KR20240047432A - 융합된 고리 헤테로아릴 화합물 및 이의 용도 - Google Patents

융합된 고리 헤테로아릴 화합물 및 이의 용도 Download PDF

Info

Publication number
KR20240047432A
KR20240047432A KR1020247008430A KR20247008430A KR20240047432A KR 20240047432 A KR20240047432 A KR 20240047432A KR 1020247008430 A KR1020247008430 A KR 1020247008430A KR 20247008430 A KR20247008430 A KR 20247008430A KR 20240047432 A KR20240047432 A KR 20240047432A
Authority
KR
South Korea
Prior art keywords
brs
methylpyridin
mmol
indazol
amine
Prior art date
Application number
KR1020247008430A
Other languages
English (en)
Inventor
서정법
한철규
윤철환
양인호
김선주
강홍준
이정우
김남희
신영도
강병남
이진우
Original Assignee
주식회사 비씨켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 비씨켐 filed Critical 주식회사 비씨켐
Publication of KR20240047432A publication Critical patent/KR20240047432A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Diabetes (AREA)
  • Pulmonology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Dermatology (AREA)
  • Immunology (AREA)
  • Endocrinology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Emergency Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 화학식 I로 나타낸 신규한 치환된 이종환식 화합물, 또는 이의 약제학적으로 허용가능한 염, 용매화물, 다형체, 에스테르, 호변이성질체 또는 전구약물, 및 이러한 화합물을 포함하는 조성물을 제공한다. 제공된 화합물은 ALK5의 저해제로서 사용될 수 있고, 만성 섬유증, 혈관 장애, 비만, 당뇨병, 자가면역 질환 및 암의 치료에 유용하다.
[화힉식 I]

