KR20230165012A - Hot-dip galvanized steel sheet having excellent coating adhesion and method for manufacturing thereof - Google Patents

Hot-dip galvanized steel sheet having excellent coating adhesion and method for manufacturing thereof Download PDF

Info

Publication number
KR20230165012A
KR20230165012A KR1020220064868A KR20220064868A KR20230165012A KR 20230165012 A KR20230165012 A KR 20230165012A KR 1020220064868 A KR1020220064868 A KR 1020220064868A KR 20220064868 A KR20220064868 A KR 20220064868A KR 20230165012 A KR20230165012 A KR 20230165012A
Authority
KR
South Korea
Prior art keywords
steel sheet
hot
dip galvanized
less
galvanized steel
Prior art date
Application number
KR1020220064868A
Other languages
Korean (ko)
Inventor
김영하
이강민
강대영
조용균
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020220064868A priority Critical patent/KR20230165012A/en
Publication of KR20230165012A publication Critical patent/KR20230165012A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 자동차용 소재로 적합한 강판에 관한 것으로, 보다 상세하게는 도금 밀착성이 우수한 고강도 용융아연도금강판 및 이의 제조방법에 관한 것이다.The present invention relates to a steel sheet suitable as a material for automobiles, and more specifically, to a high-strength hot-dip galvanized steel sheet with excellent plating adhesion and a method of manufacturing the same.

Description

도금 밀착성이 우수한 고강도 용융아연도금강판 및 이의 제조방법 {HOT-DIP GALVANIZED STEEL SHEET HAVING EXCELLENT COATING ADHESION AND METHOD FOR MANUFACTURING THEREOF}High-strength hot-dip galvanized steel sheet with excellent plating adhesion and manufacturing method thereof {HOT-DIP GALVANIZED STEEL SHEET HAVING EXCELLENT COATING ADHESION AND METHOD FOR MANUFACTURING THEREOF}

본 발명은 자동차용 소재로 적합한 강판에 관한 것으로, 보다 상세하게는 도금 밀착성이 우수한 고강도 용융아연도금강판 및 이의 제조방법에 관한 것이다.The present invention relates to a steel sheet suitable as a material for automobiles, and more specifically, to a high-strength hot-dip galvanized steel sheet with excellent plating adhesion and a method of manufacturing the same.

최근 부각되고 있는 환경 규제에 따라 엄격한 자동차 연비 규제 및 충돌 안정성 규제 강화에 대응하기 위한 방안으로 초고강도 강판에 대한 수요가 급증하고 있다. In response to recently emerging environmental regulations, demand for ultra-high strength steel sheets is rapidly increasing as a way to respond to stricter automobile fuel efficiency regulations and strengthened collision safety regulations.

또한, 국가별 탄소배출량 감축목표 달성을 위해 연비 개선이 요구되고 있는 반면, 고성능화와 각종 편의 장치의 증가로 인해 자동차 중량은 지속적으로 증가하고 있으며, 이러한 문제를 해결하기 위하여 초고강도 강판의 수요가 지속적으로 증가하고 있다. In addition, while improvements in fuel efficiency are required to achieve national carbon emissions reduction goals, the weight of automobiles continues to increase due to increased performance and various convenience devices. To solve these problems, demand for ultra-high strength steel plates continues to increase. is increasing.

이에 철강사들은 Dual Phase(DP) 강, Transformation Induced Plasticity (TRIP) 강, Complex Phase(CP) 강 등의 고강도 강판의 개발에 주력하고 있다.Accordingly, steel companies are focusing on the development of high-strength steel sheets such as Dual Phase (DP) steel, Transformation Induced Plasticity (TRIP) steel, and Complex Phase (CP) steel.

일반적으로 자동차용 강판의 고강도화를 위하여, 강 중에 다량의 Si, Mn, Al 등의 원소를 첨가한다. 그런데, 이들 원소들이 함유된 강판은 소둔 열처리하는 과정에서 상기 원소들이 강판 표면에서 산화물을 생성하여 용융아연도금시 도금성 및 밀착성을 저해하는 문제가 있다.Generally, in order to increase the strength of automobile steel sheets, a large amount of elements such as Si, Mn, and Al are added to the steel. However, steel sheets containing these elements have a problem in that the elements generate oxides on the surface of the steel sheet during annealing heat treatment, thereby impairing plating properties and adhesion during hot-dip galvanizing.

이러한 문제를 해결하기 위하여, 특허문헌 1에서는 다량의 Si과 Al을 함유한 강판을 0.7~1.2의 공연비로 직화구이 환원 가열방식의 가열로를 이용하여 환원소둔을 행함으로써 Fe 산화물 표층이 환원철(reduced Fe)로 되어 합금화 억제층이 잘 발달됨에 따라 도금표면을 우수하게 확보할 수 있다고 개시하고 있다.In order to solve this problem, in Patent Document 1, a steel sheet containing a large amount of Si and Al is subjected to reduction annealing using a direct-fired reduction heating furnace with an air-fuel ratio of 0.7 to 1.2, so that the surface layer of Fe oxide is converted to reduced iron (reduced iron). It is disclosed that an excellent plating surface can be secured as the alloying inhibition layer is well developed.

하지만, 환원소둔 과정에서 Fe 산화물과 소지강판 계면에 형성되는 Si, Mn 또는 Al의 산화물이 층(layer)의 형태를 띄어 아연도금 이후 도금층이 탈락하는 도금 박리 현상을 유발하는 단점이 있다.However, during the reduction annealing process, oxides of Si, Mn, or Al formed at the interface between Fe oxide and the base steel sheet take the form of a layer, which has the disadvantage of causing plating peeling, in which the plating layer falls off after galvanizing.

이에 따라, 고강도를 갖는 용융아연도금강판의 도금성뿐만 아니라, 도금 밀착성을 확보할 수 있는 기술에 대한 요구가 절실한 시점이다.Accordingly, there is an urgent need for technology that can secure plating adhesion as well as plating properties of high-strength hot-dip galvanized steel sheets.

일본 공개특허공보 제2005-154856호Japanese Patent Publication No. 2005-154856

본 발명의 일 측면은, 강 내의 합금조성과 공정 조건을 최적화함에 의해 도금 밀착성이 향상된 고강도 용융아연도금강판 및 이를 제조하는 방법을 제공하고자 하는 것이다. One aspect of the present invention is to provide a high-strength hot-dip galvanized steel sheet with improved plating adhesion by optimizing the alloy composition and process conditions in the steel, and a method for manufacturing the same.

본 발명의 과제는 상술한 내용에 한정되지 아니한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명 명세서의 전반적인 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.The object of the present invention is not limited to the above-described contents. Anyone skilled in the art to which the present invention pertains will have no difficulty in understanding the additional problems of the present invention from the overall content of the present invention specification.

본 발명의 일 측면은, 중량%로 실리콘(Si)을 0.7% 이하(0% 제외)로 함유하는 소지강판; 및 상기 소지강판의 적어도 일면에 형성된 용융아연계 도금층을 포함하는 용융아연도금강판으로서,One aspect of the present invention is a base steel sheet containing 0.7% or less (excluding 0%) of silicon (Si) by weight; And a hot-dip galvanized steel sheet including a hot-dip zinc-based plating layer formed on at least one surface of the base steel sheet,

상기 소지강판과 도금층의 계면으로부터 상기 소지강판의 두께 방향 0.1㎛ 깊이까지 측정된 GDS 프로파일의 Si 농도 적분치가 0.1%·㎛ 이하(0은 제외)인 것을 특징으로 하는 도금 밀착성이 우수한 고강도 용융아연도금강판을 제공한다.High-strength hot-dip galvanizing with excellent plating adhesion, characterized in that the Si concentration integral value of the GDS profile measured from the interface between the base steel sheet and the plating layer to a depth of 0.1㎛ in the thickness direction of the base steel sheet is 0.1%·㎛ or less (excluding 0). Provides steel plates.

