JPH03178115A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH03178115A
JPH03178115A JP31683289A JP31683289A JPH03178115A JP H03178115 A JPH03178115 A JP H03178115A JP 31683289 A JP31683289 A JP 31683289A JP 31683289 A JP31683289 A JP 31683289A JP H03178115 A JPH03178115 A JP H03178115A
Authority
JP
Japan
Prior art keywords
oxide film
dielectric oxide
manganese dioxide
dioxide layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31683289A
Other languages
Japanese (ja)
Inventor
Sumio Nishiyama
西山 澄夫
Junichi Kurita
淳一 栗田
Hiroyuki Tokumasu
徳舛 弘幸
Tsutomu Aisaka
勉 相阪
Takao Kajikawa
梶川 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31683289A priority Critical patent/JPH03178115A/en
Publication of JPH03178115A publication Critical patent/JPH03178115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To contrive to stabilize leakage current characteristics under a high temperature and moisture by a method wherein a process for forming a dielectric oxide film, a process for forming a manganese dioxide layer and a process for performing a repairing formation of the dielectric oxide film are provided. CONSTITUTION:A manganese dioxide layer is formed on a dielectric oxide film formed on a porous sintered body consisting of a valve action metal and after the formation of this manganese dioxide layer, water content is made to contain in the whole surface of the dielectric oxide film to perform a repairing formation of the dielectric oxide film. Accordingly, water content can be made to contain also in a part, which is not covered with the manganese dioxide layer, by a water-containing treatment before this repairing formation. After that, a defect part of the dielectric oxide film is sufficiently restored by performing a repairing formation. Thereby, even if a solid electrolytic capacitor is left to stand in a high temperature and moisture for a long time as a finished article and water content enters the capacitor, the stability of leakage current characteristics can be reliably held.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は固体電解コンデンサの製造方法、詳しくは高温
高湿度の環境下で信頼性の高い固体電解コンデンサの製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly, to a method for manufacturing a solid electrolytic capacitor that is highly reliable under high temperature and high humidity environments.

従来の技術 一般に固体電解コンデンサの製造方法としては、タンタ
ル、アルミニウム、ニオブ、チタン等の弁作用金属より
なる多孔性焼結体に陽極酸化により陽極酸化皮膜を形成
する工程と、この陽極酸化皮膜上に二酸化マンガン層よ
りなる半導体層を形成する工程とを備えた製造方法が知
られている。二酸化マンガン層よりなる半導体層を形成
する工程は、通常、多孔性焼結体の陽極酸化皮膜の全表
面に二酸化マンガン層を形成するため、陽極酸化皮膜を
有する多孔性焼結体に硝酸マンガンを含浸させて熱分解
することを数回ないし十数回繰り返すことによって行わ
れている。また含浸された硝酸マンガンを熱分解する際
の熱、硝酸ガス。
Conventional technology In general, the manufacturing method for solid electrolytic capacitors involves the process of forming an anodized film on a porous sintered body made of a valve metal such as tantalum, aluminum, niobium, titanium, etc. by anodizing, and the process of forming an anodized film on this anodized film. A manufacturing method is known which includes a step of forming a semiconductor layer made of a manganese dioxide layer. In the process of forming a semiconductor layer consisting of a manganese dioxide layer, a manganese dioxide layer is usually formed on the entire surface of the anodic oxide film of the porous sintered body. This is done by repeating impregnation and thermal decomposition several to more than ten times. Also, heat and nitric acid gas during thermal decomposition of impregnated manganese nitrate.

さらには二酸化マンガンを析出する際の物理的ストレス
により、酸化皮膜が劣化するため、適宜、熱分解後に化
成液中で修復化成を施しながら二酸化マンガン層を形成
している。
Furthermore, since the oxide film deteriorates due to physical stress when depositing manganese dioxide, the manganese dioxide layer is formed while appropriately performing repair chemical conversion in a chemical conversion solution after thermal decomposition.