Description

융합된 고리 헤테로아릴 화합물 및 이의 용도
본 발명은 전환 성장 인자-β(TGF-β) 유형 I 수용체(액티빈 유사 키나아제5(Activin Like Kinase5)) 및/또는 액티빈 유형 I 수용체(ALK4)의 저해제이며, 비만, 당뇨병, 사구체신염, 당뇨병성 신장병, 루푸스 신장염, 고혈압-유발 신장병, 신장 간질성 섬유증, 약물 노출의 합병증으로 인한 신장 섬유증, HIV 관련 신장병, 이식 신장병, 모든 병인으로 인한 간 섬유증, 감염으로 인한 간 기능 장애, 알코올-유발 간염, NASH(비-알코올성 지방간염), 담도계 장애, 폐 섬유증, 급성 폐 손상, 성인 호흡 곤란 증후군, 특발성 폐 섬유증, 만성 폐쇄성 폐 질환, 감염성 또는 독성 물질로 인한 폐 질환, 경색후 심장 섬유증, 울혈성 심부전, 확장성 심근병증, 심근염, 혈관 협착증, 고혈압-유발 혈관 재형성, 폐 동맥 고혈압, 관상 동맥 재협착증, 말초 재협착증, 경동맥 재협착증, 스텐트-유발 재협착증, 죽상동맥경화증, 안구 흉터, 각막 흉터, 증식성 유리체망막병증, 외상 또는 수술 상처로 인한 상처 치유 중에 발생하는 진피의 과잉성 또는 비후성 흉터 또는 켈로이드 형성, 복막 및 피하 유착, 경피증, 섬유경화증, 진행성 전신 경화증, 피부근염, 다발근염, 관절염, 골다공증, 궤양, 신경 기능 손상, 남성 발기 부전, 페이로니병(Peyronie's disease), 듀피트렌 구축(Dupuytren's contracture), 알츠하이머병, 레이노 증후군(Raynaud's syndrome), 섬유성 암, 종양 전이 성장, 방사선-유발 섬유증 및 혈전증의 치료에 유용한, 일련의 치환된 이종환식 화합물에 관한 것이다. 또한, 본 발명은 본 발명의 화합물을 포함하는 약제학적 조성물, 의약의 제조에 있어서 상기 화합물의 용도, 및 상기 화합물을 투여함으로써 포유동물, 특히 인간에서 과증식성 질환을 치료하는 방법에 관한 것이다.
전환 성장 인자-β(TGF-β)는 세포자멸사, 증식 및 분화와 같은 세포 과정을 조절함으로써 생리학적 항상성을 유지하는 흔히 발현되는 강력한 다면성 사이토카인이다.
TGF-β 수퍼패밀리는 성장 인자의 다양한 세트를 나타내며, 이는 수용체 세린/트레오닌 키나아제를 통해 신호를 전달한다. 수퍼패밀리는 다음의 두 가지 부문으로 세분된다: TGF-β/액티빈 부문 및 골 형성 단백질(BMP)/성장 및 분화 인자(GDF) 부문. 각각의 부문은 서열 유사성을 기준으로 하위 그룹으로 더욱 세분된다. TGF-β/액티빈 부문은 TGF-β, 액티빈, 인히빈(Inhibin), 노달(Nodal) 및 레프티(Lefty) 리간드를 포함한다. BMP/GDF 부문은 BMP, GDF 및 뮬런 저해 물질(Mullerian Inhibitory Substance, MIS) 리간드를 포함한다. 거의 모든 세포는 TGF-β를 분비하고 TGF-β 수용체를 발현한다.
활성 TGF-β의 ALK5 및 유형 II (TGF- βRII) 수용체로의 결합 시에, ALK5는 TGF-βRII에 의해 인산화되고 활성화된다. 결국, ALK5는 R-Smad, Smad2 및 Smad3을 인산화하고 활성화하며, 이는 Smad4와 복합체를 형성한다. 이러한 복합체는 핵으로 전위되고, 이는 다른 전사 인자와 함께 DNA를 결합시키고, 일반 전사 기구와 상호작용하여 대략 100 내지 300개의 표적 유전자의 발현을 조절한다.
실험적으로 조절되지 않은 TGF-β 패밀리 신호 전달로 인해 발생하는 많은 발달 결함과 일치하게, TGF-β 패밀리 단백질 기능의 중등도 정도의 변화는 발달 증후군, 및 상처 치유 장애, 만성 섬유증, 혈관 장애, 비만, 당뇨병, 자가면역 질환 및 암을 포함한 많은 질환과 연관되었다.
TGF-β는 다양한 섬유성 질환과 매우 관련된다(문헌[Border WA et al, N Engl J Med. 331(19):1286-8211;1292(1994)]). 섬유증은 세포외 기질(ECM) 침착 및 분해에 불균형이 있을 때 발생한다. 많은 TGF-β 리간드는 ECM 침착의 강력한 구동자이며, 추가로, ECM에 대해 자연 친화성을 가져서, 손상 부위에서 농축된 프로-섬유성 인자의 풀(pool)을 생성한다(문헌[Kelly L et al, Front in Pharm 8:461 (2017)]). 손상에 반응하여, 과립구, 혈소판, 백혈구 및 추가 실질 세포의 유입은 상처 부위에서 TGF-β의 존재를 증가시킨다(문헌[Branton MH, et al, Microbes Infect. 1(15):1349-8211;1365 (1999)]; 문헌[Border WA et al, N Engl J Med. 331(19):1286-8211;1292(1994)]). 이어서, TGF-β는 섬유아세포 증식, 근섬유아세포 분화, 및 세포외 기질의 재형성을 유도한다(문헌[Branton MH et al, Microbes Infect. 1(15):1349-8211;1365 (1999)]; 문헌[Border WA et al, N Engl J Med. 331(19):1286-8211;1292(1994)]; 문헌[Xiao L et al, Front Biosci. 17:2667-8211;2674(2012)]; 문헌[Roverts AB et al, Proc Natl Acad Sci U S A. 83(12):4167-8211;4171(1986)]). 비후성 흉터로부터 유래된 섬유아세포는 TGF-β 신호 전달을 변형시키는 것으로 입증되었다. 연구는 비후성 흉터에서 Smad2 및/또는 3의 발현 및 인산화 증가를 시사하였다(문헌[Xie JL et al, Dermatol surg. 34(9):1216-1224 (2008)]; 문헌[Kopp J et al, J Biol chem. 280(22):21570-6(2005)]). Smad2/3의 활성화는 콜라겐[COL1A1, COL3A1, COL5A2, COL6A1, COL6A3, COL7A1](문헌[Verrecchia F et al, J Biol chem. 276, 17058-17062 (2001)]), 플스민노겐 활성제 저해제-1(PAI-1)(문헌[Dennler S et al, EMBO J. 17:3091-3100 (1998)]; 문헌[Hua X et al, Genes Dev. 12:3084-3095 (1998)]), 다양한 프로테오글리칸(문헌[Schonherr E et al, J Biol Chem. 266:17640-17647 (1991]); 문헌[Romaris M et al, Biochem J. 310:73-81 (1995)]; 문헌[Dadlani H et al, J Biol chem. 283:7844-7852 (2008)]), 인테그린(문헌[Margadant C et al, EMBO Rep. 11:97-105 (2010)]), 결합 조직 성장 인자(문헌[Chen Y et al, Kidney Int. 62:1149-1159 (2002)]), 및 기질 금속단백질분해효소(MMP)(문헌[Yuan W et al, J Biol Chem. 276:38502-38510 (2001)])를 포함한 몇몇 프로섬유성 유전자의 발현을 조절한다. 따라서, 동물 모델에서 TGF-β의 무력화는 간 섬유증을 저해하고, 담관암의 발병 위험성을 감소시킨다(문헌[Fan X et al, PLoS One. 8(12):82190 (2013)]; 문헌[Ling H et al, PLoS One. 8(1):e54499 (2013)]). ALK5 저해제는 세포외 기질의 전사 및 침착을 저해하고, 마우스에서 간 기능의 악화를 개선시킨다(문헌[Gouville AC et al, Br J Pharmacol. 145(2):166-77 (2005)]). 이전의 보고서를 기준으로, TGF-β 신호 전달은 섬유성 질환의 예방 또는 치료를 위한 잠재적 표적인 것으로 보였다. 따라서, ALK5의 직접 저해는 TGF-β의 해로운 프로섬유성 효과를 예방하는 매력적인 방법을 나타낸다. 최근에 설명된 ALK5의 합성 저해제는 세포 분석에서 TGF-β 효과를 차단하는 것으로 입증되었다(문헌[Callahan JF et al, J Med Chem. 45:999-1001 (2002)]; 문헌[Inman G et al, Mol Pharmacol. 62:65-74 (2002)]; 문헌[Laping N et al, Mol Pharmacol. 62:58-64 (2002)]; 문헌[Sawyer JS et al, J Med Chem. 46:3953-3956 (2003)]).
TGF-β 신호 전달의 잘못된 조절은 고혈압(문헌[Cambien et al, Hypertension 28(5):881-887 (1996)]), 심장 비대증(문헌[Schultz et al, Clinical Inv. 109(6):787-796 (2002)]) 및 심장 섬유증(문헌[Leask A, Cir Res. 106(11):1675-1680 (2010), Nikol S et al, Clinical Inv. 70(4):1582-1592 (1992)]) 및 죽상동맥경화증(문헌[Harradine et al, Annals of Med. 38(6):403-414 (2006), Bobik et al, Circulation 99(22):2883-2891 (1999)])을 포함한 혈관 기능 장애 및 질환으로 이어진다. TGF-β는 혈관 발달 및 혈관 재형성에 직접적인 영향을 미칠 수 있고, 죽상동맥경화증 및 재협착증, 내피 세포(EC), 평활근 세포(SMC), 대식세포, T 세포, 및 아마도 혈관 석회화 세포 반응의 조절에서 중요한 역할을 한다. ALK5 키나아제 저해제 SB431542에 의한 TGF-β 신호 전달의 저해는 망막 EC 배양에서 투과성을 증가시켜 EC 장벽 특성을 유지시킨다(문헌[Antonov AS et al, J Cell Physiol. 227(2):759-71 (2012)]). SB431542는 EC 특이적 성분 클라우딘(Claudin)-5의 발현을 증가시키고 부착 분자의 발현을 저해한다(문헌[Watabe et al, J Cell Biol. 163(6):1303-11 (2003)]). 성체 마우스에서 TGF-β의 전신 저해는 밀착 접합 단백질 ZO-1과 오클루딘(occludin) 사이의 감소된 결합에 의해 증명되는 바와 같이 혈관 투과성을 증가시켰다(문헌[Walshe et al, Plos One 4(4):e5149 (2009)]). SB431542에 의한 EC 처리는 세포골격 재형성에 의해 TGF-β-유발된 EC 구축을 저해하였다(문헌[Birukova et al, FEBS letter 579(18):4031-37 (2005)]). 또한, SM16, 경구 활성 ALK5 저해제는 래트 경동맥 풍선 손상 모델에서 섬유성 과다형성 혈관 반응을 방지한다(문헌[Fu et al, Arteriosclerosis, Thrombosis, and Vascular Biology 28(4):665-671 (2008)]). ALK5 저해제는 혈관 장애에서 치료 표적으로 유용할 수도 있다.
비만 및 유형 2 당뇨병의 발병에서 ALK5를 통한 TGF-β 신호 전달 역할에 대한 최근의 발견은 대사 및 지방증에서 그 중요성을 강조하였다. 실제로, 병적 비만 및 당뇨병성 신경병증 중에 인간 지방 조직에서 상승된 TGF-β가 이미 보고되었다.
Smad3-녹다운(Smad3-/-) 마우스를 사용하는 연구에 기반하여 대사에서 TGF-β 신호 전달의 역할에 대한 생체내 발견이 있었다. ALK5를 통한 TGF-β 신호 전달은 이자섬 β-세포에서 인슐린 유전자 전사를 조절하는 반면(문헌[Lin HM et al, J Biol Chem. 284:12246-12257 (2009)]), 마우스에서 Smad3 결핍은 고지방 식이-유발된 비만 중에 인슐린 저항성 및 유형 2 당뇨병으로부터 보호한다(문헌[Tan CK et al, Diabetes 60:464-476 (2011)]; 문헌[Yadav H et al, Cell Metab.14:67-79 (2011)]). 이러한 Smad3-/- 마우스는 개선된 내당능 및 인슐린 민감성과 함께 감소된 지방증을 나타내었다. 또한, 이러한 돌연변이 마우스는 고지방 식이 투여 시에 지방 조직에서 증가된 β-산화를 나타내었고, 이에 따라 이소성 지방 축적을 방지함으로써 췌장, 골격근 및 간의 당독성 및 지방독성을 개선시켰다(문헌[Tan CK et al, Diabetes. 60:464-476 (2011)]). 특히, TGF-β 신호 전달이 TGF-β 무력화 항체로의 처리에 의해 Smad3의 인산화를 차단한 경우, 이는 비만 및 유형 2 당뇨병으로부터 마우스를 보호한다(문헌[Yadav H et al, Cell Metab. 14:67-79 (2011)]). ALK5를 통한 TGF-β 신호 전달의 소분자 저해제는 NOD-scid IL-2Rgnull 마우스로 이식된 인간 섬에서 β-세포 복제를 촉진시킨다(문헌[Dhawan S et al, Diabetes. 65(5):1208-1218 (2016)]). 이러한 발견은, Smad3, TGF-β/ALK5의 정식 세포내 매개체가 대사 항상성의 다각적 조절자로서 역할을 한다는 것을 나타내며, 이에 따라 비만 및 이와 관련된 장애의 치료에서 잠재적 표적으로서 ALK5 매개된 Smad3 인산화를 식별한다.
TGFβ1은 림프 기관의 주요 동형체이다(문헌[Schmid, P. et al, Development 111, 117 (1991)]). TGFβ1은 강력한 항염증 기능을 발휘하며, 면역 반응의 주요 조절자이다(문헌[Li MO et al, Annu Rev Immunol 24:99-8211;146 (2006)]). 그러나, 표면적으로 면역 반응을 악화시키는 그의 역설적 역할, 및 이에 따른 T 헬퍼 17 세포(Th17)와 관련된 자가면역 촉진이 오랫동안 입증되었다(문헌[Wahl, S.M, J. Exp. Med. 180, 1587-8211;1590 (1994), Fava, R.A. et al, J. Exp. Med. 173, 1121-8211;1132 (1991)]). 활성화된 TGF-β는 T 세포 기능에 대해 자극 T 헬퍼 17(Th17) 및 조절 T 세포(Treg) 둘 모두가 영향을 끼친다(문헌[Chen W et al, Cytokine Growth Factor Rev. 2003, 14: 85-89, Wahl SM et al, Immunol Res. 2003, 28: 167-179]). 류마티스 관절염 또는 실험적 자가면역뇌척수염(EAE)과 같은 자가면역 질환의 병리학을 담당하는 Th17 세포의 분화를 구동하는 데 있어서 그의 필수 역할이 보고되었다 (문헌[Cua, D.J. et al, Nature 421, 744-8211;748 (2003), Nakae, S. et al, J. Immunol. 171, 6173-8211;6177 (2003)]). 최근의 연구는 Th17 세포 및 그 상류 자극자 IL-23, 또는 IL-23/Th17 경로가 류마티스 관절염, 염증성 장 질환 및 건선과 같은 몇몇 자가면역 질환의 발병에서 중요한 역할을 한다는 것을 시사한다(문헌[Di Cesare A et al, J Invest Dermatol. 2009;129:1339-50, Annunziato F et al, Nat Rev Rheumatol. 2009:325-31, de Cid R et al, Nat Genetic. 2009;41:211-5]).
류마티스 관절염(RA)에서, TGF-β는 RA 환자에서 높은 수준으로 발현된다(문헌[Lotz M et al, J. Immunol. 144:4189 (1990), Taketazu F et al, Lab. Investig. 70:620 (1994)]). TGF-β1은 류마티스 관절염(RA) 및 골관절염(OA)에서 염증 및 관절 파괴에 기여한다. RA 동물 모델에서, TGF-β의 윤활막으로의 주입은 호중구가 축적된 염증 반응을 유도하였고, 관절염 반응을 악화시켰다(문헌[Allen JB et al, J Exp Med. 171:231-8211;47 (1990), Fava RA et al, J Exp Med. 173:1121-8211;32 (1991)]). TGF-β1은 RA 섬유아세포-유사 윤활막세포(FLS)에서 IL-1β, TNFα, IL-8, MIP-1α 및 MMP-1의 발현을 유도하거나 증가시켰고, 다른 프로염증성 사이토카인과 시너지 효과를 발휘하였다. TGF-β1의 프로염증성 효과는 관절염 FLS에 대해 특이적이었다(문헌[Cheon H et al, Clin Exp Immunol 127:547-8211;552 (2002)]). 또한, RA 윤활막 섬유아세포에 의한 TGF-β 유도된 IL-6 및 혈관 내피 성장 인자(VEGF) 생성은 핵 인자-카파 B 활성화와 관련된다. RA 윤활막 섬유아세포에 대한 TGF-β의 이러한 효과는 ALK5 키나아제 저해제 HTS466284에 의해 저해되었다(문헌[Michitomo S etl al, Int Immunol. 19(2):117-26 (2007)]).
TGF-β 신호 전달의 과발현 및/또는 그 결핍은 폐암, 췌장암, 결장암, 전립선압 및 유방암을 포함한 다수의 암과 연관되었다(문헌[Eliott RL et al, J clin Oncol. 23:2078-2093 (2005)]). 이러한 연구를 통해, TGF-β는 종양 억제제 및 종양 촉진제 둘 모두로서 기능할 수 있다는 것이 명백해졌다(문헌[Akhurst RJ et al, Trends Cell Biol. 11(11):44-51 (2011)]). 양성 상피 및 다수의 초기 단계 종양에서, TGF-β는 성장 정지의 강력한 유도자이다. 그러나, 진행성 종양에서, TGF-β 신호 전달 경로는 엄격하게 조절되지 않는다. TGF-β는, 발암을 저해하기 보다는, 후기 단계에서 종양 성장 및 진행을 촉진한다(문헌[Akhurst RJ et al, Trends Cell Biol. 11(11):S44-51 (2011)]; 문헌[Massague J et al, Cell. 134(2):215-230 (2008)]; 문헌[Padua D et al, Cell Res. 19(1):89-102 (2009)]; 문헌[Inman GJ et al, Curr Opin Genet Dev. 21(1):93-99 (2011)]; 문헌[Pasche B et al, J Cell Physio.l 186(2):153-168 (2001)]; 문헌[Langenskiold M et al, J Surg Oncol. 97(5):409-415 (2008)]). 이러한 기능성 스위치는 TGF-β 파라독스로서 알려져 있다. 또한, TGFβ의 종양발생 효과에 대한 종양 억제제는 세포 전환의 시간적 단계와 관련되고/되거나 그에 따라 좌우된다는 증거가 있다. 예를 들어, Smad2/3을 결합시킬 수 없는 ALK5 돌연변이의 발현은 더 크고, 더 증식하며, 덜 분화된 유방 종양을 생성시킨다. 그러나, 매우 악성인 유방 세포에서 동일한 돌연변이의 발현은 폐로 전이되는 능력을 억제시킨다(문헌[Tian F et al, Cancer Res. 64:4523-30 (2004)]).
TGF-β의 다능성 성질은 그 효과를 무력화하는 기회와 도전 둘 모두를 제공한다. 그러나, 다수의 암은 종종 TGF-β 신호 전달 구성요소의 유전적 손실로 인하여 또는 보다 일반적으로는, 다른 통합 신호 전달 경로에 의한 하류 교란으로 인하여 이러한 성장 저해에 대해 불응하게 된다. 이 기간 동안, 면역조절 특성, 혈관신생 유도, 및/또는 암 이동 및 침입을 촉진하는 상피-중간엽 전이(EMT) 촉진을 포함한, TGF-β의 프로종양형성 작용이 우세할 수 있다.
TGF-β는 항-종양 면역성에 대해 악영향을 끼치며, 호스트 종양 면역 감시를 유의적으로 저해한다. TGF-β는 TGF-β1 null 마우스에서 발생한 총 자가면역성으로 증명되는 바와 같이 면역계의 억제에서 중요한 역할을 한다(문헌[Shull MM et al, Nature. 359(6397):693-699 (1992)]). 흥미롭게도, TGF-β 신호 전달의 이러한 T-세포-특이적 차단은 EL-4 흉선종 또는 B16-F10 흑색종 종양 세포로 공격을 받은 마우스에서 종양을 근절시킬 수 있는 종양-특이적 세포독성 T 림프구(CTL)의 생성을 허용한다(문헌[Thomas DA et al, Cancer Cell. 8(5):369-380 (2005)]). 선별적 ALK5 저해제, TEW-7197 및 LY-2157299를 사용한 경구 치료는 향상된 세포독성 T-림프구(CTL) 활성에 의해 흑색종의 진행을 억제하였다. 특히, ALK5 저해의 항-종양 효과는 주로 CD8+ T 세포에 따라 좌우된다(문헌[Yoon JH et al, EMBO Mol Meld. 5(11):1720-1739 (2013)]). TGF-β는 또한 CD4+ T-세포 분화 및 기능에 대해 유의적인 영향을 미치며, 높은 수준의 TGF-β를 생성하는 것으로 알려진 CD4 +CD25+ 조절 T 세포에 의해 부분적으로 조절되는 NK-세포 증식 및 기능을 저해한다(문헌[Nakamura et al, J Exp Med. 194(5):629-644 (2001)]; 문헌[Ghiringhelli F et al, J Exp Med. 202(8):1075-1085 (2005)]; 문헌[Shevach EM et al, Immunity. 30(5):636-645 2009]). 유전적 결실 및 항체 무력화 연구는 TGFβ 저해가 T 세포 및 NK 세포 분화 및 기능을 향상시킨 것으로 입증하였다(문헌[Mo et al, Immunity 25(3):455-471 (2006), Zhong et al, Clin Can Res 16(4):1191-1205 (2010)]). 종양 세포에 의해 생성된 TGF-β는 CD4 +CD25+ 조절 T 조절 세포(Treg)의 확장을 통한 면역억제를 유도한다(문헌[Bierie et al, Nat Rev Cancer 6(7):506-20 (2006)]). ALK5의 전신 차단은 항상성 증식을 향상시키고 시험관내 및 생체내에서 Treg 세포 개체군을 유도한다(문헌[Polanczyk et al, J Trnas Med 17(219) (2019)]). 신경모세포종의 면역치료에서, 디누툭시맙(dinutuximab)(항-GD2 항체)과 병용되는 갈루니세르팁(Galunisertib)(LY2157299 일수화물), ALK5의 소분자 저해제는 입양 전이된 활성화 NK 세포에 의해 디누툭시맙의 항-신경모세포종 효과를 향상시킨다(문헌[Tran et al, Clin Cancer Res. 23(3):804-813 (2017)]).
종래의 연구는 혈관신생에서 TGF-β 신호 전달의 역할을 시사하였다. ALK5를 통한 TGF-β 신호 전달의 저해는 내피 세포(EC) 이동 및 증식을 증가시키고, 이는 혈관 내피 성장 인자(VEGF)의 존재 하에 더욱 향상된다(문헌[Liu Z et al, J Cell Sci. 122:3294-3302 (2009)]). EC는 두 개의 상이한 ALK5 및 ALK1을 발현하는 것으로 보고되었다. TGF-β에 의한 혈관 발생을 매개하는 데 있어서 이러한 두 가지 수용체의 중요성은 ALK1(문헌[Oh SP et al, Proc Natl Sci USA. 97:2626-2631 (2000)]) 또는 ALK5(문헌[Larsson J et al, EMBO J. 20:1663-1673 (2001)]) 결핍 마우스에서 각각 E11.5 및 E10.5일에 관찰된 배아 치사율에 의해 입증된다. 정식 SMAD2/3 경로는 ALK5에 의해 활성화되며, 이는 PAI-1 및 피브로넥틴의 발현을 유도하며, 이에 의해 혈관신생을 방해한다(문헌[Goumans MJ et al, Mol Cell. 12:817-828 (2003)]; 문헌[Goumans MJ et al, EMBO J. 21:1743-1753 (2002)]; 문헌[Wu X et al, Microvasc Res. 71:12-19 (2006)]; 문헌[Ota T et al, J Cell Physiol. 193:299-318 (2002)]; 문헌[Safina A et al, Oncogene 26(17):2407-22 (2007)]). TGF-β의 암-촉진 기능의 대부분은 TGF-β와 전환 종양유전자, 예컨대 ErbB2/HER2/Neu, 폴리오마바이러스 중간 T 항원(PyVmT) 및 Ras 사이의 협력을 통해 발휘된다. VEGF, TGF-β-Smad 전사 조절의 표적은 유의적으로 돌연변이 HER2에서 상향 조절되었다. 따라서, LY2109761, TGF-β 수용체 저해제에 의한 TGF-β 신호 전달의 저해는 암 세포 성장 및 종양-유도된 혈관신생을 차단하였다(문헌[Wang et al, Oncogene 29(23):3335-48 (2010)]).
TGF-β는 종양 세포의 줄기성 및 EMT(상피-중간엽 전이)를 조절하는 것으로 알려져 있다. EMT는 E-카드헤린의 손실, 및 중간엽 단백질, 예컨대 비멘틴, 피브로넥틴 및 N-카드헤린의 발현에 의해 표시되며, 침입 과정을 촉진하고 예후를 악화시킨다. 암 세포에서, E-카드헤린의 억제, 및 비멘틴, 기질-금속단백질분해효소(MMP) 및 다른 프로-EMT 인자의 유도는 TGF-β에 의해 구동될 수 있다(문헌[Lee JM et al, J Cell Biol. 172(7):973-981 (2006)]; 문헌[Zhao Y et al, Cell Biochem Funct. 26(5):571-577 (2008)]). ALK5의 저해는 인간 암 세포에서 세포 이동, 침입, VEGF 분비 및 EMT를 포함한 TGF-β의 프로-종양형성 기능을 약화시킨다(문헌[Halder et al, Neoplasia 7(5):509-521 (2005)]). CTI-82, TGF-β1에 의해 유도된 EMT의 신규한 ALK5 저해제는 다양한 EMT 마커의 mRNA 및 단백질 수준을 저해한다(문헌[Jeong et al, Biology 9(7):143 (2020)]). 백토세르팁(Vactosertib)(TEW-7197)은 TGF-β- 또는 방사선 유도된 EMT 및 유방암 줄기 세포를 통해 인간 유방암 세포의 전이성 특성을 감소시켰다(문헌[Park et al, Eur J Cancer 47(17):2642-53 (2011), Choi et al, Radiol Oncol 56(2):185-197 (2022)]).
이종 수용체 복합체에서 근위 사건으로서 TGF-β-매개된, ALK5-의존성 신호 전달 및 Smad2/Smad3 인산화에 대한 막대한 지식은 치료 표적으로서 유형 I 수용체 키나아제에 대한 초기 약물 발견 노력에 집중하였다(문헌[Laping NJ et al, Curr Opin Pharm. 3:204-208 (2003)]; 문헌[Singh J et al, Curr Opin Drug Disc Dev. 7:437-445 (2004)]). SB-505124, ALK5의 ATP-결합 부위의 경쟁적 저해제는 Rb가 결여된 KRAS-유도된 췌장암 세포에서 성장을 감소시킨다(문헌[Gore et al, J Cli Invest. 124(1):338-352 (2014)]). 갈루니세르팁(LY2157299) 및 백토세르팁은 임상적 약동학 및 약력학 연구를 통해 암 치료에서 현재 임상 시험 중에 있다. Smad2의 인산화를 특이적으로 하향 조절하는 갈루니세르팁, ALK5의 경구 소분자 저해제는 정식 경로의 활성화를 방해한다. 갈루니세르팁은 진행성 전이 암의 치료에서 현재 초기 임상 시험 중에 있다(문헌[Herbertz et al, Drug Des Devel Ther. 10(9):4479-4499 (2015)]). 갈루니세르팁은 교모세포종, 췌장암 및 간세포 암종과 같이 미충족 의학적 요구가 높은 암 환자에서 단독 치료로서 또는 표준 항종양 체계(니볼루맙(nivolumab) 포함)와 병용하여 연구되고 있다(NCT01746004, NCT01965808, NCT01582269, NCT01722825, NCT02008318, NCT01220271, NCT01246986, NCT01373164, NCT01682187). 항암 치료를 위한 백토세르팁, ALK5의 소분자 저해제는 ALK5-과발현 종양 세포 유형에서 종양 성장을 억제한다(문헌[Lee ho-jae, J Cancer Prev, 25(4): 213-222(2020)]). 비-소세포 폐 암종, 방광 요로상피 암종 및 악성 고형 종양이 백토세르팁 임상 시험에서 연구 중에 있다(NCT04103645, NCT03724851, NCT03732274, NCT03698825, NCT03074006, NCT03143985, NCT03802084, NCT04064190, NCT04515979, NCT04258072).
본 발명이 해결하고자 하는 과제는 신규한 화학식 I의 화합물을 제공하는 것이다.
본 발명에 의해 해결하고자 하는 다른 기술적 과제는 ALK 효소에 대한 저해 활성을 갖는 신규한 화학식 I의 화합물을 제공하는 것이다.
본 발명에 의해 해결하고자 하는 또 다른 기술적 과제는 상기 화합물, 이의 약제학적으로 허용가능한 염, 용매화물, 다형체, 에스테르, 호변이성질체 또는 전구약물 및 이의 염을 포함하는 약제학적 조성물을 제공하는 것이다.
본 발명에 의해 해결하고자 하는 또 다른 기술적 과제는 ALK와 관련된 질환의 예방 및/또는 치료를 위한 약제학적 조성물을 제공하는 것이다.
본 발명은 화학식 I의 화합물, 또는 이의 약제학적으로 허용가능한 염, 용매화물, 다형체, 에스테르, 호변이성질체 또는 전구약물을 제공한다:
[화학식 I]
식 중,
R1은 H, C1-C6 알킬, CD3,CHF2,CF3,-(C1-C6)히드록시알킬, 또는 -SO2알킬이고;
R2는 H, Me, CF3,NO2,할로겐, 아실, C1-C6알킬, 치환된 C1-C6알킬, C1-C6할로알킬, C3-C7시클로알킬, 알킬카복시, 시아노, 또는 알콕시이고;
X1,X2및 X3은 각각 독립적으로 CH 또는 N이고;
각각의 R3은 수소, 할로겐, CF3,아실, 아미노, 치환된 아미노, C1-C6알킬, 치환된 C1-C6알킬, C1-C6할로알킬, C3-C7시클로알킬, 알킬카복시, 시아노, 니트로, 또는 알콕시로 이루어진 군으로부터 독립적으로 선택되고;
각각의 R4는 수소, 할로겐, CF3,아실, 아미노, 치환된 아미노, C1-C6알킬, 치환된 C1-C6알킬, C1-C6할로알킬, 시아노, 니트로, 알콕시, 아실옥시, 또는 아릴옥시로 이루어진 군으로부터 독립적으로 선택되고;
m은 1, 2, 3 또는 4이고;
n은 1, 2, 3, 4 또는 5이다.
화학식 I의 화합물은 화학식 II의 화합물의 절대 배열, 또는 이의 염을 추가로 포함한다:
[화학식 II]
식 중,
R1은 H, C1-C6 알킬, CD3,CHF2,CF3,-(C1-C6)히드록시알킬, 또는 -SO2알킬이고;
각각의 R4는 수소, 할로겐, CF3,아실, 아미노, 치환된 아미노, C1-C6알킬, 치환된 C1-C6알킬, C1-C6할로알킬, 시아노, 니트로, 알콕시, 아실옥시, 또는 아릴옥시로 이루어진 군으로부터 독립적으로 선택되고;
n은 1, 2, 3, 4 또는 5이다.
본 발명의 화합물은 전환 성장 인자-β(TGF-β) 유형 I 수용체(ALK5) 및/또는 액티빈 유형 I 수용체(ALK4)의 저해제이고, 따라서 폐 섬유증, 비만, 당뇨병, NASH(비-알코올성 지방간염), 암 및 다른 염증을 치료하는 데 유용하다.
다른 양태에서, 본 발명은 유효량의 화학식 I의 화합물 또는 이의 약제학적으로 허용가능한 염, 용매화물, 다형체, 에스테르, 호변이성질체 또는 전구약물을 포함하는 약제학적 조성물에 관한 것이다. 일부 실시형태에서, 약제학적 조성물은 약제학적으로 허용가능한 담체, 보조제 및/또는 부형제를 추가로 포함한다. 일부 실시형태에서, 그러한 조성물은 보존제, 지연 흡수를 위한 제제, 충전제, 결합제, 흡착제, 완충제, 붕해제, 가용화제 및 다른 담체 중 적어도 하나, 보조제 및/또는 부형제를 불활성 성분으로서 함유할 수 있다. 조성물은 당업계에 널리 알려진 방법으로 제형화될 수 있다.
일부 양태에서, 본 발명은 화학식 I의 화합물 또는 이의 약제학적으로 허용가능한 염, 용매화물, 다형체, 에스테르, 호변이성질체 또는 전구약물을 포함하는 치료 유효량의 조성물을 질환을 앓고 있는 개체에게 투여하는 단계를 포함하는, 상기 개체에서 상기 질환을 치료하는 방법에 관한 것이다.
다른 양태에서, 본 발명은 치료 유효량의 화학식 I의 화합물 또는 이의 약제학적으로 허용가능한 염, 용매화물, 다형체, 에스테르, 호변이성질체 또는 전구약물을 포유동물에게 투여하는 단계를 포함하는, 상기 포유동물에서 장애를 치료하는 방법에 관한 것이다.
다른 양태에서, 본 발명은 치료 유효량의 화학식 I의 화합물 또는 이의 약제학적으로 허용가능한 염, 용매화물, 다형체, 에스테르, 호변이성질체 또는 전구약물을 인간에게 투여하는 단계를 포함하는, 상기 인간에서 장애를 치료하는 방법에 관한 것이다.
다른 양태에서, 본 발명은 치료 유효량의 화학식 I의 화합물 또는 이의 약제학적으로 허용가능한 염, 에스테르, 전구약물, 용매화물, 예컨대 수화물, 다형체 또는 호변이성질체를 인간을 포함한 포유동물에게 투여하는 단계를 포함하는, 상기 포유동물에서 비만, 당뇨병, NASH(비-알코올성 지방간염), 암, 모든 병인으로 인한 간 섬유증, 신장 간질성 섬유증, 폐 섬유증, 염증, 특정 감염성 질환, 병태 또는 장애를 치료하는 방법에 관한 것이다.
다른 양태에서, 본 발명은 인간을 포함한 포유동물에서 전환 성장 인자-β(TGF-β) 유형 I 수용체(ALK5) 및/또는 액티빈 유형 I 수용체(ALK4) 연쇄반응에 의해 조절되는 장애 또는 병태의 치료 방법에 관한 것으로, 이 방법은 일정량의 화학식 I의 화합물 또는 이의 약제학적으로 허용가능한 염, 에스테르, 전구약물, 용매화물, 예컨대 수화물, 다형체 또는 호변이성질체를 상기 포유동물에게 투여하여 상기 연쇄반응을 조절하는 단계를 포함한다. 특정 환자에 대해 적절한 투여량은 당업자에 의해 공지된 방법에 따라 결정될 수 있다.
다른 양태에서, 본 발명은 약제학적 조성물의 제조에서 화학식 I의 화합물 또는 이의 약제학적으로 허용가능한 염, 에스테르, 전구약물, 용매화물, 예컨대 수화물, 다형체 또는 호변이성질체의 용도에 관한 것이다. 약제학적 조성물은 인간을 포함한 포유동물에서 ALK 연쇄반응에 의해 조절되는 장애 또는 병태를 치료하기 위해 사용될 수 있다. 약제학적 조성물은 폐 섬유증, 비만, 당뇨병, 암 및 다른 염증을 치료하는 데 유용하다.
다른 양태에서, 본 발명은 화학식 I의 화합물 또는 이의 약제학적으로 허용가능한 염, 용매화물, 다형체, 에스테르, 호변이성질체 또는 전구약물을 포함하는 약제학적 조성물에 관한 것이다. 일부 실시형태에서, 약제학적 조성물은 경구 투여에 적합한 형태이다. 추가의 또는 부가적인 실시형태에서, 약제학적 조성물은 정제, 캡슐, 알약, 분말, 서방형 제형, 용액 및 현탁액의 형태이다. 일부 실시형태에서, 약제학적 조성물은 멸균액, 현탁액, 유화액과 같은 비경구 주사에 적합한 형태; 연고 또는 크림으로서 국소 투여하기에 적합한 형태, 또는 좌약으로서 직장 투여에 적합한 형태이다. 추가의 또는 부가적인 실시형태에서, 약제학적 조성물은 정확한 투여량으로 단일 투여하기에 적합한 단위 투여량 형태이다. 추가의 또는 부가적인 실시형태에서, 화학식 I의 화합물의 양은 약 0.001 내지 약 1000 mg/kg 체중/일의 범위이다. 추가의 또는 부가적인 실시형태에서, 화학식 I의 화합물의 양은 약 0.5 내지 약 50 mg/kg 체중/일의 범위이다.
다른 양태에서, 본 발명은 화학식 I의 화합물 또는 이의 약제학적으로 허용가능한 염, 용매화물, 다형체, 에스테르, 호변이성질체 또는 전구약물의 제조 방법에 관한 것이다.
본 발명의 신규한 특징은 특히 첨부된 청구범위에 기재되어 있다. 본 발명의 특징 및 장점은 본 발명의 원리가 활용되는 예시적인 실시형태가 기재된 하기 상세한 설명을 참조함으로써 더욱 잘 이해될 것이다.
본 발명의 바람직한 실시형태가 본원에 도시되고 기술되었지만, 그러한 실시형태는 단지 예로서만 제공된다. 본원에 설명된 본 발명의 실시형태에 대한 다양한 대안이 본 발명의 실시에 사용될 수 있다는 것을 이해해야 한다. 당업자는 여러 변형, 변경 및 대체가 본 발명을 벗어나지 않고 가능하다는 것을 이해할 것이다.
하기의 청구범위는 본 발명의 양태의 범위를 정의하고, 이러한 청구범위 및 그 등가물의 범위 내의 방법 및 구조가 이에 포함되도록 의도된다.
본원에 사용된 섹션의 표제는 오직 구성의 목적으로만 사용되며 기재된 청구 대상을 제한하는 것으로 해석해서는 안 된다. 특허, 특허 출원, 기사, 서적, 매뉴얼 및 논문을 포함하되, 이에 제한되지 않는, 본 출원에서 인용된 모든 문서 또는 문서의 일부는 어떠한 목적으로든 그 전체가 명시적으로 본원에 참조로 포함된다.
본 발명은 화학식 I의 화합물을 포함하는 약제학적 조성물, 의약의 제조에 있어서 상기 화합물의 용도, 및 상기 화합물을 투여함으로써 포유동물, 특히 인간에서 과증식성 질환을 치료하는 방법을 제공할 수 있다.
특정 화학 용어
달리 정의되지 않는 한, 본원에서 사용된 모든 기술적 및 과학적 용어는 청구되는 청구 대상이 속하는 당업계의 숙련자에 의해 일반적으로 이해되는 바와 동일한 의미를 갖는다. 달리 언급되지 않는 한, 본원에서 개시내용 전체를 통해 언급되는 모든 특허, 특허 출원, 공개된 자료는 그 전체가 참조로 포함된다. 본원에서 용어에 대해 여러 개의 정의가 존재하는 경우, 본 섹션에서의 정의가 우선한다. URL 또는 다른 그러한 식별자 또는 주소가 참조되는 경우, 그러한 식별자는 변할 수 있고, 인터넷 상의 특정 정보가 변동할 수 있지만, 인터넷 또는 다른 적절한 참조 출처를 검색함으로써 동등한 정보를 찾을 수 있는 것으로 이해된다. 이를 참조하면 그러한 정보의 이용가능성 및 공개 보급이 입증된다.
상기 일반적인 설명 및 하기 상세한 설명은 단지 예시적이고 설명적일 뿐이고 청구되는 임의의 청구 대상을 제한하지 않는 것으로 이해되어야 한다. 본 출원에서, 단수 용어는 달리 구체적으로 명시되지 않는 한 복수를 포함한다. 명세서 및 첨부된 청구범위에서 사용되는 바와 같이, 단수 형태는 문맥상 달리 명백히 지시되지 않는 한 복수 대상을 포함한다는 것에 유념해야 한다. 또한, 달리 명시되지 않는 한 "또는"의 사용은 "및/또는"을 의미하는 것으로 언급되어야 한다. 추가로, 용어 "비롯하는", 및 "비롯하다", "비롯한다" 및 "비롯되는"과 같은 다른 형태의 사용은 제한이 아니다. 마찬가지로, 용어 "포함하는", 및 "포함하다", "포함한다" 및 "포함되는"과 같은 다른 형태의 사용은 제한이 아니다.
표준 화학 용어의 정의는 문헌[Carey and Sundberg "ADVANCED ORGANIC CHEMISTRY 4TH ED." Vols. A (2000) and B (2001), Plenum Press, New York]을 포함한 참조 문헌에서 찾을 수 있다. 달리 나타내지 않는 한, 당업계의 기술에 속하는 질량 분광법, NMR, HPLC, IR 및 UV/Vis 분광법 및 약리학의 통상적인 방법이 사용된다. 특정한 정의가 제공되지 않는다면, 본원에 기재된 분석 화학, 합성 유기 화학, 및 의약 및 약제학적 화학과 관련하여 사용된 명명법, 및 실험실 절차 및 기술은 당업계에 공지되어 있다. 화학 합성, 화학 분석, 약제학적 제조, 제형, 및 환자로의 전달 및 치료에 대한 표준 기술이 사용될 수 있다. 반응 및 정제 기술은, 예를 들어 제조자의 사양에 따른 키트를 사용하거나, 당업계에서 일반적으로 수행되거나, 본원에 기재된 바와 같이 수행될 수 있다. 일반적으로, 상기 기술 및 절차는 당업계에 널리 알려진 통상적인 방법 및 본 명세서 전체에 걸쳐 인용되고 논의된 일반적이며 보다 구체적인 다양한 참조 문헌에 기재된 바와 같이 수행될 수 있다. 명세서 전체에 걸쳐, 기 및 그 치환기는 안정한 모이어티 및 화합물을 제공하도록 당업자에 의해 선택될 수 있다.
치환기가 좌측에서 우측으로 기재된 그 통상적인 화학식에 의해 특정되는 경우, 이들은 우측에서 좌측으로의 구조를 기재하여 생기는 화학적으로 동일한 치환기를 동등하게 포함한다. 비제한적인 예로서, CH2O는 OCH2와 동일하다.
달리 언급되지 않는 한, "알킬," "아민," "아릴"과 같지만, 이에 한정되지 않는 일반적인 화학 용어의 사용은 이들의 선택적으로 치환된 형태와 동일하다. 예를 들어, 본원에서 사용되는 바와 같은 "알킬"은 선택적으로 치환된 알킬을 포함한다.
본원에서 제시된 화합물은 하나 이상의 입체중심을 가질 수 있고, 각각의 중심은 R 또는 S 배열, 또는 이들의 조합으로 존재할 수 있다. 마찬가지로, 본원에서 제시된 화합물은 하나 이상의 이중 결합을 가질 수 있고, 각각은 E(트랜스) 또는 Z(시스) 배열, 또는 이들의 조합으로 존재할 수 있다. 하나의 특정 입체이성질체, 위치이성질체, 부분입체이성질체, 거울상이성질체 또는 에피머의 제시는 가능한 모든 입체이성질체, 위치이성질체, 부분입체이성질체, 거울상이성질체 또는 에피머 및 이들의 혼합물을 포함하는 것으로 이해되어야 한다. 따라서, 본원에 제시된 화합물은 모든 개별 배열의 입체이성질체, 위치이성질체, 부분입체이성질체, 거울상이성질체, 및 에피머 형태뿐만 아니라 이들의 상응하는 혼합물을 포함한다. 특정 입체중심을 반전시키거나, 변경시키지 않은 채로 두는 기술, 및 입체이성질체의 혼합물을 분리하는 기술은 당업계에 잘 알려져 있으며, 특정 상황에 적합한 방법을 선택하는 것은 충분히 당업자의 능력에 속한다. 예를 들어, 문헌[Fumiss et al. (eds.), VOGEL'S ENCYCLOPEDIA OF PRACTICAL ORGANIC CHEMISTRY 5.sup.TH ED., Longman Scientific and Technical Ltd., Essex, 1991, 809-816; and Heller, Acc. Chem. Res. 1990, 23, 128]을 참조한다.
용어 "결합" 또는 "단일 결합"은 결합에 의해 연결된 원자가 더 큰 구조의 일부인 것으로 간주되는 경우 두 개의 원자 또는 두 개의 모이어티 사이의 화학 결합을 지칭한다.
용어 "선택적" 또는 "선택적으로"는 후속적으로 기재된 사건 또는 상황이 일어나거나 일어나지 않을 수 있고, 그 설명이 상기 사건 또는 상황이 일어나는 경우 및 그렇지 않은 경우를 포함한다는 것을 의미한다. 예를 들어, "선택적으로 치환된 알킬"은 하기 정의된 바와 같이 "알킬" 또는 "치환된 알킬"을 의미한다. 추가로, 선택적으로 치환된 기는 비-치환된(예를 들어, CH2CH3),완전 치환된(예를 들어, CF2CF3),일-치환된(예를 들어, CH2CH2F),또는 완전 치환된과 일-치환된 사이의 임의의 수준으로 치환된(예를 들어, CH2CHF2,CF2CH3,CFHCHF2등) 것일 수 있다. 하나 이상의 치환기를 함유하는 임의의 기에 대하여 당업자는 그러한 기가 입체적으로 비현실적이고/이거나 합성적으로 비-실현적인 임의의 치환 또는 치환 패턴을 도입하는 것(예를 들어, 치환된 알킬은 선택적으로 치환된 시클로알킬 기를 포함하며, 이는 결국 선택적으로 치환된 알킬 기를 포함하는 것으로 정의되며, 잠재적으로 무한정 가능함)으로 의도되지 않음을 이해할 것이다. 따라서, 기재된 임의의 치환기는 일반적으로 약 1,000 달톤, 보다 전형적으로는 약 500 달톤 이하의 최대 분자량을 갖는 것으로 이해되어야 한다(거대분자 치환기가 명백히 의도되는 경우를 제외함, 예를 들어 폴리펩타이드, 다당류, 폴리에틸렌 글리콜, DNA, RNA 등).
