖는 반도체 기억장치를 나타낸 단면도로써, 실리콘 기판(1) 상부에 소자분리산화막(2)을 형성하고 게이트산화막(3) 및 게이트 전도물질을 순차적으로 형성시키고, 마스크패턴 공정으로 게이트전극 및 게이트 전극선(4 및 4')을 형성한 다음 이온주입으로 소오스 및 드레인영역(6 및 6')에 불순물을 주입시킨 후, 산화막(7)을 전영역에 형성하고 드레인영역(6') 상부에 2중 적층캐패시터를 형성하는 것으로, 드레인영역(6') 상부에 제1차 플레이트전극(8), 캐패시터 유전체막(9), 전하보존전극(10) 유전체막(15) 및 플레이트전극(16)로 적층시켜 형성하되, 셀플레이트전극(8)에 콘택(홈)을 형성하고 산화막 스페이서(17)을 콘택 벽면에 형성한 다음 상부의 전하보존전극(10)을 드레인영역(6')에 접속시킨 상태를 도시하고 있다.FIG. 1 is a cross-sectional view showing a semiconductor memory device having a double stacked capacitor structure formed in accordance with a conventional method. The device isolation oxide film 2 is formed on a silicon substrate 1, and the gate oxide film 3 and the gate conductive material are formed. After forming sequentially, the gate electrode and the gate electrode lines 4 and 4 'are formed by a mask pattern process, and impurities are implanted into the source and drain regions 6 and 6' by ion implantation, and then the oxide film 7 is removed. Forming a double stacked capacitor on the drain region 6 ', the primary plate electrode 8, the capacitor dielectric film 9, and the charge storage electrode 10 on the drain region 6'. The dielectric film 15 and the plate electrode 16 are stacked to form a contact. A contact (groove) is formed in the cell plate electrode 8, and an oxide spacer 17 is formed on the contact wall. 10 is connected to the drain region 6 ' It is shown.

그러나, 본 발명은 종래의 셀플레이트전극(8)에 형성된 콘택 벽면에 유전체막을 형성시켜 용량이 증대된 2중 적층캐패시터를 제조하는 것으로, 제2a도 내지 제2g도를 참고하여 설명하기로 한다.However, the present invention is to fabricate a double stacked capacitor with increased capacitance by forming a dielectric film on the contact wall formed on the conventional cell plate electrode 8, which will be described with reference to FIGS. 2A to 2G.

제2a도는 실리콘 기판(1)상에 소자분리산화막(2)을 형성하고자 게이트 산화막(3) 및 게이트 전도물질을 순차적으로 형성한다음, 패턴을 형성시켜서 게이트전극 및 게이트 전극선(4 및 4')을 형성하고, 이온주입방법으로 LDD(Lightly Doped Drain) 영역의 소오스 및 드레인영역(6 및 6')을 형성한 후, 게이트전극(4)측벽에 산화막 스페이서(5)를 형성한 상태의 단면도이다.FIG. 2A sequentially forms the gate oxide film 3 and the gate conductive material in order to form the device isolation oxide film 2 on the silicon substrate 1, and then forms a pattern to form the gate electrode and the gate electrode lines 4 and 4 '. Is a cross-sectional view of the oxide spacer 5 formed on the side wall of the gate electrode 4 after forming the source and drain regions 6 and 6 'of the LDD (Lightly Doped Drain) region by an ion implantation method. .

제2b도는 상기 게이트전극(4)과 셀플레이트전극(8)을 절연시키기 위하여 산화막(7)을 일정두께로 침착한 상태의 단면도이다.2B is a cross-sectional view of the oxide film 7 deposited at a predetermined thickness to insulate the gate electrode 4 and the cell plate electrode 8 from each other.