본 발명의 다른 일 측면은, 중량%로 실리콘(Si)을 0.7% 이하(0% 제외)로 함유하는 소지강판으로 냉연강판을 준비하는 단계; 상기 냉연강판을 소둔 열처리하는 단계; 및 상기 소둔 열처리된 냉연강판을 용융아연도금욕에 침지하여 용융아연도금강판을 제조하는 단계를 포함하며,Another aspect of the present invention includes preparing a cold-rolled steel sheet using a base steel sheet containing 0.7% or less (excluding 0%) of silicon (Si) by weight; Annealing and heat treating the cold rolled steel sheet; And manufacturing a hot-dip galvanized steel sheet by immersing the annealed heat-treated cold-rolled steel sheet in a hot-dip galvanizing bath,

상기 소둔 열처리하는 단계는, 상기 냉연강판이 장입된 소둔로 내에 산소를 공급하면서 550~700℃까지 가열하는 제1 열처리 단계 및 질소 환원 분위기에서 700~850℃까지 가열하는 제2 열처리 단계로 이루어지고, 상기 제1 열처리 단계에서 Fe 산화층이 형성되며, 하기 식(1)로 계산되는 Fe 산화층의 두께가 50~250nm가 되도록 산소농도(ppm), 산소공급온도(℃) 및 라인스피드(L/S, mpm)를 제어하는 것을 특징으로 하는 도금 밀착성이 우수한 고강도 용융아연도금강판의 제조방법의 제조방법을 제공한다.The annealing heat treatment step consists of a first heat treatment step of heating to 550 to 700° C. while supplying oxygen into an annealing furnace into which the cold rolled steel sheet is charged, and a second heat treatment step of heating to 700 to 850° C. in a nitrogen reduction atmosphere. , In the first heat treatment step, an Fe oxide layer is formed, and the oxygen concentration (ppm), oxygen supply temperature (°C), and line speed (L/S) are adjusted so that the thickness of the Fe oxide layer calculated by the following equation (1) is 50 to 250 nm. , mpm), and provides a manufacturing method for manufacturing a high-strength hot-dip galvanized steel sheet with excellent plating adhesion.

식(1)Equation (1)

Fe 산화층의 두께(nm) = -26.5 + (0.08×산소농도(ppm)) + (0.11×산소공급 온도(℃)) - (0.28×L/S(mpm))Thickness of Fe oxide layer (nm) = -26.5 + (0.08 × oxygen concentration (ppm)) + (0.11 × oxygen supply temperature (℃)) - (0.28 × L/S (mpm))

본 발명에 의하면, 강 내의 합금조성과 공정조건을 최적화함에 의해 도금층과 소지강판의 계면 직하에 형성되는 산화물의 형상을 단속적으로 형성시키면서, 강 내의 Si이 환원 Fe 직하에 농화되는 농도를 제어함에 의해 도금 밀착성이 향상된 고강도 용융아연도금강판을 제공할 수 있다.According to the present invention, by optimizing the alloy composition and process conditions in the steel, the shape of the oxide formed immediately below the interface between the plating layer and the base steel plate is intermittently formed, and by controlling the concentration at which Si in the steel is concentrated directly under the reduced Fe. It is possible to provide a high-strength hot-dip galvanized steel sheet with improved plating adhesion.

도 1은 본 발명의 일 실시예에 따른 GDS 측정 결과를 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른 TEM-DES 맵핑(mapping) 결과를 나타낸 것이다.
Figure 1 shows GDS measurement results according to an embodiment of the present invention.
Figure 2 shows the TEM-DES mapping results according to an embodiment of the present invention.

본 발명의 발명자들은 자동차용 강판으로 널리 사용되는 용융아연도금강판은 강 내에 함유된 산화성 원소들(예컨대, Si, Mn 등)에 의해 도금 밀착성이 낮은 문제점을 인지하였다.The inventors of the present invention recognized the problem of low plating adhesion of hot-dip galvanized steel sheets, which are widely used as steel sheets for automobiles, due to oxidizing elements (eg, Si, Mn, etc.) contained in the steel.

특히, Si이 다량 함유된 강을 열처리하는 경우, Fe 산화층 직하에서 강 내의 Si, Mn 등이 Fe 산화물과 치환되면서 Si, Mn 산화물이 형성되는데, 이때 다량의 Si에 기인한 층(layer) 형태의 산화물이 강의 수평 방향(압연 방향)으로 형성됨에 의해, 이를 따라 도금층의 탈락이 발생하는 문제가 있음을 발견하였다.In particular, when heat treating steel containing a large amount of Si, Si and Mn oxides are formed as Si and Mn in the steel are replaced with Fe oxide directly under the Fe oxide layer. At this time, a layer form due to the large amount of Si is formed. It was discovered that there is a problem in that the plating layer falls off along this oxide as it is formed in the horizontal direction (rolling direction) of the steel.

이에, 본 발명자들은 용융아연도금강판의 도금 밀착성을 향상시키기 위해 깊이 연구한 바, 강 내 Si의 함량을 제어하는 한편, 강의 열처리 과정에서 형성되는 산화물의 형상을 제어할 수 있는 수단을 도출함으로써, 본 발명을 완성하기에 이르렀다.Accordingly, the present inventors conducted in-depth research to improve the plating adhesion of hot-dip galvanized steel sheets, and derived a means to control the Si content in the steel and the shape of the oxide formed during the heat treatment of the steel. The present invention has been completed.

이하, 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 일 측면에 따른 고강도 용융아연도금강판은 소지강판; 및 상기 소지강판의 적어도 일면에 형성된 용융아연계 도금층을 포함한다.A high-strength hot-dip galvanized steel sheet according to one aspect of the present invention includes a base steel sheet; and a molten zinc-based plating layer formed on at least one surface of the base steel plate.

본 발명에서 용융아연도금강판이라 함은 용융아연도금강판(GI 강판)뿐만 아니라 합금화 용융아연도금강판(GA)은 물론이고, 아연이 주로 포함된 아연계 도금층이 형성된 도금강판 모두를 포함하는 개념임에 유의할 필요가 있다. 아연이 주로 포함된다는 것은 도금층에 포함된 원소 중 아연의 비율이 가장 높은 것을 의미한다. 다만, 합금화 용융아연도금강판에서는 아연 보다 철의 비율이 높을 수 있으며, 철을 제외한 나머지 성분 중 아연의 비율이 가장 높은 강판까지 본 발명의 범주에 포함할 수 있다.In the present invention, hot-dip galvanized steel sheet is a concept that includes not only hot-dip galvanized steel sheet (GI steel sheet), but also alloyed hot-dip galvanized steel sheet (GA), as well as galvanized steel sheet on which a zinc-based plating layer mainly containing zinc is formed. It is necessary to pay attention to. The fact that zinc is mainly included means that the proportion of zinc is the highest among the elements contained in the plating layer. However, in alloyed hot-dip galvanized steel sheets, the ratio of iron may be higher than that of zinc, and even steel sheets with the highest ratio of zinc among the remaining components excluding iron can be included in the scope of the present invention.

본 발명자들의 연구 결과에 따르면, 상기 소지강판과 도금층의 계면으로부터 소지강판의 두께 방향으로의 특정 영역에서 실리콘(Si) 농도의 분포를 제어하는 경우, 도금 밀착성을 향상시킬 수 있다.According to the research results of the present inventors, when the distribution of silicon (Si) concentration is controlled in a specific area from the interface between the base steel sheet and the plating layer in the thickness direction of the base steel sheet, plating adhesion can be improved.

구체적으로, 상기 소지강판과 도금층의 계면으로부터 상기 소지강판의 두께 방향 0.1㎛ 깊이까지 측정된 GDS 프로파일의 Si 농도 적분치가 0.1%·㎛ 이하(0은 제외)인 것이 바람직하다. 보다 유리하게는 0.05%·㎛ 이하(0은 제외)인 것이 바람직하다. Specifically, it is preferable that the Si concentration integral value of the GDS profile measured from the interface between the base steel sheet and the plating layer to a depth of 0.1 ㎛ in the thickness direction of the base steel sheet is 0.1%·㎛ or less (excluding 0). More advantageously, it is preferably 0.05%·μm or less (excluding 0).