発明が解決しようとする課題 一般に多孔性焼結体は数μmの弁金属粉末を成形し、真
空中で焼成することにより形成されているもので、極め
て複雑な表面構造をしているため、前述した二酸化マン
ガン層の形成工程においては、陽極酸化皮膜を有する多
孔性焼結体の全表面を被覆するために多くの試みがなさ
れている。
Problems to be Solved by the Invention In general, porous sintered bodies are formed by molding valve metal powder of several micrometers and firing it in vacuum, and have an extremely complex surface structure. In the process of forming a manganese dioxide layer, many attempts have been made to coat the entire surface of a porous sintered body with an anodic oxide film.

例えば硝酸マンガン中に熱分解反応を促進する添加剤を
加えたり、熱分解反応の雰囲気を変化させたり、あるい
は熱伝導方法を変化させる方法等がなされている。しか
しながら、一般には熱分解゛回数と陽極酸化皮膜の被覆
率は第2図に示すような形態をとるため、多孔性焼結体
の陽極酸化皮膜の全表面を完全に二酸化マンガンで被覆
することは困難であり、したがって、ピンホールが無く
、かつ密度の高い二酸化マンガンを付着させるため、硝
酸マンガンの含浸、熱分解を繰り返すと、二酸化マンガ
ン層が陽極酸化皮膜の界面で剥離現象を発生しているの
が現状である。このような状態で形成された固体電解コ
ンデンサを、例えば温度85℃、相対湿度90%のよう
な高温高質の環境下に長時間放置すると、コンデンサの
漏れ電流特性が第3図の比較例に示すように増大すると
いう問題点があった。
For example, methods include adding additives to manganese nitrate to promote the thermal decomposition reaction, changing the atmosphere of the thermal decomposition reaction, or changing the heat conduction method. However, since the number of pyrolysis cycles and the coverage of the anodic oxide film generally take the form shown in Figure 2, it is impossible to completely cover the entire surface of the anodic oxide film of a porous sintered body with manganese dioxide. Therefore, when manganese nitrate is impregnated and thermally decomposed repeatedly in order to adhere high-density manganese dioxide without pinholes, the manganese dioxide layer peels off at the interface of the anodic oxide film. is the current situation. If a solid electrolytic capacitor formed in this manner is left in a high-temperature, high-quality environment such as a temperature of 85°C and a relative humidity of 90% for a long time, the leakage current characteristics of the capacitor will change to the comparison example shown in Figure 3. As shown in the figure, there was a problem in that it increased.

本発明は、このような問題点を解決するもので、特に高
温高湿下で漏れ電流特性の安定化を図り、信頼性の高い
固体電解コンデンサの製造方法を提供することを目的と
するものである。
The present invention is intended to solve these problems, and aims to provide a method for manufacturing a highly reliable solid electrolytic capacitor that stabilizes the leakage current characteristics particularly under high temperature and high humidity conditions. be.

課題を解決するための手段 上記目的を達成するために本発明の固体電解コンデンサ
の製造方法は、弁作用金属よりなる多孔性焼結体に誘電
体酸化皮膜を形成する工程と、この誘電体酸化皮膜上に
固体電解質層である二酸化マンガン層を形成する工程と
、二酸化マンガン層を形成した後、誘電体酸化皮膜の全
表面に水分を含ませて誘電体酸化皮膜の修復化成をする
工程とを備えたものである。
Means for Solving the Problems In order to achieve the above object, the method for manufacturing a solid electrolytic capacitor of the present invention includes a step of forming a dielectric oxide film on a porous sintered body made of a valve metal, and a step of forming a dielectric oxide film on a porous sintered body made of a valve metal. A step of forming a manganese dioxide layer which is a solid electrolyte layer on the film, and a step of applying water to the entire surface of the dielectric oxide film after forming the manganese dioxide layer to carry out repair chemical conversion of the dielectric oxide film. It is prepared.