제2c도는 상기 산화막(7) 상부에 셀플레이트전극용 전도물질을 침착하고 패턴을 형성시켜 제1차 셀플레이트전극(8)을 형성한다음 캐패시터 유전체막(9)을 형성하고, 전하보존전극용 전도물질(10')을 침착하며, 전하보존전극용 전도물질(10')과 드레인영역(6')을 연결시키기 위해 드레인영역(6') 상부에 감광물질(11)로 드레인 콘택마스크를 형성한 상태를 도시하고 있다.2C illustrates the formation of a primary cell plate electrode 8 by depositing a conductive material for a cell plate electrode on the oxide film 7 and forming a pattern, and then forming a capacitor dielectric film 9 and forming a charge storage electrode. A drain contact mask is formed of the photosensitive material 11 on the drain region 6 'to deposit the conductive material 10' and to connect the conductive material 10 'for the charge storage electrode and the drain region 6'. One state is shown.

제2d도는 상기 감광물질(11)이 제거된 부분의 전하보존전극용 전도물질(10'), 캐패시터 유전체막(9), 셀플레이트전극(8) 및 산화막(7)을 순서대로 식각한 다음 다시 감광물질(11)을 완전히 제거하고 전체적으로 캐패시터 유전체막(12)과 전도물질(13')을 침착한 단면도로써, 상기 전도물질(13')은 콘택부분의 셀플레이트전극(8) 측벽에 형성된 캐패시터 유전체막을 보호하기 위해 침착한 것이다.FIG. 2D shows the conductive material 10 ', the capacitor dielectric film 9, the cell plate electrode 8, and the oxide film 7 in the portion where the photosensitive material 11 is removed, and then etched again. A cross-sectional view of completely removing the photosensitive material 11 and depositing the capacitor dielectric layer 12 and the conductive material 13 'as a whole, wherein the conductive material 13' is formed on a sidewall of the cell plate electrode 8 of the contact portion. It is deposited to protect the dielectric film.

제2e도는 콘택부분의 측벽의 전도물질(13')을 비등방성으로 식각하여 스페이서(13)를 형성한 후 전하보존전극용 전도물질(10') 상부 및 드레인영역(6') 상부에 있는 캐패시터 유전체막(12)을 비등방성식각으로 식각한 상태의 단면도이다.FIG. 2E shows an anisotropic etching of the conductive material 13 'on the sidewall of the contact portion to form the spacer 13, and then the capacitor on the upper portion of the conductive material 10' and the drain region 6 'of the charge storage electrode. A cross-sectional view of the dielectric film 12 etched by anisotropic etching.

제2f도는 전하보존전극용 전도물질(10')과 드레인영역(6')을 연결시키기 위해 전하보존전극용 전도물질(14')을 침착한 상태를 도시하고 있다.FIG. 2F shows a state in which the charge storage electrode conductive material 14 'is deposited to connect the charge storage electrode conductive material 10' and the drain region 6 '.

제2g도는 마스크패턴을 형성하여 전하보존전극(10 및 14)을 형성하고 제2차 캐패시터 유전체막(15)을 형성한후, 제2차 셀플레이트전극(16)을 형성한 상태의 단면도이다.FIG. 2G is a cross-sectional view of a state in which the secondary cell plate electrode 16 is formed after the mask pattern is formed to form the charge storage electrodes 10 and 14, the secondary capacitor dielectric layer 15 is formed.

상기 공정이후에 절연체를 형성하고 소오스영역(6)에 비트선을 접속시킨 후 보호층을 형성하여 반도체 기억소자를 완성시킨다.After the above process, an insulator is formed, a bit line is connected to the source region 6, and a protective layer is formed to complete the semiconductor memory device.

제3a도부터 제3g도까지 는 본 발명에 의해 콘택영역에 유전체를 형성하기 위한 일실시예로써, 제2a도와 제2b도까지는 제조과정이 동일하므로 생략한다.3A to 3G are exemplary embodiments for forming a dielectric in the contact region according to the present invention, and the manufacturing processes are the same as those of FIGS. 2A and 2B, and thus will be omitted.

제3a도는 제2b도의 공정후에 제1차 셀플레이트용 전도물질(8')을 전영역에 걸쳐 일정두께로 침착한 상태의 단면도이다.FIG. 3A is a cross-sectional view of the first cell plate conductive material 8 'deposited at a predetermined thickness over the entire area after the process of FIG. 2B.