또한, 상기 소지강판과 도금층의 계면으로부터 상기 소지강판의 두께 방향 0.1㎛ 깊이까지 측정된 GDS 프로파일에서 Si 원소의 피크(peak) 최대 농도가 2% 이하(0은 제외)인 것이 바람직하다. 보다 유리하게는 상기 최대 농도가 1.5% 이하인 것이 바람직하다.In addition, it is preferable that the maximum peak concentration of Si element in the GDS profile measured from the interface between the base steel sheet and the plating layer to a depth of 0.1㎛ in the thickness direction of the base steel sheet is 2% or less (excluding 0). More advantageously, it is preferred that the maximum concentration is 1.5% or less.

비 제한적인 예로서, GDS (Glow Discharge Spectroscopy)를 이용하여 상기 소지강판과 도금층의 계면으로부터 소지강판의 두께 방향 내부를 측정한 경우, Si 농도의 프로파일이 도 1과 같은 형태를 가질 수 있다.As a non-limiting example, when the inside of the base steel sheet in the thickness direction is measured from the interface between the base steel sheet and the plating layer using GDS (Glow Discharge Spectroscopy), the Si concentration profile may have the form shown in FIG. 1.

상기 소지강판과 도금층의 계면으로부터 상기 소지강판의 두께 방향 0.1㎛ 깊이까지 측정된 GDS 프로파일의 Si 농도 적분치가 0.1%·㎛를 초과하거나, Si 원소의 피크(peak) 최대 농도가 2%를 초과한다는 것은 Si의 표면 농화가 억제되지 못하였음을 의미한다. 즉, 강 내의 Si, 나아가 Mn이 층(layer) 형태의 내부 산화물을 형성함에 의해 도금 박리를 유발하게 되며, 이는 결국 도금 밀착성의 열화를 초래하게 된다.The integrated value of Si concentration of the GDS profile measured from the interface of the base steel sheet and the plating layer to a depth of 0.1㎛ in the thickness direction of the base steel sheet exceeds 0.1%·㎛, or the peak maximum concentration of Si element exceeds 2%. This means that surface enrichment of Si was not suppressed. In other words, Si and Mn in the steel form an internal oxide in the form of a layer, causing plating peeling, which ultimately leads to deterioration of plating adhesion.

한편, 본 발명에서 대상으로 하는 소지강판은 자동차용으로 적합한 고강도 강인 것이라면 그 종류를 제한하지 아니하나, 중량%로 실리콘(Si)을 0.7% 이하(0%는 제외)로 포함하는 것이 바람직하다.Meanwhile, the type of base steel plate targeted in the present invention is not limited as long as it is a high-strength steel suitable for automobile use, but it is preferable to contain 0.7% or less (excluding 0%) of silicon (Si) by weight.

또한, 상기 소지강판은 중량%로, 탄소(C): 0.05~0.30%, 망간(Mn): 1.0~3.0%, 인(P): 0.10% 이하, 황(S): 0.01% 이하, 알루미늄(Al): 0.01~0.1%, 질소(N): 0.008% 이하, 잔부 Fe 및 불가피한 불순물을 더 포함할 수 있다.In addition, the steel sheet contains, in weight percent, carbon (C): 0.05-0.30%, manganese (Mn): 1.0-3.0%, phosphorus (P): 0.10% or less, sulfur (S): 0.01% or less, aluminum ( Al): 0.01 to 0.1%, nitrogen (N): 0.008% or less, and may further contain residual Fe and unavoidable impurities.

실리콘(Si)은 고용 강화에 의해 강도의 향상에 기여하는 중요한 원소이며 가공성 열화를 억제하면서, 강도를 향상시키는 역할을 한다. 이러한 Si의 함량이 0.7%를 초과하면, Fe 산화층 직하에 층(layer) 형태의 Si 산화물 등을 형성시켜 밀착성이 열위하게 되는 문제가 있다. 보다 유리하게는 0.5% 이하(0은 제외)인 것이 보다 바람직하다.Silicon (Si) is an important element that contributes to the improvement of strength through solid solution strengthening, and plays a role in improving strength while suppressing deterioration of processability. If the Si content exceeds 0.7%, there is a problem in that Si oxide in the form of a layer is formed directly under the Fe oxide layer, resulting in poor adhesion. More advantageously, it is more preferably 0.5% or less (excluding 0).

탄소(C)는 강의 강도 확보에 유효한 원소로서, 0.05% 이상으로 함유될 수 있다. 다만, 그 함량이 0.30%를 초과하게 되면 강의 용접성이 저하될 우려가 있다.Carbon (C) is an element effective in securing the strength of steel, and can be contained in an amount of 0.05% or more. However, if the content exceeds 0.30%, there is a risk that the weldability of the steel may deteriorate.

망간(Mn)은 고용 강화에 의해 강도의 향상에 기여함과 동시에, 오스테나이트상의 담금질성을 향상시키는 원소이며 강도의 안정화에 효과적으로 기여한다. 의도하는 강도를 안정적으로 얻기 위해서는 상기 Mn을 1.0% 이상으로 포함하는 것이 바람직하다. 다만, 그 함량이 3.0%를 초과하면, 가공성이 열화되는 문제가 있다. 따라서, 상기 Mn은 1.0~3.0%로 포함하는 것이 바람직하고, 보다 유리하게는 1.5~2.5%로 포함하는 것이 바람직하다.Manganese (Mn) contributes to the improvement of strength through solid solution strengthening and is an element that improves the hardenability of the austenite phase, effectively contributing to stabilization of strength. In order to stably obtain the intended strength, it is preferable to include Mn in an amount of 1.0% or more. However, if the content exceeds 3.0%, there is a problem that processability is deteriorated. Therefore, the Mn is preferably contained in an amount of 1.0 to 3.0%, and more advantageously, it is preferably contained in an amount of 1.5 to 2.5%.

상기 알루미늄(Al)은 탈산 효과를 위해 첨가하는 원소로서, 그 함량이 0.01% 미만이면 탈산 효과를 충분히 확보할 수 없다. 반면, 그 함량이 0.1%를 초과하게 되면 Al에 의한 내부 산화물이 형성되는 문제가 있다.Aluminum (Al) is an element added for the deoxidation effect, and if its content is less than 0.01%, the deoxidation effect cannot be sufficiently secured. On the other hand, if the content exceeds 0.1%, there is a problem of the formation of internal oxides due to Al.

상기 인(P), 황(S) 및 질소(N)는 강 제조과정에서 불가피하게 첨가되는 원소로서, 가능한 한 그 함량을 낮게 제어하는 것이 유리하다. 본 발명에서 상기 P은 0.10% 이하, S은 0.01% 이하, N은 0.008% 이하로 포함할 때 의도하는 물리적 성질을 확보하는 데에 무리가 없다.Phosphorus (P), sulfur (S), and nitrogen (N) are elements that are inevitably added during the steel manufacturing process, and it is advantageous to control their contents as low as possible. In the present invention, there is no difficulty in securing the intended physical properties when P is included at 0.10% or less, S is at 0.01% or less, and N is at 0.008% or less.

상술한 소지강판은 자동차용 소재, 특히 구조부재용 소재로서 사용될 수 있는 냉연강판일 수 있으며, 특히 1.0~1.8mm의 두께를 가지는 것일 수 있다.The above-described base steel plate may be a cold-rolled steel plate that can be used as a material for automobiles, especially as a material for structural members, and may have a thickness of 1.0 to 1.8 mm.