作用 上記製造方法によれば、弁作用金属よりなる多孔性焼結
体に形成した誘電体酸化皮膜上に二酸化マンガン層を形
成し、この二酸化マンガン層を形成した後、誘電体酸化
皮膜の全表面に水分を含ませて誘電体酸化皮膜の修復化
成をするようにしているため、この修復化成の前におけ
る含水処理により、二酸化マンガンにより被覆されてい
ない部分にも水分を含ませることができ、この後、修復
化成を施すことにより、誘電体酸化皮膜の欠陥部が充分
に修復されるため、完成品として高温高温中に長時間放
置され、かつ水分が浸入したとしても、漏れ電流特性の
安定性を確保することができるものである。
Effect: According to the above manufacturing method, a manganese dioxide layer is formed on a dielectric oxide film formed on a porous sintered body made of a valve metal, and after forming this manganese dioxide layer, the entire surface of the dielectric oxide film is Since the repair chemical formation of the dielectric oxide film is carried out by impregnating the dielectric oxide film with moisture, the moisture treatment before the repair chemical formation allows moisture to be impregnated into the areas not covered with manganese dioxide. After that, by applying repair chemical conversion, defects in the dielectric oxide film are sufficiently repaired, so even if the finished product is left in high temperatures for a long time and moisture intrudes, the stability of leakage current characteristics will be maintained. This is something that can be ensured.

実施例 以下、本発明の実施例を示し、本発明をさらに詳しく説
明する。
EXAMPLES Hereinafter, examples of the present invention will be shown to explain the present invention in more detail.

(実施例1) 重量96■のタンタル焼結体を24Vで化成し、誘電体
酸化皮膜を形成した。その後、比重1.35(50℃)
の硝酸マンガンを含浸させ、そして温度250℃で、か
つ時間がl0分の熱分解を行った。この場合、この含浸
−熱分解の操作を適宜、再化成を含めて4回繰り返して
行った。
(Example 1) A tantalum sintered body weighing 96 cm was chemically converted at 24 V to form a dielectric oxide film. After that, specific gravity 1.35 (50℃)
of manganese nitrate and pyrolysis was carried out at a temperature of 250° C. and a time of 10 minutes. In this case, this impregnation-pyrolysis operation was repeated four times including reconstitution as appropriate.

さらに比重1.85(50℃)の硝酸マンガンを含浸さ
せ、そして前と同様の条件で熱分解を行い、この含浸−
熱分解の操作を適宜、再化成を含めて3回繰り返して行
い、二酸化マンガン層を形成した。この後、温度85℃
、湿度90%の雰囲気中に10時間放置してから、0.
3%の酢酸を電解質として修復化成を施した。
Furthermore, manganese nitrate with a specific gravity of 1.85 (50°C) was impregnated, and thermal decomposition was performed under the same conditions as before.
The thermal decomposition operation was repeated three times, including reconstitution, to form a manganese dioxide layer. After this, the temperature is 85℃
, after being left in an atmosphere with a humidity of 90% for 10 hours, 0.
Remediation chemical conversion was performed using 3% acetic acid as an electrolyte.

次にカーボン層、銀層、半田層及びリードを作成し、そ
して樹脂外装を施して固体電解コンデンサを作成し、そ
してこの固体電解コンデンサの耐湿試験を行うために、
温度85℃、湿度90%の雰囲気中に放置した。その時
の漏れ電流特性の変化を第3図のAで示している。なお
、二酸化マンガン層を形成した後、含水処理及び修復化
成を行わない以外は全く同様にして作成した従来の固体
電解コンデンサの耐湿試験結果も比較例として示してい
る。
Next, a carbon layer, a silver layer, a solder layer, and a lead are created, and a resin exterior is applied to create a solid electrolytic capacitor. In order to perform a moisture resistance test on this solid electrolytic capacitor,
It was left in an atmosphere with a temperature of 85° C. and a humidity of 90%. The change in leakage current characteristics at that time is shown by A in FIG. In addition, as a comparative example, the results of a moisture resistance test of a conventional solid electrolytic capacitor prepared in exactly the same manner except that no hydrous treatment and no repair chemical formation were performed after forming the manganese dioxide layer are also shown.

