KR870000210B1 - 로듐촉매의 제조방법 - Google Patents

로듐촉매의 제조방법 Download PDF

Info

Publication number
KR870000210B1
KR870000210B1 KR1019830000194A KR830000194A KR870000210B1 KR 870000210 B1 KR870000210 B1 KR 870000210B1 KR 1019830000194 A KR1019830000194 A KR 1019830000194A KR 830000194 A KR830000194 A KR 830000194A KR 870000210 B1 KR870000210 B1 KR 870000210B1
Authority
KR
South Korea
Prior art keywords
rhodium
catalyst
hydrazine
reaction
triphenylphosphine
Prior art date
Application number
KR1019830000194A
Other languages
English (en)
Other versions
KR840003038A (ko
Inventor
에메리꼬 빌락스 요아오
로날드 페이지 필립
Original Assignee
플루리케미에 안스탈트
레네웨버
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PT198274303A external-priority patent/PT74303B/pt
Priority claimed from PT198276061A external-priority patent/PT76061A/pt
Application filed by 플루리케미에 안스탈트, 레네웨버 filed Critical 플루리케미에 안스탈트
Publication of KR840003038A publication Critical patent/KR840003038A/ko
Priority to KR8610792A priority Critical patent/KR900000888B1/ko
Application granted granted Critical
Publication of KR870000210B1 publication Critical patent/KR870000210B1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium

Abstract

내용 없음.