이하에서는, 본 발명의 다른 일 측면인 도금 밀착성이 우수한 고강도 용융아연도금강판을 제조하는 방법에 대하여 상세히 설명한다. 다만, 본 발명의 용융아연도금강판은 반드시 하기의 구현례에 의해 제조될 필요는 없으나, 하기의 구현례는 본 발명의 용융아연도금강판을 제조하는 한 가지 바람직한 방법이라는 것에 유의할 필요가 있다.Below, a method for manufacturing a high-strength hot-dip galvanized steel sheet with excellent plating adhesion, which is another aspect of the present invention, will be described in detail. However, it is necessary to note that the hot-dip galvanized steel sheet of the present invention does not necessarily have to be manufactured according to the following embodiment, but the following embodiment is one preferred method of manufacturing the hot-dip galvanized steel sheet of the present invention.

우선, 소지강판을 준비한다.First, prepare a base steel plate.

상기 소지강판은 앞서 언급한 바와 같은 합금조성을 가지며, 일정 두께, 예컨대 1.0~1.8mm의 두께를 갖는 냉연강판일 수 있다.The base steel plate has the alloy composition as mentioned above and may be a cold-rolled steel plate with a certain thickness, for example, 1.0 to 1.8 mm.

상기 소지강판을 소둔 열처리한 후 용융아연도금욕에 침지하여 용융아연도금강판을 제조할 수 있다.A hot-dip galvanized steel sheet can be manufactured by annealing and heat-treating the base steel sheet and then immersing it in a molten zinc plating bath.

일반적으로, 소지강판을 소둔 열처리하게 되면 강 내의 Si, Mn 등이 표면으로 확산되어 표면 농화되는 경향이 있다.Generally, when a base steel sheet is annealed and heat treated, Si, Mn, etc. in the steel tend to diffuse to the surface and thicken the surface.

이를 방지하기 위하여, 본 발명에서는 상기 소지강판을 소둔 열처리함에 있어서, 특정 조건에 의해 열처리 초반에 Fe 산화층을 형성함으로써 열처리 과정 중에 상기 원소들이 강판 표면으로 확산되는 것을 억제하는 특징이 있다.To prevent this, the present invention has the feature of suppressing the diffusion of the elements to the surface of the steel sheet during the heat treatment process by forming an Fe oxide layer at the beginning of the heat treatment under specific conditions when annealing the steel sheet.

상기 소둔 열처리 단계는 소둔로 내에 상기 냉연강판을 장입한 후 특정 온도까지 가열처리함에 의해 행해질 수 있다.The annealing heat treatment step may be performed by charging the cold-rolled steel sheet into an annealing furnace and then heat-treating it to a specific temperature.

특별히, 본 발명에서는 상기 냉연강판이 장입된 소둔로 내에 산소를 공급하면서 550~700℃까지 가열하는 제1 열처리 단계 및 질소 환원 분위기에서 700~850℃까지 가열하는 제2 열처리 단계로 행해질 수 있으며, 상기 제1 열처리 단계에서 상기 냉연강판 표면에 Fe 산화층을 형성시킬 수 있다.In particular, in the present invention, a first heat treatment step of heating to 550 to 700 ° C. while supplying oxygen into an annealing furnace into which the cold-rolled steel sheet is charged and a second heat treatment step of heating to 700 to 850 ° C. in a nitrogen reduction atmosphere can be performed. In the first heat treatment step, an Fe oxide layer may be formed on the surface of the cold rolled steel sheet.

상기 제1 열처리 단계에서 형성되는 Fe 산화층은 강 내의 Fe가 산화됨에 따라 형성되며, 형성된 Fe 산화층은 열처리 과정 중에 강 내의 Si, Mn 등의 산화성 원소들이 강판 표면으로의 확산을 억제하는 역할을 한다.The Fe oxide layer formed in the first heat treatment step is formed as Fe in the steel is oxidized, and the formed Fe oxide layer serves to suppress diffusion of oxidizing elements such as Si and Mn in the steel to the surface of the steel sheet during the heat treatment process.

이러한 Fe 산화층은 소둔로 내에 과잉의 산소를 공급함으로써 형성될 수 있으나, 이에 한정되는 것은 아님을 밝혀둔다.It should be noted that this Fe oxide layer can be formed by supplying excess oxygen in the annealing furnace, but is not limited to this.

바람직하게, 본 발명에서는 하기 식(1)로 계산되는 Fe 산화층의 두께가 50~250nm가 되도록 산소농도(ppm), 산소공급온도(℃) 및 라인스피드(L/S, mpm)를 제어하는 것을 특징으로 한다. 보다 유리하게, 상기 Fe 산화층의 두께는 100~150nm인 것이 더욱 바람직하다.Preferably, in the present invention, the oxygen concentration (ppm), oxygen supply temperature (°C), and line speed (L/S, mpm) are controlled so that the thickness of the Fe oxide layer, calculated by the following formula (1), is 50 to 250 nm. It is characterized by More advantageously, the thickness of the Fe oxide layer is more preferably 100-150 nm.

식(1)Equation (1)

Fe 산화층의 두께(nm) = -26.5 + (0.08×산소농도(ppm)) + (0.11×산소공급 온도(℃)) - (0.28×L/S(mpm))Thickness of Fe oxide layer (nm) = -26.5 + (0.08 × oxygen concentration (ppm)) + (0.11 × oxygen supply temperature (℃)) - (0.28 × L/S (mpm))

즉, 본 발명은 제1 열처리 단계에서 산소 공급에 의해 Fe 산화층을 형성함에 있어서, 이때 주입되는 산소의 농도와 산소가 공급되는 온도 및 소둔로의 라인스피드(L/S)의 조건을 제어함에 의해 최적 두께인 50~250nm 두께의 Fe 산화층을 형성할 수 있다. 이때, 식(1)의 값은 이론 값으로, 상기 1차 열처리에 의해 형성된 Fe 산화층의 실제 측정 값과 일정 부분 차이가 있을 수 있다. 본 발명에서는 그 차이가 10nm 내외라면 Fe 산화층이 의도하는 수준으로 형성된 것임을 밝혀둔다.That is, the present invention forms an Fe oxide layer by supplying oxygen in the first heat treatment step by controlling the concentration of oxygen injected, the temperature at which oxygen is supplied, and the line speed (L/S) of the annealing furnace. It is possible to form an Fe oxide layer with an optimal thickness of 50 to 250 nm. At this time, the value of equation (1) is a theoretical value and may differ to a certain extent from the actual measured value of the Fe oxide layer formed by the primary heat treatment. In the present invention, if the difference is around 10 nm, it is stated that the Fe oxide layer has been formed at the intended level.

보다 바람직하게, 상기 제1 열처리 단계에서 주입되는 산소농도는 500~1000ppm, 산소공급온도는 550~700℃, 라인스피드(L/S)는 60~100mpm의 범위로 제어되는 것이 바람직하다. 여기서, 라인스피드는 소둔로 내에 장입된 냉연강판이 로를 통과하는 속도를 의미한다.More preferably, the oxygen concentration injected in the first heat treatment step is controlled in the range of 500 to 1000 ppm, the oxygen supply temperature is controlled to 550 to 700 ° C., and the line speed (L/S) is controlled to the range of 60 to 100 mpm. Here, line speed refers to the speed at which the cold rolled steel sheet charged into the annealing furnace passes through the furnace.

상기 산소농도가 500ppm 미만이면 충분한 두께의 Fe 산화층을 형성하는 데에 장시간이 소요되어 경제성이 떨어지고, 오랜 시간 열처리에 의해 강 내의 산화성 원소들이 표면으로 확산될 우려가 있다. 반면, 그 농도가 1000ppm을 초과하게 되면 Fe 산화층이 너무 두껍게 형성될 우려가 있다.If the oxygen concentration is less than 500 ppm, it takes a long time to form an Fe oxide layer of sufficient thickness, which reduces economic efficiency, and there is a risk that oxidizing elements in the steel may diffuse to the surface due to long-term heat treatment. On the other hand, if the concentration exceeds 1000 ppm, there is a risk that the Fe oxide layer may be formed too thick.