본원에서 사용되는 바와 같이, C1-Cn은 C1-C2,C1-C3,...C1-Cn을 포함한다. 오직 예로서, "C1-C4"로 표시된 기는 모이어티 내에 1 내지 4개의 탄소 원자가 존재한다는 것을 나타내며, 즉 1개의 탄소 원자, 2개의 탄소 원자, 3개의 탄소 원자 또는 4개의 탄소 원자를 함유하는 기뿐만 아니라 C1-C2및 C1-C3의 범위를 나타낸다. 따라서, 오직 예로서, "C1-C4알킬"은 알킬 기 내에 1 내지 4개의 탄소 원자가 존재한다는 것을 나타내며, 즉 알킬 기는 메틸, 에틸, 프로필, 이소-프로필, n-부틸, 이소부틸, sec-부틸 및 t-부틸 중에서 선택된다. "1 내지 10"과 같은 수치 범위는 본원에 나타날 때마다 주어진 범위 내의 각각의 정수를 지칭하며; 예를 들어 "1 내지 10개의 탄소 원자"는 해당 기가 1개의 탄소 원자, 2개의 탄소 원자, 3개의 탄소 원자, 4개의 탄소 원자, 5개의 탄소 원자, 6개의 탄소 원자, 7개의 탄소 원자, 8개의 탄소 원자, 9개의 탄소 원자 또는 10개의 탄소 원자를 가질 수 있음을 의미한다.
본원에서 사용되는 바와 같은, 용어 "헤테로원자" 또는 "헤테로"는, 단독으로 또는 조합하여, 탄소 및 수소 이외의 원자를 지칭한다. 헤테로원자는 산소, 질소, 황, 인, 규소, 셀레늄 및 주석 중에서 독립적으로 선택되지만, 이러한 원자로 제한되지 않는다. 둘 이상의 헤테로원자가 존재하는 실시형태에서, 둘 이상의 헤테로원자는 서로 동일할 수 있거나, 둘 이상의 헤테로 원자 중 일부 또는 전부는 각각 서로 다를 수 있다.
본원에서 사용되는 바와 같은 용어 "알킬"은, 단독으로 또는 조합하여, 1 내지 약 10개의 탄소 원자, 보다 바람직하게는 1 내지 6개의 탄소 원자를 갖는 선택적으로 치환된 직쇄, 또는 선택적으로 치환된 분지형 사슬 포화 탄화수소 모노라디칼을 지칭한다. 예에는 메틸, 에틸, n-프로필, 이소프로필, 2-메틸-1-프로필, 2-메틸-2-프로필, 2-메틸-1-부틸, 3 -메틸-1-부틸, 2-메틸-3-부틸, 2,2-디메틸-1-프로필, 2-메틸-1-펜틸, 3 -메틸-1-펜틸, 4-메틸-1-펜틸, 2-메틸-2-펜틸, 3-메틸-2-펜틸, 4-메틸-2-펜틸, 2,2-디메틸-1-부틸, 3,3 -디메틸-1-부틸, 2 -에틸-1-부틸, n-부틸, 이소부틸, sec-부틸, t-부틸, n-펜틸, 이소펜틸, 네오펜틸, tert-아밀 및 헥실, 및 보다 긴 장쇄 알킬 기, 예컨대 헵틸, 옥틸 등이 포함되지만, 이에 한정되지 않는다. "C1-C6알킬" 또는 "C1_6알킬"과 같은 수치 범위는 본원에 나타날 때마다 알킬 기가 1개의 탄소 원자, 2개의 탄소 원자, 3개의 탄소 원자, 4개의 탄소 원자, 5개의 탄소 원자 또는 6개의 탄소 원자로 이루어질 수 있음을 의미하지만, 본 정의는 또한 수치 범위가 표시되지 않은 용어 "알킬"의 존재를 포괄한다.
본원에서 사용되는 바와 같은 용어 "지방족"은 단독으로 또는 조합하여, 선택적으로 치환된 직쇄 또는 분지형 사슬, 비-환형, 포화, 부분적으로 불포화 또는 완전 불포화 비방향족 탄화수소를 지칭한다. 따라서, 해당 용어는 총괄적으로 알킬, 알케닐 및 알키닐 기를 포함한다.
본원에서 사용되는 바와 같은 용어 "사이클", "환식", "고리" 및 "-원 고리"는 단독으로 또는 조합하여, 본원에 기재된 바와 같은 지환족, 헤테로환식, 방향족, 헤테로방향족 및 다환식 융합 또는 비-융합된 고리 시스템을 포함한 임의의 공유적으로 밀폐된 구조를 지칭한다. 고리는 선택적으로 치환될 수 있다. 고리는 융합된 고리 시스템의 일부를 형성할 수 있다. 용어 "-원"은 고리를 구성하는 골격 원자의 수를 나타내는 의미이다. 따라서, 오직 예로서, 시클로헥산, 피리딘, 피란 및 피리미딘은 6-원 고리이고, 시클로펜탄, 피롤, 테트라히드로푸란 및 티오펜은 5-원 고리이다.
본원에서 사용되는 바와 같은 용어 "시클로알킬"은 단독으로 또는 조합하여, 3 내지 약 15개의 고리 탄소 원자 또는 3 내지 약 10개의 고리 탄소 원자를 함유하지만 추가의 비-고리 탄소 원자를 치환체로서 포함할 수도 있는(예를 들어, 메틸시클로프로필), 선택적으로 치환된 포화, 탄화수소 모노라디칼 고리를 지칭한다.
"시클로알킬"의 비제한적인 예에는 아지닐, 아제티디닐, 옥세타닐, 티에타닐, 호모피페리디닐, 옥세파닐, 티에파닐, 옥사제피닐, 디아제피닐, 티아제피닐, 1,2,3,6-테트라히드로피리디닐, 2-피롤리닐, 3-피롤리닐, 인돌리닐, 2H-피라닐, 4H-피라닐, 디옥사닐, 1,3-디옥솔라닐, 피라졸리닐, 디티아닐, 디티올라닐, 디히드로피라닐, 디히드로티에닐, 디히드로푸라닐, 피라졸리디닐, 이미다졸리닐, 이미다졸리디닐, 3-아자비시클로[3.1.0]헥실, 3-아자비시클로[4. 1.0]헵틸, 3H-인돌릴 및 퀴놀리지닐 등이 포함된다. 상기 용어는 또한 단당류, 이당류 및 올리고당을 포함하지만, 이에 한정되지 않는 탄수화물의 모든 고리 형태를 포함한다.
본원에서 사용되는 바와 같은 용어 "방향족"은 4n+2 n개(n은 정수임)의 전자를 함유하는 전자 시스템에서 비편재화된 평면형, 환식 또는 다환식 고리 모이어티를 지칭한다. 방향족 고리는 5, 6, 7, 8, 9, 또는 9개 초과의 원자에 의해 형성될 수 있다. 방향족은 선택적으로 치환될 수 있고, 단환식 또는 융합된 고리 다환식일 수 있다. 용어 "방향족"은 모두 탄소를 함유하는 고리(예를 들어, 페닐) 및 하나 이상의 헤테로원자를 함유하는 고리(예를 들어, 피리딘) 둘 모두를 포함한다.
특정 약제학적 용어
본원에서 사용되는 바와 같은 용어 "ALK 저해제"는 본원에 일반적으로 기재된 키나아제 분석에서 측정될 경우 ALK 활성에 대해 약 100 μM 이하 또는 약 50 μM 이하의 IC50을 나타내는 화합물을 지칭한다. "IC50"은 효소의 활성을 최대 수준의 절반으로 감소시키는 저해제의 농도이다. 본원에 기재된 화합물은 ALK에 대한 저해를 나타내는 것으로 밝혀졌다. 본 발명의 화합물은 본원에 기재된 키나아제 분석에서 측정될 경우 바람직하게는 ALK에 대해 약 10 μM 이하, 보다 바람직하게는 약 5 μM 이하, 훨씬 더 바람직하게는 약 1 μM 이하, 가장 바람직하게는 약 200 nM 이하의 IC50을 나타낸다.
본원에서 사용되는 바와 같은 용어 "선별적", "선별적으로" 또는 "선별성"은 임의의 다른 효소와 비교할 경우 해당 효소가 보다 낮은 IC50값을 갖는 본 발명의 화합물을 지칭한다(예를 들어, 적어도 2배, 5배, 10배 더 낮음).
장애, 병태 등을 앓는 개체에 대해 본원에서 사용되는 바와 같은 용어 "대상체", "환자" 또는 "개체"는 포유동물 및 비-포유동물을 포함한다. 포유동물의 예에는 포유류 강의 임의의 구성원: 인간, 비-인간 영장류, 예컨대 침팬지, 및 다른 유인원 및 원숭이 종; 농장 동물, 예컨대 소, 말, 양, 염소, 돼지; 가축, 예컨대 토끼, 개 및 고양이; 설치류를 포함한 실험실 동물, 예컨대 래트, 마우스 및 기니피그 등이 포함되지만, 이에 한정되지 않는다. 비-포유동물의 예에는 조류, 어류 등이 포함되지만, 이에 한정되지 않는다. 본원에 제공된 방법 및 조성물의 일 실시형태에서, 포유동물은 인간이다.
본원에서 사용되는 바와 같은 용어 "치료하다", "치료하는" 또는 "치료" 및 다른 문법적 등가물은 질환 또는 병태 증상의 완화, 약화 또는 개선, 추가 증상의 예방, 증상의 기저 대사 원인의 개선 또는 예방, 질환 또는 병태의 저해, 예를 들어 질환 또는 병태의 발병의 저지, 질환 또는 병태의 완화, 질환 또는 병태의 억제 유발, 질환 또는 병태에 의해 유발된 병태의 완화, 또는 질환 또는 병태의 증상의 중단을 포함한다. 상기 용어는 치료적 이점 및/또는 예방적 이점을 달성하는 것을 추가로 포함한다. 치료적 이점이란, 치료되는 기저 장애의 근절 또는 개선을 의미한다. 또한, 환자가 여전히 기저 장애를 앓고 있을 수 있지만, 기저 장애와 관련된 생리학적 증상 중 하나 이상이 근절 또는 개선되어 환자에서 개선이 관찰되면 치료적 이점이 달성된다. 예방적 이점을 위해, 질환의 진단이 이루어지지 않았더라도, 특정 질환이 발병할 위험이 있는 환자, 또는 질환의 생리학적 증상 중 하나 이상이 보고된 환자에게 상기 조성물을 투여할 수 있다.
본원에서 사용되는 바와 같은 용어 "유효량", "치료 유효량" 또는 "약제학적으로 유효한 양"은 치료되는 질환 또는 병태의 증상 중 하나 이상이 어느 정도 완화되는 투여되는 적어도 하나의 제제 또는 화합물의 충분량을 지칭한다. 결과는 질환의 징후, 증상 또는 원인의 감소 및/또는 완화, 또는 생물학적 시스템의 임의의 다른 바람직한 변경일 수 있다. 예를 들어, 치료 용도를 위한 "유효량"은 질환에서 임상적으로 유의적인 감소를 제공하는 데 필요한 본원에 개시된 바와 같은 화합물을 포함하는 조성물의 양이다. 임의의 개체에서 적절한 "유효" 양은 용량 증가 연구와 같은 기술을 사용하여 결정될 수 있다.
본원에서 사용되는 바와 같은 용어 "투여하다", "투여하는", "투여" 등은 원하는 생물학적 작용 부위로 화합물 또는 조성물을 전달할 수 있게 하는 데 사용될 수 있는 방법을 지칭한다. 이러한 방법에는 경구 경로, 십이지장내 경로, 비경구 주사(정맥내, 피하, 복강내, 근육내, 혈관내 또는 주입을 포함함), 국소 및 직장 투여가 포함되지만, 이에 한정되지 않는다. 당업자는, 예를 들어 문헌[Goodman and Gilman, The Pharmacological Basis of Therapeutics, current ed.; Pergamon]; 및 문헌[Remington's, Pharmaceutical Sciences (current edition), Mack Publishing Co., Easton, Pa.]에 논의된 바와 같은, 본원에 기재된 화합물 및 방법과 함께 사용될 수 있는 투여 기술에 친숙하다. 바람직한 실시형태에서, 본원에 기재된 화합물 및 조성물은 경구 투여된다.
제형, 조성물 또는 성분에 대하여 본원에서 사용되는 바와 같은 용어 "허용가능한"은 치료되는 대상체의 일반적인 건강에 대해 지속적으로 해로운 영향을 미치지 않음을 의미한다.
본원에서 사용되는 바와 같은 용어 "약제학적으로 허용가능한"은, 본원에 기재된 화합물의 생물학적 활성 또는 특성을 방해하지 않으며 비교적 비독성인, 담체 또는 희석제와 같은 물질을 지칭하며, 즉 상기 물질은 바람직하지 않은 생물학적 효과를 유발하지 않거나 조성물에 함유된 임의의 성분과 해로운 방식으로 상호작용하지 않으면서 개체에게 투여될 수 있다.
본원에서 사용되는 바와 같은 용어 "약제학적 조성물"은 담체, 안정화제, 희석제, 분산제, 현탁제, 증점제 및/또는 부형제와 같지만, 이에 한정되지 않는, 적어도 하나의 약제학적으로 허용가능한 화학적 성분과 선택적으로 혼합되는, 생물학적으로 활성인 화합물을 지칭한다.
본원에서 사용되는 바와 같은 용어 "담체"는 세포 또는 조직으로의 화합물의 혼입을 촉진시키는 비교적 비독성인 화합물 또는 제제를 지칭한다.
본원에서 사용되는 바와 같은 용어 "작용제"는 다른 분자의 활성 또는 수용체 부위의 활성을 향상시키는 화합물, 약물, 효소 활성제 또는 호르몬 조절제와 같은 분자를 지칭한다.
본원에서 사용되는 바와 같은 용어 "길항제"는 다른 분자의 작용 또는 수용체 부위의 활성을 감소시키거나 방지하는 화합물, 약물, 효소 저해제 또는 호르몬 조절제와 같은 분자를 지칭한다.
본원에서 사용되는 바와 같은 용어 "조절하다"는 오직 예로서 표적의 활성을 향상시키거나, 표적의 활성을 저해하거나, 표적의 활성을 제한하거나, 표적의 활성을 연장시키는 것을 포함한 표적의 활성을 변경시키기 위해 직접적 또는 간접적으로 표적과 상호작용하는 것을 의미한다.
본원에서 사용되는 바와 같은 용어 "조절제"는 직접적 또는 간접적으로 표적과 상호작용하는 분자를 지칭한다. 상호작용에는 작용제 및 길항제의 상호작용이 포함되지만, 이에 한정되지 않는다.
본원에서 사용되는 바와 같은 용어 "약제학적으로 허용가능한 염"은 특정 화합물의 유리 산 및 염기의 생물학적 효능을 유지하고, 생물학적으로 또는 달리 바람직하지 않은 것이 아닌 염을 지칭한다. 본원에 기재된 화합물은 산성 또는 염기성 기를 가질 수 있고, 따라서 임의의 다수의 무기 또는 유기 염, 및 무기 및 유기 산과 반응하여 약제학적으로 허용가능한 염을 형성할 수 있다. 이러한 염은 본 발명의 화합물의 최종 단리 및 정제 중에 동일계에서 제조될 수 있거나, 적합한 유기 또는 무기 산과 유리 염기 형태의 정제된 화합물을 개별적으로 반응시키고, 이에 따라 형성된 염을 단리함으로써 제조될 수 있다. 약제학적으로 허용가능한 염의 예에는 미네랄 또는 유기 산 또는 무기 염기와 본원에 기재된 화합물의 반응에 의해 제조된 염, 예컨대 아세테이트, 아크릴레이트, 아디페이트, 알기네이트, 아스파르테이트, 벤조에이트, 벤젠설포네이트, 비설페이트, 비설파이트, 브로마이드, 부티레이트, 부틴-1,4-디오에이트, 캄포레이트, 캄포설포네이트, 카프릴레이트, 클로로벤조에이트, 클로라이드, 시트레이트, 시클로펜탄프로피오네이트, 데카노에이트, 디글루코네이트, 디히드로겐포스페이트, 디니트로벤조에이트, 도데실설페이트, 에탄설포네이트, 포르메이트, 푸마레이트, 글루코헵타노에이트, 글리세로포스페이트, 글리콜레이트, 헤미설페이트, 헵타노에이트, 헥사노에이트, 헥신-1,6-디오에이트, 히드록시벤조에이트, 히드록시부티레이트, 히드로클로라이드, 히드로브로마이드, 히드로요오다이드, 2-히드록시에탄설포네이트, 요오다이드, 이소부티레이트, 락테이트, 말레에이트, 말로네이트, 메탄설포네이트, 만델레이트, 메타포스페이트, 메톡시벤조에이트, 메틸벤조에이트, 모노히이드로겐포스페이트, 1-나프탈렌설포네이트, 2-나프탈렌설포네이트, 니코티네이트, 니트레이트, 팔모에이트, 펙티네이트, 퍼설페이트, 3-페닐프로피오네이트, 포스페이트, 피크레이트, 피발레이트, 프로피오네이트, 피로설페이트, 피로포스페이트, 프로피올레이트, 프탈레이트, 페닐아세테이트, 페닐부티레이트, 프로판설포네이트, 살리실레이트, 석시네이트, 설페이트, 설파이트, 수베레이트, 세바케이트, 설포네이트, 타르트레이트, 티오시아네이트, 토실레이트 운데코네이트 및 자일렌설포네이트를 포함한 염이 포함된다. 옥살산과 같은 다른 산은 그 자체가 약제학적으로 허용가능하지 않지만, 본 발명의 화합물 및 이의 약제학적으로 허용가능한 산 부가염을 수득하는 데 있어서 중간체로서 유용한 염의 제조에 사용될 수 있다(예를 들어, 문헌[Berge et al., J. Pharm. Sci. 1977, 66, 1-19]을 참조한다). 추가로, 유리 산 기를 포함할 수 있는 본원에 기재된 화합물은 약제학적으로 허용가능한 금속 양이온의 수산화물, 탄산염 또는 탄산수소염과 같은 적합한 염기와, 암모니아와, 또는 약제학적으로 허용가능한 유기 1급, 2급 또는 3급 아민과 반응할 수 있다. 대표적인 알칼리 또는 알칼리 토 염에는 리튬, 나트륨, 칼륨, 칼슘, 마그네슘 및 알루미늄 염 등이 포함된다. 염기의 예시적인 예에는 수산화나트륨, 수산화칼륨, 수산화콜린, 탄산나트륨 등이 포함된다. 염기 부가염의 형성에 유용한 대표적인 유기 아민에는 에틸아민, 디에틸아민, 에틸렌디아민, 에탄올아민, 디에탄올아민, 피페라진 등이 포함된다. 본원에 기재된 화합물은 또한 포함될 수 있는 임의의 염기성 질소-함유 기의 4차화를 포함하는 것으로 이해되어야 한다. 수용성 또는 지용성 또는 분산성 생성물은 그러한 4차화에 의해 수득될 수 있다. 예를 들어, 상기 Berge 등의 문헌을 참조한다.
본원에서 사용되는 바와 같은 용어 "용매화물"은 용매화에 의해 형성된 본 발명의 화합물과 용매 분자의 조합을 지칭한다. 일부 상황에서, 용매화물은 수화물을 지칭하며, 즉 용매 분자는 물 분자이고, 본 발명의 화합물과 물의 조합은 수화물을 형성한다.
본원에서 사용되는 바와 같은 용어 "다형체" 또는 "다형성"은 다양한 결정 격자 형태로 존재하는 본 발명의 화합물을 지칭한다.
본원에서 사용되는 바와 같은 용어 "에스테르"는 옥소산 기 및 히드록실 기로부터 유도된 본 발명의 화합물의 유도체를 지칭하며, 옥소산 기 및 히드록실 기 중 하나 이상은 본 발명의 화합물에 존재할 수 있다.
본원에서 사용되는 바와 같은 용어 "호변이성질체"는, 예를 들어 수소 원자 또는 양성자의 이동에 의해 본 발명의 화합물로부터 즉시 상호 전환되는 이성질체를 지칭한다.
본원에서 사용되는 바와 같은 용어 "약제학적으로 허용가능한 유도체 또는 전구약물"은 본 발명의 화합물의 임의의 약제학적으로 허용가능한 염, 에스테르, 에스테르의 염 또는 다른 유도체를 지칭하며, 이는 수용자에게 투여 시, 본 발명의 화합물 또는 이의 약제학적으로 활성인 대사산물 또는 잔류물을 직접적 또는 간접적으로 제공할 수 있다. 특히 유리한 유도체 또는 전구약물은 그러한 화합물이 환자에게 투여될 때 (예를 들어, 경구 투여된 화합물을 혈액으로 보다 쉽게 흡수하게 함으로써) 본 발명의 화합물의 생체이용률을 증가시키거나, 모 화합물의 생물학적 구획(예를 들어, 뇌 또는 림프계)으로의 전달을 향상시키는 것이다.
본원에 기재된 화합물의 약제학적으로 허용가능한 전구약물에는 에스테르, 카보네이트, 티오카보네이트, N-아실 유도체, N-아실옥시알킬 유도체, 3급 아민의 4차 유도체, N-만니히(Mannich) 염기, 쉬프(Schiff) 염기, 아미노산 컨쥬게이트, 포스페이트 에스테르, 금속 염 및 설포네이트 에스테르가 포함되지만, 이에 한정되지 않는다. 다양한 형태의 전구약물이 당업계에 널리 알려져 있다. 예를 들어, 문헌[Design of Prodrugs, Bundgaard, A. Ed., Elseview, 1985 and Method in Enzymology, Widder, K. et al., Ed.; Academic, 1985, vol. 42, p. 309-396]; 문헌[Bundgaard, H. "Design and Application of Prodrugs" in A Textbook ofDrug Design and Development, Krosgaard-Larsen and H. Bundgaard, Ed., 1991, Chapter 5, p. 113-191]; 및 문헌[Bundgaard, H., Advanced Drug Delivery Review, 1992, 8, 1-38]을 참조하며, 이들 각각은 본원에 참조로 포함된다. 본원에 기재된 전구약물에는 하기 기 및 이들 기의 조합; 아민 유도된 전구약물이 포함되지만, 이에 한정되지 않는다. 히드록시 전구약물에는 아실옥시알킬 에스테르, 알콕시카보닐옥시알킬 에스테르, 알킬 에스테르, 아릴 에스테르 및 에스테르 함유 디설파이드가 포함되지만, 이에 한정되지 않는다.
본원에서 사용되는 바와 같은 용어 "향상하다" 또는 "향상하는"은 원하는 효과의 능력 또는 지속기간 중 하나를 증가시키거나 연장시키는 것을 의미한다. 따라서, 치료제의 효과를 향상시키는 데 있어서, 용어 "향상시키는"은 시스템에 대한 다른 치료제의 효과를, 능력 또는 지속기간 면에서, 증가시키거나 연장시키는 능력을 지칭한다.
본원에서 사용되는 바와 같은 "향상시키는 유효량"은 원하는 시스템에서 다른 치료제의 효과를 향상시키는 데 적절한 양을 지칭한다.
본원에서 사용되는 바와 같은 용어 "약제학적 병용", "추가 치료 투여", "추가 치료제 투여" 등은 하나보다 많은 활성 성분을 혼합하거나 병용하여 생긴 약제학적 치료를 지칭하며, 활성 성분의 고정 및 비-고정 병용 둘 모두를 포함한다. 용어 "고정 병용"은 본원에 기재된 화합물 중 적어도 하나, 및 적어도 하나의 공동제제 둘 모두를 단일체 또는 단일 투여량의 형태로 동시에 환자에게 투여함을 의미한다. 용어 "비-고정 병용"은 본원에 기재된 화합물 중 적어도 하나, 및 적어도 하나의 공동제제를 다양한 개입 시간 제한을 두면서 동시에, 함께 또는 순차적으로 별도의 독립체로서 환자에게 투여함을 의미하며, 그러한 투여는 환자 체내에서 유효 수준의 둘 이상의 화합물을 제공한다. 또한, 이는 칵테일 치료, 예를 들어 셋 이상의 활성 성분의 투여에도 적용된다.
본원에서 사용되는 바와 같은 용어 "동시-투여", "~와 병용하여 투여" 및 이들의 문법적 등가물 등은 선택된 치료제의 단일 환자로의 투여를 포함하는 것을 의미하며, 상기 치료제를 동일하거나 상이한 투여 경로에 의해 또는 동일하거나 상이한 시간에 투여하는 치료 체계를 포함하고자 한다. 일부 실시형태에서, 본원에 기재된 화합물은 다른 제제와 동시-투여될 것이다. 이들 용어는 둘 이상의 제제를 동물로 투여하여 제제 및/또는 그 대사산물 모두가 동시에 동물에 존재하는 것을 포함한다. 이들은 개별 조성물로의 동시 투여, 개별 조성물에서 상이한 시간에 투여, 및/또는 두 제제가 존재하는 조성물의 투여를 포함한다. 따라서, 일부 실시형태에서, 본 발명의 화합물 및 다른 제제(들)는 단일 조성물로 투여된다.
본원에서 사용되는 바와 같은 용어 "대사산물"은 화합물이 대사될 때 형성되는 화합물의 유도체를 지칭한다.
본원에서 사용되는 바와 같은 용어 "활성 대사산물"은 화합물이 대사될 때 형성되는 화합물의 생물학적으로 활성인 유도체를 지칭한다.
본원에서 사용되는 바와 같은 용어 "대사된다"는 특정 물질이 유기체에 의해 변하는 과정(가수분해 반응 및 효소에 의해 촉매된 반응이 포함되지만, 이에 한정되지 않음)의 총합을 지칭한다. 따라서, 효소는 화합물에 대한 특정한 구조적 변경을 일으킬 수 있다. 예를 들어, 사이토크롬 P450은 다양한 산화 및 환원 반응을 촉매하는 한편, 우리딘 디포스페이트 글루쿠로닐트랜스퍼라제는 활성화된 글루쿠론산 분자의 방향족 알코올, 지방족 알코올, 카복실산, 아민 및 유리 설피드릴 기로의 전달을 촉매한다. 대사에 대한 추가 정보는 문헌[The Pharmacological Basis of Therapeutics, 9th Edition, McGraw-Hill (1996)]으로부터 입수할 수 있다 .
30℃에서 5-mm o.d. 튜브(Norell, Inc. 507-HP) 중 CDCl3,DMSO-d6또는 CD3OD용액에서 NMR 스펙트럼을 기록하였고, 이를 1H에 대해 400 MHz에서 Varian VNMRS-400으로 수집하였다. 화학적 이동(δ)은 테트라메틸실란(TMS = 0.00 ppm)에 대한 것이고, ppm 단위로 표현된다. ESI(+) 이온화 모드; 유량 = 1.0 mL/min에서 작동하는 FINNIGAN Thermo 또는 ISQ EC, Thermo Fisher U3000 RSLC(컬럼: YMC Hydrosphere(C18, φ4.6 x 50 mm, 3 μm, 120 A, 40℃)의 이온-트랩 질량 분광계 상에서 LC/MS를 측정하였다. 이동 상 = 물 또는 CH3CN중 0.01% 헵타플루오로부티르산(HFBA) 및 1.0% 이소프로필 알코올(IPA).
중간체 1: 5-브로모-1-(테트라히드로-2H-피란-2-일)-1H-인다졸
실온에서 DCM(20 mL) 중 5-브로모-1H-인다졸(1.00 g, 5.08 mmol)의 용액에 3,4-디히드로-2H-피란(1.35 mL, 14.7 mmol) 및 p-TsOH-H2O(0.193g,1.02mmol)를 첨가하였다. 반응 혼합물을 3시간 동안 온도에서 교반한 후 진공에서 농축하였다. 잔여물을 EtOAc로 희석하고, 포화 수성 NaHCO3및 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 SiO2(헥산:EtOAc = 9:1) 상에서 컬럼 크로마토그래피에 의해 정제하여 5-브로모-1-(테트라히드로-2H-피란-2-일)-1H-인다졸(1.30 g, 91%)을 제공하였다. 1H-NMR(400MHz,DMSO-d6):δ 8.10 (1H, s), 8.02 (1H, d, J = 2 Hz), 7.73 (1H, d, J = 9.2 Hz), 7.53 (1H, dd, J = 9.2, 2.0 Hz), 5.86 (1H, dd, J = 2.8, 2.0 Hz), 3.88-3.70 (2H, m), 2.05-1.93 (2H, m), 1.77-1.47 (4H, m).
중간체 2: 5-브로모-3-플루오로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸
단계 A: 5-브로모-3-플루오로-1H-인다졸
실온에서 MeCN(10 mL) 중 5-브로모-1H-인다졸(500 mg, 2.54 mmol)의 용액에 MeCN(5.0 mL) 중 Selectfluor(899 mg, 2.54 mmol)의 용액을 적가하였다. 반응 혼합물을 16시간 동안 환류한 후 진공에서 농축하였다. 잔여물을 EtOAc로 희석하고, 포화 수성 NaHCO3및 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 SiO2(헥산:EtOAc = 8:1 내지 3:1) 상에서 컬럼 크로마토그래피에 의해 정제하여 황색 고체로서 5-브로모-3-플루오로-1H-인다졸(222 mg, 41%)을 제공하였다. 1H-NMR(400MHz,DMSO-d6):δ 7.97 (1H, d, J = 1.6 Hz), 7.57-7.53 (1H, m), 7.49-7.46 (1H, m).
단계 B: 5-브로모-3-플루오로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸
실온에서 DCM(60 mL) 중 5-브로모-3-플루오로-1H-인다졸(222 mg, 1.03 mmol)과 p-TsOH·H2O(39.0mg,0.206mmol)의 혼합물 용액에 3,4-디히드로-2H-피란(0.270 mL, 2.95 mmol)을 첨가하였다. 반응 혼합물을 15시간 동안 실온에서 교반한 후 진공에서 농축하였다. 잔여물을 EtOAc로 희석하고, 포화 수성 NaHCO3및 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 SiO2(헥산:EtOAc = 9:1) 상에서 컬럼 크로마토그래피에 의해 정제하여 황색 오일로서 5-브로모-3-플루오로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸(255 mg, 83%)을 제공하였다. 1H-NMR(400MHz,CDCl3):δ 7.77 (1H, s), 7.47-7.39 (2H, m), 5.55 (1H, s), 3.97 (1H, s), 3.70 (1H, s), 2.42 (1H, s), 2.07 (2H, d, J = 31.6 Hz), 1.70 (3H, s).
중간체 3: 5-브로모-3-클로로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸
단계 A: 5-브로모-3-클로로-1H-인다졸
실온에서 MeCN(18 mL) 중 5-브로모-1H-인다졸(500 mg, 2.54 mmol)의 용액에 N-클로로석신이미드(373 mg, 2.79 mmol)를 첨가하였다. 반응 혼합물을 15시간 동안 60℃에서 가열한 후 진공에서 농축하였다. 잔여물을 EtOAc로 희석하고, 1 N 수성 NaOH 용액 및 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하여 담황색 고체로서 5-브로모-3-클로로-1H-인다졸(528 mg, 90%)을 제공하였다. 1H-NMR(400MHz,DMSO-d6):δ 7.88 (1H, t, J = 1.2 Hz), 7.56 (2H, d, J = 0.8 Hz).
단계 B: 5-브로모-3-클로로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸
실온에서 DCM(10 mL) 중 5-브로모-3-클로로-1H-인다졸 5-브로모-3-클로로-1H-인다졸(592 mg, 2.56 mmol) 및 p-TsOH·H2O(97.0mg,0.511mmol)의 용액에 3,4-디히드로-2H-피란(0.680 mL, 7.44 mmol)을 첨가하였다. 반응 혼합물을 15시간 동안 실온에서 교반한 후 진공에서 농축하였다. 잔여물을 EtOAc로 희석하고, 포화 수성 NaHCO3및 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 SiO2(헥산:EtOAc = 9:1) 상에서 컬럼 크로마토그래피에 의해 정제하여 황색 오일로서 5-브로모-3-클로로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸(760 mg, 94%)을 제공하였다. 1H-NMR(400MHz,CDCl3):δ 7.69 (1H, s), 7.39-7.33 (2H, m), 5.53 (1H, dd, J = 2.4, 2.4 Hz), 3.90 (1H, d, J = 11.6 Hz), 3.66-3.61 (1H, m), 2.44-2.35 (1H, m), 2.06-1.97 (2H, m), 1.70-1.58 (3H, m).
중간체 4: 5-브로모-3-니트로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸
단계 A: 5-브로모-3-니트로-1H-인다졸
0℃에서 진한 H2SO4(2.50mL)중 5-브로모-1H-인다졸(500 mg, 2.54 mmol)의 교반된 현탁액에 HNO3과 H2SO4(v/v=1:1,2.5mL)의 혼합물을 적가하였다. 반응 혼합물을 30분 동안 0℃에서 교반하고 얼음물에 부었다. 혼합물을 추가로 10분 동안 교반하였다. 침전된 고체를 여과에 의해 수집하고, 물로 세척하고, 진공 하에 건조하여 백색 고체로서 5-브로모-3-니트로-1H-인다졸(577 mg, 94%)을 제공하였다. 1H-NMR(400MHz,DMSO-d6):δ 8.28 (1H, s), 7.88-7.86 (1H, m), 7.77 (1H, d, J=8.8 Hz).
단계 B: 5-브로모-3-니트로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸
실온에서 DCM(9.5 mL) 중 5-브로모-3-니트로-1H-인다졸 5-브로모-3-니트로-1H-인다졸(577 mg, 2.38 mmol) 및 p-TsOH·H2O(91.0mg,0.477mmol)의 용액에 3,4-디히드로-2H-피란(0.630 mL, 6.88 mmol)을 첨가하였다. 반응 혼합물을 15시간 동안 실온에서 교반한 후 진공에서 농축하였다. 잔여물을 EtOAc로 희석하고, 포화 수성 NaHCO3및 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 SiO2(헥산:EtOAc = 9:1) 상에서 컬럼 크로마토그래피에 의해 정제하여 황색 오일로서 5-브로모-3-니트로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸(724 mg, 93%)을 제공하였다. 1H-NMR(400MHz,CDCl3):δ 8.32 (1H, s), 8.09 (1H, dd, J = 1.2, 0.8 Hz), 7.87 (1H, d, J = 8.4 Hz), 6.00 (1H, dd, J = 2.8, 2.4 Hz), 4.05-3.74 (2H, m), 2.40-2.31 (1H, m), 2.06-2.01 (2H, m), 1.77-1.56 (3H, m).
중간체 5: 3,5-디브로모-1-(테트라히드로-2H-피란-2-일)-1H-인다졸
단계 A: 3,5-디브로모-1H-인다졸
실온에서 DCM(25 mL) 중 5-브로모-1H-인다졸(500 mg, 2.54 mmol)의 용액에 N-브로모석신이미드(465 mg, 2.61 mmol)를 첨가하였다. 반응 혼합물을 15시간 동안 실온에서 교반한 후 진공에서 농축하였다. 잔여물을 EtOAc에 용해시키고, 포화 수성 NaHCO3및 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하여 담황색 고체로서 3,5-디브로모-1H-인다졸(440 mg, 63%)을 제공하였다. 1H-NMR(400MHz,CDCl3):δ 7.77 (1H, d, J = 2.0 Hz), 7.48 (1H, dd, J = 8.8, 1.2 Hz), 7.34 (1H, d, J = 9.2 Hz).
단계 B: 3,5-디브로모-1-(테트라히드로-2H-피란-2-일)-1H-인다졸
실온에서 DCM(9.0 mL) 중 3,5-디브로모-1H-인다졸(440 mg, 1.59 mmol)의 용액에 3,4-디히드로-2H-피란(0.450 mL, 4.93 mmol)에 이어서 p-TsOH-H2O(61.0mg,0.319mmol)를 첨가하였다. 반응 혼합물을 15시간 동안 실온에서 교반한 후 진공에서 농축하였다. 잔여물을 EtOAc로 희석하고, 물 및 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 NH-SiO2(헥산:EtOAc = 5:1 내지 1:1) 상에서 컬럼 크로마토그래피에 의해 정제하여 점성질 황색 오일로서 3,5-디브로모-1-(테트라히드로-2H-피란-2-일)- 1H-인다졸(500 mg, 87%)을 제공하였다. 1H-NMR(400MHz,CDCl3):δ 7.76 (1H, dd, J = 2.0, 0.80 Hz), 7.52-7.46 (2H, m), 5.65 (1H, dd, J = 9.2, 2.8 Hz), 4.00-3.96 (1H, m), 3.75-3.68 (1H, m), 2.55-2.45 (1H, m), 2.17-2.05 (2H, m), 1.79-1.64 (3H, m).
중간체 6: 5-브로모-1-메틸-1H-인다졸
실온에서 DMF(28 mL) 중 5-브로모-1H-인다졸(2.00 g, 10.2 mmol)의 용액에 Cs2CO3(6.61g,20.3mmol)을 첨가하였다. 혼합물을 30분 동안 실온에서 교반하였다. MeI(0.740 mL, 11.9 mmol)를 첨가한 후, 반응 혼합물을 2시간 동안 실온에서 교반하였다. 물을 첨가한 후, 혼합물을 EtOAc로 2회 추출하였다. 합한 유기 층을 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 혼합물을 SiO2(헥산:EtOAc = 4:1) 상에서 컬럼 크로마토그래피에 의해 정제하여 오렌지색 고체로서 5-브로모-1-메틸-1H-인다졸(1.43 g, 66%)을 제공하였다. 1H-NMR(400MHz,DMSO-d6):δ 8.02 (1H, d, J = 0.8 Hz), 7.99 (1H, d, J = 2.0 Hz), 7.64 (1H, d, J = 8.8 Hz), 7.50 (1H, dd, J = 8.8, 2.0 Hz), 4.04 (3H, s).
중간체 7: 5-브로모-1-에틸-1H-인다졸
0℃에서 THF(60.0 mL, 30 mL/g) 중 5-브로모-1H-인다졸(2.00 g, 10.15 mmol)의 용액에 NaH(광유 중 60% 분산액, 395 mg, 16.4 mmol)를 첨가하였다. 혼합물을 30분 동안 실온에서 교반하였다. 0℃에서 MeI(1.80 mL, 22.3 mmol)를 첨가한 후, 반응 혼합물을 2시간 동안 실온에서 교반하였다. 포화 수성 NH4Cl에 의해 반응을 중단시킨 후, 혼합물을 EtOAc로 2회 추출하였다. 합한 유기 층을 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 SiO2(헥산:EtOAc = 5:1) 상에서 컬럼 크로마토그래피에 의해 정제하여 황색 오일로서 5-브로모-1-에틸-1H-인다졸(1.09 g, 47%)을 제공하였다. 1H-NMR(400MHz,CDCl3):δ 7.92 (1H, d, J = 0.8Hz), 7.86 (1H, d, J = 2.0 Hz), 7.44 (1H, dd, J = 9.2, 1.6 Hz), 7.30 (1H, d, J = 8.4 Hz), 4.41 (2H, q, J = 7.6 Hz), 1.50 (3H, t, J = 7.6 Hz).
중간체 8: 5-브로모-1-(디플루오로메틸)-1H-인다졸
실온에서 MeCN(19.0 mL) 중 5-브로모-1H-인다졸(500 mg, 2.54 mmol)의 용액에 KF(295 mg, 5.08 mmol)를 첨가하였다. 혼합물을 30분 동안 교반하였다. 디에틸 (브로모디플루오로메틸)-포스포네이트(0.450 mL, 2.54 mmol)를 첨가한 후, 반응 혼합물을 20시간 동안 실온에서 교반하였다. EtOAc와 물 사이에서 분배한 후, 수성 층을 EtOAc로 추출하였다. 합한 유기 층을 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 SiO2(헥산:EtOAc = 10:1 내지 4:1) 상에서 컬럼 크로마토그래피에 의해 정제하여 황색 왁스로서 5-브로모-1-(디플루오로메틸)-1H-인다졸(496 mg, 79%)을 제공하였다. 1H-NMR(400MHz,DMSO-d6):δ 8.87 (1H, d, J = 0.8 Hz), 8.15 (1H, t, J = 58.8 Hz), 8.09 (1H, dd, J = 2.0, 1.2 Hz), 7.72 (1H, d, J = 9.6 Hz), 7.47 (1H, dd, J = 9.2, 1.6 Hz).
중간체 9: 5-브로모-1-(메틸설포닐)-1H-인다졸
0℃에서 DMF(15 mL) 중 5-브로모-1H-인다졸(1.00 g, 5.08 mmol)의 용액에 NaH(광유 중 60% 분산액, 304 mg, 7.61 mmol)를 첨가하였다. 혼합물을 30분 동안 실온에서 교반하였다. 0℃에서 메탄설포닐 클로라이드(0.450 mL, 5.81 mmol)를 첨가한 후, 반응 혼합물을 2시간 동안 실온에서 교반하고, 이어서 포화 수성 NH4Cl에 의해 반응을 중단시켰다. 혼합물을 EtOAc로 추출하고, 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 SiO2(헥산:EtOAc = 4:1 내지 3:1) 상에서 컬럼 크로마토그래피에 의해 정제하여 백색 고체로서 5-브로모-1-(메틸설포닐)-1H-인다졸(545 mg, 39%)을 제공하였다. 1H-NMR(400MHz,DMSO-d6):δ 8.57 (1H, d, J = 1.2 Hz), 8.20 (1H, d, J = 2.0 Hz), 7.91 (1H, d, J = 9.2 Hz), 7.78 (1H, dd, J = 9.2, 2.4 Hz), 3.50 (3H, s).
중간체 10: 2-(5-브로모-1H-인다졸-1-일)-2-메틸프로판-1-올
0℃에서 DMF(7.0 mL) 중 5-브로모-1H-인다졸(500 mg, 2.54 mmol)의 용액에 NaH(오일 중 60% 분산액, 152 mg, 3.81 mmol)를 첨가하였다. 혼합물을 30분 동안 실온에서 교반하였다. 0℃에서 2,2-디메틸옥시란(0.460 mL, 5.10 mmol)을 첨가한 후, 반응 혼합물을 21시간 동안 실온에서 교반하고, 이어서 포화 수성 NH4Cl에 의해 반응을 중단시켰다. 혼합물을 EtOAc로 추출하고, 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 SiO2(헥산:EtOAc = 4: 1 내지 1:1) 상에서 컬럼 크로마토그래피에 의해 정제하여 황색 왁스로서 2-(5-브로모-1H-인다졸-1-일)-2-메틸프로판-1-올(496 mg, 79%)을 제공하였다. 1H-NMR(400MHz,DMSO-d6):δ 8.00 (1H, d, J = 0.8 Hz), 7.91 (1H, d, J = 1.6 Hz), 7.59 (1H, d, J = 8.8 Hz), 7.47 (1H, dd, J = 9.2, 2.0 Hz), 4.35 (2H, s), 1.21 (6H, s).
중간체 11: 5-브로모-1-메틸-1H-피라졸로[3,4-b]피리딘
실온에서 DMF(7.5 mL) 중 5-브로모-1H-피라졸로[3,4-b]피리딘(500 mg, 2.52 mmol)의 용액에 Cs2CO3(1.65g,5.06mmol)을 첨가하였다. 혼합물을 30분 동안 실온에서 교반하였다. MeI(0.200 mL, 3.22 mmol) 첨가 후, 반응 혼합물을 2시간 동안 실온에서 교반한 후 이어서 물에 의해 반응을 중단시켰다. 혼합물을 EtOAc로 추출하고, 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 SiO2(헥산:EtOAc = 4:1) 상에서 컬럼 크로마토그래피에 의해 정제하여 황색 고체로서 5-브로모-1-메틸-1H-피라졸로[3,4-b]피리딘(400 mg, 75%)을 제공하였다. 1H-NMR(400MHz,CDCl3):δ 8.55 (1H, d, J = 2.0 Hz), 8.18 (1H, d, J = 2.0 Hz), 7.95 (1H, s), 4.14 (3H, s).
중간체 12: 5-브로모-1-메틸-1H-피라졸로[4,3-b]피리딘
실온에서 DMF(7.5 mL) 중 5-브로모-1H-피라졸로[4,3-b]피리딘(500 mg, 2.52 mmol)의 용액에 Cs2CO3(1.65g,5.06mmol)을 첨가하였다. 혼합물을 30분 동안 실온에서 교반하였다. MeI(0.200 mL, 3.22 mmol) 첨가 후, 반응 혼합물을 2시간 동안 실온에서 교반한 후 이어서 물에 의해 반응을 중단시켰다. 혼합물을 EtOAc로 추출하고, 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 SiO2(헥산:EtOAc = 4:1) 상에서 컬럼 크로마토그래피에 의해 정제하여 담황색 고체로서 5-브로모-1-메틸-1H-피라졸로[4,3-b]피리딘(267 mg, 50%)을 제공하였다.1H-NMR(400MHz,CDCl3):δ 8.09 (1H, s), 7.88 (1H, dd, J = 9.2, 0.8 Hz), 7.32 (1H, d, J = 9.2 Hz), 4.24 (3H, s).
중간체 13: 5-브로모-1-메틸-1H-피라졸로[3,4-c]피리딘
실온에서 DMF(7.5 mL) 중 5-브로모-1H-피라졸로[3,4-c]피리딘(500 mg, 2.52 mmol)의 용액에 Cs2CO3(1.65g,5.06mmol)을 첨가하였다. 혼합물을 30분 동안 실온에서 교반하였다. MeI(0.200 mL, 3.22 mmol) 첨가 후, 반응 혼합물을 2시간 동안 실온에서 교반한 후 이어서 물에 의해 반응을 중단시켰다. 혼합물을 EtOAc로 추출하고, 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 SiO2(헥산:EtOAc = 4:1) 상에서 컬럼 크로마토그래피에 의해 정제하여 황색 고체로서 5-브로모-1-메틸-1H-피라졸로[3,4-c]피리딘(320 mg, 60%)을 제공하였다. 1H-NMR(400MHz,CDCl3):δ 8.73 (1H, s), 7.98 (1H, s), 7.81 (1H, d, J = 1.2 Hz), 4.18 (3H, s).
중간체 14: 5-브로모-1-(테트라히드로-2H-피란-2-일)-1H-피라졸로[3,4-b]피리딘