(実施例2) 実施例1と全く同様にして二酸化マンガン層を形成し、
その後、修復化成液である0、3%酢酸水溶液を圧力0
.7気圧1時間20分で真空含浸させ、その後、同修復
化成演で修復化成を施した。
(Example 2) A manganese dioxide layer was formed in exactly the same manner as in Example 1,
After that, a 0.3% acetic acid aqueous solution, which is a repair chemical solution, was applied at a pressure of 0.
.. Vacuum impregnation was carried out at 7 atmospheres for 1 hour and 20 minutes, and then restorative chemical conversion was performed using the same restorative chemical conversion method.

以下、実施例1と全く同様にして固体電解コンデンサを
作成し、そしてこの固体電解コンデンサの耐湿試験を行
うために、温度85℃、湿度90%の雰囲気中に放置し
た。その時の漏れ電流特性の変化を第3図のBで示して
いる。
Thereafter, a solid electrolytic capacitor was prepared in exactly the same manner as in Example 1, and in order to conduct a moisture resistance test on this solid electrolytic capacitor, it was left in an atmosphere at a temperature of 85° C. and a humidity of 90%. The change in leakage current characteristics at that time is shown by B in FIG.

第1図はコンデンサ素子の容量特性を示すものであり、
Aは誘電体酸化皮膜を有する多孔性焼結体、BはAの多
孔性焼結体に二酸化マンガン層を形成したもの、CはB
を120℃、2気圧のプレッシャークツカーに2時間放
置したものを各々電解液中で測定した容量特性を示した
ものである(なお、サンプルの平均二酸化マンガン被覆
率は94%である。)。
Figure 1 shows the capacitance characteristics of a capacitor element.
A is a porous sintered body with a dielectric oxide film, B is a porous sintered body of A with a manganese dioxide layer formed, and C is B
The capacitance characteristics were measured in an electrolytic solution after being left in a pressure cooker at 120° C. and 2 atm for 2 hours (the average manganese dioxide coverage of the samples was 94%).

この第1図の容量特性から明らかなように、Bのように
二酸化マンガン層を形成した後、単に液中容量を測定し
た場合、Aの状態より容量値は、小さい値となっており
、またCのように二酸化マンガン層を形成した後、高温
高湿中に放置した後の液中容量値はへの状態に近似して
いる。これは誘電体酸化皮膜に二酸化マンガンが被覆さ
れていない部分や二酸化マンガンが誘電体酸化皮膜より
剥離した部分において、単に電解液中に浸漬しただけで
は導通されない部分が残存することを意味しており、こ
の部分に誘電体酸化皮膜の欠陥部が存在した場合、二酸
化マンガン層の形成工程において、誘電体酸化皮膜の欠
陥部を修復する修復化成が施されても欠陥部が修復され
ない部分が残存し、この状態で完成品とされ、高温高温
中に長時間放置されると前記欠陥部に水分が浸入し、欠
陥部と導通することによって漏れ電流特性が増加するも
のと考えられる。しかるに本発明の実施例においては、
二酸化マンガン層の形成工程において、修復化成の前に
、含水処理により、二酸化マンガンにより被覆されてい
−ない部分にも水分を含ませた後、修復化成を施すよう
にしているため、誘電体酸化皮膜の欠陥部は充分に修復
されることになり、その結果、完成品として高温高温中
に長時間放置され、水分が浸入しても漏れ電流特性の安
定性を確保できるものである。
As is clear from the capacitance characteristics shown in Figure 1, when the capacity in the liquid is simply measured after forming a manganese dioxide layer as shown in B, the capacitance value is smaller than that in state A; After forming a manganese dioxide layer as shown in C, the liquid capacity value after being left in a high temperature and high humidity environment is similar to the state shown in . This means that in areas where the dielectric oxide film is not coated with manganese dioxide or where manganese dioxide has peeled off from the dielectric oxide film, there remain areas that do not become conductive simply by being immersed in the electrolyte. If a defective part of the dielectric oxide film exists in this part, even if repair chemical conversion is applied to repair the defective part of the dielectric oxide film in the manganese dioxide layer formation process, there will remain a part where the defective part is not repaired. It is thought that when a finished product is made in this state and left in a high temperature environment for a long period of time, moisture infiltrates the defective portion and conducts with the defective portion, thereby increasing the leakage current characteristics. However, in the embodiment of the present invention,
In the process of forming the manganese dioxide layer, before the repair chemical formation, the parts not covered with manganese dioxide are also hydrated through a hydrous treatment, and then the repair chemical conversion is applied, so that the dielectric oxide film is As a result, the stability of the leakage current characteristics can be ensured even if the finished product is left exposed to high temperatures for a long period of time and moisture infiltrates.