상기 산소를 공급하는 온도가 550℃ 미만이면 충분한 양의 산소가 공급되더라도 강 내 Fe의 산화가 제대로 일어나지 못하게 되며, 후속 환원 소둔 과정에서 Si, Mn 등의 표면 농화를 효과적으로 억제하기 못할 우려가 있다. 반면, 그 온도가 700℃를 초과하게 되면 Fe 산화층의 두께가 과도하게 두꺼워져 이후 환원 소둔 과정에서 Fe 산화층이 완전히 환원되지 못하고 잔류하는 Fe 산화물에 의해 도금층이 박리될 우려가 있다.If the oxygen supply temperature is less than 550°C, even if a sufficient amount of oxygen is supplied, oxidation of Fe in the steel will not occur properly, and there is a risk that surface enrichment of Si, Mn, etc. cannot be effectively suppressed during the subsequent reduction annealing process. On the other hand, if the temperature exceeds 700°C, the thickness of the Fe oxide layer becomes excessively thick, and there is a risk that the Fe oxide layer may not be completely reduced during the subsequent reduction annealing process and the plating layer may be peeled off by the remaining Fe oxide.

상기 라인스피드가 60mpm 미만이면 제1 열처리의 시간이 길어져 생산성이 저하되며, 반면 상기 라인스피드가 100mpm을 초과하게 되면 Fe 산화층이 충분한 두께로 형성될 수 없게 된다.If the line speed is less than 60 mpm, the time for the first heat treatment becomes longer and productivity decreases. On the other hand, if the line speed exceeds 100 mpm, the Fe oxide layer cannot be formed to a sufficient thickness.

상기 식(1)에 따른 Fe 산화층의 두께가 50nm 미만이면 Fe 산화층에 의한 강 내 산화성 원소들의 표면 확산을 효과적으로 억제하기 어렵다. 반면, 그 두께가 250nm를 초과하게 되면 후속 환원 열처리 과정에서 Fe 산화층을 환원시키는 데에 오랜 시간이 소요되어 생산성이 저하되며, 완전히 환원되지 못하고 잔류하는 Fe 산화물에 의해 도금 박리가 발생하는 문제가 있다.If the thickness of the Fe oxide layer according to the above equation (1) is less than 50 nm, it is difficult to effectively suppress surface diffusion of oxidizing elements in the steel by the Fe oxide layer. On the other hand, if the thickness exceeds 250 nm, it takes a long time to reduce the Fe oxide layer in the subsequent reduction heat treatment process, which reduces productivity, and there is a problem that plating peeling occurs due to the remaining Fe oxide that cannot be completely reduced. .

상기에 따라 제1 열처리를 실시하여 Fe 산화층을 충분한 두께로 형성시킨 후, 후속 가열처리를 통해 소둔 열처리 공정을 완료할 수 있다. 이때, 후속 가열처리는 제1 열처리된 냉연강판을 700~850℃의 온도로 가열하는 공정이며, 이 과정에서 제1 열처리시 형성된 Fe 산화층을 환원시킬 수 있다.After performing the first heat treatment according to the above to form the Fe oxide layer to a sufficient thickness, the annealing heat treatment process can be completed through subsequent heat treatment. At this time, the subsequent heat treatment is a process of heating the first heat-treated cold-rolled steel sheet to a temperature of 700 to 850°C, and in this process, the Fe oxide layer formed during the first heat treatment can be reduced.

상기 Fe 산화층을 환원시키기 위하여, 상기 제2 열처리는 질소 환원 분위기에서 행하는 것이 바람직하며, 보다 구체적으로 3~10부피%의 수소(H2)와 잔부 질소(N2)로 구성된 분위기에서 열처리를 행하는 것이 바람직하다.In order to reduce the Fe oxide layer, the second heat treatment is preferably performed in a nitrogen reducing atmosphere, and more specifically, the heat treatment is performed in an atmosphere composed of 3 to 10% by volume of hydrogen (H 2 ) and the balance nitrogen (N 2 ). It is desirable.

상기 제2 열처리시 온도가 700℃ 미만이면 재결정 효과가 불충분할 우려가 있고, Fe 산화층이 충분히 환원되지 못하여 잔류 Fe 산화물에 의한 도금 박리 발생 위험성이 존재한다. 반면, 그 온도가 850℃를 초과하게 되면 강 내의 산화성 원소들의 표면 농화가 촉진되어 표면 산화물이 증가함에 의해 도금 박리 등의 위험성이 존재한다.If the temperature during the second heat treatment is less than 700°C, there is a risk that the recrystallization effect may be insufficient, and the Fe oxide layer may not be sufficiently reduced, so there is a risk of plating peeling due to residual Fe oxide. On the other hand, if the temperature exceeds 850°C, the surface concentration of oxidizing elements in the steel is promoted, and surface oxides increase, which poses a risk of plating peeling.

상기에 따라 소둔 열처리가 완료된 냉연강판을 도금욕에 침지하여 용융아연도금공정을 행할 수 있으며, 상기 용융아연도금공정에 의해 얻어진 용융아연도금강판은 필요에 따라 후속 공정으로 합금화 열처리 공정을 거칠 수 있다.A hot-dip galvanizing process can be performed by immersing the cold-rolled steel sheet on which annealing heat treatment has been completed according to the above into a plating bath, and the hot-dip galvanized steel sheet obtained by the hot-dip galvanizing process can be subjected to an alloying heat treatment process as a subsequent process, if necessary. .

상기 용융아연도금공정은 통상의 조건으로 행할 수 있으므로, 그 조건에 대해서는 특별히 한정하지는 아니한다. 다만, 효과적인 도금을 위하여 440~460℃의 용융아연도금욕에서 행할 수 있음을 밝혀둔다.Since the above hot-dip galvanizing process can be performed under normal conditions, the conditions are not particularly limited. However, it should be noted that for effective plating, it can be performed in a hot-dip galvanizing bath at 440-460°C.

상술한 일련의 공정을 거침으로써 용융아연도금강판을 얻을 수 있다. 이러한 본 발명의 용융아연도금강판은 제조 과정에서 강 내의 Si, Mn 등과 같은 산화성 원소들의 표면 확산을 효과적으로 억제하면서, 도금층과 소지강판의 계면 직하에 형성되는 산화물의 형상을 단속적으로 형성함에 의해 도금 밀착성이 우수한 특징이 있다.A hot-dip galvanized steel sheet can be obtained by going through the series of processes described above. The hot-dip galvanized steel sheet of the present invention effectively suppresses surface diffusion of oxidizing elements such as Si and Mn in the steel during the manufacturing process, and improves plating adhesion by intermittently forming the shape of the oxide formed immediately below the interface between the plating layer and the base steel sheet. It has this excellent feature.

한편, 본 발명의 냉연강판은 강 슬라브를 가열한 후 열간압연하여 제조된 열연강판을 일정의 압하율로 냉간압연함에 의해 제조될 수 있다.Meanwhile, the cold rolled steel sheet of the present invention can be manufactured by heating a steel slab and then cold rolling a hot rolled steel sheet manufactured by hot rolling at a certain reduction rate.

이때, 상기 강 슬라브의 가열, 열간압연 및 냉간압연은 본 기술분야에서 통상적으로 사용되는 조건에 따라 수행될 수 있다. 이에 한정하는 것은 아니나, 일 예로서 상기 강 슬라브를 1100~1300℃의 온도범위에서 가열한 후, 800~1000℃의 마무리 압연 온도에서 마무리 열간압연을 행할 수 있다. 이후, 의도하는 두께에 따라 냉간압하율을 설정하여 냉간압연을 수행할 수 있다. At this time, heating, hot rolling, and cold rolling of the steel slab may be performed according to conditions commonly used in the technical field. Although it is not limited to this, as an example, the steel slab may be heated at a temperature range of 1100 to 1300°C, and then finish hot rolling may be performed at a finish rolling temperature of 800 to 1000°C. Thereafter, cold rolling can be performed by setting the cold rolling reduction rate according to the intended thickness.