Description

로듐촉매의 제조방법
상당 기간 알려져 내려온 일반적인 그룹으로서 균일성 촉매가 금세기 초부터 용해성 금속염(solublemetal salts)으로 사용되었음은 잘 알려진 기술이다.
유기성 공여 배위자(organic donor ligand)를 갖는 d-블록전이금속의 사용은 윌킨손씨 등이 의하여 미국화학회지(Journal of the chemical society 1966,1711-1732)에 실시예로서 예시되어 있으며 고도의 특정촉매 작용을 가지는 촉매로 발표된 바 있다.
본 발명의 목적은 6-데옥시-6-데메틸-6-메틸렌-테트라싸이클린의 에소싸이클릭 6-메틸렌 그룹의 수소화 반응을 위한 촉매로서, 촉매가 소량 사용되어도, 고수율 및 고광학순도로 α-6-데옥시테트라싸이클린류를 얻을 수 있음을 알리는 것이다.
α-6-데옥시테트라싸이클린류중, 특히 α-6-데옥시-5-하이드록시테트라싸이클린, 흔히 독시싸이클린으로 알려져 있는 화합물은 항균제로 잘 알려져 있다.
이와같은 공정에서 선행 기술중이서 공통된 중요한 문제점 중의 하나는 β-에피머의 동시 생성이다.
효과면에서 임상적으로 사용할 수 없는 이러한 에피머의 존재는 순수한 물질을 얻기 위하여 광범위한 정제 기술을 필요로 한다.
본 발명에서 사용되는 촉매는 이와같은 목적에 적합함을 다음에서 알 수 있다. 이와같은 촉매의 사용 방법에 대한 그 이상의 상세한 기술은 이 최초명세서에서 분할 출원하여 계류중인 본할 출원명세서 특허된 86-10792에 기재되어 있다.
이와같은 수소화 반응 공정에 대한 선행 기술은 많이 알러져 있으며, 여러가지 공지 방법중 다만 특별한 기술에 대한 것만을 열거하고자 한다.
1972년 이전에는 불균일 촉매만이 알려져 있으며 미국 특허 제 3,200,149호에는 5% 탄소상로듐을 사용하여 6-데옥시-6-데메틸-6-메틸렌-5-하이드록시테트라싸이클린으로 부터 α-6-데옥시-5-하이드록시테트라싸클린을 2496 w/w의 수율로 얻는 방법이 기재되어 있으나 같은 량의 β-6-데옥시-5-하이드록 시테트라싸이클린이 동시에 생성되었고, 역류문류법(counter current distribution)에 의하여 제거할 수 있었다.
미국특허 제 3,444,198호는 퀴놀린-유황과 같은 촉 매독(catalyst poison)의 존재하에 5% 탄소상팔라듐을 사용하는 것이 α -에피머대 β-에피머의 수율을 개선시킬 수 있다는 것을 보여주었다. 그러나 수율은 아직도 저조하며 폭넓은 정제의 필요성이 남아 있다.
영국특허 제 1,360,006호는 하이드라진과 탄소팔라듐의 혼합촉매의 이용에 관한 것으로, 이는 필요한 α-에피머의 개량된 특징점을 제공하나 반응이 11a-클로로 중간체로 부터 출발한 공정이며, 이 경우 대부분의 불순물이 6-데옥시 -6-데메틸-6-메틸렌-5-하이도록시테트라싸이클린이었다. 또 다른 예로서 라니닉켈의 사용이 독일 특허 제 2,136,62l호에 기술되어 있다.
미국특허 제3,397,231, 3,795,707, 4,061,676호와 같은 여러 특허들은 단지 새로운 정제 기술을 설명하는데 그친다. 이들 제조 방법은 흔히 장시간이고 복잡하며, 공지의 제조방법으로 부터 낮은 순도의 생성물을 얻는 것임이 명백하다.1972년, 균일성 촉매의 최초 사용은 미국특허 제 4,207,258호에 상세히 기술되어 특허 청구되어 있다. 출발물질은 11a-비치환된 테트라싸이클린류이고,촉매는 트리스(트리페닐포스핀) 로듐(1) 클로라이드 또는 여러 동족체이었다. β-에피머의 함량은 약 5% 정도에 불과하였으나 실시예들에는 고수율과 개선된 입체 특이성(stereospecificity)에 대하여 기술되어 있다.
부가적으로, 촉매의 전형적인 양으로는 출발물질인 테트라싸이클린 1부당 0.22부를 또는 로듐금속을 출발물질인 테트라 싸이클린 1부당 0.024부를 사용하였다.
1973년 우선권 주장된 미국특허 제 3,962,331호에서는 11a-치환된 테트라싸이클린류를 출발물질로 하는 미국 특허 제 4,207,258호의 영역까지 실질적으로 확장되는 기술이었다. 그러나 β-에피머는 아직도 5% 정도가 생성되었다.11a-클로로-6-데옥시-6-데메틸-6-메틸렌-5-하이드록시 테트라싸이클린 파라-톨루엔 설포네이트의 경우 출발물질 1부에 대하여 0.003부의 로듐이 사용되었다.
1973년 프랑스 특허 제 2,216,268호에는 동일 촉매의 사용에 관하여 설명한 것으로 전형적인 실시예의 반응 혼합물의 hplc 분식치는 α-에피머 대 β-에피머의 비율이 92 : 8이었다. 이 특허의 경우에는 수소화시킬 6-데옥시-6-데메틸-6-메틸렌-5-하이드록시테트라싸이클린 1부에 대하여 0.13부의 로듐을 포함하는 촉매가 필요하다.
미국 특허 제 3,954,862호에는 3급 포스핀과 염산과 같은 촉진제를 혼합하여, 탄소상로듐을 사용하는 기술이 기재되어 있다.
이 혼합물은 메타놀과 같은 용매 존재하, 아마도 상기 3개의 특허에 기술된 용해성 로듐 착염을 생성할수 있음을 볼 수 있다. 전형적인 실시예에는 원치 않는 β-에피머가 1-5% 형성됨을 나타내었다. 0.019부를 사용함으로 출발물질을 45% 함유하는 생성물을 얻었고, 0.019부 이상을 사용하여 계속 수소화시킴으로서 생성물중 출발물질이 15% 정도 남아 있었다. 미국 특허 제 3,907,890호에는 코발트 옥타카르보닐, 트리페닐 포스핀과 염산을 사용하는 방법이 기술되어 있다. 여기에서는 수소화 반응이 아니므로 수소를 자체적으로(per se) 첨가하지는 않았고, 반응은 β에피머의 량을 17% 내지 0.5%의 범위로 생성시켰다.
따라서, 화학양론적 수율은 54-72%로 변화하였다. 전체적으로 이 공정은 수율과 순도면에서 변화가 많은 것을 보여주었다.
미국특허 제 4,001,321호에는 대표적으로 디카르복실레이트(트리페닐포스핀)로듐(II)를 촉매로서 사용하며, 전형적으로 6-데옥시-6-데에틸-6-메틸렌-5-하이도록시테트싸이클린 1부당 로듐 0.01부를 사용하는 기술이었으며, 이때 생성물은 β-에피머 2-3%가 혼합되어 있다.
마지막으로, 미국특허 제 3,962,131호에는 1몰의 로듐트리 클로라이드와 2몰의 소디움아세테이트를 반응시키고, 최종적으로 트리페닐포스핀과 반응시킴으로서 제조된 잘려져 있지 않은 촉매를 사용하고 있다.
불행히도, 얻어진 촉매에 대한 로듐 분석치는 없으나, 처음부터 촉매로 로듐을 포함했다고 가정하면, 6-데옥시-6-데메틸-6-메틸렌-5-하이드록시테트라싸이클린 각부당 약 0.003부의 로듐이 필요한 것으로 계산된다. 더우기 크로마토그라피 분석치도 없어 β-에피머의 함량은 알 수 없었다.
따라서 다음 조건을 만족시킬 수 있는 촉매의 필요성이 요구됨을 쉽게 알 수 있다. 즉,
1. 수소화시킬 테트라싸이클린 1부당 촉매 0.001부 이하를 사용하고,
2. 수소화된 생성물을 고수율로 제조되고,
3. 불필요한 β-에피머의 생성을 못하게 하거나 거의 무시할 수 있을 정도로 생성되어야 한다, 이다.
이와같은 요구에 부합될 수 있는 몇몇 촉매가 현재 고안중이며 본 발명에 따르면, 로듐염이나 로듐착화합물과 트리페닐포스핀을 R'1R'2N·NR'3R'4의 구조를 갖는 하이드라진 또는 그의 염, 여기서 R'1는 페닐 또는 벤젠설포닐기 또는 수소이고 R'2,R'3와 R'4는 수소이며, 이때 반응은 과량의 트리페닐포스핀 존재 또는 부재하에서 반응시키는 공정으로 이루어지는 새롭고 안정한 로듐의 균질성 수소화 촉매를 제조하는 공정을 제공하는데 있는 것이다. 이 경우에 있어서 로듐염은 트리페닐포스핀 과량 존재하,0℃ 내지 반응 매질의 환류 온도에서 유기용매내에서, 반응이 완결될때까지 행하며, 그 후 언급된 촉매를 혼합할 수 있는 비-용매를 첨가하여 단리하고 여과하는 방법으로 얻어진다.
부가적으로 본 발명의 촉매는 테트라싸이클린류의 분야뿐만 아니라 기타 입체 특이적인 균질성 촉매를 필요로 하는 분야에 있어서 매우 유리한 입장을 갖고 있다.