실온에서 DCM(10 mL) 중 5-브로모-1H-피라졸로[3,4-b]피리딘(500 mg, 2.52 mmol)의 용액에 p-TsOH·H2O(96.0mg,0.505mmol)및 3,4-디히드로-2H-피란(0.693 mL, 7.57 mmol)을 첨가하였다. 반응 혼합물을 3시간 동안 실온에서 교반하였다. 진공에서 농축한 후, 잔여물을 EtOAc로 희석하고, 포화 수성 NaHCO3및 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 NH-SiO2(오직 헥산 내지 헥산:EtOAc = 5:1) 상에서 컬럼 크로마토그래피에 의해 정제하여 무색 오일로서 5-브로모-1-(테트라히드로-2H-피란-2-일)-1H-피라졸로[3,4-b]피리딘(712 mg)을 제공하였다. 1H-NMR(400MHz,CDCl3):δ 8.56 (1H, d, J = 2.0 Hz), 8.18 (1H, d, J = 2.4 Hz), 8.01 (1H, s), 6.07 (1H, dd, J = 10.2, 2.4 Hz), 3.89-3.72 (2H, m), 1.82-1.75 (2H, m), 1.58-1.49 (4H, m).
중간체 15: 5-브로모-1-(메틸-d3)-1H-인다졸
실온에서 DMF(21 mL) 중 5-브로모인다졸(1.50 g, 7.61 mmol)의 용액에 Cs2CO3(4.95g,15.2mmol)을 첨가하였다. 혼합물을 30분 동안 실온에서 교반하였다. CD3I(0.540mL,8.68mmol)첨가 후, 반응 혼합물을 2시간 동안 실온에서 교반한 후 이어서 물에 의해 반응을 중단시켰다. 혼합물을 EtOAc로 추출하고, 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 SiO2(헥산:EtOAc = 4:1) 상에서 컬럼 크로마토그래피에 의해 정제하여 오렌지색 고체로서 5-브로모-1-(메틸-d3)-1H-인다졸(857 mg, 53%)을 제공하였다. 1H-NMR(400MHz,CDCl3):δ 7.91 (1H, d, J = 0.8 Hz), 7.87 (1H, d, J = 1.6 Hz), 7.45 (1H, dd, J = 8.8, 1.6 Hz), 7.28 (1H, dt, J = 8.4, 0.8 Hz).
중간체 16: 2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘
단계 A: 2-브로모-1-(6-메틸피리딘-2-일)에탄-1-온 히드로브로마이드
0℃에서 DCM(40 mL) 중 1-(6-메틸피리딘-2-일)에탄-1-온(5.00 g, 37.0 mmol)의 용액에 HBr(AcOH 중 33% 용액, 12.2 mL, 74.0 mmol)에 이어서 Br2(1.90mL,37.0mmol)를 서서히 첨가하였다. 반응 혼합물을 1시간 동안 실온에서 교반하였다. 디에틸 에테르로 희석한 후, 혼합물을 추가로 30분 동안 실온에서 교반하였다. 침전된 고체를 여과에 의해 수집한 후, 디에틸 에테르로 세척하고, 진공 하에 건조하여 황색 고체로서 2-브로모-1-(6-메틸피리딘-2-일)에탄-1-온 히드로브로마이드(11.3 g, >99%)를 제공하였다. 1H-NMR(400MHz,CD3OD):δ 8.54 (1H, t, J = 8.0 Hz), 8.06 (1H, d, J = 7.2 Hz), 7.95 (1H, d, J = 8.0 Hz), 3.89 (1H, d, J = 11.6 Hz), 3.79 (1H, d, J = 11.2 Hz), 2.87 (3H, s).
단계 B: 2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘
실온에서 DMF(91 mL) 중 2-브로모-1-(6-메틸피리딘-2-일)에탄-1-온 히드로브로마이드(11.3 g, 38.4 mmol)의 용액에 피리미딘-2-아민(3.65 g, 38.4 mmol)에 이어서 K2CO3(7.96g,57.6mmol)을 첨가하였다. 반응 혼합물을 4시간 동안 50℃(내부 온도)에서 가열한 후 진공에서 농축하였다. 잔여물을 DCM과 물 사이에서 분배하였다. 분리된 수성 층을 DCM으로 추출하였다. 합한 유기 층을 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 DCM 및 디에틸 에테르로부터 응고시켜 담갈색 고체로서 2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(4.79 g, 2개의 단계 동안 62%)을 제공하였다. 1H-NMR(400MHz,CD3OD):δ 8.90 (1H, dd, J = 2.4, 2.0 Hz), 8.58 (1H, dd, J = 2.0, 1.6 Hz), 8.37 (1H, s), 7.95 (1H, d, J = 7.6 Hz), 7.78 (1H, t, J = 7.8 Hz), 7.23 (1H, d, J = 7.6 Hz), 7.06 (1H, q, J = 4.0 Hz), 2.58 (3H, s).
실시예
실시예 1: N-(2-플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
단계 A: 2-(6-메틸피리딘-2-일)-3-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)이미다조[1,2-a]피리미딘
디옥산(3.2 mL) 중 2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(중간체 16, 200 mg, 0.951 mmol), 5-브로모-1-(테트라히드로-2H-피란-2-일)-1H-인다졸(중간체 1, 281 mg, 0.999 mmol), Pd(OAc)2(8.54mg,0.0380mmol),PPh3(20.0mg,0.0760mmol)과 Cs2CO3(341mg,1.05mmol)의 혼합물을 퍼징에 의해 탈기하고 Ar로 여러 번 재충전하였다. 반응 혼합물을 4시간 동안 환류하고 실온까지 냉각하였다. DCM으로 희석한 후, 혼합물을 셀라이트(Celite) 패드를 통해 여과하였다. 여과액을 DCM과 물 사이에서 분배하였다. 분리된 수성 층을 DCM으로 추출하였다. 합한 유기 층을 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여 고체를 DCM 및 디에틸 에테르로부터 재결정화에 의해 정제하여 갈색 고체로서 2-(6-메틸피리딘-2-일)-3-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)이미다조[1,2-a]피리미딘(346 mg, 89%)을 제공하였다. 1H-NMR(400MHz,DMSO-d6):δ 8.62-8.59 (2H, m), 8.20 (1H, s), 8.08 (1H, s), 7.86-7.84 (2H, m), 7.72 (1H, t, J = 8.0 Hz), 7.63-7.55 (2H, m), 7.13 (1H, d, J = 7.2 Hz), 7.03 (1H, m), 5.93 (1H, d, J = 8.8 Hz), 3.94-3.75 (2H, m), 2.22 (3H, s), 2.08-1.99 (2H, m), 1.78-1.61 (3H, m).
단계 B: 5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민
실온에서 EtOH(2.8 mL) 중 2-(6-메틸피리딘-2-일)-3-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)이미다조[1,2-a]피리미딘(340 mg, 0.828 mmol)의 용액에 히드라진 수화물(0.201 mL, 0.828 mmol)을 첨가하였다. 반응 혼합물을 1시간 동안 환류하고 실온까지 냉각하였다. MeOH로 세척하면서 셀라이트 패드를 통해 여과한 후, 여과액을 진공에서 농축하였다. 잔여물을 NH-SiO2(DCM:MeOH=97:3)상에서 컬럼 크로마토그래피에 의해 정제하여 백색 고체로서 5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(240 mg, 77%)을 제공하였다. 1H-NMR(400MHz,DMSO-d6):δ 10.5 (1H, brs), 8.11 (1H, m), 7.92 (1H, s), 7.77-7.64 (1H, m), 7.62-7.54 (1H, m), 7.40 (1H, t, J = 7.6 Hz), 7.05 (1H, d, J = 7.6 Hz), 6.91 (1H, d, J = 7.2 Hz), 5.84 (1H, dd, J = 9.6, 2.4 Hz), 5.39 (2H, brs), 3.92-3.72 (2H, m), 2.46 (3H, s), 2.06-1.96 (2H, m), 1.81-1.58 (4H, m).
단계 C: N-(2-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민
실온에서 MeOH(0.89 mL) 중 5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(100 mg, 0.267 mmol)의 용액에 2-플루오로벤즈알데하이드(0.0840 mL, 0.801 mmol)에 이어서 AcOH(7.64 μL, 0.134 mmol)를 첨가하였다. 혼합물을 3시간 동안 환류하고 실온까지 냉각하였다. 실온에서 LiBH4(THF중 2 M 용액, 0.267 mL, 0.534 mmol)의 첨가 후, 반응 혼합물을 2시간 동안 실온에서 교반하고, 포화 수성 NH4Cl에 의해 반응을 중단시켰다. 혼합물을 DCM으로 추출하고, 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 NH-SiO2(DCM:MeOH=95:5)상에서 컬럼 크로마토그래피에 의해 정제하여 N-(2-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(118 mg, 92%)을 제공하였다.1H-NMR(400MHz,DMSO-d6): δ 11.06 및 10.84 (1H, brs+brs), 8.10 (1H, brs), 7.93 (1H, s), 7.77-7.62 (1H, m), 7.58-7.40 (3H, m), 7.31-7.28 (1H, m), 7.25-7.15 (2H, m), 7.10-7.00 (1H, m), 7.00-6.90 (1H, m), 6.20-6.13 (1H, m), 5.84 (1H, d, J = 9.6 Hz), 4.54 (2H, d, J = 6.0 Hz), 3.92-3.71 (2H, m), 2.46-2.31 (3H, m), 2.05-1.58 (4H, m)
단계 D: N-(2-플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
DCM(2.5 mL) 중 N-(2-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(118 mg, 0.245 mmol)과 TFA(0.377 mL, 4.89 mmol)의 혼합물을 3시간 동안 실온에서 교반하였다. 반응 혼합물을 DCM으로 희석하고, 포화 수성 NaHCO3및 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 NH-SiO2(DCM:MeOH=97:3)상에서 컬럼 크로마토그래피에 의해 정제하여 N-(2-플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(40.0 mg, 41%)을 제공하였다. 1H-NMR(400MHz,CD3OD):δ 8.04 (1H, s), 7.88 (1H, s), 7.55-7.47 (3H, m), 7.39 (1H, brs), 7.33-7.27 (1H, m), 7.18-6.96 (4H, m), 4.61 (2H, s), 2.49 (3H, s). MS: 399.1 [M+H]+
실시예 2: 4-(3-플루오로-1H-인다졸-5-일)-N-(2-플루오로벤질)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
단계 A: 3-(3-플루오로-1-(테트라히드로-2H-피란-2-일)-1H-인돌-5-일)-2-(6-메틸피리딘-2-일)이미다조-[1,2-a]피리미딘
실온에서 1,4-디옥산(2.7 mL) 중 2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(중간체 16, 171 mg, 0.812 mmol) 및 5-브로모-3-플루오로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸(중간체 2, 255 mg, 0.852 mmol)의 용액에 PPh3(34.0mg,0.130mmol),Cs2CO3(291mg,0.893mmol)및 Pd(OAc)2(15.0mg,0.065mmol)를 첨가하였다. 퍼징에 의해 탈기하고 N2로 재충전한 후, 반응 혼합물을 16시간 동안 환류하고, 실온까지 냉각하고, 이어서 DCM으로 세척하면서 셀라이트 패드를 통해 여과하였다. 여과액을 포화 수성 NaHCO3및 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 NH-SiO2(헥산:EtOAc = 1:1 내지 오직 EtOAc) 상에서 컬럼 크로마토그래피에 의해 정제하여 황색 고체로서 3-(3-플루오로-1-(테트라히드로-2H-피란-2-일)-1H-인돌-5-일)-2-(6-메틸피리딘-2-일)이미다조-[1,2-a]피리미딘(322 mg, 93%)을 제공하였다. 1H-NMR(400MHz,CDCl3):δ 8.60 (2H, d, J = 2.0 Hz), 8.31 (2H, d, J = 6.8 Hz), 7.94 (4H, d, J = 4.4 Hz), 7.70-7.46 (11H, m), 7.02 (1H, d, J = 7.6 Hz), 6.86-6.83 (1H, m), 5.66 (1H, s), 4.04 (1H, s), 3.76 (1H, s), 2.53-2.49 (2H, m), 2.36-2.31 (5H, m), 2.16-2.05 (5H, m), 1.77-1.69 (6H, m).
단계 B: 4-(3-플루오로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실온에서 EtOH(2.8 mL) 중 3-(3-플루오로-1-(테트라히드로-2H-피란-2-일)-1H-인돌-5-일)-2-(6-메틸피리딘-2-일)이미다조-[1,2-a]피리미딘(322 mg, 0.748 mmol)의 용액에 히드라진 일수화물(20 중량%, 0.201 mL, 0.828 mmol)을 첨가하였다. 반응 혼합물을 4시간 동안 환류하고 실온까지 냉각하였다. MeOH로 세척하면서 셀라이트 패드를 통해 여과한 후, 여과액을 진공에서 농축하였다. 잔여물을 NH-SiO2(DCM:MeOH=97:3)상에서 컬럼 크로마토그래피에 의해 정제하여 황색 고체로서 4-(3-플루오로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(162 mg, 55%)을 제공하였다. 1H-NMR(400MHz,DMSO-d6):δ 10.84 (2H, brs+brs), 7.96 (2H, s), 7.75-7.69 (3H, m), 7.58-7.56 (1H, m), 7.46 (2H, t, J = 8.0 Hz), 7.09 (2H, d, J = 7.6 Hz), 6.96-6.91 (2H, d, J = 7.2 Hz), 5.79-5.77 (2H, m), 5.76 (2H, s), 5.49 (4H, s, 4H), 3.91-3.88 (2H, m), 3.75-3.69 (2H, m), 2.47 (6H, s), 2.35-2.20 (4H, m), 2.03-1.93 (5H, m), 1.78-1.68 (3H, m).
단계 C: 4-(3-플루오로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-N-(2-플루오로벤질)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 1에 대한 절차(단계 C)에 따라, 4-(3-플루오로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(100 mg, 0.255 mmol) 및 2-플루오로벤즈알데하이드(0.081 mL, 0.764 mmol)로부터 황색 고체로서 4-(3-플루오로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-N-(2-플루오로벤질)-5-(6-메틸-피리딘-2-일)-1H-이미다졸-2-아민(83.0 mg, 2개의 단계 동안 65%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.17-10.76 (1H, brs+brs), 8.24-7.96 (1H, brs+brs), 7.89-7.68 (2H, m), 7.60-7.46 (3H, m), 7.29 (1H, t, J = 12.8 Hz), 7.21-7.16 (1H, m), 7.09 (1H, d, J = 7.6 Hz), 6.97 (1H, d, J = 8.0 Hz), 6.29-6.19 (1H, t+t), 5.79-5.77 (1H, m), 4.54 (2H, d, J = 6.4 Hz), 3.90-3.88 (1H, m), 3.75-3.69 (1H, m), 2.47 (3H, s), 2.34-2.25 (1H, m), 1.99-1.93 (2H, m), 1.74-1.70 (1H, m), 1.57-1.55 (2H, d, J = 3.7 Hz). MS: 501.1 [M+H]+
단계 D: 4-(3-플루오로-1H-인다졸-5-일)-N-(2-플루오로벤질)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 1에 대한 절차(단계 D)에 따라, 4-(3-플루오로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(83.0 mg, 0.166 mmol) 및 TFA(0.260 mL, 3.38 mmol)로부터 황색 고체로서 4-(3-플루오로-1H-인다졸-5-일)-N-(2-플루오로벤질)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(24.0 mg, 35%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.11-10.70 (1H, brs+brs), 8.04 (1H, brs+brs), 7.78-7.38 (4H, m), 7.33-7.28 (1H, m), 7.21-7.16 (2H, m), 7.08 (1H, d, J = 8.4 Hz), 6.95 (1H, d, J = 7.2 Hz), 6.23-6.16 (1H, m), 4.54 (2H, d, J = 6.4 Hz, 2H), 2.46 (s, 3H). MS: 417.1 [M+H]+.
실시예 3: 4-(3-클로로-1H-인다졸-5-일)-N-(2-플루오로벤질)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
단계 A: 3-(3-클로로-1-(테트라히드로-2H-피란-2-일)-1H-인돌-5-일)-2-(6-메틸피리딘-2-일)이미다조-[1,2-a]피리미딘
실온에서 1,4-디옥산(3.2 mL) 중 2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(중간체 16, 200 mg, 0.951 mmol) 및 5-브로모-3-클로로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸(중간체 3, 315 mg, 0.999 mmol)의 용액에 PPh3(40.0mg,0.152mmol),Cs2CO3(341mg,1.046mmol)및 Pd(OAc)2(17.0mg,0.076mmol)를 첨가하였다. 퍼징에 의해 탈기하고 N2로 재충전한 후, 반응 혼합물을 16시간 동안 환류하고, 실온까지 냉각하고, 이어서 DCM으로 세척하면서 셀라이트 패드를 통해 여과하였다. 여과액을 포화 수성 NaHCO3및 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 NH-SiO2(헥산:EtOAc = 1:1 내지 오직 EtOAc) 상에서 컬럼 크로마토그래피에 의해 정제하여 황색 고체로서 3-(3-클로로-1-(테트라히드로-2H-피란-2-일)-1H-인돌-5-일)-2-(6-메틸피리딘-2-일)이미다조-[1,2-a]피리미딘(285 mg, 67%)을 제공하였다. 1H-NMR(400MHz,CDCl3):δ 8.60 (1H, s), 8.33 (1H, m), 8.00-7.94 (2H, m), 7.69-7.46 (12H, m), 7.26 (5H, s), 7.02 (1H, m), 6.84 (1H, s), 5.74 (1H, m), 4.04 (1H, s), 3.77 (1H, s), 2.59 (1H, s), 2.32 (4H, s), 1.74 (4H, m).
단계 B: 4-(3-클로로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실온에서 EtOH(2.1 mL) 중 3-(3-클로로-1-(테트라히드로-2H-피란-2-일)-1H-인돌-5-일)-2-(6-메틸피리딘-2-일)이미다조-[1,2-a]피리미딘(285 mg, 0.638 mmol)의 용액에 히드라진 일수화물(20 중량%, 0.160 mL, 0.658 mmol)을 첨가하였다. 반응 혼합물을 2시간 동안 환류하고 실온까지 냉각하였다. MeOH로 세척하면서 셀라이트 패드를 통해 여과한 후, 여과액을 진공에서 농축하였다. 잔여물을 NH-SiO2(DCM:MeOH=97:3)상에서 컬럼 크로마토그래피에 의해 정제하여 황색 고체로서 4-(3-클로로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(173 mg, 66%)을 제공하였다. 1H-NMR(400MHz,DMSO-d6):δ 10.86 (1H, brs+brs), 8.00 (1H, s), 7.78-7.71 (1H, m), 7.64-7.55 (1H, m), 7.48 (1H, t, J = 8.0 Hz), 7.11 (1H, d, J = 8.0 Hz), 6.99-6.95 (1H, m), 5.84 (1H, dd, J = 2.4, 1.6 Hz), 5.50-5.37 (2H, brs+brs), 3.90 (1H, d, J = 10.8 Hz), 3.79-3.71 (1H, m), 2.48 (3H, s), 2.42-2.29 (3H, m), 2.04-1.96 (3H, m), 1.79-1.52 (4H, m).
단계 C: 4-(3-클로로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-N-(2-플루오로벤질)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 1에 대한 절차(단계 C)에 따라, 4-(3-클로로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(100 mg, 0.245 mmol) 및 2-플루오로벤즈알데하이드(0.077 mL, 0.734 mmol)로부터 황색 고체로서 4-(3-클로로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-N-(2-플루오로벤질)-5-(6-메틸 피리딘-2-일)-1H-이미다졸-2-아민(56.0 mg, 2개의 단계 동안 44%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.21-10.80 (1H, brs+brs), 8.32-8.00 (1H, brs+brs), 7.78-7.70 (2H, m), 7.60-7.47 (2H, m), 7.30 (1H, m), 7.21-7.16 (2H, m), 7.11 (1H, m), 6.98 (1H, m), 6.29-6.23 (1H, t+t), 5.86-5.83 (1H, m), 4.56-4.53 (2H, m), 3.90 (1H, m), 3.73 (1H, m), 2.48 (3H, s), 2.37-2.32 (1H, m), 2.04-1.97 (2H, m), 1.73 (1H, m), 1.58 (2H, m). MS: 517.1 [M+H]+
단계 D: 4-(3-클로로-1H-인다졸-5-일)-N-(2-플루오로벤질)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 1에 대한 절차(단계 D)에 따라, 4-(3-클로로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-N-(2-플루오로벤질)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(56.0 mg, 0.108 mmol) 및 TFA(0.170 mL, 2.20 mmol)로부터 황색 고체로서 4-(3-클로로-1H-인다졸-5-일)-N-(2-플루오로벤질)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(13.0 mg, 28%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.14-10.73 (1H, brs+brs), 8.26-7.96 (1H, brs+brs), 7.69-7.47 (4H, m), 7.31-6.96 (5H, m), 6.21-6.18 (1H, s), 4.55 (2H, d, J = 5.6 Hz), 2.48 (3H, s). MS: 433.0 [M+H]+.
실시예 4: N-(2-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(3-니트로-1H-인다졸-5-일)-1H-이미다졸-2-아민
단계 A: 2-(6-메틸피리딘-2-일)-3-(3-니트로-1-(테트라히드로-2H-피란-2-일)-1H-인돌-5-일)이미다조-[1,2-a]피리미딘
실온에서 1,4-디옥산(3.20 mL) 중 2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(중간체 16, 200 mg, 0.951 mmol) 및 5-브로모-3-플루오로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸(중간체 4, 326 mg, 0.999 mmol)의 용액에 PPh3(40.0mg,0.152mmol),Cs2CO3(341mg,1.046mmol)및 Pd(OAc)2(17.0mg,0.076mmol)를 첨가하였다. 퍼징에 의해 탈기하고 N2로 재충전한 후, 반응 혼합물을 16시간 동안 환류하고, 실온까지 냉각하고, 이어서 DCM으로 세척하면서 셀라이트 패드를 통해 여과하였다. 여과액을 포화 수성 NaHCO3및 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 NH-SiO2(헥산:EtOAc = 1:1) 상에서 컬럼 크로마토그래피에 의해 정제하여 갈색 고체로서 2-(6-메틸피리딘-2-일)-3-(3-니트로-1-(테트라히드로-2H-피란-2-일)-1H-인돌-5-일)이미다조-[1,2-a]피리미딘(408 mg, 94%)을 제공하였다. 1H-NMR(400MHz,CDCl3):δ 8.56 (1H, d, J = 6.4 Hz), 8.51 (1H, d, J = 2.4 Hz), 8.13-8.00 (3H, m), 7.66 (4H, m), 7.53-7.39 (7H, m), 6.86-6.80 (2H, m), 5.87 (1H, t, J = 7.2 Hz), 4.00-3.97 (1H, m), 3.79-3.74 (1H, m), 2.56 (1H, m), 2.16 (2H, m), 1.99 (3H, m), 1.80-1.67 (3H, m).
단계 B: 5-(6-메틸피리딘-2-일)-4-(3-니트로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민
실온에서 EtOH(3.0 mL) 중 2-(6-메틸피리딘-2-일)-3-(3-니트로-1-(테트라히드로-2H-피란-2-일)-1H-인돌-5-일)이미다조-[1,2-a]피리미딘(408 mg, 0.892 mmol)의 용액에 히드라진 일수화물(20중량%, 0.220 mL, 0.908 mmol)을 첨가하였다. 반응 혼합물을 2시간 동안 환류하고 실온까지 냉각하였다. MeOH로 세척하면서 셀라이트 패드를 통해 여과한 후, 여과액을 진공에서 농축하였다. 잔여물을 NH-SiO2(DCM:MeOH=97:3)상에서 컬럼 크로마토그래피에 의해 정제하여 황색 고체로서 5-(6-메틸피리딘-2-일)-4-(3-니트로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(160 mg, 43%)을 제공하였다. 1H-NMR(400MHz,CDCl3):δ 8.36 (1H, s), 7.86 (1H, d, J = 8.0 Hz), 7.58 (1H, d, J = 8.8 Hz), 7.28 (6H, m), 6.84 (1H, d, J = 7.6 Hz), 6.74 (1H, s), 5.81 (1H, d, J = 8.4 Hz), 4.03 (1H, m), 3.79 (1H, m), 2.52 (5H, m), 2.16 (2H, m), 1.79 (3H, m).
단계 C: N-(2-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(3-니트로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민
실시예 1에 대한 절차(단계 C)에 따라, 5-(6-메틸피리딘-2-일)-4-(3-니트로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(80.0 mg, 0.191 mmol) 및 2-플루오로벤즈알데하이드(0.060 mL, 0.572 mmol)로부터 갈색 고체로서 N-(2-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(3-니트로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(28 mg, 2개의 단계 동안 28%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.31-10.98 (1H, brs+brs), 8.34 (1H, brs+brs), 8.07 (1H, d, J = 8.0 Hz), 7.58-7.51 (2H, m), 7.50-7.42 (1H, m), 7.33-7.28 (1H, m), 7.22-7.15 (2H, m), 6.91 (2H, t, J = 7.6 Hz), 6.53-6.30 (1H, t+t), 6.01-5.98 (1H, m), 4.53-4.47 (2H, m), 3.92-3.75 (2H, m), 2.37-2.31 (3H, m), 2.09-2.02 (2H, m), 1.64-1.57 (2H, m). MS: 528.1 [M+H]+
단계 D: N-(2-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(3-니트로-1H-인다졸-5-일)-1H-이미다졸-2-아민
EtOH(0.59 mL) 중 N-(2-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(3-니트로-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(53.0 mg, 0.100 mmol)의 용액에 HCl(EtOAc 중 1 M 용액, 0.200 mL, 0.200 mmol)을 첨가하였다. 반응 혼합물을 7시간 동안 환류하고, 진공에서 농축하였다. 잔여물을 pH 8일 때까지 포화 수성 NaHCO3으로 염기성화하였다. 혼합물을 DCM으로 추출하고, 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 NH-SiO2(DCM:MeOH=97:3내지 95:5) 상에서 컬럼 크로마토그래피에 의해 정제하여 황색 고체로서 N-(2-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(3-니트로-1H-인다졸-5-일)-1H-이미다졸-2-아민(3.00 mg, 6.7%)을 제공하였다. 1H-NMR(400MHz,DMSO-d6):δ 10.95 (1H, m), 8.30 (1H, m), 7.86 (1H, m), 7.55-7.39 (3H, m), 7.34-7.28 (1H, m), 7.20-7.15 (2H, m), 6.92-6.82 (2H, m), 6.49-6.25 (1H, m), 4.52-4.47 (2H, m), 2.33 (s, 3H). MS: 444.1 [M+H]+.
실시예 5: N-(2-플루오로벤질)-4-(3-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2 -일)-1H-이미다졸-2-아민
단계 A: 3-(3-브로모-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘
디옥산(4.5 mL) 중 2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(중간체 16, 292 mg, 1.38 mmol), 5-디브로모-1-(테트라히드로-2H-피란-2-일)-1H-인다졸(중간체 5, 500 mg, 1.38 mmol), PPh3(58.0mg,0.222mmol),Pd(OAc)2(25.0mg,0.111mmol)와 Cs2CO3(498mg,1.52mmol)의 혼합물을 퍼징에 의해 탈기하고 N2로 여러 번 재충전하였다. 반응 혼합물을 16시간 동안 환류하고 실온까지 냉각하였다. DCM으로 희석한 후, 혼합물을 셀라이트 패드를 통해 여과하였다. 여과액을 DCM과 물 사이에서 분배하였다. 분리된 수성 층을 DCM으로 추출하였다. 합한 유기 층을 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 NH-SiO2(헥산:EtOAc = 1:1 내지 오직 EtOAc) 상에서 컬럼 크로마토그래피에 의해 정제하여 황색 폼(foam)으로서 3-(3-브로모-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-2-(6-메틸피리딘-2-일)이미다조- [1,2-a]피리미딘(315 mg, 46%)을 제공하였다. 1H-NMR(400MHz,CDCl3):δ 8.60 (1H, dd, J = 4.0, 2.4 Hz), 8.33 (1H, dd, J = 6.8, 2.4 Hz), 7.96-7.94 (2H, m), 7.70-7.68 (1H, m), 7.60-7.57 (2H, m), 7.01 (1H, d, J = 8.0 Hz), 6.85 (1H, dd, J = 6.8, 4.0 Hz), 5.75 (1H, dd, J = 9.2, 2.8 Hz), 4.07-4.04 (1H, m), 3.80-3.74 (1H, m), 2.61-2.34 (1H, m), 2.32 (3H, s), 2.20-2.12 (2H, m), 1.82-1.68 (3H, m), MS: 490 [M+H]+
단계 B: 3-(3-메틸-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-2-(6- 메틸피리딘-2-일)이미다조[1,2-a]피리미딘
DMF(6.2 mL) 중 3-(3-브로모-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(315 mg, 0.644 mmol), PdCl2(dppf)(47.1mg,0.0640mmol),트리메틸보록신(0.400 mL, 2.86 mmol)과 K2CO3(445mg,3.22mmol)의 혼합물 용액을 퍼징에 의해 탈기하고 N2로 여러 번 재충전하였다. 반응 혼합물을 밀봉된 관에서 15시간 동안 110℃에서 가열하고 실온까지 냉각하였다. 물로 희석한 후, 혼합물을 DCM으로 2회 추출하였다. 합한 유기 층을 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 NH-SiO2(헥산:EtOAc = 1:1 내지 오직 EtOAc) 상에서 컬럼 크로마토그래피에 의해 정제하여 담갈색 폼으로서 3-(3-메틸-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(230 mg, 84%)을 제공하였다. 1H-NMR(400MHz,CDCl3):δ 8.58 (1H, dd, J = 4.0, 2.4 Hz), 8.29 (1H, dd, J = 6.8, 1.6 Hz), 7.92 (1H, s), 7.82 (1H, d, J = 6.8 Hz), 7.69-7.67 (1H, m), 7.60-7.54 (2H, m), 6.99 (1H, d, J = 7.6 Hz), 6.80 (1H, dd, J = 6.8, 4.0 Hz), 5.68 (1H, dd, J = 10, 2.0 Hz), 4.12-4.09 (1H, m), 3.81-3.75 (1H, m), 2.61-2.34 (1H, m), 2.57 (3H, s), 2.33 (3H, s), 2.17-2.10 (2H, m), 1.84-1.70 (3H, m). MS: 425.2 [M+H]+
단계 C: 5-(3-메틸-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-4-(6- 메틸피리딘-2-일)-1H-이미다졸-2-아민
실온에서 EtOH(2.5 mL) 중 3-(3-메틸-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-2-(6-메틸-피리딘-2-일)이미다조[1,2-a]피리미딘(230 mg, 0.542 mmol)의 용액에 히드라진 일수화물(20 중량%, 0.130 mL, 0.542 mmol)을 첨가하였다. 반응 혼합물을 2시간 동안 환류하고 실온까지 냉각하였다. MeOH로 세척하면서 셀라이트 패드를 통해 여과한 후, 여과액을 진공에서 농축하였다. 잔여 고체를 MeOH 및 디에틸 에테르로부터 재결정화에 의해 정제하여 갈색 고체로서 5-(3-메틸-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-4-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(210 mg, >99%)을 제공하였다. MS: 389.2 [M+H]+
단계 D: (E)-1-(2-플루오로페닐)-N-(4-(3-메틸-1-(테트라히드로-2H-피란-2-일)- 1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-일)메탄이민
실온에서 MeOH(4.0 mL) 중 5-(3-메틸-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-4-(6-메틸- 피리딘-2-일)-1H-이미다졸-2-아민(210 mg, 0.541 mmol)과 2-플루오로벤즈알데하이드(0.200 mL, 1.90 mmol)의 혼합물에 AcOH(0.100 mL, 1.75 mmol)를 첨가하였다. 반응 혼합물을 15시간 동안 환류한 후 진공에서 농축하여 조질 갈색 오일로서 (E)-1-(2-플루오로페닐)-N-(4-(3-메틸-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-5-(6-메틸 피리딘-2-일)-1H-이미다졸-2-일)메탄이민을 제공하였고, 이를 추가 정제 없이 다음 반응에서 사용하였다. MS: 495.2 [M+H]+.
단계 E: N-(2-플루오로벤질)-4-(3-메틸-1-(테트라히드로-2H-피란-2-일)-1H- 인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
0℃에서 MeOH(5.2 mL) 중 조질 (E)-1-(2-플루오로페닐)- N-(4-(3-메틸-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-일)메탄이민(260 mg, 0.526 mmol)의 용액에 LiBH4(THF중 2.0 M, 0.530 mL, 1.06 mmol)를 첨가하였다. 반응 혼합물을 2시간 동안 실온에서 교반한 후 물에 의해 반응을 중단시켰다. 혼합물을 EtOAc로 2회 추출하고, 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 NH-SiO2(헥산:EtOAc = 1:1 내지 오직 EtOAc) 상에서 컬럼 크로마토그래피에 의해 정제하여 황색 오일로서 N-(2-플루오로벤질)-4-(3-메틸-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(113 mg, 43%)을 제공하였다. MS: 497.2 [M+H]+
단계 F: N-(2-플루오로벤질)-4-(3-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2 -일)-1H-이미다졸-2-아민
실온에서 EtOH(2.0 mL) 중 N-(2-플루오로벤질)-4-(3-메틸-1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-5-(6- 메틸피리딘-2-일)-1H-이미다졸-2-아민(113 mg, 0.228 mmol)의 용액에 HCl(EtOAc 중 1 M 용액, 0.460 mL, 0.460 mmol)을 첨가하였다. 반응 혼합물을 3시간 동안 환류한 후 진공에서 농축하였다. 잔여물을 포화 수성 NaHCO3으로 중화시킨 후 DCM으로 2회 추출하였다. 합한 유기 층을 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 헥산 및 DCM으로부터 응고시켜 정제하여 황색 고체로서 N-(2-플루오로벤질)-4-(3-메틸-1H-인다졸-5-일)-5-(6-메틸-피리딘-2-일)-1H-이미다졸-2-아민(18 mg, 19%)을 제공하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.01-10.58 (1H, m), 8.20-7.88 (1H, m), 7.63-7.28 (5H, m), 7.20-7.16 (2H, m), 7.04 (1H, d, J = 8.0 Hz), 6.91 (1H, d, J = 7.6 Hz), 6.13 (1H, t, J = 6.4 Hz), 4.54 (2H, d, J = 6.0 Hz), 2.45 (3H, s). MS: 413.1 [M+H]+
실시예 6: N-(3-플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
단계 A: N-(3-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민
실시예 1에 대한 절차(단계 C)에 따라, 5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(200 mg, 0.534 mmol) 및 3-플루오로-벤즈알데하이드(0.170 mL, 1.60 mmol)로부터 황색 고체로서 N-(3-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(115 mg, 2개의 단계 동안 44%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.29-10.65 (1H, brs+brs), 8.10-8.09 (1H, m), 7.93 (1H, s), 7.77-7.56 (3H, m), 7.44-7.35 (2H, m), 7.24-7.23 (1H, m), 7.08-7.04 (2H, m), 6.97-6.92 (1H, m), 6.37-6.26 (1H, t+t), 5.84 (1H, d, J = 10.4 Hz), 4.51 (2H, d, J = 6.8 Hz), 3.91-3.73 (2H, m), 2.47-2.31 (3H, brs+brs), 2.05-1.96 (2H, m), 1.80-1.58 (4H, m). MS: 483.1 [M+H]+
단계 B: N-(3-플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 7에 대한 절차(단계 D)에 따라, N-(3-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(115 mg, 0.238 mmol)으로부터 담황색 고체로서 N-(3-플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(74.0 mg, 78%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.07-10.61 (1H, brs+brs), 8.06-8.04 (1H, m), 8.06-7.90 (1H, brs+brs), 7.67-7.04 (1H, d+d), 7.57-7.35 (4H, m), 7.24-7.19 (2H, m), 7.08-7.05 (1H, m), 6.94-6.91 (1H, d+d), 6.32-6.23 (1H, t+t), 4.51-4.47 (2H, d+d), 2.46-2.28 (3H, brs+brs). MS: 399.1 [M+H]+