상기 열간압연하여 얻은 열연강판에 대해 권취 공정을 추가로 행할 수 있으며, 상기 냉간압연 전에는 열연강판 표면에 형성된 스케일 등의 제거를 위해 산세 공정을 더 행할 수 있음을 밝혀둔다.It should be noted that a coiling process may be additionally performed on the hot rolled steel sheet obtained through the hot rolling, and a pickling process may be further performed to remove scale formed on the surface of the hot rolled steel sheet before the cold rolling.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 하기하는 실시예는 본 발명을 예시하여 구체화하기 위한 것일 뿐 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 정해지는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, it should be noted that the following examples are only for illustrating and embodying the present invention and are not intended to limit the scope of the present invention. This is because the scope of rights of the present invention is determined by matters stated in the patent claims and matters reasonably inferred therefrom.

(실시예)(Example)

발명예 1 내지 4 및 비교예 1 내지 7Invention Examples 1 to 4 and Comparative Examples 1 to 7

하기 표 1에 나타낸 바와 같은 함량으로 Si과 Mn을 함유하고 두께 1.2mm의 냉연강판을 준비하였다 (그 외 조성: 0.083%C, 0.022%P, 0.0034%S, 0.03%Al, 0.0045%N, 잔부 Fe 및 불가피한 불순물). 이후, 각각의 냉연강판을 소둔로 내에 장입한 후, 하기 표 1에 나타낸 조건에 따라 제1 열처리를 실시하였다. 상기 제1 열처리에 의해 상기 냉연강판 표면에 일정 두께의 Fe 산화층을 형성시킨 후, 5부피%의 H2를 함유하는 질소 환원 분위기 내에서 800℃까지 가열하여 제2 열처리를 실시하였다.A cold-rolled steel sheet with a thickness of 1.2 mm containing Si and Mn in the amounts shown in Table 1 below was prepared (other composition: 0.083%C, 0.022%P, 0.0034%S, 0.03%Al, 0.0045%N, the balance Fe and inevitable impurities). Thereafter, each cold-rolled steel sheet was charged into an annealing furnace, and then first heat treatment was performed according to the conditions shown in Table 1 below. After forming an Fe oxide layer of a certain thickness on the surface of the cold rolled steel sheet through the first heat treatment, the second heat treatment was performed by heating to 800°C in a nitrogen reduction atmosphere containing 5% by volume of H 2 .

상기에 따라 소둔 열처리가 완료된 냉연강판을 460℃의 용융아연도금욕에 침지하여 용융아연도금강판을 제조하였다.A hot-dip galvanized steel sheet was manufactured by immersing the cold-rolled steel sheet on which the annealing heat treatment as described above was completed in a hot-dip galvanizing bath at 460°C.

평가방법Assessment Methods

상기에 따라 제조된 각 용융아연도금강판의 도금 밀착성을 평가하기 위하여, 각각의 용융아연도금강판을 30mm×80mm의 크기로 절단하여 시편을 제작한 다음, 상기 시편에 구조용 접착제를 도포한 후 170℃의 오븐에서 20분 동안 경화시켰다. 이후, 상기 시편을 벤딩 지그에 물려 90°벤딩한 다음, 구조용 접착제에 도금층이 부착되었는지를 육안으로 확인하여 도금 밀착성의 양호/도금층의 박리 여부를 평가하였다.In order to evaluate the plating adhesion of each hot-dip galvanized steel sheet manufactured according to the above, each hot-dip galvanized steel sheet was cut to a size of 30 mm × 80 mm to produce a specimen, and then a structural adhesive was applied to the specimen and incubated at 170°C. It was cured in an oven for 20 minutes. Thereafter, the specimen was bent at 90° by holding it in a bending jig, and then it was visually confirmed whether the plating layer was attached to the structural adhesive to evaluate whether plating adhesion was good or whether the plating layer was peeling.

또한, 열처리 과정에서 강 내의 Si이 농화된 양을 측정하기 위하여, 제2 열처리가 완료된 각 냉연강판에 대해 글로우방전 분광분석법(Glow Discharge Optical Emission Spectrometry, GDS)을 통해 관찰하였다. 구체적으로, 각 냉연강판의 표면으로부터 두께 방향 깊이 1㎛까지의 프로파일(profile)을 측정한 후, 깊이 0.1㎛까지의 적분값 및 피크 최대 농도 값을 측정하였다.In addition, in order to measure the amount of Si concentrated in the steel during the heat treatment process, each cold-rolled steel sheet on which the second heat treatment was completed was observed through Glow Discharge Optical Emission Spectrometry (GDS). Specifically, the profile was measured from the surface of each cold rolled steel sheet to a depth of 1㎛ in the thickness direction, and then the integral value and peak maximum concentration value were measured up to a depth of 0.1㎛.

그리고, 제1 열처리 과정에서 형성된 Fe 산화층의 두께를 글로우방전 분광분석법(Glow Discharge Optical Emission Spectrometry, GDS)을 통해 측정하였으며, 이때 산소의 profile이 0에 수렴되는 깊이 까지를 Fe 산화층의 두께로 정의하였다.In addition, the thickness of the Fe oxide layer formed in the first heat treatment process was measured through Glow Discharge Optical Emission Spectrometry (GDS), and the depth at which the oxygen profile converges to 0 was defined as the thickness of the Fe oxide layer. .

상기 각각의 결과는 아래 표 1에 함께 나타내었다.Each of the above results is shown in Table 1 below.

구분division 합금조성(중량%)Alloy composition (% by weight) 제1 열처리First heat treatment GDSGDS 도금
밀착성
Plated
Adhesion
SiSi MnMn 산소
농도
(ppm)
Oxygen
density
(ppm)
산소공급온도
(℃)
Oxygen supply temperature
(℃)
라인
스피드
(mpm)
line
speed
(mpm)
Fe 산화층 두께
(nm)
Fe oxide layer thickness
(nm)
식(1)Equation (1) Si농도
적분값
(%㎛)
Si concentration
integral value
(%㎛)
Si농도
최대값
(%)
Si concentration
maximum value
(%)
발명예 1Invention Example 1 0.20.2 1.691.69 10001000 600600 6060 94.994.9 102.7102.7 0.0490.049 0.950.95 양호Good 발명예 2Invention Example 2 0.50.5 1.751.75 750750 650650 8080 80.580.5 82.682.6 0.0970.097 1.821.82 양호Good 발명예 3Invention Example 3 0.30.3 1.701.70 500500 650650 6060 69.069.0 68.268.2 0.0720.072 1.551.55 양호Good 발명예 4Invention Example 4 0.250.25 1.771.77 10001000 650650 6060 114.9114.9 108.2108.2 0.0550.055 1.031.03 양호Good 비교예 1Comparative Example 1 0.750.75 1.711.71 10001000 600600 100100 84.884.8 91.591.5 0.1770.177 3.513.51 박리peeling 비교예 2Comparative Example 2 0.720.72 1.651.65 750750 650650 6060 83.783.7 88.288.2 0.1810.181 3.583.58 박리peeling 비교예 3Comparative Example 3 0.820.82 1.721.72 350350 600600 6060 42.242.2 50.750.7 0.2550.255 4.054.05 박리peeling 비교예 4Comparative Example 4 1.211.21 1.661.66 300300 600600 100100 29.129.1 35.535.5 0.3260.326 4.894.89 박리peeling 비교예 5Comparative Example 5 0.30.3 1.701.70 150150 510510 9090 15.315.3 16.416.4 0.6990.699 10.0210.02 박리peeling 비교예 6Comparative Example 6 0.250.25 1.721.72 100100 500500 6060 18.518.5 19.719.7 0.6330.633 9.839.83 박리peeling 비교예 7Comparative Example 7 0.20.2 1.751.75 200200 600600 6060 31.631.6 38.738.7 0.3010.301 4.584.58 박리peeling

상기 표 1에 나타낸 바와 같이, 본 발명에서 제안하는 합금조성, 특히 강 내의 Si 함량이 0.7% 이하이고, 소둔 열처리 과정에서 제1 열처리 공정을 식(1)을 만족하는 조건으로 행해진 발명예 1 내지 4는 Si의 농화가 최소화되어 도금 밀착성이 향상된 결과를 보였다.As shown in Table 1, the alloy composition proposed in the present invention, especially the Si content in the steel, is 0.7% or less, and the first heat treatment process in the annealing heat treatment process is performed under conditions that satisfy Equation (1). 4 showed that the concentration of Si was minimized and plating adhesion was improved.