불행하게도 본 발명의 촉매들은 대부분의 경우 결정체이나 X-선 크리스탈로그라피로 분석하기에는 결정크기가 적당치 못하기 때문에 구조적인 분석이 알려지지 않았다.
그러나 다른 분석기술을 적용함으로써 그들의 특허성이 의문없이 확인될 수 있었다.
이들의 촉매들은 여러가지 방법에 의하여 제조될 수 있다. 즉, 로듐의 착화합물을 하이드라진과 반응시키거나, 로듐염을 하이드라진 또는 그 염과 반응시켜서 얻을 수 있는데, 최후에는 모두 트리페닐 포스핀의 존재하에서 수행한다.
첫번째 경우, 로듐착화합물은 로듐과 트리페닐포스핀의 복합체중의 하나이며 적합한 로듐착화합물은 트리스(트리페닐 포스핀) 클로로로듐(I)이다.
착화합물과 반응될 하이드라진은 R'1R'2N·NR'3R'4의 일반 구조식을 갖으며, 여기서 R'1은 페닐, 벤젠설포닐기, 또는 수소이고 R'2,R'3및 R'4는 수소이다. 바람직한 하이드라진은 하이드라진 그 자체이고, 바람직한 것은 수화물형이다.
일반적으로 하이드라진은 반응에 존재하는 로듐의 몰수보다 과량이어야 하며, 여기서 과량이라는 것은 같은 몰수보다 약간 많은 것부터 100배 몰까지의 과량을 의미한다. 로듐의 매몰당 하이드라진 3몰을 사용하는것이 바람직하고, 비록 1몰당 50몰의 과량을 사용하더라도 촉매의 사용효과는 동일하다.
본 공정은 트리페닐포스핀 존재하 수행한다.
미국특허 제 3,463,830호는 이 반응에 대한 화합물 이외의 부가물에 대하여 설명한 것으로 여기에서는 트리페닐포스핀이 팔라듐과 백금으로 복합된 화합물이 하이드라진과 과량의 3급 포스핀 존재하에 0가의 팔라듐과 백금 3급 포스핀 착화합물로 변화됨이 나타났다.
또한, 이 특허에서는 배위불포화 0가 팔라듐과 백금 3급 포스핀 착화합물의 제조반응으로부터 과량의 3급포스핀이 감소됨을 설명하였다.
따라서 본 발명에 포함된 신규 촉매의 제조방법은 트러페닐 포스핀을 첨가하거나 하지 않거나 간에 반응에 존재하는 로듐 1몰당 20몰 이상의 트리페닐포스핀이 존재한다. 전형적으로 3-15 몰/몰이 적합하다.
반응매질은 글리콜을 둘러쌀 수 있는 저급알콜이나 싸이클릭 에테르로부터 선택될 수 있다.
용매로써 적합한 것들중 대표적인 것으로는 메탄올, 에탄올, 푸로판올, 푸로판-2-올, 부탄올, 2-메틸-푸로판-2-올, 에탄-1,2-디올과 메탄올, 에탄올, 푸로판-2-올을 포함하는 테트라 하이드로푸란이나 부탄올이 가장 적합하다.
반응은 0℃-100℃에서 행하여지나 적합한 온도는 실온에서 약 90℃사이이다.
전형적으로 반응은 실온에서 행하나 온도를 상승시키면 보다 바르게 반응을 진행시킬 수 있다.
반응혼합물의 초기색깔은 보라색이고 본 발명의 촉매의 색깔은 항상 오렌지빛을 띄는 황색과 갈색으로 반응은 시각적으로 확인하면서 행할 수 있다.
따라서 반응에 요하는 시간은 온도에 따라 달라짐으로 쉽게 판단할 수 있다.
전형적으로는 수분에서 2시간 사이이다.
촉매는 위와같은 방법으로 제조할 수 있지만 질소와 같은 불활성기체를 사용하는 것이 적합하다. 반응이 완결되었다고 판단되었을 때, 촉매는 통상의 공지된 방법으로 얻을 수 있다.
일반적으로 유기용매를 첨가하여 촉매가 용해되지 않거나 촉매가 반응하지 않는 경우 동일한 유기용매로 여과하거나 세척하는 것은 방법상 선택될 수 있다.
적합한 유기용매로서는 디이소푸로필에테르이다.
본 발명의 촉매는 반응 혼합물에서 불용성임으로 이 경우 간단한 여과나 세척으로 얻어질 수 있다는 것을 몇가지의 예로부터 알 수 있다.
다음에 실온에서 촉매를 건조한다.
본 발명의 특징은 촉매를 제조하여 단리하지 않아도 사용할 수 있다는 것이다.
따라서 적합한 유기 용매에서 로듐 트리페닐포스핀 착화화물과 하이드라진을 트리페닐포스핀의 존재하에서 혼합하고 반응완결을 나타내는 색의 변화가 있을 때까지 요구하는 온도에서 저어준다.
다음에 6-데옥시-6-데메틸-6-메틸렌-5-하이드록시테트라싸이클린이나 11a-할로동족체를 가하고, 요구하는 만큼의 용매와 트리페닐포스핀을 가하였다.
다음에 혼합물을 보통의 방법으로 수소화하여 요구하는 생성물을 얻었다. 이와같은 공정에 대해서는 우리의 분할 출원명세서(특허원 86-10792)에 더 상세히 기재되어 있다.
앞에서 지작한 바와 같이, 촉매는 적합한 용매혼합물 중에서 로듐염, 하이드라진 또는 그들의 염과 트리페닐포스핀으로부터 제조할 수 있다.
로듐염으로는 로듐트리클로라이드의 트리하이드레이트 형태가 적합하다.
하이드라진은 R'1R'2N·NR'3R'4의 일반 구조식을 가지며 여기에서 R'1,R'2,R'3와 R'4는 위에서 언급한 바와 같으며 더욱 적합한 것은 하이드라진 그 자체나 페닐하이드라진, 벤젠설포닐하이드라진과 그들의 염이다.
매우 적합한 것으로는 하이드라진하이드레이트와 하이드라진 디하이드로 클로라이드이다.
하이드라진은 대개 반응시 로듐의 양이 비하면 과량으로 존재하며 대기 로듐의 몰비에 비하여 약10몰 정도 존대한다.
대개 트리페닐포스핀은 로듐의 존재 몰량이 비하여 과량 존재하며 범위는 약1-2.5 몰/몰이 특히 적합하다.
반응 매질은 물과 유기용매의 혼합물로 이들은 반응에 있어서 불활성이다.
이 경우 "반응에 있어서 불활성"이란 생성된 촉매와 화학적으로 반응하지 않는다는 것을 의미한다.
이것은 동종분야에서 알려진 바와 같이 이러한 형태의 분자가 용이하게 배위 결합리간드의 치환을 할 수 없다는 것이다.
따라서 유기용매는 아세톤과 부탄-2-온 같은 저급디알킬케톤이나 에탄올, 에탄올, 푸로판올, 프로판-2-올, 부탄올,2-에틸-푸로판-2-올과 에탄-1,2-디올 등의 글리콜인 저급 알콜, 테트라하이드로푸란과 같은 에테르, 디옥산, 디메틸 포름아미드와 같은 저급디알킬아미드나 아세트니트릴과 같은 유기성니트릴로부터 선택될 수 있다.
가장 적합한 유기용매는 아세톤이다.
이 반응은 0℃와 반응 매질의 완류 온도사이에서 행하여지며 50℃-80℃ 정도 사이에서 진행되면 가장좋다.
반응온도가 0℃ 이하이면 반응이 너무 느리므로 실제적이 못된다. 반응시간은 항상 약 3시간 정도라고 할지라도 전형적으로 1-5시간 사이이다.
위에서 언급한 바와 같이 촉매를 제조하기 위해서는 질소와 같은 불활성 기체를사용하는 것이 적합하다.이 공정에서 촉매는 반응 혼합물 중에서 항상 불용성이므로, 여과와 같은 간단한 방법으로 얻을 수 있다. 본 발명의 촉매는 반응혼합물 중에서는 용해하나 혼합될 수 있는 용매를 부가시 촉매가 용해하지 않는 것이 유리하다는 것을 다수의 예를 통하여 알 수 있다.
용매는 생성된 촉매와 반응을 하지 말아야 하며 특히 디-이소푸로필에테르와는 반응을 하지 않아야 한다.
여과 후 촉매는 디에틸에테르와 같이 적합한 유기용매로 항상 세척하고 실온에서 건조한다.
본 발명에서의 뛰어난 또 다른 방법은 로듐트리클로라이드 트리하이드레이트와 같은 로듐염을 트리페닐포스핀을 첨가하지 않고 하이드라진과 반응시킬 수 있다는 것이다.
하이드레이트형태의 하이드라진은 이 반응시 과량 존재하며, 존재하는 로듐의 몰비로 대개 10몰 정도이다.
종래의 방법과 비교하면 다음 중에서 선택될 수 있는 유기용매에 물을 혼합하여 반응매질로 한다는 것이다 : 저급 디알킬케톤 ; 저급알콜 ; 에테르 ; 유기성니트릴 ; 또는 저급 디알킬아미드 및 위에 언급된 것들이다.
적합한 용매는 아세톤이다.
적합한 온도의 범위는 50-80℃이며 반응시간은 약 1-5시간이나 적합하게는 약 3시간 내가 좋다.
이러한 방법으로 얻어진 신규의 화합물은 이미 언급된 것들과 비슷한 것이며 화합물이 반응혼합물 중에서 불용성 일때 유기용매를 첨가시 여과를 하여야 한다.
용매는 어떠한 방법으로도 생성물과 반응하지 않아야 하며 적합한용매로는 디-이소푸로필에테르가좋다. 촉매로 이들의 화합물을 사용하여 수소화반응을 하기 위해서는 3급포스핀의 존재가 요구됨을 보여줄 것이다. 이 이상의 기술에 대해서는 우리의 분할출원하여 계류중인 분할 출원 명세서(특허원 86-10792)에 더상세히 기재되어 있다.