発明の効果 上記実施例の説明から明らかなように本発明の固体電解
コンデンサの製造方法によれば、弁作用金属よりなる多
孔性焼結体に形成した誘電体酸化皮膜上に二酸化マンガ
ン層を形成し、この二酸化マンガン層を形成した後、誘
電体酸化皮膜の全表面に水分を含ませて誘電体酸化皮膜
の修復化成をするようにしているため、この修復化成の
前における含水処理により、二酸化マンガンにより被覆
されていない部分にも水分を含ませることができ、この
後、修復化成を施すことにより、誘電体酸化皮膜の欠陥
部が充分に修復されるため、完成品として高温高温中に
長時間放置され、かつ水分が浸入したとしても、漏れ電
流特性の安定性を確保することができるものである。
Effects of the Invention As is clear from the description of the above embodiments, according to the method for manufacturing a solid electrolytic capacitor of the present invention, a manganese dioxide layer is formed on a dielectric oxide film formed on a porous sintered body made of a valve metal. However, after forming this manganese dioxide layer, the entire surface of the dielectric oxide film is impregnated with moisture to perform repair chemical formation of the dielectric oxide film. Moisture can be absorbed into the areas not covered by manganese, and then by applying a repair chemical conversion, the defective parts of the dielectric oxide film are sufficiently repaired, so that the finished product can be exposed to high temperatures for a long time. Even if the device is left for a long time and moisture intrudes, the stability of the leakage current characteristics can be ensured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は誘電体酸化皮膜を有する多孔性焼結体、この多
孔性焼結体に二酸化マンガン層を形成したもの、さらに
二酸化マンガン層を形成したものに含水処理によって水
分を含ませたもののそれぞれの電解液中での容量特性を
示す特性図、第2図は誘電体酸化皮膜を有する多孔性焼
結体に硝酸マンガンを含浸させ、かつ熱分解することに
より形成された二酸化マンガンの表面被覆率を示すグラ
フ、第3図は本発明の固体電解コンデンサと従来(比較
例)の固体電解コンデンサの漏れ電流特性を示す特性図
である。
Figure 1 shows a porous sintered body with a dielectric oxide film, a porous sintered body with a manganese dioxide layer formed thereon, and a manganese dioxide layer formed with moisture added through a hydrous treatment. Figure 2 shows the surface coverage of manganese dioxide formed by impregnating a porous sintered body with a dielectric oxide film with manganese nitrate and thermally decomposing it. FIG. 3 is a characteristic diagram showing the leakage current characteristics of the solid electrolytic capacitor of the present invention and the conventional (comparative example) solid electrolytic capacitor.

Claims (3)