반면, 강 중 Si 함량이 0.7%를 초과하는 비교예 1과 비교예 2는 소둔 열처리 과정에서 Si 표면 농화가 억제되지 못하였으며, Fe 산화층 직하에 형성된 Si, Mn 산화물이 층(layer) 형태로 형성됨에 따라 도금 박리가 유발되었다.On the other hand, in Comparative Examples 1 and 2, where the Si content in the steel exceeds 0.7%, Si surface enrichment was not suppressed during the annealing heat treatment, and Si and Mn oxides formed directly under the Fe oxide layer were formed in the form of a layer. As a result, plating peeling was caused.

비교예 3 및 4의 경우, Fe 산화층이 형성되는 과정에서 산화층과 강판의 계면에 층(layer) 형태의 Si, Mn 산화물이 형성되고, 이 산화물이 베리어(barrier) 역할을 함에 의해 Fe 산화층의 성장을 억제시켰다. 그 결과, 도금 밀착성이 열화되었다.In the case of Comparative Examples 3 and 4, in the process of forming the Fe oxide layer, Si and Mn oxides in the form of a layer are formed at the interface between the oxide layer and the steel sheet, and these oxides act as a barrier, leading to the growth of the Fe oxide layer. was suppressed. As a result, plating adhesion deteriorated.

한편, 제1 열처리시 식(1)을 만족하지 못하는 비교예 5 내지 7은 제1 열처리 과정에서 Fe 산화물이 상당히 얇게 형성되었으며, 이로 인해 강 표면으로 과잉의 Si, Mn이 농화되어 표면 산화물을 형성함에 따라 도금 박리가 발생하였다.On the other hand, in Comparative Examples 5 to 7, which did not satisfy Equation (1) during the first heat treatment, Fe oxide was formed quite thinly during the first heat treatment, and as a result, excess Si and Mn were concentrated on the steel surface to form surface oxides. As a result, plating peeling occurred.

도 1은 GDS 측정 결과로서, 표면으로부터 두께 방향으로 각 원소별 분포를 측정한 depth profile이며, Si 농도의 피크(peak) 여부를 확인할 수 있다.Figure 1 is a GDS measurement result, which is a depth profile measuring the distribution of each element in the thickness direction from the surface, and it is possible to check whether the Si concentration peaks.

도 1의 (a)는 발명예 1의 결과, 도 1의 (b)는 비교예 1의 결과이다. 비교예 1의 경우 표면으로부터 두께 0.1㎛ 깊이 내에서 Si의 농도가 대략 40%까지 높아지는 반면, 발명예 1은 대략 10% 이하로 유지됨을 확인할 수 있다.Figure 1(a) is the result of Invention Example 1, and Figure 1(b) is the result of Comparative Example 1. In the case of Comparative Example 1, it can be seen that the concentration of Si increases to approximately 40% within a depth of 0.1 μm from the surface, while in Inventive Example 1, it is maintained at approximately 10% or less.

도 2는 용융아연도금강판의 도금층과 소지강판의 계면 직하의 원소별 분포를 TEM-EDS로 측정한 결과를 나타낸 것이다.Figure 2 shows the results of measuring the distribution of each element directly below the interface between the plating layer of the hot-dip galvanized steel sheet and the base steel sheet using TEM-EDS.

도 2의 (a)는 발명예 1의 결과, 도 2의 (b)는 비교예 1의 결과이다. 비교예 1의 경우 계면 직하에서 Mn과 Si이 압연 방향에 평행하게 연속적으로 존재하는 것을 확인할 수 있다. 이는, 계면 직하에 Mn, Si 산화물이 연속적으로 형성되어 있음을 의미한다. 이와 달리, 발명예 1는 계면 직하에서 Si과 Mn이 단속적으로 존재함을 확인할 수 있으며, 이는 비교예 1 대비 강 내의 Si, Mn의 표면 확산이 억제되었음을 의미한다.Figure 2(a) is the result of Invention Example 1, and Figure 2(b) is the result of Comparative Example 1. In the case of Comparative Example 1, it can be confirmed that Mn and Si exist continuously parallel to the rolling direction directly below the interface. This means that Mn and Si oxides are continuously formed directly below the interface. In contrast, in Inventive Example 1, it can be confirmed that Si and Mn intermittently exist directly below the interface, which means that the surface diffusion of Si and Mn in the steel is suppressed compared to Comparative Example 1.

Claims (8)

중량%로 실리콘(Si)을 0.7% 이하(0% 제외)로 함유하는 소지강판; 및 상기 소지강판의 적어도 일면에 형성된 용융아연계 도금층을 포함하는 용융아연도금강판으로서,
상기 소지강판과 도금층의 계면으로부터 상기 소지강판의 두께 방향 0.1㎛ 깊이까지 측정된 GDS 프로파일의 Si 농도 적분치가 0.1%·㎛ 이하(0은 제외)인 것을 특징으로 하는 도금 밀착성이 우수한 고강도 용융아연도금강판.
A base steel sheet containing 0.7% or less (excluding 0%) of silicon (Si) by weight; And a hot-dip galvanized steel sheet including a hot-dip zinc-based plating layer formed on at least one surface of the base steel sheet,
High-strength hot-dip galvanizing with excellent plating adhesion, characterized in that the Si concentration integral value of the GDS profile measured from the interface between the base steel sheet and the plating layer to a depth of 0.1㎛ in the thickness direction of the base steel sheet is 0.1%·㎛ or less (excluding 0). Steel plate.
제 1항에 있어서,
상기 소지강판과 도금층의 계면으로부터 상기 소지강판의 두께 방향 0.1㎛ 깊이까지 측정된 GDS 프로파일에서 Si 원소의 피크(peak) 최대 농도가 2% 이하(0은 제외)인 도금 밀착성이 우수한 고강도 용융아연도금강판.
According to clause 1,
High-strength hot-dip galvanizing with excellent plating adhesion with a peak maximum concentration of Si element of 2% or less (excluding 0) in the GDS profile measured from the interface between the base steel sheet and the plating layer to a depth of 0.1㎛ in the thickness direction of the base steel sheet. Steel plate.
제 1항에 있어서,
상기 소지강판은 중량%로, 탄소(C): 0.05~0.30%, 망간(Mn): 1.0~3.0%, 인(P): 0.10% 이하, 황(S): 0.01% 이하, 알루미늄(Al): 0.01~0.1%, 질소(N): 0.008% 이하, 잔부 Fe 및 불가피한 불순물을 더 포함하는 것인 도금 밀착성이 우수한 고강도 용융아연도금강판.
According to clause 1,
The base steel plate contains, in weight percent, carbon (C): 0.05 to 0.30%, manganese (Mn): 1.0 to 3.0%, phosphorus (P): 0.10% or less, sulfur (S): 0.01% or less, and aluminum (Al). : 0.01~0.1%, nitrogen (N): 0.008% or less, high-strength hot-dip galvanized steel sheet with excellent plating adhesion, further containing the remaining Fe and inevitable impurities.
제 1항에 있어서,
상기 소지강판은 두께 1.0~1.8mm의 냉연강판인 도금 밀착성이 우수한 고강도 용융아연도금강판.
According to clause 1,
The base steel sheet is a high-strength hot-dip galvanized steel sheet with excellent plating adhesion, which is a cold-rolled steel sheet with a thickness of 1.0 to 1.8 mm.
중량%로 실리콘(Si)을 0.7% 이하(0% 제외)로 함유하는 소지강판으로 냉연강판을 준비하는 단계; 상기 냉연강판을 소둔 열처리하는 단계; 및 상기 소둔 열처리된 냉연강판을 용융아연도금욕에 침지하여 용융아연도금강판을 제조하는 단계를 포함하며,
상기 소둔 열처리하는 단계는, 상기 냉연강판이 장입된 소둔로 내에 산소를 공급하면서 550~700℃까지 가열하는 제1 열처리 단계 및 질소 환원 분위기에서 700~850℃까지 가열하는 제2 열처리 단계로 이루어지고,
상기 제1 열처리 단계에서 Fe 산화층이 형성되며, 하기 식(1)로 계산되는 Fe 산화층의 두께가 50~250nm가 되도록 산소농도(ppm), 산소공급온도(℃) 및 라인스피드(L/S, mpm)를 제어하는 것을 특징으로 하는 도금 밀착성이 우수한 고강도 용융아연도금강판의 제조방법.