당연히 상기 촉매의 제조시 모액이 남아 있는 로듐의 양은 실제적으로 손실없이 쉽게 보편적인 방법으로 회수할 수 있으며 재순환하여 사용할 수 있다.
이미 전순한 바와 같이 이러한 신규 촉매의 구조는 충분한 크기의 결정을 얻지 못하여 X선 크리스탈로그래피로 설명할 수가 없으나 다른 기술에 의해 분석될 수 있었다.
선행기술과 본 발명 촉매의 주된 차이점은 I R 스팩트로메트리에 의하여 설명된다.
윌킨손 촉매 트리스(트리페닐포스핀) 클로로로디움(I), 은 다음 위치에서 피크를 나타낸다 :
5.80(s) ; 6.00(s) ; 6.76(m) ; 7.00(m) ; 7.65(m) ; 8.45(m) ; 8.65(m) ; 9.20(m) ; 9.73(ms) ; 10.20(s) ; 13.50(l, b) ; 14.40(l, b) 마이크론 여기에서 s, m, l은 small, medium과 Large peaks를나타내며 b는 브로우드(broad)를 의미한다.
본 발명의 촉매는 약 6.3 마이크론에서 브로우드메디움피크(broad medium peak)를 갖는다.
촉매의 비교분광법에서는 이러한 피크치가 윌킬손촉매에서는 존재치 않음을 보여주었다.
촉매들의 원소분석은 기대한 바와 같은 현저한 차이를 보여주었다.
따라서 실제 촉매에 의존한 질소의 함량은 약 2%-6%이나 대부분 4%이다.
대부분의 촉매는 산소에 민감하기 때문에 이들의 분석시에는 상당한 주의를 요한다.
산소에 민감하다는 것은 색이 갈색으로 변하는 것으로 알 수 있다.
일반적으로 로듐의 함량은 10-18%이며, 대개 약 14%이다. 실험을 통하여 얻어진 결과들로 부터 촉매는 클로르가 포함된 출발물질로부터 제조된 다음과 같은 구조식을 갖고 있음이 추정되었다.
(PPh3)χ(R'1R'2N·NR'3R'4)yRhzClz
여기에서, 각 분자에 있어서 로듐의 z원자의 존재는 2분자체 또는 3분자체화합물의 생성 가능성을 의미한다.
그러나 가정된 일반식이 X-선 크리스탈로 그래피에 의하여 아직 확인되지는 않았으나 이것이 잘못된 것이라고 결론지을 수는 없다.
다음의 실시예는 본 발명을 구체적으로 나타내는 것으로 이들이 본 발명을 한정하는 것은 아니다.
[실시예 1]
A) 촉매 : 트리스(트리페닐포스핀) 클로로로듐(I)(3.00g : 3.24mmol)을 95% 에탄올(60mι)에 하이드라진 하이드레이트(0.48mι : 9.88mmol)를 용해한 용액에 첨가하였다.
이 혼합물을 전보라색이 오랜지색으로 변화할 때까지 질소로 25분간 환류하였다.
냉각함으로써 얻어진 고형결정체를 여과하고 디이소푸로필에테르로 세척한 후 건조하여 수율 1.40g을 얻었다.
첨가량(Additional amounts)은 모액에 디이소푸로필에테르를 첨가하여 저온에서 농축함으로써 얻어졌다.
I R스팩트럼으로는 6.30 마이크론에서 브로우드피크(broad peak)를 나타내었다. 원소분석으로 생성물이 16.95%의 로듐과 4.25%의 질소를 포함하는 젓으로 나타났다.
B) 수소화 : 실시예 1A에 의하여 얻어진 촉매(25mg)를 6-데옥시-6-데메틸-6-메틸렌-5-하이드록시테트라싸이클린하이드로클로라이드(MOT.HC1 ; 7.38g ; 15.41mmol)을 트리페닐포스핀(0.1g : 0.38mmol)을 메탄올(40mι)에 용해한 용액을 포함하는 스테인레스스틸제수소화반응용기에 메탄올(20mι)과 함께 자기교반(magetic stirring)하에 첨가하였다. 질소로 정화(purging)한 후 수소를 8kg/cm2의 압력에서 첨가하고, 혼합물을 89℃까지 가열하였다.
5시간 30분 동안 소비(consumption)를 떨어뜨리고 1시간 후에 냉각하였다.
반응 혼합물을 G4 그래스필터로 여과하고, p-톨루엔 설포닉에시드(3.30g : 19.16mmol)를 여과물에 저어주면서 첨가하였다.
이렇게 하여 생성된 α-6-데옥시옥시테트라싸이클린 p-톨루엔설포네이트를 여과하고 아세톤으로 세척후 건조하였다.
9.65g의 생싱물은 다음과 같은 분석 결과를 보여주었다 : 칼 핏서법에 의한 습도 3.13%, 수율 98.4% 무수 상태에서 순도 99.8%.
에피머나 출발물질은 써클러페이퍼크로마토그래피에 의하여 검출되지 않았다("Schleicher & Schull"페이퍼 Nr. 2045B, 265mm, ref. No. 381,804 : 정지상 : 100ml, 0.1M의 시트릭에시드와 40ml, 0.2M의 무수디소듐포스페이트를 혼합하여 pH 3.5의 완충용액을 만들었다 ; 이동상 : 니트로메탄, 클로로포름, 피리딘-:20 : 10 : 3)
[실시예 2]
촉매를 25mg 첨가하는 대신 15mg을 첨가하고 실시예 1B를 반복하였다.
α-6-데옥시옥시테트라싸이클린 p-톨루엔설포네이트 8.57g 수율 90%.
0.45%의 β-에피머와 출발물질의 흔적량을 포함하였다.
[실시예 3]
A) 실시예 1A에 의하여 얻어진촉매(15mg)를 메탄올(40ml)에 11a-클로로-6-디옥시-b-데메틸-6-에틸렌-5-하이도록시테트라싸이클린 p-톨루엔설포네이트(10.0g : 15.41mmol)와 트리페닐포스핀(4.00g : 15.25mmol)을 용해한 용액을 포함하고 있는 스테인레스스틸제수소화 반응기에 에탄올(20ml)과 함께 첨가하였다.
다음에 질소로 플러시(flush)하고 88℃, 9.2kg/cm2의 압력하에서 수소를 충만시켰다.
9시간 30분이 지난 후, 냉각하고 반응혼합물을 여과하였다. 여과물이 p-톨루엔설포닉에시드(3.30g : 19.16mmol)를 첨가하고 혼합물을 2시간 동안 저어주었다. 생성된 결정물을 여과한 후 세척하였다.
수율 84.2%로 8.0g의 α-6-데옥시옥시테트라싸이클린 p-톨루엔설포네이트가 얻어 졌다.생성물 중에서 β-에피머 또는 출발물질을 써클라크로마토 그래피에 검출되지 않았다.
B)10mg의 같은 촉매를 사용하여 실시예 3A를 반복함으로서 α-6-데옥시옥시테트라싸이클린 p-톨루엔설포네이트 7.82g을, 수율 82.3%로 얻었다.
[실시예 4]
A) 촉매 : 반응혼합물을 실온(28℃)에서 90분간 저어준. 것을 제외하고는 실시예 1A에의 조건을 반복하였다. 첫번째 분류물로 오렌지색의 물질이 1.63g 얻어졌다.
저온의 전공하에서 모액을 농축하여 1.22g 이상을 얻었다.
I R스팩트럼은 6.3 마이크론에서 브로우드 피크를 보여주었다.
B) 수소화 : 전항에서 얻어진 반응혼합물(0.50ml)을 실시예 1B이 기술된 수소화 공정이 촉매로 사용하였다. 수율 92.8%로 8.82g의 단리된 α-6-데옥옥시테트라싸이클린-p-톨루엔설포네이트가 얻어졌다.
β-에피머나 출발물질은 써클라페이퍼 크로마토그래피이 검출되지 않았다.
다음이 모액에 같은량의 물과 설포살리실릭에시드(4.0g : 18.33mmol)을 가하여 희석하였다. 이리하여 10%의 β-에피머를 포함하는 0.83g의 독시싸이클린설포살리실레이트를 부수적으로 얻었다.
[실시예 5]
A) 촉매 : 용매를 메탄올로 하고 반응시간을 20분으로 하어 실시예 4A의 조건을 반복하였다.
첫번째 분류물로 1.40g의 밝은 갈색의 여과물 (고체)을 얻었다.
디이소프로필에테르를 첨가하여 농축함으로써 전체량으로 1.59g의 2가지 이상의 분류물을 얻었다. I R스펙트럼의 브로우드파크는 6.30 마이크론에서 였다.
원소분석으로 첫번째 분류물이 15.53%의 로듐과 2.52%의 질소를 포함하고 있음을 알았다.
B) 수소화 : 전항의 반응혼합물(0.5ml)을 실시예 3A의 수소차 반응공정에서 촉매로 사용하였다.
그렇게 함으로써 독시싸이클린 p-톨루엔설포네이트가 8.27g, 수율 87.1%로 얻었다.
비선광도(1% 염산을 포함한 메탄올)는 -77.5°였다.
[실시예 6]
A) 촉매 : 용매로 프로판-2-올을 사용하여 실시예 4A의 조건을 반복하였다.