제3b도는 제1차 셀플레이트전극(8)을 형성한 후 전하보존전극을 드레인영역(6')에 연결시키기 위해 드레인영역(6') 상부 일정부분의 제1차 셀플레이트전극(8)과 산화막(7)을 식각하여 드레인콘택을 형성하고 제1차 캐패시터 유전체막(9)을 형성한 상태의 단면도이다.3B illustrates the formation of the primary cell plate electrode 8 and the primary cell plate electrode 8 of a predetermined portion of the drain region 6 'to connect the charge storage electrode to the drain region 6'. The oxide film 7 is etched to form a drain contact, and a cross-sectional view of a state in which the primary capacitor dielectric film 9 is formed.

제3c도는 전하보존전극용 전도물질(10')을 침착하고, 그위에 질화막(18)을 침착한 후, 질화막(18)을 콘택저부에만 남기기 위해 에치백(Etch Back) 공정용 감광물질(19)(또는 Polyimide, 또는 SOG)을 도포한 상태를 도시하고 있다.3C shows a photosensitive material for an etch back process for depositing a conductive material 10 ′ for a charge storage electrode, depositing a nitride film 18 thereon, and leaving the nitride film 18 only at the bottom of the contact. ) (Or Polyimide or SOG) is shown.

제3d도는 감광물질(19)(또는 Polymide, 또는 SOG)과 질화막(18)의 식각선택비(Etch Selectivity)를 같게해서 에치백하여 콘택저부에만 질화막(18)을 남게한 후 열적으로 산화막(20)을 성장시킨 상태의 단면도이다.3d illustrates that the etch selectivity of the photosensitive material 19 (or polymide or SOG) and the nitride film 18 is etched back to leave the nitride film 18 only at the bottom of the contact, and then the oxide film 20 It is sectional drawing of state to have grown.

제3e도는 콘택밑 부분의 질화막(18)만을 식각한 후, 산화막(20)을 마스크로하여 콘택밑 부분의 전하보존전극용 전도물질(10')을 식각한 다음, 상기 보존전극용 전도물질(10')위의 마스크층으로 사용된 산화막(20)과 드레인영역(6')상에 있는 캐패시터 유전체막(9)을 식각한 상태의 단면도이다.In FIG. 3E, only the nitride film 18 in the bottom portion of the contact is etched, and then the conductive material 10 'for the charge storage electrode in the bottom portion is etched using the oxide film 20 as a mask. 10 is a cross-sectional view of the oxide film 20 used as the mask layer over the capacitor layer and the capacitor dielectric film 9 on the drain region 6 '.

제3f도는 전하보존전극용 전도물질(10')과 드레인영역(6')을 연결시키기 위해 전하보조전극용 전도물질을 침착한 후 마스크패턴을 형성하여 전하보존전극(10 및 14)을 형성한 상태의 단면도이다.FIG. 3f shows that the charge preservation electrodes 10 and 14 are formed by depositing the conduction material for the charge assist electrode to connect the conductive material 10 'for the charge storage electrode and the drain region 6', and then forming a mask pattern. It is a cross section of the condition.

제3g도는 제2차 캐패시터 유전체막(15)을 형성한후 제2차 셀플레이트전극(16)을 형성한 상태의 단면도이다.FIG. 3G is a cross-sectional view of the second cell plate electrode 16 formed after the second capacitor dielectric film 15 is formed.

상기와 같은 제조방법으로 드레인콘택 부분의 셀플레이트전극 측벽에 캐패시터 유전체막을 형성하여 전하보존전극의 표면적을 증가시킴으로써 종래의 구조에 비해 캐패시터 축적용량을 증가시킬 수 있다.By using the manufacturing method as described above, a capacitor dielectric film is formed on the sidewalls of the cell plate electrodes of the drain contact portion, thereby increasing the surface area of the charge storage electrode, thereby increasing the capacitor storage capacity as compared with the conventional structure.