식(1)
Fe 산화층의 두께(nm) = -26.5 + (0.08×산소농도(ppm)) + (0.11×산소공급 온도(℃)) - (0.28×L/S(mpm))
Preparing a cold-rolled steel sheet using a base steel sheet containing 0.7% or less (excluding 0%) of silicon (Si) by weight; Annealing and heat treating the cold rolled steel sheet; And manufacturing a hot-dip galvanized steel sheet by immersing the annealed heat-treated cold-rolled steel sheet in a hot-dip galvanizing bath,
The annealing heat treatment step consists of a first heat treatment step of heating to 550 to 700° C. while supplying oxygen into an annealing furnace into which the cold rolled steel sheet is charged, and a second heat treatment step of heating to 700 to 850° C. in a nitrogen reduction atmosphere. ,
In the first heat treatment step, an Fe oxide layer is formed, and the oxygen concentration (ppm), oxygen supply temperature (°C), and line speed (L/S, A method of manufacturing high-strength hot-dip galvanized steel sheet with excellent plating adhesion, characterized by controlling mpm).

Equation (1)
Thickness of Fe oxide layer (nm) = -26.5 + (0.08 × oxygen concentration (ppm)) + (0.11 × oxygen supply temperature (℃)) - (0.28 × L/S (mpm))
제 5항에 있어서,
상기 산소농도는 500~1000ppm, 상기 산소공급온도는 550~700℃, 상기 라인스피드는 60~100mpm으로 제어되는 것인 도금 밀착성이 우수한 고강도 용융아연도금강판의 제조방법.
According to clause 5,
A method of manufacturing a high-strength hot-dip galvanized steel sheet with excellent plating adhesion, wherein the oxygen concentration is controlled to 500 to 1000 ppm, the oxygen supply temperature is controlled to 550 to 700 ° C., and the line speed is controlled to 60 to 100 mpm.
제 5항에 있어서,
상기 소지강판은 중량%로, 탄소(C): 0.05~0.30%, 망간(Mn): 1.0~3.0%, 인(P): 0.10% 이하, 황(S): 0.01% 이하, 알루미늄(Al): 0.01~0.1%, 질소(N): 0.008% 이하, 잔부 Fe 및 불가피한 불순물을 더 포함하는 것인 도금 밀착성이 우수한 고강도 용융아연도금강판의 제조방법.
According to clause 5,
The steel sheet contains, in weight percent, carbon (C): 0.05 to 0.30%, manganese (Mn): 1.0 to 3.0%, phosphorus (P): 0.10% or less, sulfur (S): 0.01% or less, and aluminum (Al). : 0.01~0.1%, nitrogen (N): 0.008% or less, a method of manufacturing a high-strength hot-dip galvanized steel sheet with excellent plating adhesion, further containing the remaining Fe and unavoidable impurities.
제 5항에 있어서,
상기 용융아연도금강판을 제조하는 단계는 440~460℃의 용융아연도금욕에서 행하는 것인 도금 밀착성이 우수한 고강도 용융아연도금강판의 제조방법.
According to clause 5,
A method of manufacturing a high-strength hot-dip galvanized steel sheet with excellent plating adhesion, wherein the step of manufacturing the hot-dip galvanized steel sheet is performed in a hot-dip galvanizing bath at 440 to 460 ° C.
KR1020220064868A 2022-05-26 2022-05-26 Hot-dip galvanized steel sheet having excellent coating adhesion and method for manufacturing thereof KR20230165012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220064868A KR20230165012A (en) 2022-05-26 2022-05-26 Hot-dip galvanized steel sheet having excellent coating adhesion and method for manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220064868A KR20230165012A (en) 2022-05-26 2022-05-26 Hot-dip galvanized steel sheet having excellent coating adhesion and method for manufacturing thereof

Publications (1)

Publication Number Publication Date
KR20230165012A true KR20230165012A (en) 2023-12-05

Family

ID=89157026

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220064868A KR20230165012A (en) 2022-05-26 2022-05-26 Hot-dip galvanized steel sheet having excellent coating adhesion and method for manufacturing thereof

Country Status (1)

Country Link
KR (1) KR20230165012A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154856A (en) 2003-11-27 2005-06-16 Jfe Steel Kk Alloyed hot dip galvanized steel sheet, and method for manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154856A (en) 2003-11-27 2005-06-16 Jfe Steel Kk Alloyed hot dip galvanized steel sheet, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP5564432B2 (en) High-strength cold-rolled steel sheet excellent in workability, galvanized steel sheet, and manufacturing method thereof
KR101403111B1 (en) Galvanized steel sheet having excellent surface property and method for manufacturing the same
KR101482345B1 (en) High strength hot-rolled steel sheet, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet using the same and method for manufacturing thereof
JPS6047328B2 (en) Manufacturing method of bake-hardenable steel plate for ultra-deep drawing
JPS634899B2 (en)
WO2014017034A1 (en) Method for producing high-strength hot-dip galvanized steel sheets
JP3528716B2 (en) High-strength cold-rolled steel sheet, high-strength galvanized steel sheet excellent in surface properties and press formability, and manufacturing method thereof
JP4177477B2 (en) Manufacturing method of cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent room temperature aging resistance and panel characteristics
JP2800541B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing
KR20230165012A (en) Hot-dip galvanized steel sheet having excellent coating adhesion and method for manufacturing thereof
KR102077182B1 (en) Manufacturing method of ultra high strength coated cold steel sheet with good phosphating property
JP2001200337A (en) Cold rolled steel sheet excellent in baking hardenability and cold aging resistance and producing method therefor
JP3562410B2 (en) Bake-hardened galvannealed steel sheet with excellent workability and surface properties with small fluctuation in coil material and manufacturing method thereof
JPH0559970B2 (en)
JP3932737B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent deep drawability
KR102312511B1 (en) Cold rolled steel sheet having excellent bake hardenability and anti-aging properties at room temperature and method for manufacturing the same
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
KR20230093636A (en) Galvanized steel sheet having excellent coating adhesion and method for manufacturing thereof
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics
JP4313912B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent deep drawability
JP2549539B2 (en) Method for producing hot dip galvanized steel sheet for ultra deep drawing
JP3551105B2 (en) Cold rolled steel sheet with less material variation in coil and method of manufacturing the same
JP2006274288A (en) High strength hot dip galvanized steel sheet having excellent surface appearance
JP3762085B2 (en) Manufacturing method of soft cold-rolled steel sheet by direct feed rolling with excellent workability
JP2001172743A (en) Cold rolled steel sheet excellent in surface property and producing method therefor