실시예 7: N-(3,4-디클로로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
단계 A: N-(3,4-디클로로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로- 2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민
실시예 1에 대한 절차(단계 C)에 따라, 5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(200 mg, 0.534 mmol) 및 3,4-디클로로-벤즈알데하이드(280 mg, 1.60 mmol)로부터 황색 고체로서 N-(3,4-디클로로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(115 mg, 2개의 단계 동안 44%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.16-10.71 (1H, brs+brs), 8.10-8.08 (1H, m), 7.92 (1H, s), 7.70-7.55 (4H, m), 7.43-7.38 (2H, m), 7.05 (1H, d, J = 8.0 Hz), 6.95-6.92 (1H, m), 6.44-6.32 (1H, t+t), 5.83 (1H, dd, J = 9.6, 2.0 Hz), 4.49-4.44 (2H, m), 3.91-3.73 (2H, m), 2.47-2.30 (3H, brs+brs), 2.06-1.95 (2H, m), 1.77-1.57 (4H, m). MS: 533 [M+H]+.
단계 B: N-(3,4-디클로로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 7에 대한 절차(단계 D)에 따라, N-(3,4-디클로로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(160 mg, 0.300 mmol)으로부터 황색 고체로서 N-(3,4-디클로로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(82.7 mg, 61%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.12-10.66 (1H, brs+brs), 8.06-8.04 (1H, m), 8.06-7.90 (1H, brs+brs), 7.69-7.04 (1H, d+d), 7.68-7.66 (1H, m), 7.60-7.58 (1H, m), 7.55-7.38 (4H, m), 6.94-6.92 (1H, d+d), 6.40-6.29 (1H, t+t), 4.48-4.44 (2H, d+d), 2.46-2.28 (3H, brs+brs). MS: 449.1 [M+H]+.
실시예 8: N-(2,3-디플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
단계 A: N-(2,3-디플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민
실시예 1에 대한 절차(단계 C)에 따라, 5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(200 mg, 0.534 mmol) 및 2,3-디플루오로-벤즈알데하이드(0.180 mL, 1.64 mmol)로부터 황색 고체로서 N-(2,3-디플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(153 mg, 2개의 단계 동안 57%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.10-10.67 (1H, brs+brs), 8.10-8.09 (1H, m), 7.92 (1H, s), 7.69-7.55 (2H, m), 7.42 (1H, t, J = 8.0 Hz), 7.34-7.28 (2H, m), 7.21-7.16 (1H, m), 7.05 (1H, t, J = 8.4 Hz), 6.96-6.93 (1H, d+d), 6.31-6.24 (1H, t+t), 5.83 (1H, dd, J = 9.6, 2.0 Hz), 4.95-4.55 (2H, m), 3.91-3.71 (2H, m), 2.46-2.30 (3H, brs+brs), 2.06-1.95 (2H, m), 1.80-1.58 (4H, m). MS: 501.1 [M+H]+.
단계 B: N-(2,3-디플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 7에 대한 절차(단계 D)에 따라, N-(2,3-디플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(138 mg, 0.276 mmol)으로부터 황색 고체로서 N-(2,3-디플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(108 mg, 85%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.09-10.64 (1H, brs+brs), 8.06-8.04 (1H, m), 8.06-7.90 (1H, brs+brs), 7.67-7.04 (1H, d+d), 7.58-7.28 (5H, m), 7.21-7.16 (1H, m), 6.94-6.92 (1H, d+d), 6.30-6.22 (1H, t+t), 4.59-4.55 (2H, m), 2.46-2.28 (3H, brs+brs). MS: 417.1 [M+H]+.
실시예 9: N-(2,4-디플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
단계 A: N-(2,4-디플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민
실시예 1에 대한 절차(단계 C)에 따라, 5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(200 mg, 0.534 mmol) 및 2,4-디플루오로-벤즈알데하이드(0.180 mL, 1.64 mmol)로부터 황색 고체로서 N-(2,4-디플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(138 mg, 2개의 단계 동안 51%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.10-10.64 (1H, brs+brs), 8.10-8.09 (1H, m), 7.93 (1H, s), 7.69-7.50 (3H, m), 7.42 (1H, t, J = 8.0 Hz), 7.25-7.19 (1H, m), 7.09-7.04 (2H, m), 6.97-6.92 (1H, m), 6.25-6.16 (1H, t+t), 5.83 (1H, dd, J = 9.6, 2.0 Hz), 4.50-4.47 (2H, m), 3.91-3.71 (2H, m), 2.46-2.31 (3H, brs+brs), 2.06-1.95 (2H, m), 1.80-1.58 (4H, m). MS: 501.1 [M+H]+.
단계 B: N-(2,4-디플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 7에 대한 절차(단계 D)에 따라, N-(2,4-디플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(138 mg, 0.276 mmol)으로부터 황색 고체로서 N-(2,4-디플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(90 mg, 78%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.08-10.61 (1H, brs+brs), 8.07-8.05 (1H, brs+brs), 8.05-7.90 (1H, brs+brs), 7.67-7.04 (1H, d+d), 7.58-7.38 (4H, m), 7.25-7.19 (1H, m), 7.09-7.07 (1H, m), 6.95-6.91 (1H, d+d), 6.22-6.15 (1H, t+t), 4.50-4.47 (2H, m), 2.46-2.29 (3H, brs+brs). MS: 417.1 [M+H]+.
실시예 10: N-(4-클로로-2-플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
단계 A: N-(4-클로로-2-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민
실시예 1에 대한 절차(단계 C)에 따라, 5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(200 mg, 0.534 mmol) 및 4-클로로-2-플루오로-벤즈알데하이드(254 mg, 1.60 mmol)로부터 황색 고체로서 N-(4-클로로-2-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(170 mg, 2개의 단계 동안 61%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.10-10.67 (1H, brs+brs), 8.10-8.09 (1H, m), 7.92 (1H, s), 7.69-7.48 (3H, m), 7.44-7.39 (2H, m), 7.28 (1H, dd, J = 8.4, 2.0 Hz), 7.05 (1H, d, J = 8.4 Hz), 6.96-6.93 (1H, d+d), 6.28-6.20 (1H, t+t), 5.84 (1H, dd, J = 9.6, 2.4 Hz), 4.52-4.48 (2H, m), 3.92-3.71 (2H, m), 2.46-2.30 (3H, brs+brs), 2.06-1.96 (2H, m), 1.80-1.57 (4H, m). MS: 517.0 [M+H]+
단계 B: N-(4-클로로-2-플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 7에 대한 절차(단계 D)에 따라, N-(4-클로로-2-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(170 mg, 0.329 mmol)으로부터 황색 고체로서 N-(4-클로로-2-플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(122 mg, 86%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.08-10.64 (1H, brs+brs), 8.06-8.04 (1H, brs+brs), 8.04-7.89 (1H, brs+brs), 7.67-7.04 (1H, d+d), 7.57-7.38 (5H, m), 7.30-7.27 (1H, m), 6.94-6.91 (1H, d+d), 6.26-6.18 (1H, t+t), 4.52-4.48 (2H, m), 2.46-2.28 (3H, brs+brs). MS: 433.0 [M+H]+.
실시예 11: N-(3-클로로-2-플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
단계 A: N-(3-클로로-2-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민
실시예 1에 대한 절차(단계 C)에 따라, 5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(200 mg, 0.534 mmol) 및 3-클로로-2-플루오로-벤즈알데하이드(0.190 mL, 1.61 mmol)로부터 황색 고체로서 N-(3-클로로-2-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(174 mg, 2개의 단계 동안 63%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.14-10.69 (1H, brs+brs), 8.10-8.08 (1H, m), 7.92 (1H, s), 7.68-7.40 (5H, m), 7.21 (1H, t, J = 8.0 Hz), 7.05 (1H, d, J = 8.4 Hz), 6.96-6.93 (1H, d+d), 6.37-6.27 (1H, t+t), 5.83 (1H, dd, J = 9.6, 2.0 Hz), 4.58-4.54 (2H, m), 3.91-3.71 (2H, m), 2.46-2.30 (3H, brs+brs), 2.06-1.95 (2H, m), 1.80-1.57 (4H, m). MS: 517.1 [M+H]+.
단계 B: N-(3-클로로-2-플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 7에 대한 절차(단계 D)에 따라, N-(3-클로로-2-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(174 mg, 0.337 mmol)으로부터 황색 고체로서 N-(3-클로로-2-플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(115 mg, 79%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.10-10.65 (1H, brs+brs), 8.06-8.04 (1H, m), 8.04-7.89 (1H, brs+brs), 7.67-7.04 (1H, d+d), 7.54-7.38 (5H, m), 7.21 (1H, t, J = 8.0 Hz), 7.04 (1H, d, J = 7.6 Hz), 6.94-6.92 (1H, d+d), 6.34-6.24 (1H, t+t), 4.58-4.54 (2H, m), 2.46-2.28 (3H, brs+brs). MS: 433.0 [M+H]+.
실시예 12: N-(3,4-디플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
단계 A: N-(3,4-디플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 1에 대한 절차(단계 C)에 따라, 5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민(200 mg, 0.534 mmol) 및 3,4-디플루오로-벤즈알데하이드(0.180 mL, 1.63 mmol)로부터 황색 고체로서 N-(3,4-디플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(167 mg, 2개의 단계 동안 62%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.09-10.66 (1H, brs+brs), 8.10-8.09 (1H, m), 7.93 (1H, s), 7.68 (1H, d, J = 8.8 Hz), 7.56 (1H, dd, J = 8.8, 1.6 Hz), 7.47-7.37 (3H, m), 7.28-7.28 (1H, m), 7.05 (1H, d, J = 8.4 Hz), 6.96-6.93 (1H, d+d), 6.34-6.25 (1H, t+t), 5.83 (1H, dd, J = 10.4, 2.4 Hz), 4.47-4.44 (2H, d+d), 3.92-3.71 (2H, m), 2.47-2.06 (3H, brs+brs), 2.06-1.94 (2H, m), 1.79-1.56 (4H, m). MS: 501.1 [M+H]+
단계 B: N-(3,4-디플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 7에 대한 절차(단계 D)에 따라, N-(3,4-디플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(167 mg, 0.334 mmol)으로부터 황색 고체로서 N-(3,4-디플루오로벤질)-4-(1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(113 mg, 81%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.04-10.61 (1H, brs+brs), 8.06-8.04 (1H, brs+brs), 8.04-7.90 (1H, brs+brs), 7.67-7.04 (1H, d+d), 7.58-7.35 (5H, m), 7.29-7.23 (1H, m), 6.95-6.91 (1H, d+d), 6.30-6.22 (1H, t+t), 4.47-4.43 (2H, d+d), 2.46-2.28 (3H, brs+brs). MS: 417.1 [M+H]+.
실시예 13: N-(3-플루오로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
단계 A: 3-(1-메틸-1H-인다졸-5-일)-2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘
디옥산(24 mL) 중 2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(중간체 16, 1.42 g, 6.78 mmol), 5-브로모-1-메틸-1H-인다졸(중간체 6, 1.43 g, 6.78 mmol), Pd(OAc)2(122mg,0.542mmol),PPh3(284mg,1.08mmol)과 Cs2CO3(2.42g,7.45mmol)의 혼합물을 퍼징에 의해 탈기하고 Ar로 여러 번 재충전하였다. 반응 혼합물을 4시간 동안 환류하고 실온까지 냉각하였다. DCM으로 희석한 후, 혼합물을 셀라이트 패드를 통해 여과하였다. 여과액을 DCM과 물 사이에서 분배하였다. 분리된 수성 층을 DCM으로 추출하였다. 합한 유기 층을 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여 고체를 DCM 및 디에틸 에테르로부터 재결정화에 의해 정제하여 담갈색 고체로서 3-(1-메틸-1H-인다졸-5-일)-2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(2.30 g, 조질)을 제공하였다. MS: 341.1 [M+H]+.
단계 B: 4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실온에서 EtOH(28 mL) 중 3-(1-메틸-1H-인다졸-5-일)-2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(2.30 g, 조질)의 용액에 히드라진 일수화물(20 중량%, 1.70 mL, 7.01 mmol)을 첨가하였다. 반응 혼합물을 1시간 동안 환류하고 실온까지 냉각하였다. MeOH로 세척하면서 셀라이트 패드를 통해 여과한 후, 여과액을 진공에서 농축하였다. 잔여물을 Et2O및 MeOH로부터 결정화에 의해 정제하여 황색 고체로서 4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(1.06 g, 2개의 단계 동안 51%)을 제공하였다. 1H-NMR(400MHz,DMSO-d6):δ 10.51 (1H, brs), 8.01 (1H, s), 7.92 (1H, s), 7.58 (2H, s), 7.41 (1H, s), 7.07 (1H, brs), 6.90 (1H, d, J = 7.6 Hz), 5.42 (2H, brs), 4.04 (3H, s), 2.43 (3H, s). MS: 305.1 [M+H]+
단계 C: N-(3-플루오로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
MeOH(4.0 mL) 중 4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(200 mg, 0.657 mmol), 3-플루오로-벤즈알데하이드(0.210 mL, 1.98 mmol)와 아세트산(0.0200 mL, 0.349 mmol)의 혼합물을 3시간 동안 환류하고 실온까지 냉각하였다. 실온에서 LiBH4(THF중 2 M 용액, 0.660 mL, 1.32 mmol)의 첨가 후, 반응 혼합물을 1시간 동안 실온에서 교반하고, 포화 수성 NH4Cl에 의해 반응을 중단시켰다. 혼합물을 DCM으로 추출하고, 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여물을 NH-SiO2(DCM:MeOH=95:5)상에서 컬럼 크로마토그래피에 의해 정제하여 황색 고체로서 N-(3-플루오로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(134 mg, 2개의 단계 동안 49%)을 제공하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.06-10.62 (1H, brs+brs), 8.06-8.02 (1H, brs+brs), 8.03-7.90 (1H, brs+brs), 7.73-7.07 (1H, d+d), 7.60-7.20 (6H, m), 7.04-7.02 (1H, m), 6.95- 6.92 (1H, d+d), 6.31-6.23 (1H, t+t), 4.51-4.47 (2H, d+d), 4.04 (3H, s), 2.46-2.29 (3H, brs+brs). MS: 413.1 [M+H]+
실시예 14: N-(4-플루오로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
단계 A: N-(4-플루오로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 C)에 따라, 4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(150 mg, 0.493 mmol) 및 4-플루오로-벤즈알데하이드(0.160 mL, 1.52 mmol)로부터 황색 고체로서 N-(4-플루오로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(116 mg, 2개의 단계 동안 57%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.05-10.58 (1H, brs+brs), 8.06-8.02 (1H, brs+brs), 8.03-7.90 (1H, brs+brs), 7.73-7.03 (1H, d+d), 7.60-7.38 (5H, m), 7.17-7.13 (2H, m), 6.95-6.91 (1H, d+d), 6.27-6.16 (1H, t+t), 4.46-4.43 (2H, d+d), 4.04-4.03 (3H, brs+brs), 2.46-2.29 (3H, brs+brs). MS: 413.1 [M+H]+.
실시예 15: N-(4-클로로-3-플루오로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 C)에 따라, 4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(180 mg, 0.405 mmol) 및 4-플루오로-벤즈알데하이드(0.160 mL, 1.52 mmol)로부터 황색 고체로서 N-(4-클로로-3-플루오로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸-피리딘-2-일)-1H-이미다졸-2-아민(111 mg, 2개의 단계 동안 60%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.09-10.67 (1H, brs+brs), 8.06-8.02 (1H, brs+brs), 8.03-7.89 (1H, brs+brs), 7.73-7.03 (1H, d+d), 7.59-7.38 (5H, m), 7.31-7.25 (1H, m), 6.95-6.92 (1H, d+d), 6.36-6.28 (1H, t+t), 4.49-4.46 (2H, d+d), 4.04-4.03 (3H, brs+brs), 2.46-2.29 (3H, brs+brs). MS: 447.1 [M+H]+.
실시예 16: 4-(1-에틸-1H-인다졸-5-일)-N-(3-플루오로벤질)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
단계 A: 3-(1-에틸-1H-인다졸-5-일)-2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘
디옥산(24.0 mL) 중 2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(중간체 16, 467 mg, 2.22 mmol), 5-브로모-1-에틸-1H-인다졸(중간체 7, 1.43 g, 6.78 mmol), Pd(OAc)2(40.0mg,0.178mmol),PPh3(93.0mg,0.355mmol)과 Cs2CO3(796mg,2.44mmol)의 혼합물을 퍼징에 의해 탈기하고 Ar로 여러 번 재충전하였다. 반응 혼합물을 4시간 동안 환류하고 실온까지 냉각하였다. DCM으로 희석한 후, 혼합물을 셀라이트 패드를 통해 여과하였다. 여과액을 DCM과 물 사이에서 분배하였다. 분리된 수성 층을 DCM으로 추출하였다. 합한 유기 층을 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여 고체를 DCM 및 디에틸 에테르로부터 재결정화에 의해 정제하여 담갈색 고체로서 3-(1-에틸-1H-인다졸-5-일)-2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(795 mg)을 제공하였다. MS: 355.1 [M+H]+.
단계 B: 4-(1-에틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 B)에 따라, 3-(1-에틸-1H-인다졸-5-일)-2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(787 mg, 2.22 mmol)으로부터 황색 고체로서 4-(1-에틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(470 mg, 2개의 단계 동안 67%)을 합성하였다. 1H-NMR (400 MHz, DMSO-d6):δ 10.93-10.49 (1H, brs+brs), 8.03-7.89 (1H, brs+brs), 7.89-7.64 (1H, brs+brs), 7.75-7.05 (1H, d+d), 7.63 (1H, d, J = 8.4 Hz), 7.54 (1H, d, J = 8.8 Hz), 7.41 (1H, t, J = 7.6 Hz), 7.37-7.06 (1H, m), 6.90 (1H, d, J = 8.0 Hz), 5.46-5.28 (2H, brs+brs), 4.43 (2H, q, J = 7.2 Hz), 2.49-2.29 (3H, brs+brs), 1.41 (3H, t, J = 7.2 Hz). MS: 319.1 [M+H]+
단계 C: 4-(1-에틸-1H-인다졸-5-일)-N-(3-플루오로벤질)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 C)에 따라, 4-(1-에틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(150 mg, 0.471 mmol) 및 3-플루오로벤즈알데하이드(0.150 mL, 1.413 mmol)로부터 황색 고체로서 4-(1-에틸-1H-인다졸-5-일)-N-(3-플루오로벤질)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(84 mg, 2개의 단계 동안 42%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.04-10.61 (1H, brs+brs), 8.08-8.03 (1H, brs+brs), 8.04-7.90 (1H, brs+brs), 7.72-7.04 (1H, brs+brs), 7.63-7.34 (4H, m), 7.27-7.20 (2H, m), 7.07-7.05 (1H, m), 6.96-6.91 (1H, d+d), 6.31-6.23 (1H, t+t), 4.50-4.47 (2H, d+d), 4.46-4.40 (2H, m), 2.46-2.30 (3H, brs+brs), 1.42-1.37 (3H, m). MS: 427.1 [M+H]+.
실시예 17: N-(2-플루오로-3-메틸벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘 -2-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 C)에 따라, 4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸- 2-아민(150 mg, 0.493 mmol) 및 2-플루오로-3-메틸-벤즈알데하이드(0.180 mL, 1.48 mmol)로부터 황색 고체로서 N-(2-플루오로-3-메틸벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(108 mg, 2개의 단계 동안 51%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.03-10.58 (1H, brs+brs), 8.06-8.02 (1H, brs+brs), 8.03-7.89 (1H, brs+brs), 7.73-7.03 (1H, d+d), 7.60-7.38 (3H, m), 7.34-7.26 (1H, m), 7.18-7.15 (1H, m), 7.07-7.05 (1H, m), 6.94-6.91 (1H, d+d), 6.14-6.11 (1H, t+t), 4.52-4.50 (2H, m), 4.04-4.03 (3H, brs+brs), 2.46-2.30 (3H, brs+brs), 2.24 (3H, s). MS: 427.1 [M+H]+
실시예 18: N-(2-플루오로-4-메틸벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘 -2-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 C)에 따라, 4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸- 2-아민(150 mg, 0.493 mmol) 및 2-플루오로-4-메틸-벤즈알데하이드(0.145 mL, 1.48 mmol)로부터 황색 고체로서 N-(2-플루오로-4-메틸벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(125 mg, 2개의 단계 동안 59%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.04-10.57 (1H, brs+brs), 8.06-8.02 (1H, brs+brs), 8.03-7.90 (1H, brs+brs), 7.73-7.03 (1H, d+d), 7.60-7.33 (4H, m), 7.02-6.90 (3H, m), 6.12-6.07 (1H, t+t), 4.48-4.45 (2H, m), 4.05-4.03 (3H, brs+brs), 2.46-2.30 (3H, brs+brs), 2.28 (3H, s). MS: 427.1 [M+H]
실시예 19: N-(3-플루오로-4-메틸벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸-피리딘-2-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 C)에 따라, 4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(150 mg, 0.493 mmol) 및 3-플루오로-4-메틸-벤즈알데하이드(0.180 mL, 1.48 mmol)로부터 황색 고체로서 N-(3-플루오로-4-메틸벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(123 mg, 2개의 단계 동안 58%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.04-10.59 (1H, brs+brs), 8.05-8.02 (1H, brs+brs), 8.03-7.90 (1H, brs+brs), 7.73-7.03 (1H, d+d), 7.60-7.38 (3H, m), 7.25-7.11 (2H, m), 6.93-6.92 (1H, d+d), 6.27-6.18 (1H, t+t), 4.45-4.42 (2H, m), 4.04-4.03 (3H, brs+brs), 2.46-2.29 (3H, brs+brs), 2.19 (3H, s). MS: 427.1 [M+H]+
실시예 20: 4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-N-(2,3,4-트리플루오로- 벤질)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 C)에 따라, 4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸- 2-아민(150 mg, 0.493 mmol) 및 2,3,4-트리플루오로-벤즈알데하이드(0.170 mL, 1.50 mmol)로부터 황색 고체로서 4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-N-(2,3,4-트리플루오로벤질)-1H-이미다졸-2-아민(130 mg, 2개의 단계 동안 58%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.13-10.69 (1H, brs+brs), 8.06-8.02 (1H, brs+brs), 8.03-7.89 (1H, brs+brs), 7.73-7.03 (1H, d+d), 7.60-7.26 (5H, m), 7.25-7.11 (2H, m), 6.95-6.93 (1H, d+d), 6.34-6.25 (1H, t+t), 4.45-4.41 (2H, m), 4.04-4.03 (3H, brs+brs), 2.46-2.29 (3H, brs+brs). MS: 449.1 [M+H]+
실시예 21: N-(3,4-디플루오로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 C)에 따라, 4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸- 2-아민(150 mg, 0.493 mmol) 및 3,4-디플루오로-벤즈알데하이드(0.170 mL, 1.54 mmol)로부터 황색 고체로서 N-(3,4-디플루오로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(86.0 mg, 2개의 단계 동안 40%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.08-10.65 (1H, brs+brs), 8.06-8.02 (1H, brs+brs), 8.03-7.90 (1H, brs+brs), 7.73-7.03 (1H, d+d), 7.60-7.23 (6H, m), 6.95-6.92 (1H, d+d), 6.33-6.24 (1H, t+t), 4.47-4.43 (2H, m), 4.04 (3H, s), 2.46-2.29 (3H, brs+brs). MS: 431.1 [M+H]+.
실시예 22: N-(3-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(메틸설포닐)-1H-인다졸-5-일)-1H-이미다졸-2-아민
단계 A: 2-(6-메틸피리딘-2-일)-3-(1-(메틸설포닐)-1H-인다졸-5-일)이미다조[1,2-a]피리미딘
디옥산(10.0 mL) 중 2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(중간체 16, 416 mg, 1.98 mmol), 5-브로모-1-(메틸설포닐)-1H-인다졸(중간체 9, 545 mg, 1.98 mmol), Pd(OAc)2(36.0mg,0.158mmol),PPh3(83.0mg,0.317mmol)과 Cs2CO3(710mg,2.18mmol)의 혼합물을 퍼징에 의해 탈기하고 Ar로 여러 번 재충전하였다. 반응 혼합물을 4시간 동안 환류하고 실온까지 냉각하였다. DCM으로 희석한 후, 혼합물을 셀라이트 패드를 통해 여과하였다. 여과액을 DCM과 물 사이에서 분배하였다. 분리된 수성 층을 DCM으로 추출하였다. 합한 유기 층을 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여 고체를 DCM 및 디에틸 에테르로부터 재결정화에 의해 정제하여 담갈색 고체로서 2-(6-메틸피리딘-2-일)-3-(1-(메틸설포닐)-1H-인다졸-5-일)이미다조[1,2-a]피리미딘(800 mg)을 제공하였고, 이를 추가 정제 없이 다음 반응에서 사용하였다. MS: 405.1 [M+H]+.
단계 B: 5-(6-메틸피리딘-2-일)-4-(1-(메틸설포닐)-1H-인다졸-5-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 B)에 따라, 2-(6-메틸피리딘-2-일)-3-(1-(메틸설포닐)-1H-인다졸-5-일)이미다조-[1,2-a]피리미딘(800 mg, 1.97 mmol)으로부터 황색 고체로서 5-(6-메틸피리딘-2-일)-4-(1-(메틸설포닐)-1H-인다졸-5-일)-1H-이미다졸-2-아민(310 mg, 2개의 단계 동안 42%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.06-10.66 (1H, brs+brs), 8.60 (1H, s), 8.14 (1H, s), 7.90-7.85 (2H, m), 7.51-7.47 (1H, m), 7.26-7.10 (1H, m), 6.97-6.92 (1H, m), 5.51 (2H, brs), 3.48 (3H, s), 2.46-2.18 (3H, brs+brs). MS: 369.1 [M+H]+.
단계 C: N-(3-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(메틸설포닐)-1H-인다졸-5-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 C)에 따라, 5-(6-메틸피리딘-2-일)-4-(1-(메틸설포닐)-1H-인다졸-5-일)-1H-이미다졸-2-아민(150 mg, 0.407 mmol) 및 3-플루오로-벤즈알데하이드(0.130 mL, 1.22 mmol)로부터 황색 고체로서 N-(3-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(메틸설포닐)-1H-인다졸-5-일)-1H-이미다졸-2-아민(57.0 mg, 2개의 단계 동안 30%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.19-10.80 (1H, brs+brs), 8.63-8.59 (1H, brs+brs), 8.30-8.14 (1H, brs+brs), 7.99-7.12 (1H, d+d), 7.91-7.47 (3H, m), 7.40-7.35 (1H, m), 7.28-7.20 (2H, m), 7.08-7.03 (1H, m), 6.99-6.97 (1H, m), 6.44-6.31 (1H, t+t), 4.52-4.48 (2H, m), 3.46 (3H, s), 2.47-2.30 (3H, brs+brs). MS: 477.1 [M+H]+.
실시예 23: N-(3-클로로-2-플루오로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 C)에 따라, 4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(150 mg, 0.493 mmol) 및 3-클로로-2-플루오로-벤즈알데하이드(0.170 mL, 1.46 mmol)로부터 황색 고체로서 N-(3-클로로-2-플루오로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(133 mg, 2개의 단계 동안 61%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.11-10.67 (1H, brs+brs), 8.06-8.02 (1H, brs+brs), 8.03-7.89 (1H, brs+brs), 7.73-7.03 (1H, d+d), 7.60-7.38 (5H, m), 7.23-7.19 (1H, m), 6.95-6.92 (1H, d+d), 6.34-6.25 (1H, t+t), 4.58-4.54 (2H, m), 4.04-4.03 (3H, m), 2.46-2.29 (3H, brs+brs). MS: 447.1 [M+H]+.
실시예 24: N-(3,4-디클로로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 C)에 따라, 4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(150 mg, 0.493 mmol) 및 3,4-디클로로-벤즈알데하이드(259 mg, 1.48 mmol)로부터 황색 고체로서 N-(3,4-디클로로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(107 mg, 66%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.11-10.68 (1H, brs+brs), 8.06-8.02 (1H, brs+brs), 8.03-7.89 (1H, brs+brs), 7.73-7.03 (1H, d+d), 7.70-7.38 (6H, m), 6.95-6.92 (1H, d+d), 6.39-6.30 (1H, t+t), 4.48-4.44 (2H, d+d), 4.04-4.03 (3H, m), 2.46-2.29 (3H, brs+brs). MS: 463.0 [M+H]+.
실시예 25: 4-(1-(디플루오로메틸)-1H-인다졸-5-일)-N-(3-플루오로벤질)-5-(6-메틸- 피리딘-2-일)-1H-이미다졸-2-아민
단계 A: 3-(1-(디플루오로메틸)-1H-인다졸-5-일)-2-(6-메틸피리딘-2-일)-이미다조[1,2-a]피리미딘
디옥산(10 mL) 중 2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(중간체 16, 422 mg, 2.00 mmol), 5-브로모-1-(디플루오로메틸)-1H-인다졸(중간체 8, 496 mg, 2.00 mmol), Pd(OAc)2(36.0mg,0.158mmol),PPh3(83.0mg,0.317mmol)과 Cs2CO3(710mg,2.18mmol)의 혼합물을 퍼징에 의해 탈기하고 Ar로 여러 번 재충전하였다. 반응 혼합물을 4시간 동안 환류하고 실온까지 냉각하였다. DCM으로 희석한 후, 혼합물을 셀라이트 패드를 통해 여과하였다. 여과액을 DCM과 물 사이에서 분배하였다. 분리된 수성 층을 DCM으로 추출하였다. 합한 유기 층을 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여 고체를 DCM 및 디에틸 에테르로부터 재결정화에 의해 정제하여 담갈색 고체로서 3-(1-(디플루오로메틸)-1H-인다졸-5-일)-2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(756 mg)을 제공하였다. MS: 377.1 [M+H]+
단계 B: 4-(1-(디플루오로메틸)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H- 이미다졸-2-아민