【特許請求の範囲】[Claims] (1)弁作用金属よりなる多孔性焼結体に誘電体酸化皮
膜を形成する工程と、この誘電体酸化皮膜上に固体電解
質層である二酸化マンガン層を形成する工程と、二酸化
マンガン層を形成した後、誘電体酸化皮膜の全表面に水
分を含ませて誘電体酸化皮膜の修復化成をする工程とを
備えたことを特徴とする固体電解コンデンサの製造方法
(1) A step of forming a dielectric oxide film on a porous sintered body made of a valve metal, a step of forming a manganese dioxide layer as a solid electrolyte layer on the dielectric oxide film, and a step of forming the manganese dioxide layer. After that, the entire surface of the dielectric oxide film is impregnated with moisture to repair and chemically form the dielectric oxide film.
(2)誘電体酸化皮膜上に二酸化マンガン層を形成した
後、誘電体酸化皮膜の全表面に水分を含ませるため、高
温高湿度雰囲気中に放置した後に修復化成をすることを
特徴とする特許請求の範囲第1項記載の固体電解コンデ
ンサの製造方法。
(2) A patent characterized in that after a manganese dioxide layer is formed on a dielectric oxide film, the entire surface of the dielectric oxide film is left in a high-temperature, high-humidity atmosphere and then subjected to repair chemical formation. A method for manufacturing a solid electrolytic capacitor according to claim 1.
(3)弁作用金属よりなる多孔性焼結体に誘電体酸化皮
膜を形成する工程と、この誘電体酸化皮膜上に固体電解
質層である二酸化マンガン層を形成する工程と、二酸化
マンガン層を形成した後、修復化成液を真空含浸させて
誘電体酸化皮膜の修復化成をする工程とを備えたことを
特徴とする固体電解コンデンサの製造方法。
(3) A step of forming a dielectric oxide film on a porous sintered body made of a valve metal, a step of forming a manganese dioxide layer as a solid electrolyte layer on the dielectric oxide film, and a step of forming the manganese dioxide layer. A method for manufacturing a solid electrolytic capacitor, comprising the step of vacuum impregnating the dielectric oxide film with a repair chemical solution and repairing the dielectric oxide film.
JP31683289A 1989-12-06 1989-12-06 Manufacture of solid electrolytic capacitor Pending JPH03178115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31683289A JPH03178115A (en) 1989-12-06 1989-12-06 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31683289A JPH03178115A (en) 1989-12-06 1989-12-06 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH03178115A true JPH03178115A (en) 1991-08-02

Family

ID=18081415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31683289A Pending JPH03178115A (en) 1989-12-06 1989-12-06 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH03178115A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02295160A (en) * 1989-04-03 1990-12-06 Hyundai Electron Ind Co Ltd Semiconductor storage device having two-layer laminated capacitor structure
JPH0376159A (en) * 1989-08-18 1991-04-02 Sony Corp Semiconductor memory

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02295160A (en) * 1989-04-03 1990-12-06 Hyundai Electron Ind Co Ltd Semiconductor storage device having two-layer laminated capacitor structure
JPH0376159A (en) * 1989-08-18 1991-04-02 Sony Corp Semiconductor memory

Similar Documents

Publication Publication Date Title
JPH0992581A (en) Anodic oxidation of capacitor anode
JPH05121274A (en) Solid electrolytic capacitor and its manufacture
US3850764A (en) Method of forming a solid tantalum capacitor
US6214271B1 (en) Thermal treatment process for valve metal nitride electrolytic capacitors having manganese oxide cathodes
US3538395A (en) Solid electrolyte capacitor and method for making same
JPH03178115A (en) Manufacture of solid electrolytic capacitor
US3302074A (en) Capacitor with solid oxide electrolyte pyrolytically produced in wet atmosphere
US3301704A (en) Capacitor and process therefor
CN102113074B (en) Method for manufacturing niobium solid electrolytic capacitor
US3496075A (en) Surface treatment for improved dry electrolytic capacitors
JPH02301113A (en) Laminated ceramic electronic component and manufacture thereof
JPH06132167A (en) Manufacture of solid electrolytic capacitor
JPH06252001A (en) Solid electrolytic capacitor and its manufacture
US3225417A (en) Ake lagercrantz
JPH0684709A (en) Manufacture of solid electrolytic capacitor
JP3158448B2 (en) Method for manufacturing solid electrolytic capacitor
JP2847001B2 (en) Manufacturing method of solid electrolytic capacitor
JP3150464B2 (en) Manufacturing method of solid electrolytic capacitor
JPS5934124Y2 (en) solid electrolytic capacitor
JPH04119616A (en) Manufacture of solid electrolytic capacitor
CN115331964A (en) Method for detecting specific capacity of aluminum electrode foil
JPH04225512A (en) Manufacture of solid electrolytic capacitor
JPH0334525A (en) Formation of electrolyte layer for solid electrolytic capacitor
JPS6046532B2 (en) Manufacturing method of solid electrolytic capacitor
JP2000223366A (en) Manufacture of solid electrolytic capacitor