Claims (5)

실리콘 기판(1)에 MOSFET를 형성하는 공정과, MOSFET의 드레인영역(6')에 접속된 2중 적층캐패시터를 형성하는 공정으로 이루어지는 반도체 기억장치의 제조방법에 있어서, 상기 2중 적층캐패시터를 형성하는 공정은, 드레인영역(6')상부에 제1차 셀플레이트전극(8), 유전체막(9), 전하보존전극용 전도물질(10')을 적층시켜 형성하는 단계와, 상기 전하보존전극용 전도물질(10'), 유전체막(9), 제1차 셀플레이트전극(8) 및 절연체(7)의 드레인영역(6') 일정상부에 콘택홈을 형성하는 단계와, 상기 콘택홈 및 전하보존전극용 전도물질(10') 상부에 유전체막(12) 및 전도물질(13')을 형성하고, 비등방성 식각으로 전도물질 스페이서(13)를 콘택측벽에 형성하는 단계와, 상기 전하보존전극용 전도물질(10') 상부 및 콘택하부의 노출된 유전체막(12)을 다시 식각하는 단계와, 상기 단계후 전영역에 걸쳐 전하보존전극용 전도물질(14')을 형성하여 전하보존전극용 전도물질(10')을 드레인영역(6')에 접속한 후 마스크패턴 공정으로 전하보존전극(10 및 14)을 형성하는 단계와, 상기 전하보존전극(10 및 14) 상부에 유전체막(15)을 형성하는 단계와, 상기 유전체막(15) 상부에 제2차 셀플레이트전극용 전도물질은 형성한 후 마스크패턴 공정으로 제2차 셀플레이트전극(16)을 형성하는 단계로 이루어져 콘택측벽에도 유전체로 형성시키는 것을 특징으로 하는 2중 적층캐패시터 구조를 갖는 반도체 기억장치 제조방법.A method of manufacturing a semiconductor memory device, comprising forming a MOSFET on a silicon substrate 1 and forming a double stacked capacitor connected to the drain region 6 'of the MOSFET, wherein the double stacked capacitor is formed. The step of forming a semiconductor device comprises: forming a primary cell plate electrode 8, a dielectric film 9, and a conductive material 10 'for charge storage electrodes on the drain region 6'; Forming a contact groove on a predetermined portion of the conductive material 10 ', the dielectric film 9, the primary cell plate electrode 8, and the drain region 6' of the insulator 7. Forming a dielectric film 12 and a conductive material 13 'on the conductive material 10' for the charge storage electrode, and forming the conductive material spacer 13 on the contact side wall by anisotropic etching; Etching back the exposed dielectric film 12 above and below the electrode conductive material 10 '; The charge storage electrode conductive material 14 'is formed over the entire region to connect the charge storage electrode conductive material 10' to the drain region 6 ', and then the charge storage electrodes 10 and 14 are subjected to a mask pattern process. ), Forming a dielectric film 15 on the charge storage electrodes 10 and 14, and forming a conductive material for the secondary cell plate electrode on the dielectric film 15. A method of manufacturing a semiconductor memory device having a double stacked capacitor structure, comprising forming a secondary cell plate electrode (16) by a mask pattern process to form a dielectric on the contact side walls. 제1항에 있어서, 상기 2중 적층캐패시터를 형성하는 공정은, 드레인(6') 상부에 제1차 플레이트전극(8)을 형성하고, 드레인영역(6')상의 제1차 플레이트전극(8) 및 절연체(7)의 일정부분에 콘택홈을 형성하는 단계와, 상기 콘택 및 제1차 셀플레이트전극(8)상부에 유전체(9) 및 전하보존전극용 전도물질(10')을 각각 형성하는 단계와, 상기 콘택하부의 전하보존전극용 전도물질(10') 및 유전체막(9)의 일정부분을 제거하는 단계와, 상기 전하보존전극용 전도물질(10') 및 드레인영역(6')에 다시 전하보존전극용 전도물질을 형성하여 접속하고 마스크패턴 공정으로 전하보존전극(10 및 14)을 형성하는 단계와, 상기 전하보존전극(10 및 14) 상부에 유전체(15)을 형성하고 제2차 셀플레이트전극용 전도물질을 형성하고 마스크패턴 공정으로 제2차 셀플레이트전극(16)을 형성하는 단계를 포함하는 것을 특징으로 하는 2중 적층캐패시터 구조를 갖는 반도체 기억장치의 제조방법.2. The process of claim 1, wherein the forming of the double stacked capacitor comprises forming a primary plate electrode 8 over the drain 6 'and forming a primary plate electrode 8 on the drain region 6'. And forming a contact groove in a portion of the insulator (7), and forming a dielectric (9) and a conductive material (10 ') for the charge storage electrode on the contact and the primary cell plate electrode (8), respectively. And removing a portion of the conductive material 10 'for the charge storage electrode and the dielectric layer 9 under the contact, and the conductive material 10' for the charge storage electrode 10 'and the drain region 6'. Forming and connecting a conductive material for the charge storage electrode and forming the charge storage electrodes 10 and 14 by a mask pattern process, and forming a dielectric 15 on the charge storage electrodes 10 and 14. The conductive material for the secondary cell plate electrode is formed and the secondary