실시예 13에 대한 절차(단계 B)에 따라, 3-(1-(디플루오로메틸)-1H-인다졸-5-일)-2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(756 mg, 2.00 mmol)으로부터 황색 고체로서 4-(1-(디플루오로메틸)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(1.06 g, 2개의 단계 동안 51%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.02-10.60 (1H, brs+brs), 8.83 (1H, s), 8.27-7.96 (2H, m), 7.67-7.65 (1H, m), 7.56-7.54 (1H, m), 7.47-7.41 (1H, m), 7.12-7.10 (1H, m), 6.94-6.92 (1H, m), 5.48-5.46 (2H, m), 3.48 (3H, s), 2.46-2.31 (3H, brs+brs). MS: 341.1 [M+H]+
단계 C: 4-(1-(디플루오로메틸)-1H-인다졸-5-일)-N-(3-플루오로벤질)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 C)에 따라, 4-(1-(디플루오로메틸)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(150 mg, 0.441 mmol) 및 3-플루오로-벤즈알데하이드(0.140 mL, 1.32 mmol)로부터 황색 고체로서 4-(1-(디플루오로메틸)-1H-인다졸-5-일)-N-(3-플루오로벤질)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(111 mg, 2개의 단계 동안 56.1%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.14-10.73 (1H, brs+brs), 8.88-8.83 (1H, brs+brs), 8.27-7.97 (2H, m), 7.66-7.64 (1H, m), 7.59-7.47 (1H, t+t), 7.58-7.12 (1H, d+d), 7.55-7.52 (1H, m), 7.40-7.35 (1H, m), 7.27-7.20 (2H, m), 7.08-7.03 (1H, m), 6.98-6.95 (1H, m), 6.42-6.28 (1H, t+t), 4.51-4.48 (2H, d+d), 2.47-2.30 (3H, brs+brs). MS: 449.1 [M+H]+.
실시예 26: 2-(5-(2-((3-플루오로벤질)아미노)-5-(6-메틸피리딘-2-일)-1H- 이미다졸-4-일)-1H-인다졸-1-일)-2-메틸프로판-1-올
단계 A: 2-메틸-2-(5-(2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘-3-일)-1H-인다졸-1-일)프로판-1-올
디옥산(8.30 mL) 중 2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(중간체 16, 352 mg, 1.67 mmol), 2-(5-브로모-1H-인다졸-1-일)-2-메틸프로판-1-올(중간체 10, 450 mg, 1.67 mmol), Pd(OAc)2(30.0mg,0.134mmol),PPh3(70.0mg,0.268mmol)과 Cs2CO3(600mg,1.84mmol)의 혼합물을 퍼징에 의해 탈기하고 Ar로 여러 번 재충전하였다. 반응 혼합물을 4시간 동안 환류하고 실온까지 냉각하였다. DCM으로 희석한 후, 혼합물을 셀라이트 패드를 통해 여과하였다. 여과액을 DCM과 물 사이에서 분배하였다. 분리된 수성 층을 DCM으로 추출하였다. 합한 유기 층을 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여 고체를 DCM 및 디에틸 에테르로부터 재결정화에 의해 정제하여 담갈색 고체로서 2-메틸-2-(5-(2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘-3-일)-1H-인다졸-1-일)프로판-1-올(666 mg)을 제공하였다. MS: 399.1 [M+H]+
단계 B: 2-(5-(2-아미노-5-(6-메틸피리딘-2-일)-1H-이미다졸-4-일)-1H-인다졸-1-일)-2-메틸프로판-1-올
실시예 13에 대한 절차(단계 B)에 따라, 2-메틸-2-(5-(2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘-3-일)-1H- 인다졸-1-일)프로판-1-올(666 mg, 1.67 mmol)로부터 황색 고체로서 4-(1-(디플루오로메틸)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민)(347 mg, 2개의 단계 동안 57%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 10.51 (1H, brs), 8.01 (1H, s), 7.92 (1H, s), 7.58 (2H, s), 7.41 (1H, s), 7.07 (1H, brs), 6.90 (1H, d, J = 7.6 Hz), 5.42 (2H, brs), 4.04 (3H, s), 2.43 (3H, s). MS: 363.1 [M+H]+.
단계 C: 2-(5-(2-((3-플루오로벤질)아미노)-5-(6-메틸피리딘-2-일)-1H-이미다졸-4-일)-1H-인다졸-1-일)-2-메틸프로판-1-올
실시예 13에 대한 절차(단계 C)에 따라, 2-(5-(2-아미노-5-(6-메틸피리딘-2-일)-1H-이미다졸-4-일)-1H-인다졸-1-일)-2-메틸프로판-1-올(150 mg, 0.414 mmol) 및 3-플루오로-벤즈알데하이드(0.140 mL, 1.32 mmol)로부터 황색 고체로서 2-(5-(2-((3-플루오로벤질)아미노)-5-(6-메틸피리딘-2-일)-1H- 이미다졸-4-일)-1H-인다졸-1-일)-2-메틸프로판-1-올(107 mg, 2개의 단계 동안 55%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.04-10.61 (1H, brs+brs), 8.08-8.03 (1H, brs+brs), 8.05-7.89 (1H, brs+brs), 7.71-7.64 (1H, m), 7.61-7.04 (1H, d+d), 7.58-7.34 (3H, m), 7.28-7.20 (2H, m), 7.10-7.08 (1H, m), 6.95-6.91 (1H, m), 6.32-6.24 (1H, t+t), 4.69 (1H, s), 4.51-4.47 (2H, m), 4.30 (2H, s), 2.48-2.29 (3H, brs+brs), 1.13 (6H, s). MS: 471.1 [M+H]+.
실시예 27: N-(3-클로로-2-플루오로벤질)-4-(1-(디플루오로메틸)-1H-인다졸-5-일)-5-(6-에틸- 피리딘-2-일)-1H-이미다졸-2-아민
실시예 25에 대한 절차(단계 C)에 따라, 4-(1-(디플루오로메틸)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(100 mg, 0.294 mmol) 및 3-클로로-2-플루오로-벤즈알데하이드(0.100 mL, 0.858 mmol)로부터 황색 고체로서 N-(3-클로로-2-플루오로벤질)-4-(1-(디플루오로메틸)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(90.0 mg, 2개의 단계 동안 64%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.24-10.80 (1H, brs+brs), 8.87-8.83 (1H, brs+brs), 8.27-7.97 (2H, m), 7.66-7.63 (1H, m), 7.59-7.11 (1H, d+d), 7.58-7.43 (4H, m), 7.23-7.19 (1H, m), 6.98-6.95 (1H, m), 6.48-6.32 (1H, t+t), 4.58-4.54 (2H, m), 2.46-2.29 (3H, brs+brs). MS: 483.1 [M+H]+.
실시예 28: N-(3,4-디클로로벤질)-4-(1-(디플루오로메틸)-1H-인다졸-5-일)-5-(6-메틸- 피리딘-2-일)-1H-이미다졸-2-아민
실시예 25에 대한 절차(단계 C)에 따라, 4-(1-(디플루오로메틸)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(100 mg, 0.294 mmol) 및 3,4-디클로로-벤즈알데하이드(154 mg, 0.881 mmol)로부터 황색 고체로서 N-(3,4-디클로로벤질)-4-(1-(디플루오로메틸)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(93.0 mg, 2개의 단계 동안 63%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.21-10.80 (1H, brs+brs), 8.88-8.83 (1H, brs+brs), 8.27-7.96 (2H, m), 7.69-7.59 (3H, m), 7.59-7.47 (1H, t+t), 7.57-7.11 (1H, d+d), 7.54-7.51 (1H, m), 7.43-7.38 (1H, m), 6.98-6.95 (1H, m), 6.51-6.35 (1H, t+t), 4.48-4.45 (2H, d+d), 2.47-2.29 (3H, brs+brs). MS: 499 [M+H]+.
실시예 29: N-(3,4-디플루오로벤질)-4-(1-(디플루오로메틸)-1H-인다졸-5-일)-5-(6-메틸- 피리딘-2-일)-1H-이미다졸-2-아민
실시예 25에 대한 절차(단계 C)에 따라, 4-(1-(디플루오로메틸)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(100 mg, 0.294 mmol) 및 3,4-디플루오로-벤즈알데하이드(0.100 mL, 0.906 mmol)로부터 황색 고체로서 N-(3,4-디플루오로벤질)-4-(1-(디플루오로메틸)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(65.0 mg, 2개의 단계 동안 48%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.19-10.77 (1H, brs+brs), 8.88-8.83 (1H, brs+brs), 8.27-7.97 (2H, m), 7.66-7.64 (1H, m), 7.58-7.11 (1H, d+d), 7.57-7.36 (4H, m), 7.28-7.23 (1H, m), 6.98-6.95 (1H, m), 6.45-6.30 (1H, t+t), 4.47-4.44 (2H, d+d), 2.46-2.29 (3H, brs+brs). MS: 467.1 [M+H]+.
실시예 30: 3-(((4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-일)- 아미노)메틸)벤조니트릴
실시예 13에 대한 절차(단계 C)에 따라, 4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸- 2-아민(150 mg, 0.493 mmol) 및 3-시아노-벤즈알데하이드(194 mg, 1.479 mmol)로부터 황색 고체로서 3-(((4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-일)아미노)메틸)- 벤조니트릴(147 mg, 2개의 단계 동안 71%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.14-10.70 (1H, brs+brs), 8.05-8.01 (1H, brs+brs), 8.03-7.89 (1H, brs+brs), 7.87-7.84 (1H, brs+brs), 7.78-7.03 (1H, d+d), 7.76-7.70 (2H, m), 7.60-7.39 (4H, m), 6.95-6.92 (1H, d+d), 6.43-6.32 (1H, t+t), 4.54-4.50 (2H, d+d), 4.04-4.03 (3H, m), 2.46-2.29 (3H, brs+brs). MS: 420.1 [M+H]+.
실시예 31: N-(3-플루오로벤질)-4-(1-메틸-1H-피라졸로[3,4-b]피리딘-5-일)-5-(6-메틸- 피리딘-2-일)-1H-이미다졸-2-아민
단계 A: 1-메틸-5-(2-(6-메틸피리딘-2-일)-이미다조[1,2-a]피리미딘-3-일)-1H-피라졸로[3,4-b]피리딘
디옥산(7.5 mL) 중 2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(중간체 16, 446 mg, 2.12 mmol), 5-브로모-1-메틸-1H-피라졸로[3,4-b]피리딘(중간체 11, 450 mg, 2.12 mmol), Pd(OAc)2(38.0mg,0.170mmol),PPh3(89.0mg,0.340mmol)과 Cs2CO3(761mg,2.33mmol)의 혼합물을 퍼징에 의해 탈기하고 Ar로 여러 번 재충전하였다. 반응 혼합물을 4시간 동안 환류하고 실온까지 냉각하였다. DCM으로 희석한 후, 혼합물을 셀라이트 패드를 통해 여과하였다. 여과액을 DCM과 물 사이에서 분배하였다. 분리된 수성 층을 DCM으로 추출하였다. 합한 유기 층을 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여 고체를 DCM 및 디에틸 에테르로부터 재결정화에 의해 정제하여 담갈색 고체로서 1-메틸-5-(2-(6-메틸피리딘-2-일)- 이미다조[1,2-a]피리미딘-3-일)-1H-피라졸로[3,4-b]피리딘(724 mg)을 제공하였다. MS: 342.0 [M+H]+
단계 B: 4-(1-메틸-1H-피라졸로[3,4-b]피리딘-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 B)에 따라, 1-메틸-5-(2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘-3-일)-1H-피라졸로[3,4-b]피리딘(724 mg, 2.12 mmol)으로부터 황색 고체로서 4-(1-메틸-1H-피라졸로[3,4-b]피리딘-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(500 mg, 2개의 단계 동안 77%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 8.65 (1H, s), 8.32 (1H, s), 8.08 (1H, s), 7.50-7.27 (3H, m), 7.12-6.99 (2H, m), 4.12 (3H, s), 2.46 (3H, s). MS: 306.0 [M+H]+
단계 C: N-(3-플루오로벤질)-4-(1-메틸-1H-피라졸로[3,4-b]피리딘-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 C)에 따라, 4-(1-메틸-1H-피라졸로[3,4-b]피리딘-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(120 mg, 0.393 mmol) 및 3-플루오로-벤즈알데하이드(0.130 mL, 1.22 mmol)로부터 황색 고체로서 N-(3-플루오로벤질)-4-(1-메틸-1H-피라졸로[3,4-b]피리딘-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(65 mg, 2개의 단계 동안 41%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.29-10.92 (1H, brs+brs), 8.83-8.72 (1H, d+d), 8.46-8.40 (1H, d+d), 8.16-8.13 (1H, brs+brs), 7.59-7.04 (1H, d+d), 7.50-7.08 (1H, t+t), 7.40-7.35 (1H, m ), 7.28-7.20 (2H, m), 7.08-7.07 (1H, m), 6.98-6.96 (1H, m), 6.58-6.41 (1H, t+t), 4.51-4.47 (2H, d+d), 4.06 (3H, s), 2.44-2.24 (3H, brs+brs). MS: 414 [M+H]+.
실시예 32: N-(3-플루오로벤질)-4-(1-메틸-1H-피라졸로[4,3-b]피리딘-5-일)-5-(6-메틸- 피리딘-2-일)-1H-이미다졸-2-아민
단계 A: 1-메틸-5-(2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘-3-일)-1H-피라졸로[4,3-b]피리딘
디옥산(7.0 mL) 중 2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(중간체 16, 317 mg, 1.50 mmol), 5-브로모-1-메틸-1H-피라졸로[4,3-b]피리딘(중간체 12, 320 mg, 1.50 mmol), Pd(OAc)2(27.0mg,0.121mmol),PPh3(63.0mg,0.241mmol)과 Cs2CO3(541mg,1.66mmol)의 혼합물을 퍼징에 의해 탈기하고 Ar로 여러 번 재충전하였다. 반응 혼합물을 4시간 동안 환류하고 실온까지 냉각하였다. DCM으로 희석한 후, 혼합물을 셀라이트 패드를 통해 여과하였다. 여과액을 DCM과 물 사이에서 분배하였다. 분리된 수성 층을 DCM으로 추출하였다. 합한 유기 층을 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여 고체를 DCM 및 디에틸 에테르로부터 재결정화에 의해 정제하여 담갈색 고체로서 1-메틸-5-(2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘-3-일)-1H-피라졸로[4,3-b]피리딘(515 mg)을 제공하였다. MS: 342 [M+H]+
단계 B: 4-(1-메틸-1H-피라졸로[4,3-b]피리딘-5-일)-5-(6-메틸피리딘-2-일)- 1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 B)에 따라, 1-메틸-5-(2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘-3-일)-1H-피라졸로[4,3-b]피리딘(515 mg)으로부터 황색 고체로서 4-(1-메틸-1H-피라졸로[4,3-b]피리딘-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(363 mg, 2개의 단계 동안 79%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 8.11 (1H, s), 7.96 (1H, brs), 7.74 (1H, d, J = 8.1 Hz), 7.61 (1H, brs), 7.50 (1H, d, J = 7.6 Hz), 7.12 (1H, brs), 4.10 (3H, s), 2.52 (3H, s). MS: 306 [M+H]+.
단계 C: N-(3-플루오로벤질)-4-(1-메틸-1H-피라졸로[4,3-b]피리딘-5-일)-5-(6-메틸- 피리딘-2-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 C)에 따라, 4-(1-메틸-1H-피라졸로[4,3-b]피리딘-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(120 mg, 0.393 mmol) 및 3-플루오로-벤즈알데하이드(0.130 mL, 1.22 mmol)로부터 황색 고체로서 N-(3-플루오로벤질)-4-(1-메틸-1H-피라졸로[4,3-b]피리딘-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(33.8 mg, 2개의 단계 동안 21%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.07-10.76 (1H, brs+brs), 8.76-8.13 (1H, d+d), 8.48-8.04 (1H, d+d), 8.19 (1H, d, J = 7.2 Hz), 7.94-7.01 (1H, d+d), 7.69-7.68 (1H, m), 7.57-7.11 (1H, t+t), 7.40-7.35 (1H, m), 7.27-7.21 (2H, m), 7.09-7.04 (1H, m), 6.32-6.26 (1H, t+t), 4.54 (2H, t, J = 6.0 Hz), 4.08-4.06 (3H, m), 2.47 (3H, s). MS: 414.1 [M+H]+.
실시예 33: N-(3-플루오로벤질)-4-(1-메틸-1H-피라졸로[3,4-c]피리딘-5-일)-5-(6-메틸- 피리딘-2-일)-1H-이미다졸-2-아민
단계 A: 1-메틸-5-(2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘-3-일)-1H-피라졸로[3,4-c]피리딘
디옥산(7.0 mL) 중 2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(중간체 16, 317 mg, 1.50 mmol), 5-브로모-1-메틸-1H-피라졸로[3,4-c]피리딘(중간체 13, 320 mg, 1.50 mmol), Pd(OAc)2(27.0mg,0.121mmol),PPh3(63.0mg,0.241mmol)과 Cs2CO3(541mg,1.66mmol)의 혼합물을 퍼징에 의해 탈기하고 Ar로 여러 번 재충전하였다. 반응 혼합물을 4시간 동안 환류하고 실온까지 냉각하였다. DCM으로 희석한 후, 혼합물을 셀라이트 패드를 통해 여과하였다. 여과액을 DCM과 물 사이에서 분배하였다. 분리된 수성 층을 DCM으로 추출하였다. 합한 유기 층을 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여 고체를 DCM 및 디에틸 에테르로부터 재결정화에 의해 정제하여 담갈색 고체로서 1-메틸-5-(2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘-3-일)-1H-피라졸로[3,4-c]피리딘(515 mg)을 제공하였다. MS: 342 [M+H]+.
단계 B: 4-(1-메틸-1H-피라졸로[3,4-c]피리딘-5-일)-5-(6-메틸피리딘-2-일)- 1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 B)에 따라, 1-메틸-5-(2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘-3-일)-1H-피라졸로[3,4-c]피리딘(515 mg, 조질)으로부터 황색 고체로서 4-(1-메틸-1H-피라졸로[3,4-c]피리딘-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(305 mg, 2개의 단계 동안 66%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 10.81-10.57 (1H, brs+brs), 9.25-9.13 (1H, brs+brs), 8.27-6.89 (4H, m), 5.50-5.38 (2H, brs+brs), 4.21-4.18 (3H, brs+brs), 2.52-2.41 (3H, brs+brs). MS: 306 [M+H]+.
단계 C: N-(3-플루오로벤질)-4-(1-메틸-1H-피라졸로[3,4-c]피리딘-5-일)-5-(6-메틸- 피리딘-2-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 C)에 따라, 4-(1-메틸-1H-피라졸로[3,4-c]피리딘-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(120 mg, 0.393 mmol) 및 3-플루오로-벤즈알데하이드(0.130 mL, 1.22 mmol)로부터 갈색 고체로서 N-(3-플루오로벤질)-4-(1-메틸-1H-피라졸로[3,4-c]피리딘-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(38 mg, 2개의 단계 동안 23%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 10.98-10.62 (1H, brs+brs), 9.52-9.13 (1H, brs+brs), 8.19-8.11 (2H, m), 7.73-6.97 (7H, m), 6.28-6.17 (1H, t+t), 4.54 (2H, t, J = 7.6 Hz), 4.18 (3H, s), 2.53 (3H, s). MS: 414.1 [M+H]+.
실시예 34: N-(2-플루오로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 C)에 따라, 4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(150 mg, 0.493 mmol) 및 2-플루오로-벤즈알데하이드(0.160 mL, 1.52 mmol)로부터 황색 고체로서 N-(2-플루오로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(98.0 mg, 2개의 단계 동안 48%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.03-10.59 (1H, brs+brs), 8.07-8.02 (1H, brs+brs), 8.03-7.90 (1H, brs+brs), 7.74-7.03 (1H, d+d), 7.60-7.38 (4H, m), 7.33-7.27 (1H, m), 7.20-7.16 (2H, m), 6.94-6.92 (1H, d+d), 6.16-6.13 (1H, t+t), 4.55-4.51 (2H, m), 4.04-4.03 (3H, m), 2.46-2.30 (3H, brs+brs). MS: 413.1 [M+H]+.
실시예 35: N-(2,3-디플루오로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 C)에 따라, 4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(150 mg, 0.493 mmol) 및 2,3-디플루오로-벤즈알데하이드(0.160 mL, 1.46 mmol)로부터 황색 고체로서 N-(2,3-디플루오로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(140 mg, 2개의 단계 동안 66%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.09-10.65 (1H, brs+brs), 8.07-8.01 (1H, brs+brs), 8.03-7.90 (1H, brs+brs), 8.07-7.93 (3H, m), 7.74-7.03 (1H, d+d), 7.60-7.38 (3H, m), 7.36-7.16 (3H, m), 6.95-6.92 (1H, d+d), 6.29-6.22 (1H, t+t), 4.59-4.55 (2H, m), 4.04-4.03 (3H, m), 2.46-2.29 (3H, brs+brs). MS: 431 [M+H]+.
실시예 36: N-(2,4-디플루오로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 C)에 따라, 4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(150 mg, 0.493 mmol) 및 2,4-디플루오로-벤즈알데하이드(0.160 mL, 1.46 mmol)로부터 황색 고체로서 N-(2,4-디플루오로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(141 mg, 2개의 단계 동안 67%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.05-10.61 (1H, brs+brs), 8.07-8.02 (1H, brs+brs), 8.03-7.90 (1H, brs+brs), 7.74-7.03 (1H, d+d), 7.60-7.38 (4H, m), 7.25-7.18 (1H, m), 7.09-7.05 (1H, m), 6.95-6.92 (1H, d+d), 6.19-6.14 (1H, t+t), 4.51-4.47 (2H, m), 4.05-4.03 (3H, m), 2.46-2.30 (3H, brs+brs). MS: 431.1 [M+H]+.
실시예 37: N-(4-클로로-2-플루오로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 C)에 따라, 4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(150 mg, 0.493 mmol) 및 4-클로로-2-플루오로-벤즈알데하이드(0.190 mg, 1.19 mmol)로부터 황색 고체로서 N-(4-클로로-2-플루오로벤질)-4-(1-메틸-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(129 mg, 2개의 단계 동안 73%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.09-10.65 (1H, brs+brs), 8.07-8.02 (1H, brs+brs), 8.03-7.89 (1H, brs+brs), 8.07-7.93 (3H, m), 7.74-7.03 (1H, d+d), 7.60-7.38 (5H, m), 7.30-7.27 (1H, m), 6.95-6.92 (1H, d+d), 6.25-6.19 (1H, t+t), 4.52-4.48 (2H, m), 4.04-4.03 (3H, m), 2.46-2.29 (3H, brs+brs). MS: 447 [M+H]+.
실시예 38: N-(3-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1H-피라졸로[3,4-b]피리딘-5-일)-1H-이미다졸-2-아민
단계 A: 5-(2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘-3-일)-1-(테트라히드로-2H-피란-2-일)-1H-피라졸로[3,4-b]피리딘
디옥산(17 mL) 중 2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(중간체 16, 531 mg, 2.52 mmol), 5-브로모-1-(테트라히드로-2H-피란-2-일)-1H-인다졸(중간체 14, 712 mg, 2.52 mmol), Pd(OAc)2(45.0mg,0.202mmol),PPh3(106mg,0.404mmol)과 Cs2CO3(904mg,2.78mmol)의 혼합물을 퍼징에 의해 탈기하고 Ar로 여러 번 재충전하였다. 반응 혼합물을 4시간 동안 환류하고 실온까지 냉각하였다. DCM으로 희석한 후, 혼합물을 셀라이트 패드를 통해 여과하였다. 여과액을 DCM과 물 사이에서 분배하였다. 분리된 수성 층을 DCM으로 추출하였다. 합한 유기 층을 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여 고체를 DCM 및 디에틸 에테르로부터 재결정화에 의해 정제하여 황색 오일로서 5-(2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘-3-일)-1-(테트라히드로-2H-피란-2-일)-1H-피라졸로[3,4-b]피리딘(1.47 g)을 제공하였다.
단계 B: 5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-인다졸-5-일)-1H-이미다졸-2-아민
실온에서 EtOH(13 mL) 중 5-(2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘-3-일)-1-(테트라히드로-2H-피란-2-일)-1H-피라졸로[3,4-b]피리딘(1.04 g, 2.52 mmol)의 용액에 히드라진 수화물(0.620 mL, 10.2 mmol)을 첨가하였다. 반응 혼합물을 1시간 동안 환류하고, 진공에서 농축하였다. 잔여물을 디에틸 에테르 및 MeOH로부터 결정화에 의해 정제하여 황색 오일로서 4-(6-메틸피리딘-2-일)-5-(1-(테트라히드로-2H-피란-2-일)-1H-피라졸로[3,4-b]피리딘-5-일)-1H-이미다졸-2-아민(60 mg, 3개의 단계 동안 6%)을 제공하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.09-10.76 (1H, s+s), 10.88-10.52 (1H, s+s), 8.85-8.75 (1H, d+d, J = 1.6 Hz), 8.54-8.43 (1H, d+d, J = 2.0 Hz), 8.22-8.20 (1H, s+s), 7.58-7.54 (3H, m), 7.46 (2H, dt, J = 20.0, 8.0 Hz), 7.36-7.24 (3H, m), 7.10 (1H, d, J = 8.0 Hz), 7.06 (1H, d, J = 7.6 Hz), 6.96 (2H, d, J = 8.0 Hz), 6.92 (1H, d, J = 7.2 Hz), 6.04 (1H, dd, J = 10.2, 2.0 Hz), 5.54 (2H, s), 5.45 (2H, s), 3.96 (1H, d, J = 10.8 Hz), 3.74-3.68 (1H, m), 2.46-2.45 (6H, d), 2.33 (1H, s), 2.27 (1H, s), 2.05 (2H, d, J = 7.8 Hz), 1.94-1.91 (1H, m), 1.81-1.79 (1H, m), 1.65-1.59 (3H, m).
단계 C: N-(3-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-피라졸로[3,4-b]피리딘-5-일)-1H-이미다졸-2-아민
실시예 1에 대한 절차(단계 C)에 따라, 5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-피라졸로[3,4-b]피리딘-5-일)-1H-이미다졸-2-아민(60 mg, 0.160 mmol) 및 3-플루오로벤즈알데하이드(0.050 mL, 0.479 mmol)로부터 황색 고체로서 N-(3-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-피라졸로[3,4-b]피리딘-5-일)-1H-이미다졸-2-아민(65 mg, 조질)을 합성하였다.
단계 D: N-(3-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1H-피라졸로[3,4-b]피리딘-5-일)-1H-이미다졸-2-아민
실시예 4에 대한 절차(단계 D)에 따라, N-(3-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1-(테트라히드로-2H-피란-2-일)-1H-피라졸로[3,4-b]피리딘-5-일)-1H-이미다졸-2-아민(65.0 mg, 0.134 mmol)으로부터 황색 고체로서 N-(3-플루오로벤질)-5-(6-메틸피리딘-2-일)-4-(1H-피라졸로[3,4-b]피리딘-5-일)-1H-이미다졸-2-아민(4.9 mg, 3개의 단계 동안 7%)을 합성하였다. 1HNMR(400MHz,DMSO-d6):δ 11.16-10.82 (1H, s+s), 8.80-8.68 (1H, d+d, J = 2.0 Hz), 8.45-8.38 (1H, d+d, J = 2.0 Hz), 8.15-8.12 (1H, s+s), 7.60-7.47 (1H, m), 7.38 (1H, m), 7.29-7.21 (2H, m), 7.08-7.03 (2H, m), 6.97 (1H, d, J = 8.0 Hz), 6.40 (1H, t+t, J = 6.4 Hz), 4.50 (2H, d+d, J = 6.4 Hz), 2.44 (3H, s). MS: 400.1 [M+H]+.
실시예 39: N-(3-플루오로벤질)-4-(1-(메틸-d3)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일) -1H-이미다졸-2-아민
단계 A: 3-(1-(메틸-d3)-1H-인다졸-5-일)-2-(6-메틸피리딘-2-일)이미다조 [1,2-a]피리미딘
디옥산(15 mL) 중 2-(6-메틸피리딘-2-일)이미다조[1,2-a]피리미딘(중간체 16, 842 mg, 4.00 mmol), 5-브로모-1-메틸-1H-인다졸(중간체 15, 857 mg, 4.00 mmol), Pd(OAc)2(72.0mg,0.320mmol),PPh3(168mg,0.641mmol)과 Cs2CO3(1.43g,4.40mmol)의 혼합물을 퍼징에 의해 탈기하고 Ar로 여러 번 재충전하였다. 반응 혼합물을 4시간 동안 환류하고 실온까지 냉각하였다. DCM으로 희석한 후, 혼합물을 셀라이트 패드를 통해 여과하였다. 여과액을 DCM과 물 사이에서 분배하였다. 분리된 수성 층을 DCM으로 추출하였다. 합한 유기 층을 염수로 세척하고, Na2SO4상에서 건조하고, 여과하고, 진공에서 농축하였다. 잔여 고체를 DCM 및 디에틸 에테르로부터 재결정화에 의해 정제하여 담갈색 고체로서 3-(1-(메틸-d3)-1H-인다졸-5-일)-2-(6-메틸피리딘-2-일) -이미다조[1,2-a]피리미딘(1.37 g)을 제공하였다. MS: 344.1 [M+H]+.
단계 B: 4-(1-(메틸-d3)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H- 이미다졸-2-아민
실온에서 EtOH(16 mL) 중 3-(1-(메틸-d3)-1H-인다졸-5-일)-2-(6-메틸피리딘-2-일) 이미다조[1,2-a]- 피리미딘(1.37 g, 6.76 mmol)의 용액에 히드라진 일수화물(20중량%, 1.00 mL, 4.12 mmol)을 첨가하였다. 반응 혼합물을 2시간 동안 환류하고 실온까지 냉각하였다. MeOH로 세척하면서 셀라이트 패드를 통해 여과한 후, 여과액을 진공에서 농축하였다. 잔여물을 Et2O및 MeOH로부터 결정화에 의해 정제하여 황색 고체로서 4-(1-(메틸-d3)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(538 mg, 2개의 단계 동안 43%)을 제공하였다. 1H-NMR(400MHz,DMSO-d6):δ 10.56 (1H, brs), 8.02 (1H, s), 7.92 (1H, s), 7.59 (2H, s), 7.42 (1H, t, J = 7.6 Hz), 7.11 (1H, brs), 6.91 (1H, d, J = 7.2 Hz), 5.46 (2H, brs), 2.43 (3H, s). MS: 308.1 [M+H]+.
단계 C: N-(3-플루오로벤질)-4-(1-(메틸-d3)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민
실시예 13에 대한 절차(단계 C)에 따라, 4-(1-(메틸-d3)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸- 2-아민(200 mg, 0.651 mmol) 및 3-플루오로-벤즈알데하이드(0.210 mL, 1.98 mmol)로부터 황색 고체로서 N-(3-플루오로벤질)-4-(1-(메틸-d3)-1H-인다졸-5-일)-5-(6-메틸피리딘-2-일)-1H-이미다졸-2-아민(131 mg, 2개의 단계 동안 49%)을 합성하였다. 1H-NMR(400MHz,DMSO-d6):δ 11.05-10.62 (1H, brs+brs), 8.06-8.02 (1H, brs+brs), 8.04-7.89 (1H, brs+brs), 7.73-7.06 (1H, d+d), 7.60-7.35 (4H, m), 7.27-7.20 (2H, m), 7.04-7.02 (1H, m), 6.31-6.23 (1H, t+t), 4.51-4.47 (2H, d+d), 2.46-2.29 (3H, brs+brs). MS: 416.1 [M+H]+.
생물학적 활성
세포 배양
인간 암 세포주 Hs578T(ATCC® HTB-22™) 세포를 10% 우 태아 혈청, 및 페니실린과 스트렙토마이신의 1% 혼합물이 보충된 DMEM(Dulbecco의 변형 Eagle 배지)(Gibco)에서 성장시켰다. 세포를 습한 5% CO2분위기에서 37℃로 유지시켰다.
ALK5 키나아제 분석
키나아제 완충제에서 다양한 농도로 3중으로 희석된 저해제 화합물과 함께, 각각 25 ng, 50 μM 및 0.2 ug/ul의 최종 농도의 재조합 ALK5 단백질, ATP 및 ALK5 기질(Promega, 미국 매디슨)을 50 uM DTT가 보충된 50 ul 키나아제 완충제에서 96-웰 판으로 분취하였다. 저해제 화합물이 결여된 양성 대조군 샘플 및 재조합 키나아제가 결여된 음성 대조군을 또한 3중으로 측정하였다. 혼합물을 120분 동안 실온에서 반응시켰다. 50 ul ADP-Glo 시약(Promega)을 첨가하고, 40분 동안 실온에서 배양한 후 100 ul의 키나아제 검출 시약을 첨가하고 30분 동안 실온에서 배양하였다. Varioskan LUX 멀티모드 마이크로판 판독기(Thermo Fisher Scientific, 미국 월섬)에 의해 키나아제 활성을 측정하였다. 그래프 작성, 및 다양한 Hill 계수를 갖는 S자형 용량-반응에 의한 회귀 분석을 위해 SigmaPlot(Systat software)을 사용하였다.
ALK5 활성에 대한 세포 기반 루시페라제 리포터 분석
BSC-1200의 화합물의 생물학적 활성을, 세포 수준에서 TGF-β1 자극에 대해 반응하는 Smad 2/3-반응성 촉진제에 의해 선별적으로 저해하여 결정하였다. 24-웰 판에서 3 × 104/웰에 세포를 시딩하였고, 이를 리포펙타민(Lipofectamine) 3000 시약(Thermo Fisher Scientific, 미국 월섬)을 사용하여, 500 ng의 (CAGA)-12-루시페라제 리포터 구조체 및 5 ng의 pRL-TK 레닐라(Renilla) 루시페라제 벡터(Promega, 미국 위스콘신주 매디슨), 형질감염 효능에 대한 내부 대조군으로 일시적으로 형질감염시켰다. 24시간 형질감염 후, 세포를 용량-의존성 방식으로 ALK5 저해제로 전처리하였다. 그런 다음, 세포를 12시간 동안 2 ng/ml 재조합 TGF-β1로 자극시켰다. 자극 후, 이중-루시페라제 리포터 분석(Dual-Luciferase Repoter Assay)(Promega)에 의해 반딧불이 및 레닐라 루시페라제 활성을 측정하였다.
포스포-Smad 2/3 면역블로팅
Hs578T 세포에서 TGF-β 유도된 포스포-Smad 2/3 수준을 저해하는 능력을 측정함으로써 BSC-1200의 화합물의 생물학적 활성을 결정하였다. 세포를 1시간 동안 ALK5 저해제(10, 20, 50, 100 nM)로 전처리하고, 무혈청 하에 1시간 동안 인간 재조합 2 ng/ml TGF-β1로 처리하였다. 25 mM HEPES, pH 7.6, 150 mM NaCl, 1% NP40, 1% 소듐 데옥시콜레이트, 0.1% SDS, 및 프로테아제 저해제 혼합물을 함유하는 완충제(Bimake, 미국 휴스톤)에서 세포를 용해시켰다. 추출물을 SDS-PAGE에 의해 분리한 후 폴리비닐리덴 디플루오라이드(PVDF) 막으로 전기-전달하고, 항-포스포-Smad2 Ab, 항-포스포-Smad3 Ab, 항-Smad 2/3 Ab 및 α-튜불린에 이어서 겨자무 과산화효소-컨쥬게이트된 항-토끼, 항-마우스 IgG로 탐침하고, Super Signal® West dura 키트(Pierce)를 사용하여 나타내었다. 이미지 분석기(Imagequant LAS 500; GE Heathcare)에 막을 놓고, 이미지 생성을 허용하는 컴퓨터(Software Image Reader LAS 500)에 연결하였다.
상대적인 루시페라제 활성: IC50값(nM)
A: 10 nM 미만, B: 10~100 nM, C: 100 nM 초과
[표 1]