이 경우, 오렌지색의 생성물을 여과하기 전에 45분간 혼합물을 저어주었다.
첫번째 분류물의 수율은 64% W/W로, 디이소푸로필에테르를 첨가하고 농축, 여과함으로씨 30% W/W를 더 얻었다.
브로우드피크는 I R스팩트럼으로 6.30 마이크론에서였다.
B) 수소화 : 실시예 1B에 기술된 수소화 반응 공정을 위에서 얻은 촉매(25mg)를 사용하여 반복하였다.
α-6-데옥시옥시테트라싸이클린이 8.83g의 p-톨루엔설포네이트로 단리되고,분석 결과는 다음과 같다 :
습도 0.11%(칼핏셔법), 무수상태에서 수율 92.82%, 순도 99.9%이었다.,
[실시예 7]
에탄올(40ml)에 6-데옥시-6-데메틸-6-메틸렌-5-하이드록시테트라 싸이클린 하이드로클로라이드(7.38g ;15.41mmol)를 용해한 용액을 함유한 스테인레스스틸제수소화 반응기에 실시예 6A에서 얻어진 촉매(25mg)을 메탄올(20ml)에 용해하여 첨가하였다.
수소화와 단리는 실시예 1B와 같이 행하였다.
이렇게 함으로써 다음과 같은 분석결과를 가지는 α-6-데옥시옥시테트라싸이클린 p-톨루엔설포네이트 8.17g을 얻었다 :
칼핏셔법에 의한 습도 2.18%, 무수 상태에서 수율 84.1%, 순도 99.2%.
[실시예 8]
A) 촉매 : 실시예 4A의 조건에서 n-부탄올을 사용하고 반응시간을 20분으로 함으로써1.43g의 오렌지색 생성물을 얻었다.
2번째의 분류물이 통상의 방법으로 얻어졌다. 원소분석으로는 로듐함량 18.32%, 질소함량 6.21%였다.
B) 수소화 : 여기에서 얻어진 촉매(25mg)와 메탄올(20ml)을 에탄올(10ml)에 15.41mmol)와 트리페닐포스핀(0.25g ; 0.95mmol)을 용해한 용액을 포함하는 스테인레스스틸제 수소화 반응기에 첨가하였다.
수소화와 단리는 실시예 1B와 같이 행하였다. 다음과 같은 분석결과를 가지는 α-6-데옥시옥시테트라싸이클린 p-톨루엔설포네이트 9.95g을 얻었다 :
건조감량 5.32%, 무수상태에서 수율 99.14%, 순도 99.89% 써클라페이피크로마토그래피에서 β-에피머나 출발물질은 검출되지 않았다.
[실시예 9]
n-부탄올(40ml)에 트리스(트리페닐포스핀) 클로로로듐(I )(1.00g : 1.08mmol)과 하이드라진하이드레이트(2.50ml ; 51.4mmol)를 용해한 혼합물을 90℃에서 25분간 가열하였다.
냉각된 반응혼합물에 디-이소푸로필에테르를 가하여 황색고체 0.25g을 얻었다.
디-이소푸로필에테르를 더욱 첨가함으로서 분류물을 더 얻을 수 있다.
[실시예 10]
트리스(트리페닐포스핀) 클로로로듐(I )(1.00g ; 1,08mmol)과 하이드라진하이드레이트(0.16ml : 3.29mm : 1)를 20ml의 에탄올과 함게 20분간 환류하였다.
색이 붉은색에서 황색으로 변하였다.
이점에서 트리페닐포스핀(3.00g : 11.44mmol)을 가하고 20분 이상 환류를 계속하였다.
실온에서 냉각 후 여과하여 갈색 생성물이 얻어졌다.
생성물은 I R스팩트럼으로 6.30 마이크론에서 브로우드 밴드를 보였다.
[실시예 11]
A) 촉매 : 페닐하이드라진(0.32ml : 3.25mmol)을 아세로니트릴(20ml)에 용해한 트리스(트리페닐포스핀)클로로로듐(I )(1.00g ; 1.08mmol)과 함께 질소가스하에서 65℃로 25분간 가열하였다.
용액을 냉각하고 디이소푸로필에테르로 희석한 후 여과함으로써 베이지색 고체가 선별되었다. 수율은 생성물을 함유한 모액을 포함하여 25% W/W이다.
I R 스팩트럼으로 6.30 마이크론에서 다시 브로우드 피그가 나타났다.
B) 수소화 : 실시예 11A에서 얻어진 촉매(25mg)를 사용하여 실시예 1B를 반복하였다.
α-6-데옥시옥시옥시 테트라싸이클린 p-톨루엔설포네이트가 8.33g, 수율 87.6%로 얻어졌다.
써클라페이퍼크로마토그래피에 의해서도 출발물질과 β-에피머는 포함되지 않았다.
[실시예 12]
A) 촉매 : 로듐 트리클로라이드 트라하이드레이트(1.00g ; 3.80mmol)를 물(5.0ml)에 닿고 70℃로 1시간동안 가열하여 용해하였다.
질소가스하에서 트리페닐포스핀(1.95g ; 7.43mmol)을 아세톤(25.0ml)으로 용해한 용액에 20분에 걸쳐 첨가하였다.
10분 이상 저어준 후에 하이드라진하이드레이트(1.90m ; 39.09mmol)를 가하고 혼합물을 3시간동안 환류한 후 45℃에서 1시간 동안 저어주었다.
결정형 고체를 여과하고, 적은량의 아세톤으로 세척한 후 마지막으로 디-에틸에테르로 세척하여 오렌지색 고체 1.05g을 얻었다.
I R 스팩트럼으로 6.30 마이크론에서 브로우드피크가 나타났다.
원소분석은 로듐 12.43%, 질소 2.61%였다.
B) 수소화 : 얻어진 촉매(17mg)을 메탄올(13.5ml)에 용해한 용액을 메탄올(27ml)에 용해한 용액이 담겨있는 스텐레스스틸제 수소화 반응기에 첨가하였다. 88℃, 압력 8-9.2kg/cm2하에서 6시간 30분 동안 수소화 하였다.
p-톨루엔설포닉에시드(2.23g : 12.95mmol)를 여과한 반응 혼합물에 가하고 2시간 동안 저어주었다. 그다음 얻어진 결정을 여과하고 아세톤으로 세척 후 건조하였다.
생성물이 5.4g, 수율 83.9%로 얻어졌다.
써클라페이퍼크로마토그래피에 의하여 미량의 흔적량으로 β-에피머가 함유되어 있는 것을 알았다. 다음에 모액을 같은 량의 물로 희석하고 설포살리실릭에시드(4.0g ; 18.33mmol)을 가하였다. 부수져으로 독시싸이클린의 설포살리실레이트 0.47g이 얻어졌으며 이는 β-에피머가 8%였고 분해 생성물이 약2%이었다.
[실시예 13]
트리페닐포스핀(68mg : 0.26mmol)을 수소화하기 전에 반응혼합물에 가하고 실시예 12B를 반복하였다. 이렇게 함으로써 α-6-데옥시옥시테트라싸이클린 p-톨루엔 설포네이트가 5.36g, 수율 83.3%로 얻어졌다. 이것은 β-에피머의 흔적량을 포함하였다. 2번째는 설포살리실레이트 0.7g이 얻어졌으며 이것은 4%의β-에피머를 포함하였다.
[실시예 14]
로듐트리클로라리드 트리하이드레이트(0.50g ; 1.90mmol)를 물(2.5ml)에 70℃이서 1시간 동안 가열함으로써 용해하였다.
다음에 아세톤(12.5ml)이 트리페닐포스핀(0.73g ; 2.78mmol)을 용해한 용액을 20분 가량 질소압하에서 첨가하였다. 하이드라진 하이드레이트(0.95ml ; 19.55mmol)를 첨가한 후에 혼합물을 10분간 저어주었다.
혼합물을 3시간 동안 환류하고 45℃에서 1시간 동안 저어 주었다.
여과하고 적은량의 아세톤으로 세척한 후 디-에틸에테르로 다시 세척하여 황색의 생성물을 얻었다.
수율 58%.
[실시예 15]
A) 촉매 : 로듐트리클로라이드트리하이드레이트(0.5g ; 1.90mmol)을 물(2.5ml)에 넣고 저어주면서 70℃에서 1시간 가열하고 하이드라진하이드리이트(0.8962ml ; 18.44mmol)를 아세톤(9.24ml)에 첨가하였다.
3시간 동안 환류한 다음, 냉각하고 결정은 여과하였다.
B) 수소화 : 위에서 얻어진 촉매(25mg)를 사용하여 실시예 1B에 기술된 바와 같이 수소화를 행하였다. 이렇게 함으로써 α-6-데옥시옥시테트라싸이클린 p-톨루엔설포네이트가 7.96g, 수율 83.3%로 얻어졌다. 이것은 약 1.5%의 β-에피머를 포함하였다. 다음에 모액을 같은 량의 물로 희석하고, 설포살리실릭에시드(Sulphosalicylicacid)(4.0g ; 18.33mmol)을 가하였다.
93%의 α-에피머와 7%의 β-에피머를 포함하는 독시싸이클린설포살리실레이트 1.55g이 부수적으로 얻어졌다.
[실시예 16]
수소화 반응혼합물에 트리페닐포스핀을 가하지 않고 실시예 15B를 반복하였다.
수소의 소비는 없었으며 6-데옥시-6-데메틸-6-메틸렌-5-하이드록시테트라싸이클린이 변화하지 않고 남아 있었다.
[실시예 17]
A) 촉매 : 하이드라진 하이드레이트를 페닐하이드라진(3.85m : 39.1mmol)으로 치환하여 실시예 12A를 반복하였다.
황색을 띄는 오렌지색의 생성물이 2.10g 얻어졌으며, I R 스팩트럼으로 브로우드피크는 6.30 마이크론이었다.
B) 수소화 : 위에서 얻어진 촉매(25mg)을 사용하여 실시예 1B를 반복하였던 바,α-6-데옥시옥시테트라싸이클린 p-톨루엔설포네이트가 8.50g, 수율 89.4%로 얻어졌다.
[실시예 18]
A) 촉매 : 로듐트리클로라이드 트리하이드레이트(0.50g ; 1.90mmol)을 물(2.5ml)에 가하고 부탄-2-온(12.5ml)이 트리페닐포스핀(0.98g ; 3.74mmol)이 포함된 용액을 20분 이상 가한 후 70℃에서 1시간 가열하여 용해하였다.
혼합물을 질소가스하에서 10분간 저어주었다. 벤젠설포닐하이드라진(3.37g ; 19.57mmol)을 가하고 혼합물을 67℃에서 3시간, 45℃에서 1시간 질소가스하에서 저어주었다.
냉각된 반응혼합물을 여과하여 0.93g의 오렌지색 생성물을 얻었다.
I R스팩트럼에 나타난 피크는 6.30 마이크론에서 였다.
B) 수소화 : 위의 촉매(25mg)을 사용하여 실시예 1B를 반복하였다.
이렇게 함으로서 α-6-데옥시옥시테트라싸이클린 p-톨루엔설포네이트를 8.57g, 수율 90%로 얻었다. 써클라페이퍼크로마토그래피에 의해서는 β-에피머나 출발물질이 검출되지 않았다.
B) 수소화 : 위에서 얻어진 촉매(25mg)을 메탄올(20ml)에 용해한 용액을 11a-클로로-6-데옥시-6-디메틸-6-메틸렌-5-하이드록시테트리싸이클린 p-톨루엔 설포네이트(10.00g ; 15.41mmol)와 메탄올(40ml)에 트리페닐포스핀(4.00g ; 15.25mmol)을 용해한 용액이 들어 있는 스테인레스스틸제 수소화 반응기에 첨가하였다.
질소로 세척한 후 압력 9kg/cm2,88℃에서 수소를 충만시켰다.
6시간 30분 후에 수소화 반응기를 냉각하고 혼합물을 여과하였다.
p-톨루엔 설포닉에시드(3.3g ; 19.16mmol)를 여과물이 가하고 2시간 동안 저어주었다.
결정은 여과하고 아세톤으로 세척 후 건조하였다.
α-6-데옥시옥시옥시테트라싸이클린 p-톨루엔설포네이트가 8.27g, 수율 87.0%로 얻어졌다.
써클라페이퍼크로마토그래피에 의하여 β-에피머나 출발물질이 검출되지 않았다.
[실시예 19]
로듐 트리클로라이드트리하이드레이트(0.50g ; 1.90mmol)를 물(2.5ml)에 넣고 70℃에서 1시간 동안 가열하여 용해하였다.
질소가스하에서 아세톤(12.5ml)에 트리페닐포스핀(0.975g : 3.72mmol)과 하이드라진 디하이드로클로라이드(2.05g ; 19.53mmol)를 용해한 용액을 20분간 가하였다.
10분간 저어준 후에 혼합물을 3시간 동안 환류하였다. 냉각하여 생성물이 크림색의 결정으로 얻어졌다. 여과 후 적은량의 아세톤으로 세척하고, 디에틸에테르로 다시 세척하여 1.05g을 얻었다.
[실시예 20]
로듐트리클로라이드트리하이드레이트(0.50g; 1.90mmol)를 물(2.5ml)에 70℃에서 1시간 동안 가열함으로서 용해하였다.
메탄올(12.5ml)와 트리페닐포스핀(0.975g ; 3.72mmol)으로 된 용액을 질소하에서 20분동안 첨가하였다. 10분간 저어준 후에 하이드라진하이드레이트(0.95ml ; 19.55mmol)를 가하고, 혼합물을 질소하에서 3시간동안 환류하였다.
냉각 결정으로 된 고체를 얻었다. 이것은 여과하고 적은량의 메탄올로 세척하고 마지막으로 디에틸에테르로 세척함으로서 선별되었다. 오렌지색의 고체가 0.57g 얻어졌다.
[실시예 21]
A) 촉매 : 하이드라진하이드레이트(8μl ; 0.16mmol)을 트리스(트리페닐포스핀) 클로로로듐(I)(50mg : 0.05mmol)과 에탄올(10ml) 용액에 현탁시키고 혼합물을 실온에서 반응혼합물의 색이 변할때까지 수분동안 저어주었다.
B) 수소화 : 위의 촉매를 단리함이 없이 11a-클로로-6-데옥시-6-디메틸-6-메틸렌-5-하이드록시테트라싸이클린 p-톨루엔설포네이트(20.0g ; 30.81mmol)과 트리 페닐포스핀(8.00g : 30.50mmol)의 메탄올(105ml) 용액에 첨가하였다.
계속해서, 위의 혼합물을 압력 8kg/cm2, 온도 87℃-98.5℃에서 6시간 동안 수소화하였다.
다음에 혼합물을 45℃로 냉각한 후 p-톨로엔설포닉에시드(6.7g : 38.91mmol)를 저어주면서 첨가하였다.이것을 2시간 이상 저어준 후 0℃로 냉각하였다. 다음에 이것을 여과하고 메탄을(2×5.5ml)과 아세톤으(2×5.5ml)로 세척한 후 건조하였다.
α-6-데옥시옥시테트라싸이클린 p-톨루엔설포네이트가 17,23g, 수율 90.7%로 얻어졌다.
함량은 β-에피머가 0.3%였고 h.p.l.c.(컬럼 : μBondapak "Waters" CN-ref. No. PN 84042 S/N ; 용매 : 80% 테트라하이드로푸란, 0.001M EDTA에 80%의 물과 20%의 아세틱에시드르된 20%의 혼합물 : 흐름속도 : 2.5ml/min ; detection : U.V.268nm ; 1.0AUFS ; chart : 5mm/min)에 의하여 출발물질은 존재하치 않음을 알았다.
[실시예 22]
A) 촉매 : 하이드라진 하이드레이트(0.08ml : 1.65mmo1)를 트리스(트리페닐포스핀) 클로로로듐(I)(0.5g : 0.54mmol)과 프로판-2-올 용액에 가하고 25분간 환류하였다.
다음에 이것을 냉각하고 여과하였다.
이렇게 하여 14.1%의 로듐을 포함한 촉매를 얻었다.
B) 수소화 : 위에서 얻어진 촉매(25mg)를 사용하여 실시예 18C를 반복하였다.
단리된 α-6-데옥시옥시테트라싸이클린 p-톨루엔설포네이트를 8.02g, 수율 84.4%로 얻었다. 씨클라페이퍼로마토그래피에 의하여 β-에피머나 출발물질이 검출되지 않음을 알았다.
[실시예 23]
A) 촉매 : 로듐트리클로라이드트리하이드레이트(0.5g ; 1.90mmol)를 몰(2.5ml)로 전소기류하에서 70℃로 1시간 동안 가열하였다.
다음이 트리페닐포스핀(0.975g ; 3.72mmo1)을 부탄-2-온 (12.5ml)에 가하고 계속해서 하이드라진 하이드레이트(0.95ml ; 19.55mmol)를 가하였다. 3시간 동안 환류한 다음,1시간 동안 45℃에서 저어준 후 이것을 냉각하고 결정을 여과하여 세척하고 건조하였다.
B) 수소화 : 위에서 얻어진 촉매(25mg)를 사용하여 실시예 18C를 반복하여, α-6-데옥시옥시테트라싸이클린 p-톨루엔설포네이트틀 8.04g, 수율 84.6%로 얻었다.
씨클라페이퍼크로마토그래피에 의해 β-에피머와 출발물질은 검출되지 않았음을 알았다.
[실시예 24]
A) 촉매 : 하이드라진하이드레이트(0.394ml/100ml의 용액 0.6ml)의 메탄올성용액을 트리스(트리페닐포스핀) 클로로로듐(I)(15mg ; 로듐함량 11.0%)와 메탄올 (20ml) 용액이 저어주면서 가하였다.
색의 변화가 있을 때까지 수분간 저어주는 것을 계속하었다.
B) 수소화 : 위에서 말한 촉매의 반응 혼합물을 11a-클로로-6-데옥시-6-데메틸-6-메틸렌-5-하이드록시 테트라싸이클린 p-톨루엔설포네이트(10.0g ; 15.41mmol)와 트리페닐포스핀(4.00g ; 15.25mmol), 메탄올(40ml)이 들어 있는 스테인레스스틸제 수소화 반응가에 첨가하였다.
질소로 세척한 다음, 9.2kg/cm2,88℃에서 9시간 동안 수소화하였다.
다음이 냉각하고 여과하였다.
계속해서 p-톨루엔설포닉에시드(3.3g : 19.16mmol)를 가하고 2시간 동안 혼합물을 저어준 다음 여과하였다. 이렇게 하여 생성된 6-데옥시옥시테트라싸이클린 p-톨루엔설포네이트의 수율은 85.9%로 8.16g을 얻었다. 씨클라페이퍼크로마토그래피에 의하여 β-에피머는 검출되지 않았으나 출발물질의 흔적은 미량 존재함을 알았다.

Claims (12)

  1. 로듐염이나 로듐착화합물과 트리페닐포스핀을 R'1R'2N·NR'3R'4의 구조를 갖는 하이드라진 또는 그의 염을 반응시키고, 여기서 R'1는 페닐 또는 벤젠설포닐기 또는 수소이고 R'2,R'3와 R'4는 수소이며, 이때 반응은 과량의 트리페닐포스핀 존재 또는 부재하에서 반응시키는 공정으로, 로듐염의 경우에 있어서는 트리페닐포스핀 과량 존재하, 0℃ 내지 반응 매질의 환류온도로 유기 용매내에서, 반응이 완결될 때까지 행하며, 그 후 얻어진 촉매와 혼화될 수 있는 비용매를 첨가하여 단리하고 여과하는 반응 공정으로 이루어진 새롭고 안정한 균일성 수소화로듐 촉매의 제조방법.
  2. 제1항에 있어서, 하이드라진과 반응할 로듐착화합물은 트리스(트라페닐포스핀) 클로로로듐(I)인 제조방법.
  3. 제1항에 있어서, 하이드라진은 하이드라진 그 자체이며, 모노하이드레이트형인 제조방법.
  4. 제1항에 있어서, 유기용매는 저급알콜이거나 싸이클릭에텔인 제조방법.
  5. 제1항에 있어서, 로듐염을 R'11R'2N·NR'3R'4의 구조를 갖는 하이드라진 또는 그의 염을 반응시키고,여기서 R'1는 페닐 또는 벤젠 설포닐기 또는 수소이고 R'2,R'3와 R'4는 수소이며, 트리페닐포스핀 존재하에서, 물과 반응중 불활성인 유기용매의 혼합물 중에서, 1 내지 5시간 동안 20℃ 내지 반응매질의 환류온도에서, 반응후 여과하여 얻거나 비용매를 첨가하고 여과하는 제조방법.
  6. 제5항에 있어서, 로듐염은 로듐트리클로라이드이며, 그의 트리하이드레이트형인 제조방법.
  7. 제5항에 있어서, 하이드라진은 하이드라진 그 자체, 페닐하이드라진, 벤젠설포닐하이드라진 및 그의 염인 제조방법.
  8. 제5형에 있어서, 하이드라진은 화학양론적으로 과량 존재하는 제조방법.
  9. 제5항에 있어서, 존재하는 로듐의 각 몰당 트리페닐포스핀을 1 내지 2.5몰을 사용하는 제조방법.
  10. 제5항에 있어서, 유기용매는 저급 디-알킬케톤, 저급알콜, 에텔, 유기나이트릴 또는 저급 디-알킬아마이드인 제조방법.
  11. 제4항에 있어서, 저급알콜은 메탄올, 에탄올, 푸로판-2-올, 부탄올 또는 2-에틸푸로판-2-올이고, 싸이클릭 에텔은 테트라하이드로푸란인 제조방법.
  12. 제10항에 있어서, 저급 디-알킬 케톤은 아세톤 또는 부탄-2-온, 저급알콜은 메탄올, 에탄올, 푸로판올, 푸로판-2-올, 부탄올, 또는 2-메틸푸로판-2-올이고, 에텔은 테트라하이드로푸란 또는 디옥산이며, 유기나이트릴은 아세토나이릴이고 저급 디-알킬 아마이드는 디메틸포름아마이드인 제조방법.
KR1019830000194A 1982-01-19 1983-01-18 로듐촉매의 제조방법 KR870000210B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR8610792A KR900000888B1 (en) 1982-01-19 1986-12-16 Process for the preparation of l-6-deoxy tetracyclines

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PT198274303A PT74303B (fr) 1982-01-19 1982-01-19 Procede pour la preparation de nouveaux catalysateurs contenant rhodium et son utilisation
PT74303 1982-01-19
PT198276061A PT76061A (en) 1982-12-30 1982-12-30 Stable homogeneous hydrogenation rhodium catalyst - useful in high yield prodn. of doxycycline by stereospecific hydrogenation
PT76061 1982-12-30

Publications (2)

Publication Number Publication Date
KR840003038A KR840003038A (ko) 1984-08-13
KR870000210B1 true KR870000210B1 (ko) 1987-02-17

Family

ID=26653435

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019830000194A KR870000210B1 (ko) 1982-01-19 1983-01-18 로듐촉매의 제조방법

Country Status (7)

Country Link
US (2) US4500458A (ko)
EP (1) EP0086046B1 (ko)
KR (1) KR870000210B1 (ko)
DE (1) DE3372183D1 (ko)
FR (1) FR2530490B1 (ko)
HK (1) HK86988A (ko)
SG (1) SG68089G (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT79774A (en) * 1984-12-28 1985-01-01 Joao Emerico Villax Process to prepare rhodium catalysts and applications thereof
US4500458A (en) * 1982-01-19 1985-02-19 Plurichemie Anstalt Process for the preparation of α-6-deoxytetracyclines
PT76061A (en) * 1982-12-30 1983-01-01 Stable homogeneous hydrogenation rhodium catalyst - useful in high yield prodn. of doxycycline by stereospecific hydrogenation
PT74303B (fr) * 1982-01-19 1983-08-08 Joao Emerico Villax Procede pour la preparation de nouveaux catalysateurs contenant rhodium et son utilisation
US4743699A (en) * 1982-01-19 1988-05-10 Plurichemie Anstalt Homogeneous catalytic system and a process for the preparation of same
DK386784A (da) * 1983-08-17 1985-02-18 Hovione Int Ltd Fremgangsmaade til fremstilling af alfa-6-desoxy-tetracykliner
US4863639A (en) * 1987-03-25 1989-09-05 Plurichemie Anstalt Application of catalysts containing rhodium
DE3771705D1 (de) * 1987-03-25 1991-08-29 Plurichemie Anstalt Rhodiumhydrierungskatalysatoren.
ATE63312T1 (de) * 1987-03-25 1991-05-15 Plurichemie Anstalt Rhodium enthaltende hydrierungskatalysatoren.
US4837030A (en) * 1987-10-06 1989-06-06 American Cyanamid Company Novel controlled release formulations of tetracycline compounds
US4987242A (en) * 1988-10-28 1991-01-22 Jagmohan Khanna Hydrogenation catalyst useful in the production of alpha-6-deoxytetracyclines
US4973719A (en) * 1988-10-28 1990-11-27 Ranbaxy Laboratories Limited Process for the production of alpha-6-deoxytetracyclines
US4902447A (en) * 1988-10-28 1990-02-20 Ranbaxy Laboratories Limited Process for the production of alpha-6-deoxytetracyclines and hydrogenation catalyst useful therein
DE68900339D1 (de) * 1989-04-03 1991-11-21 Ranbaxy Lab Ltd Verfahren zur herstellung von alpha-6-deoxytetracyclinen.
DE19644050A1 (de) * 1996-10-31 1998-05-07 Bayer Ag Verfahren zur Herstellung von Ivermectin
EP1157740A3 (en) 2000-05-18 2002-02-27 Haldor Topsoe A/S Rhodium containing solutions
WO2005011707A1 (en) * 2003-07-25 2005-02-10 Warner Chilcott Company, Inc. A doxycycline metal complex in a solid dosage form
PL2342223T3 (pl) 2008-09-26 2017-09-29 Ambrx, Inc. Zmodyfikowane polipeptydy zwierzęcej erytropoetyny i ich zastosowania
US8729058B2 (en) 2009-10-27 2014-05-20 Michael Zasloff Methods and compositions for treating and preventing viral infections
CN106946728B (zh) * 2017-04-12 2019-02-01 扬州联博药业有限公司 一种生产多西环素一水合物的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA668581A (en) * 1963-08-13 R. D. Mccormick Jerry Process for the catalytic reduction of 6-hydroxy hydronaphthacenes
GB1154937A (en) * 1966-08-10 1969-06-11 Ici Ltd Hydrogenation Process
US3755194A (en) * 1969-02-12 1973-08-28 O Eremenko Hydrogenation catalyst
CA942743A (en) * 1970-07-03 1974-02-26 Ivan Villax Process for producing 6-methylenetetracyclines and 6-deoxytetracyclines
NL7109740A (ko) * 1971-02-24 1972-08-28
US3956177A (en) * 1971-08-20 1976-05-11 Phillips Petroleum Company Rhodium hydroformylation catalyst
US4207258A (en) * 1972-02-24 1980-06-10 Ankerfarm S.P.A. Process for the preparatin of α-6-deoxytetracyclines
GB1440372A (en) * 1973-02-01 1976-06-23 Pfizer Process for the preparation of tetracyclines
SE435619C (sv) * 1973-02-01 1985-10-31 Pfizer Forfarande for framstellning av en 6alfa-deoxitetracyklin
US3954862A (en) * 1973-04-20 1976-05-04 Pfizer Inc. Process for producing α-6-deoxytetracyclines
US3907890A (en) * 1974-05-28 1975-09-23 Pfizer Preparation of alpha-6-deoxy-5-hydroxytetracycline
CH619443A5 (en) * 1974-10-31 1980-09-30 Hoffmann La Roche Process for the preparation of optically active alkane- and alkene monocarboxylic acids.
US4001321A (en) * 1975-06-26 1977-01-04 Pfizer Inc. Preparation of α-6-deoxytetracyclines
US3962131A (en) * 1975-01-28 1976-06-08 Pfizer Inc. Rhodium containing catalyst and use thereof in preparation of 6-deoxy-5-oxytetracycline
US3978000A (en) * 1975-03-19 1976-08-31 American Cyanamid Company Catalysts based on carbon supports
US4500458A (en) * 1982-01-19 1985-02-19 Plurichemie Anstalt Process for the preparation of α-6-deoxytetracyclines

Also Published As

Publication number Publication date
EP0086046A1 (en) 1983-08-17
KR840003038A (ko) 1984-08-13
SG68089G (en) 1990-01-26
EP0086046B1 (en) 1987-06-24
DE3372183D1 (en) 1987-07-30
FR2530490A1 (fr) 1984-01-27
US4500458A (en) 1985-02-19
HK86988A (en) 1988-11-04
FR2530490B1 (fr) 1987-12-24
US4550096A (en) 1985-10-29

Similar Documents

Publication Publication Date Title
KR870000210B1 (ko) 로듐촉매의 제조방법
CN109988117B (zh) 一类3-甲基喹喔啉-2(1h)-酮类衍生物的制备方法
CN110117260B (zh) 一种3-烷基喹喔啉-2(1h)-酮类化合物的制备方法
US4207258A (en) Process for the preparatin of α-6-deoxytetracyclines
US4743699A (en) Homogeneous catalytic system and a process for the preparation of same
EP1724251B1 (en) Process for the production of optically active hydroxymethylated compounds
CA2658773A1 (en) Asymmetric hydrogenation of 1,1,1-trifluoroacetone
CN109776407B (zh) 一种2-甲基-4-羟甲基喹啉及其衍生物的制备方法
CA1218058A (en) Process for the preparation of new rhodium-containing catalysts and their application
CN112679430B (zh) 一种制备异喹啉酮类化合物的方法
CN114057588A (zh) 一种8-氨基-2-萘酚的合成方法
Inagaki et al. Oxidation of 4-alkyl-1-hydroxyimino-2, 4, 6-tri-t-butyl-2, 5-cyclohexadienes. Formation of 4-alkyl-2, 6-di-t-butylnitrobenzenes via iminoxyl radical.
US4987242A (en) Hydrogenation catalyst useful in the production of alpha-6-deoxytetracyclines
CN113735867B (zh) 一种手性吲哚并氧杂七元环化合物及其合成方法
Brown et al. Aza steroids. V. Introduction of 11-hydroxy and 11-amino groups
JP3464431B2 (ja) 高分子固定化キラルジルコニウム触媒
JP3171400B2 (ja) ヒドロキシカルボニル誘導体およびその製造方法
CN115057848B (zh) 一种轴手性异吡喃酮-吲哚衍生物及其合成方法
CN111662233B (zh) 一种一步法合成4-氯-1h-咪唑-2-羧酸乙酯的方法
JPH0258976B2 (ko)
JP2860676B2 (ja) 1―イソキノリン類の製造方法
CN116768904A (zh) 一种手性四氢吲哚并咔唑化合物及其合成方法
JPH02264757A (ja) ニトロインドール類の製造方法
KR800000085B1 (ko) α-6-데옥시-5-하이드록시 테트라사이클린염산염의 제조방법
WO2024093091A1 (zh) 一种海鞘素类化合物中间体的制备方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020206

Year of fee payment: 16

EXPY Expiration of term