cell plate electrode 16 is formed by a mask pattern process. A method for fabricating a semiconductor memory device having a stacked capacitor structure of the second comprising the steps: 제2항에 있어서, 상기 콘택하부의 전하보존전극용 전도물질(10') 및 유전체(9)의 일정부분을 제거하는 단계는, 상기 전하보존전극용 전도물질(10')상부에 질화막(18)과 감광물질(19) 또는 폴리마이드 또는 SOG)을 도포하는 단계와, 에치백 공정으로 콘택하부 질화막(18)만 남겨두고 전하보존전극용 전도물질(10')상부의 감광물질(19)과 질화막(18)을 제거하는 단계와, 노출된 전하보존전극용 전도물질(10') 상부에 산화막(20)을 성장시키는 단계와, 상기 산화막(20)을 식각장벽층으로 하여 상기 콘택하부의 질화막(18) 및 그 하부의 전하보존전극용 전도물질(10')을 식각하는 단계와 , 상기 산화막(20)과 콘택하부의 유전체막(9)를 제거하는 단계로 이루어진 것을 특징으로 하는 2중 적층캐패시터 구조를 갖는 반도체 기억장치 제조방법.3. The method of claim 2, wherein the removing of the portion of the conductive material 10 ′ for the charge storage electrode and the dielectric 9 under the contact is performed on the nitride film 18 over the conductive material 10 ′ for the charge storage electrode. ) And the photosensitive material 19 or polyamide or SOG), and the photosensitive material 19 on the conductive material 10 'for the charge preserving electrode, leaving only the lower nitride film 18 by the etch back process. Removing the nitride film 18, growing an oxide film 20 over the exposed conductive material 10 'for the charge storage electrode, and using the oxide film 20 as an etch barrier layer. (18) and etching the conductive material 10 'for the lower portion of the charge preserving electrode, and removing the oxide film 20 and the dielectric film 9 under the contact. A method of manufacturing a semiconductor memory device having a capacitor structure. 실리콘 기판에 MOSFET가 형성되고 MOSFET 드레인 영역(6') 상부에 2중 적층캐패시터가 형성되는 반도체 기억장치에 있어서, 2중 적층캐패시터 구조는, 셀플레이트전극(8 및 16)이 전하보존전극(10 및 14)을 중심으로 상,하로 둘러쌓여 있고, 전극간에는 캐패시터 유전체막(9 및 15)이 형성되고 전하보존전극(10 및 14)은 드레인영역(6')상에 접속되되 제1차 셀플레이트전극(8)에 형성된 콘택을 통하여 접속되며 콘택측벽은 유전체막(12)이 형성되어 단위면적당 캐패시터 표면적을 증가시킨 것을 특징으로 하는 2중 적층캐패시터 구조를 갖는 반도체 기억장치.In a semiconductor memory device in which a MOSFET is formed on a silicon substrate and a double stacked capacitor is formed over the MOSFET drain region 6 ', the double stacked capacitor structure has a cell plate electrode 8 and 16 having a charge storage electrode 10. And a capacitor dielectric film 9 and 15 formed between the electrodes, and the charge storage electrodes 10 and 14 are connected on the drain region 6 ', and the primary cell plate. A semiconductor memory device having a double stacked capacitor structure, which is connected through a contact formed in an electrode (8), and the contact side wall has a dielectric film (12) formed to increase the capacitor surface area per unit area. 제4항에 있어서, 상기 전하보존전극 상부 유전체막(15)과 하부 유전체막(9)은 콘택측벽의 유전체막(12)과 접속된 것을 특징으로 하는 2중 적층캐패시터 구조를 갖는 반도체 기억장치.5. The semiconductor memory device according to claim 4, wherein the charge storage electrode upper dielectric film (15) and the lower dielectric film (9) are connected to the dielectric film (12) on the contact side wall.
KR1019890004351A 1989-04-03 1989-04-03 Semiconductor memory device having stacked capacitor and method of fabricating thereof KR910008122B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019890004351A KR910008122B1 (en) 1989-04-03 1989-04-03 Semiconductor memory device having stacked capacitor and method of fabricating thereof
US07/503,228 US5059548A (en) 1989-04-03 1990-04-02 Method of making a semiconductor memory device having a double stacked capacitor
JP2090041A JPH07118521B2 (en) 1989-04-03 1990-04-03 Semiconductor memory device having two-layer laminated capacitor structure and method of manufacturing the same
US07/726,863 US5162249A (en) 1989-04-03 1991-07-08 Method of making semiconductor memory device having a double stacked capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019890004351A KR910008122B1 (en) 1989-04-03 1989-04-03 Semiconductor memory device having stacked capacitor and method of fabricating thereof