Claims (11)

  1. 화학식 I의 화합물:
    [화학식 I]

    [식 중,
    R1은 H, C1-C6 알킬, CD3,CHF2,CF3,-(C1-C6)히드록시알킬, 또는 -SO2알킬이고;
    R2는 H, Me, CF3,NO2,할로겐, 아실, C1-C6알킬, 치환된 C1-C6알킬, C1-C6할로알킬, C3-C7시클로알킬, 알킬카복시, 시아노, 또는 알콕시이고;
    X1,X2및 X3은 각각 독립적으로 CH 또는 N이고;
    각각의 R3은 수소, 할로겐, CF3,아실, 아미노, 치환된 아미노, C1-C6알킬, 치환된 C1-C6알킬, C1-C6할로알킬, C3-C7시클로알킬, 알킬카복시, 시아노, 니트로, 또는 알콕시로 이루어진 군으로부터 독립적으로 선택되고;
    각각의 R4는 수소, 할로겐, CF3,아실, 아미노, 치환된 아미노, C1-C6알킬, 치환된 C1-C6알킬, C1-C6할로알킬, 시아노, 니트로, 알콕시, 아실옥시, 또는 아릴옥시로 이루어진 군으로부터 독립적으로 선택되고;
    m은 1, 2, 3 또는 4이고;
    n은 1, 2, 3, 4 또는 5이다].
  2. 제1항에 있어서,
    화학식 I은 화학식 II의 화합물 또는 이의 염을 포함하는, 화합물:
    [화학식 II]

    [식 중,
    R1은 H, C1-C6 알킬, CD3,CHF2,CF3,-(C1-C6)히드록시알킬, 또는 -SO2알킬이고;
    각각의 R4는 수소, 할로겐, CF3,아실, 아미노, 치환된 아미노, C1-C6알킬, 치환된 C1-C6알킬, C1-C6할로알킬, 시아노, 니트로, 알콕시, 아실옥시, 또는 아릴옥시로 이루어진 군으로부터 독립적으로 선택되고;
    n은 1, 2, 3, 4 또는 5이다].
  3. 약제학적으로 유효한 양의, 제1항의 화합물 또는 이의 약제학적으로 허용가능한 염, 용매화물,
    다형체 , 에스테르, 호변이성질체 또는 전구약물, 및 약제학적으로 허용가능한 담체를 포함하는, 약제학적 조성물.
  4. ALK 효소의 저해를 위한 약제학적 조성물의 제조에서 제1항의 화합물 또는 이의 약제학적으로 허용가능한 염, 용매화물, 다형체, 에스테르, 호변이성질체 또는 전구약물의 용도.
  5. ALK 키나아제-매개된 질환 또는 병태의 치료를 위한 약제학적 조성물의 제조에서 제1항의 화합물 또는 이의 약제학적으로 허용가능한 염, 용매화물, 다형체, 에스테르, 호변이성질체 또는 전구약물의 용도로서, 상기 질환 또는 병태가 유두상 갑상선 암종, 췌장암, 폐암, 결장암, 유방암종, 신경모세포종, 통증, 악액질, 피부염 또는 천식인, 용도.
  6. ALK 매개된 증식성 장애의 치료를 위한 약제학적 조성물의 제조에서 제1항의 화합물 또는 이의 약제학적으로 허용가능한 염, 용매화물, 다형체, 에스테르, 호변이성질체 또는 전구약물의 용도.
  7. 제5항에 있어서,
    상기 ALK 매개된 증식성 장애는 만성 섬유증, 혈관 장애, 비만, 당뇨병, 자가면역 질환 및 암으로 이루어진 군으로부터 선택되는, 용도.
  8. ALK 효소의 저해 방법으로서, 상기 효소를 저해하기에 충분한 양의, 제1항의 화합물 또는 이의 약제학적으로 허용가능한 염, 용매화물, 다형체, 에스테르, 호변이성질체 또는 전구약물과 상기 ALK 효소를 접촉시키는 단계를 포함하는, 방법.
  9. ALK 매개된 질환 또는 병태의 치료 방법으로서, 치료가 필요한 개체에게, 제1항의 화합물 또는 이의 약제학적으로 허용가능한 염, 용매화물, 다형체, 에스테르, 호변이성질체 또는 전구약물을 포함하는 유효량의 조성물을 투여하는 단계를 포함하고, 상기 질환 또는 병태는 유두상 갑상선 암종, 췌장암, 폐암, 결장암, 유방암종, 신경모세포종, 통증, 악액질, 피부염 또는 천식인, 방법.
  10. 제9항에 있어서,
    상기 화합물을 치료 유효량의 화학치료제와 병용하여 투여하는, 방법.
  11. 제9항에 있어서,
    상기 화합물을 치료 유효량의 PD-1 또는 PD-L1 저해제와 같은 면역 체크포인트 저해제와 병용하여 투여하는, 방법.

KR1020247008430A 2021-08-13 2022-08-15 융합된 고리 헤테로아릴 화합물 및 이의 용도 KR20240047432A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202163232808P 2021-08-13 2021-08-13
US63/232,808 2021-08-13
PCT/KR2022/012150 WO2023018313A1 (en) 2021-08-13 2022-08-15 Fused ring heteroaryl compounds and use thereof

Publications (1)

Publication Number Publication Date
KR20240047432A true KR20240047432A (ko) 2024-04-12

Family

ID=85200221

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020247008430A KR20240047432A (ko) 2021-08-13 2022-08-15 융합된 고리 헤테로아릴 화합물 및 이의 용도

Country Status (8)

Country Link
US (1) US20230089180A1 (ko)
EP (1) EP4384511A1 (ko)
KR (1) KR20240047432A (ko)
CN (1) CN117881669A (ko)
AU (1) AU2022325686A1 (ko)
CA (1) CA3226950A1 (ko)
MX (1) MX2024001751A (ko)
WO (1) WO2023018313A1 (ko)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0027987D0 (en) * 2000-11-16 2001-01-03 Smithkline Beecham Plc Compounds
EA200500378A1 (ru) * 2002-09-18 2005-08-25 Пфайзер Продактс Инк. Новые соединения имидазола в качестве ингибиторов трансформирующего фактора роста (tgf)
WO2004052280A2 (en) * 2002-12-10 2004-06-24 Imclone Systems Incorporated Anti-angiogenic compounds and their use in cancer treatment
EP2173728A2 (en) * 2007-07-17 2010-04-14 Amgen Inc. Heterocyclic modulators of pkb
US20110294853A1 (en) * 2008-09-12 2011-12-01 Benjamin Pelcman Bis Aromatic Compounds for Use in the Treatment of Inflammation

Also Published As

Publication number Publication date
AU2022325686A1 (en) 2024-02-08
US20230089180A1 (en) 2023-03-23
MX2024001751A (es) 2024-02-27
CN117881669A (zh) 2024-04-12
WO2023018313A1 (en) 2023-02-16
CA3226950A1 (en) 2023-02-16
EP4384511A1 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
CN112601750B (zh) Ptpn11(shp2)抑制剂
CA3089936C (en) Substituted quinazoline and pyridopyrimidine derivatives useful as anticancer agents
JP5871896B2 (ja) B−rafキナーゼインヒビター
KR101676391B1 (ko) 퇴행성 및 염증성 질병의 치료에 유용한 신규 화합물
CN104870448B (zh) 三唑并吡嗪
JP5863058B2 (ja) 1H−イミダゾ[4,5−c]キノリン
KR101940340B1 (ko) 키나제 억제제로서의 아미노-퀴놀린
JP2001508800A (ja) 血管形成阻害活性を有するフタラジン
EA030637B1 (ru) 5-[(пиперазин-1-ил)-3-оксопропил]имидазолидин-2,4-дионовые производные в качестве ингибиторов adamts для лечения остеоартрита
BR112020026003A2 (pt) inibidores de proteína quinase para promover a regeneração do fígado ou reduzir ou prevenir a morte de hepatócitos
JP2022515630A (ja) Nav1.7およびNav1.8遮断薬としての複素環誘導体
JP2022531088A (ja) Jak阻害剤としての置換ピロロピリジン
CA3058260A1 (en) 2-oxo-thiazole derivatives as a2a inhibitors and compounds for use in the treatment of cancers
CN114026083A (zh) 酪氨酸激酶的杂环抑制剂
JP2019532911A (ja) Nav1.7およびNav1.8遮断薬としてのアミド誘導体
WO2019223721A1 (zh) 芳杂环化合物、其药物组合物及其应用
CA2959980C (en) 7-(morpholinyl)-2-(n-piperazinyl) methyl thieno [2, 3-c] pyridine derivatives as anticancer drugs
KR20240047432A (ko) 융합된 고리 헤테로아릴 화합물 및 이의 용도
US20190135793A1 (en) Heterocyclic inhibitors of kdm5 for the treatment of disease
WO2013143466A1 (zh) 作为欧若拉激酶抑制剂的取代嘧啶衍生物
US11932639B2 (en) Fused ring heteroaryl compounds as ALK4/5 inhibitors
TW201536783A (zh) 用於治療增生性失調之新穎化合物及其醫藥組合物
JP2024534208A (ja) Parp7阻害剤及びその使用
NZ720726B2 (en) Novel carboxamides, method for the production thereof, pharmaceutical preparations comprising them, and use thereof for producing medicaments
WO2015071780A1 (en) Alkylidine substituted heterocyclyl derivatives as anti-bacterial agents