Publications (2)

Publication Number Publication Date
KR900017086A KR900017086A (en) 1990-11-15
KR910008122B1 true KR910008122B1 (en) 1991-10-10

Family

ID=19285046

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890004351A KR910008122B1 (en) 1989-04-03 1989-04-03 Semiconductor memory device having stacked capacitor and method of fabricating thereof

Country Status (2)

Country Link
JP (1) JPH07118521B2 (en)
KR (1) KR910008122B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03178115A (en) * 1989-12-06 1991-08-02 Matsushita Electric Ind Co Ltd Manufacture of solid electrolytic capacitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156566A (en) * 1988-12-08 1990-06-15 Mitsubishi Electric Corp Semiconductor storage device and its manufacture

Also Published As

Publication number Publication date
JPH07118521B2 (en) 1995-12-18
KR900017086A (en) 1990-11-15
JPH02295160A (en) 1990-12-06

Similar Documents

Publication Publication Date Title
KR930002292B1 (en) Semiconductor device and method for manufacturing thereof
US5284787A (en) Method of making a semiconductor memory device having improved electrical characteristics
US5523542A (en) Method for making dynamic random access memory cell capacitor
KR100673673B1 (en) Dram cell arrangement and method for fabricating it
KR940009616B1 (en) Hole capacitor cell & manufacturing method thereof
US5714401A (en) Semiconductor device capacitor manufactured by forming stack with multiple material layers without conductive layer therebetween
US5723889A (en) Semiconductor memory device and method for fabricating the same
JPH0645551A (en) Semiconductor device and its manufacture
US20020123208A1 (en) Method of fabricating a self-aligned shallow trench isolation
JPS6384149A (en) Manufacture of semiconductor memory
KR910008122B1 (en) Semiconductor memory device having stacked capacitor and method of fabricating thereof
US5201991A (en) Process for formation of capacitor
KR910008123B1 (en) Semiconductor memory device having stacked capacitor and method of fabricating thereof
US5698375A (en) Process for formation of capacitor electrode for semiconductor device
KR100356776B1 (en) Method of forming self-aligned contact structure in semiconductor device
GB2336716A (en) DRAM cell capacitor and method for fabricating thereof
JPH0319362A (en) Semiconductor memory and manufacture thereof
KR970010681B1 (en) Method of manufacturing a storage node
KR940001253B1 (en) Semiconductor memory device
KR0135692B1 (en) Fabrication method of capacitor of semiconductor
KR960013644B1 (en) Capacitor manufacture method
KR100369484B1 (en) Method for manufacturing capacitor of semiconductor device
US6667234B2 (en) Method of fabricating node contacts
KR100275599B1 (en) Method for forming trench capacitor
KR910009615B1 (en) Semiconductor memory device and method for manufacture there of

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020918

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee