JP3562410B2 - Bake-hardened galvannealed steel sheet with excellent workability and surface properties with small fluctuation in coil material and manufacturing method thereof - Google Patents

Bake-hardened galvannealed steel sheet with excellent workability and surface properties with small fluctuation in coil material and manufacturing method thereof Download PDF

Info

Publication number
JP3562410B2
JP3562410B2 JP32585599A JP32585599A JP3562410B2 JP 3562410 B2 JP3562410 B2 JP 3562410B2 JP 32585599 A JP32585599 A JP 32585599A JP 32585599 A JP32585599 A JP 32585599A JP 3562410 B2 JP3562410 B2 JP 3562410B2
Authority
JP
Japan
Prior art keywords
steel sheet
surface properties
less
bake
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32585599A
Other languages
Japanese (ja)
Other versions
JP2001140038A (en
Inventor
浩平 長谷川
俊明 占部
清治 中村
俊幸 廣瀬
毅 藤田
勝己 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP32585599A priority Critical patent/JP3562410B2/en
Publication of JP2001140038A publication Critical patent/JP2001140038A/en
Application granted granted Critical
Publication of JP3562410B2 publication Critical patent/JP3562410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は主として自動車用外板などに用いられる加工性に優れ、塗装焼付硬化性を有し、表面性状の優れた、TSが340MPa以上の合金化溶融亜鉛めっき鋼板およびその製造方法に係わる。
【0002】
【従来の技術】
BH鋼板は、自動車などの製造工程において行われる塗装焼付処理(170℃×20分程度の加熱工程)を利用し、固溶C,N原子によるひずみ時効現象によって部品強度が上昇する鋼板である。BH鋼板には低炭素系鋼種、極低炭素系鋼種があるが、低炭素系は伸びおよびr値が極低炭素系と比較すると劣る。そのため自動車外板などの深絞り部品の成形には一般的に極低炭素系BH鋼板が用いられている。BH鋼板は固溶C,N濃度を調整するためNb,Ti,Bなどの炭窒化物生成元素が添加される。また強度を調整するため、Mn,P,Siなどの固溶強化元素が適宜添加される。このような極低炭素鋼をベースとしたBH鋼板として、Nb添加(特公昭60−17004号公報)、Nb−Ti添加(特公昭61−45689号公報、特開平3−257124号公報、特開平5−230598号公報、特開平5−263184号公報)、Nb−Ti−B添加(特公昭60−47328号公報)、Nb−B添加(特公昭61−11296号公報)などの技術が開示されている。
【0003】
BH鋼板は主として自動車外板として使われるため、防錆性能およびプレス成形での潤滑性能の観点から合金化溶融亜鉛めっきが施されるが、一方、表面性状に対する要求レベルが高いので、めっきに厚さや色のむらがあると商品性を著しく損ねる。
【0004】
合金化溶融亜鉛めっき鋼板のめっき性に関する技術が特公平7−42547号公報に開示されており、鋼板中のMn,P,Siを調整する技術が示されている。ここではSiを低減し、Mn主体で強固溶化することにより合金化における生産効率を向上させた。
【0005】
しかしながら従来のBH鋼板の鋼成分をめっき原板とする合金化溶融亜鉛めっき鋼板は自動車外板としては必ずしも表面性状がよくなかった。溶融亜鉛めっき鋼板の表面性状を劣化させる要因としては種々考えられるが、上記公報ではSi添加に起因するめっき付着不良、P添加に起因する合金化不良に対する改善方法が提案されている。しかし、それでもなおめっき表面に線状の色むらがしばしば発生し、自動車外板としては表面性状が十分でなく歩留まりを下げる原因となっていた。またMnを主体とした固溶強化では添加元素のコストが高いため製造コストが高くなる問題があった。
【0006】
【発明が解決しようとする課題】
本発明は上記のような、めっき付着不良、合金化不良、線状むらによる表面品質不良のない表面性状の優れた自動車外板を安定的に製造することが可能なBH鋼板とその製造方法の提供を可能にするものである。
【0007】
【課題を解決するための手段】
本発明者らは合金化溶融亜鉛めっきの線状むらついて詳細に検討した結果、Mn濃度が線状欠陥の発生と関係があり、Mn濃度を低減することで、線状欠陥を抑制できることを見出した。また強度を調整する手段としてPを主体として固溶強化し、また一般に言われているPによる合金化不良を誘導加熱方式合金化処理炉を用いることにより生産性を害することなく、良好な表面性状を有する合金化溶融亜鉛めっき鋼板が製造できることを見出し、本発明に至った。さらにP主体での強化が可能になったため、製造コストの低減が可能となった。
【0008】
具体的には、その特徴とする構成は以下の通りである。
(1)質量%で、
C:0.0010〜0.0025%
Si:0.02%以下
Mn:0.10〜0.40%
P:0.04〜0.08%
S:0.003〜0.02%
SolAl:0.03〜0.1%
Nb:0.003〜0.02%かつ93/12C以下
N:0.0020%以下
を含有し、残部が実質的にFeおよび不可避的不純物からなることを特徴とする、コイル内材質変動が小さく、加工性と表面性状の優れた焼付硬化型合金化溶融亜鉛めっき鋼板。
(2)質量%で、Ti:0.001〜0.02%かつ48/32S+48/14N以下を含有することを特徴とする前記(1)記載の、コイル内材質変動が小さく、加工性と表面性状の優れた焼付硬化型合金化溶融亜鉛めっき鋼板。
(3)質量%で、B:0.0001〜0.0010%を含有することを特徴とする前記(1)または(2)記載の、コイル内材質変動が小さく、加工性と表面性状の優れた焼付硬化型合金化溶融亜鉛めっき鋼板。
(4)前記(1)〜(3)のいずれかに記載の成分組成の鋼を連続鋳造によりスラブ造塊後、熱間圧延、冷間圧延し、平均20℃/sec以上で昇温し800〜870℃に保持し、600℃以下まで5〜20℃/secで冷却し、溶融亜鉛めっき後、誘導加熱炉を用いて450〜580℃に加熱保持後、100℃以下まで冷却した後1.0〜2.0%の調質圧延を施すことを特徴とする、コイル内材質変動が小さく、加工性と表面性状の優れた焼付硬化型合金化溶融亜鉛めっき鋼板の製造方法。
【0009】
【発明の実施の形態】
次に個々の構成要件の作用および数値限定理由について述べる。
まず鋼中成分について説明する。
【0010】
C:Cは固溶Cまたは炭化物として鋼板中に存在する。このうち固溶CはBH性を担う。また炭化物は焼鈍時の結晶粒成長を阻害し、炭化物量が多くなるとYPが高くなり、調質圧延でのひずみ分布が不均一となり、その結果耐常温時効性が劣化する。従って、BH鋼板のBH量制御と耐常温時効性を両立させるためにはC量の制御が極めて重要である。Cが0.0010%未満では大部分が炭化物として析出し、BH量が不足する。一方C濃度が0.0025%を超える析出物が多くなり機械特性が優れないばかりか、耐常温時効性が劣化する。従ってC濃度は0.0010%〜0.0025%にする必要がある。さらに耐常温時効性を改善するためにはC濃度を0.0020%以下にすることが望ましい。
【0011】
Si:Siは固溶強化元素として添加される。強度を適当に調整するため適宜添加してよい。しかし0.02%を超えると溶融めっきの付着不良のため表面性状が劣化するため、0.02%以下とする必要がある。
【0012】
Mn:MnはMnSを形成しSによる熱間延性の低下を抑制する目的および強度調整の目的で添加される。しかしながら鋼中Mnは合金化溶融亜鉛めっき層に線状の色むらを発生させる。そのメカニズムの詳細は不明であるが、鋳造組織に起因してMn濃度にばらつきがあり、熱延炉加熱時にこの鋼中Mnが選択酸化される。こうして生成されたMnOの不均一分布がめっきの線状の色むらの原因となっていると考えられる。Mn濃度が0.40%を超えると、表面欠陥の発生が顕著となる。一方0.10%未満ではMnS析出によるSの無害化効果が十分でない。従ってMn濃度は0.10〜0.40%とする必要がある。
【0013】
P:Pはr値向上の目的および固溶強化元素として添加される。0.04%未満では強度およびr値の向上効果が不十分である。一方0.08%を超えると誘導加熱炉を用いた合金化処理を行っても合金化が不十分となり易い。従ってP濃度は0.04〜0.08%とする必要がある。
【0014】
S:Sは不純物元素であり、鋼板の成形性を劣化させるので製鋼工程で低減する必要がある。0.02%を超えると延性劣化の影響が顕著である。一方0.003%未満に低減しても材質向上効果が得られないばかりか製造コストが極めて上昇する。従ってS濃度は0.003〜0.02%とする。
【0015】
Al:AlはNを無害化するために非常に重要な元素である。Alは、Nを熱延後および焼鈍中にAlNとして析出させる働きがある。Al濃度が0.03%未満ではNをすべて析出させることができず、そのため残留した固溶Nがひずみ時効により成形前に常温時効による材質劣化をもたらし、極めて有害である。一方0.1%を超えるとAlN析出によるNの無害化効果は飽和し、亜鉛めっきの表面性状が劣化する。従ってAl濃度は0.03〜0.1%とする必要がある。
【0016】
Nb:Nbは固溶C濃度を最適にかつ安定的に制御する目的で添加される。Nbが0.003%未満ではこの効果が不十分である。一方0.02%または93/12Cを超えて添加するとCの大部分がNbCとして析出し、固溶Cが少なくなるためBH量が不十分となる。従って、Nb濃度は0.003〜0.02%かつ93/12C以下とする必要がある。
【0017】
N:Nはこの発明の重要な構成要件のひとつである。NはCと比較して拡散が早いため、常温時効に対して有害であると考えられる。そのため一般にAl,Ti,Bなどの窒化物生成元素を添加して固溶Nを低減する。しかし窒化物としても今度は窒化物そのものが材質劣化、コイル内の材質ばらつきをもたらす。このような材質劣化はN濃度が0.0020%を超えると顕著となる。従ってN濃度は0.0020%以下とする必要がある。0.0015%以下でさらにコイル内の材質変動が低下するので望ましくは0.0015%とする必要がある。さらに望ましくは0.0010%以下とする必要がある。
【0018】
Ti:Tiは鋼中のN,SをTiS、TiS、TiCSとして析出することにより、さらなるr値の向上のために必要に応じて添加される。0.001%未満ではその効果がなく、48/32S+48/14Nを超えて添加すると、TiCが生成し、BH量が低下する。さらに0.02%を超えると亜鉛めっき鋼板の表面性状が劣化する。従って添加する場合は0.001〜0.02%かつ48/32S+48/14N以下とする必要がある。
【0019】
B:Bは粒界に偏析し、2次加工脆性を抑制する。そのため加工度の高く、使用温度が低い場合については必要に応じて添加する。0.0001%未満ではその効果がなく、0.0010%以上ではr値が極めて劣化するので、添加する場合は0.0001〜0.0010%とする必要がある。
【0020】
次に製造方法について説明する。
【0021】
製鋼工程において、本発明範囲内に成分調整後、連続鋳造によりスラブを作製する。この時BH鋼板はC,N含有量の製品の材質、表面品質への影響が極めて大きいため、転炉での脱炭工程の前に脱珪、脱燐工程を行い、製品レベルまでSi,P濃度を低減させておくことが望ましい。
【0022】
鋳造スラブはそのまま、または再加熱後熱間圧延を行う。再加熱温度は表面性状を向上させるため1250℃以下で行うことが望ましい。熱間圧延はAr以上920℃未満で仕上げることが望ましい。Ar未満では鋼板表層に粗大粒を発生し、r値が劣化し、920℃以上では冷却中に結晶粒が成長し、r値を劣化させるためである。こうして仕上られた熱延板は20℃/sec以上で700℃以下まで冷却されることが望ましい。これは冷却中のフェライトの粒成長を抑制することが目的で20℃/sec未満ではその効果が少ない。700℃以下では実質的に粒成長は起こらない。熱延板の巻き取りは640〜700℃で行うことが望ましい。640℃未満では熱延コイル冷却中の析出物の生成および成長が十分おこらないため材質劣化およびコイル内材質変動の原因となる。700℃を超えるとスケールが成長し、鋼板表面性状を劣化させる。
【0023】
熱延鋼板を酸洗により脱スケールし、冷間圧延を行う。冷間圧延率は65〜83%が望ましい。65%以下では平均r値が低く、83%を超えるとΔrが高くなるためである。
【0024】
冷間圧延板を平均20℃/sec以上で昇温して加熱し、800〜870℃に保持する。平均昇温速度が20℃/sec未満では良好な集合組織が成長せず、r値が低くなる。800℃未満ではBH量が不十分となる。870℃以上では結晶粒径が大きくなりすぎ、プレス成形すると肌荒れ欠陥が発生する。また固溶C濃度が多くなりすぎ耐常温時効性が劣化する。
【0025】
800〜870℃の高温保持後600℃以下まで5〜20℃/secで冷却する。600℃までにCをNbCとして一部析出させる。5℃/sec未満では固溶Cが少なくなりすぎ、BH量が不足する。20℃/sec以上では固溶Cが多くなり、耐常温時効性が劣化する。
【0026】
次いで、溶融亜鉛めっき後、誘導加熱炉を用いて450〜580℃の加熱保持による合金化処理を行う。本発明に係る表面性状に優れた溶融亜鉛めっき鋼板を製造するためには誘導加熱方式の合金化処理が必須である。固溶強化をP主体として行った本発明鋼板では、ガス加熱方式の合金化処理炉では合金化が困難である。誘導加熱方式の合金化炉が優れているポイントとしては誘導加熱により鋼板を直接加熱することにより鋼板、めっき界面での反応を促進させることが可能であること、また短時間で鋼板を所望の温度まで加熱することが可能であることが考えられる。さらに誘導加熱方式の合金化炉はガス加熱方式と比較すると、合金化処理時の鋼板温度が同じならば雰囲気温度が低く、その後の冷却が安定して行われるため、固溶C量が安定し、BH量が安定化する効果がある。合金化温度が450℃未満では合金化が不十分になりやすい。一方、580℃を超えると鋼板、めっき界面で合金化が過剰となり、脆いΓ相が生成するので好ましくない。
【0027】
100℃以下まで冷却後調質圧延率が1.0〜2.0%の調質圧延をする。100℃を超える温度で調質圧延をすると動的ひずみ時効および巻き取り後の時効により耐常温時効性が劣化する。調質圧延率が1.0%未満では調質圧延の効果が十分でなく、耐常温時効性が劣化する。2.0%を超えると調質圧延の効果が飽和するばかりか、加工硬化により成形性が劣化する。
【0028】
【実施例】
次に実施例について述べる。
(実施例1)
銑鉄を脱珪、脱燐工程、脱炭工程、RH脱ガス工程からなる製鋼工程により成分調整し、連続鋳造によりスラブとした。直接または再加熱により熱間圧延を開始した。熱延開始温度は1170〜1220℃であった。熱間圧延は板厚2.8mmまで行い、890〜910℃で完了した。その後平均冷却速度約25℃/secで640℃まで冷却した後、巻き取った。熱延鋼板を酸洗後0.7mmまで冷間圧延を行った。連続焼鈍・溶融亜鉛めっきラインを用いて、焼鈍および合金化溶融亜鉛めっきを行った。この時約25℃/secで昇温し850℃で約60sec保持した。保持温度から600℃までの平均冷却速度は9〜15℃/secであった。さらに連続ラインで溶融亜鉛めっき後、誘導加熱方式の合金化炉を用いて合金化処理を行った。めっき浴中のAl濃度は0.12〜0.13%、めっき付着量は片面45g/m、合金化処理温度は500〜550℃でめっき中のFe濃度を10%に調整した。調質圧延は圧延率1.4%で行った。この時の鋼板温度は約80℃であった。
【0029】
こうして製造した鋼板の成分を表1に示す。また鋼板の特性評価結果を表2に示す。引張試験はJIS5号型引張試験片をコイル長手方向中央の材質安定部分(M部)から圧延方向に対して直角方向で採取したものを用いて実施した。r値測定はめっき層の影響を除去するため塩酸により酸洗後実施した。また3方向のr値測定結果から平均r値:mean−r=(r+2×r45+r90)/4を計算した。ここでr:圧延方向と平行な方向のr値、r45:圧延方向と45度方向のr値、r90:圧延方向と直角方向のr値である。BH量は2%の予ひずみを行ったときの応力と、そこで除荷重して170℃で20分間オイルバスで加熱保持後、再荷重した際のYPの変化量を評価した。常温時効特性は38℃の恒温槽で180日保持後の降伏伸び(YPEl)で評価した。プレス成形時のストレッチャーストレインマークの発生を防止するためYPElを0.3%以下とする必要がある。またコイル内の材質変動を評価するためコイルトップ部(T部)から引張試験片を採取し、M部との差をΔTS(=TS(T部)−TS(M部))を測定して、コイル内の材質変動の指標とした。表面性状の評価方法として、めっきの色むらなど表面性状の良否を目視でA(優)〜D(劣)ランクの4段階で判定した。
【0030】
【表1】

Figure 0003562410
【0031】
【表2】
Figure 0003562410
【0032】
本発明例の鋼番号1〜6は、TSが340MPa以上、BH量が30MPa以上、38℃×180日時効後の降伏伸び(YPEl180)が0.3%以下、コイル内の材質変動が10MPa以下、r値が1.70以上、めっき表面の表面性状は良好であった。
【0033】
これに対して、本発明範囲外の比較例ではいずれかの特性が自動車外板用のBH鋼板として適さない。例えば鋼番号7はC濃度が低すぎるためBH量が不十分である。鋼番号8はC濃度が高すぎるため耐常温時効性がよくない。鋼番号9はSi濃度が高すぎるため、めっきの付着不良が発生し表面性状がよくない。鋼番号10、11はMn濃度が高すぎるため、めっき表面に線状の欠陥が発生した。鋼番号12はP濃度が低いため強度が不十分であるばかりかr値が低い。鋼番号13はP濃度が高すぎるため、合金化不良が発生し、めっき表面性状がよくない。さらにP濃度が高すぎるため伸びが劣化した。鋼番号14はAl濃度が低いため熱延巻き取り後のAlNの析出が不十分となり、その後微細に析出するためコイル内の材質変動が大きくなった。鋼番号15、16はN濃度が高すぎるためコイル内の材質変動が大きい。鋼番号17はNb濃度が高すぎるためNbCとしてC原子の大部分が析出してしまったためBH量が不十分である。鋼番号18はTi濃度が高く、TiC析出により固溶Cが失われたため、BH量が不十分である。また鋼板の表面性状も劣化した。鋼番号19はBが高すぎるため、伸び、r値が低く、さらに耐常温時効性もよくない。
(実施例2)
銑鉄を脱珪、脱燐工程、脱炭工程、RH脱ガス工程からなる製鋼工程により成分調整し、連続鋳造によりスラブとした。直接または再加熱により熱間圧延を開始した。熱延開始温度は1170〜1220℃であった。熱間圧延は板厚2.8mmまで行い、890〜910℃で完了した。その後平均冷却速度約25℃/secで640℃まで冷却した後、巻き取った。熱延鋼板を酸洗後0.7mmまで冷間圧延を行った。こうして作製した表1記載の鋼番号3および11の冷延鋼板を実験室で合金化挙動を調査した。表3に試験条件および調査結果を示す。
【0034】
【表3】
Figure 0003562410
【0035】
850℃の不活性ガス雰囲気中で90sec焼鈍後、浴中Al濃度0.12%の溶融亜鉛に浸漬してめっきを施した。付着量は片面約45g/mに調整した。これらの鋼板を誘導加熱またはガス加熱方式で550℃で合金化処理を行い、Fe濃度が10%に達する合金化時間を測定した。また表面性状を線状の色むらの発生の有無の観点から評価した。
【0036】
記号1の結果より、本発明鋼を誘導加熱で合金化した場合にのみ短時間での合金化、良好な表面特性が両立する。これに対して記号2に示すガス加熱では合金化に要する時間が長いため生産性が低下する。記号3,4の製造条件では合金化挙動は問題ないが、Mnが高いためにめっき表面に線状の色むらが発生した。
【0037】
【発明の効果】
自動車の軽量化に対するニーズを背景としてBH鋼板は自動車外板用として益々適用例が増加している。このような情勢の中、表面性状が安定して優れ、コイル内の材質安定性、耐常温時効性に優れた、ユーザーが使いやすい鋼板が求められている。本発明によれば、このような世の中のニーズに合致するBH鋼板を安定して提供することが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alloyed hot-dip galvanized steel sheet having an excellent workability, paint bake hardenability, excellent surface properties, and TS of 340 MPa or more, and a method for producing the same.
[0002]
[Prior art]
The BH steel sheet is a steel sheet whose component strength is increased by a strain aging phenomenon caused by solid solution C and N atoms using a coating baking process (a heating process of about 170 ° C. × 20 minutes) performed in a manufacturing process of an automobile or the like. The BH steel sheet includes a low carbon steel type and an extremely low carbon steel type, but the low carbon type is inferior to the extremely low carbon type in elongation and r value. For this reason, extremely low carbon BH steel sheets are generally used for forming deep-drawn parts such as automobile outer plates. BH steel sheet is added with carbonitride-forming elements such as Nb, Ti, and B to adjust the solute C and N concentration. In order to adjust the strength, solid solution strengthening elements such as Mn, P, and Si are appropriately added. As the BH steel sheet based on such an ultra-low carbon steel, Nb addition (Japanese Patent Publication No. 60-17004), Nb-Ti addition (Japanese Patent Publication No. 61-45689, Japanese Patent Laid-Open No. 3-257124, Japanese Patent Laid-Open No. Hei 3) No. 5-259898, JP-A-5-263184), addition of Nb-Ti-B (Japanese Patent Publication No. 60-47328), addition of Nb-B (Japanese Patent Publication No. 61-11296), and the like are disclosed. ing.
[0003]
Since BH steel sheet is mainly used as an automobile outer plate, alloyed hot dip galvanizing is applied from the viewpoint of rust prevention performance and lubrication performance in press molding. If the pods have uneven color, the merchantability is significantly impaired.
[0004]
Japanese Patent Publication No. 7-42547 discloses a technique related to the plating properties of an alloyed hot-dip galvanized steel sheet, and shows a technique for adjusting Mn, P, and Si in the steel sheet. Here, the production efficiency in alloying was improved by reducing Si and solidifying with Mn as the main component.
[0005]
However, the alloyed hot-dip galvanized steel sheet using the steel component of the conventional BH steel sheet as the plating base sheet does not necessarily have good surface properties as an automobile outer sheet. Various factors can be considered as factors causing deterioration of the surface properties of the hot-dip galvanized steel sheet. However, the above publication proposes an improvement method for plating adhesion failure caused by Si addition and alloying failure caused by P addition. However, even in this case, linear color irregularities often occur on the plating surface, and the surface properties are not sufficient as an automobile outer plate, which causes a decrease in yield. In addition, solid solution strengthening mainly composed of Mn has a problem that the cost of the additive element is high and the manufacturing cost becomes high.
[0006]
[Problems to be solved by the invention]
The present invention provides a BH steel sheet and a method for producing the same, which can stably produce an automobile outer plate having excellent surface properties free from plating adhesion failure, alloying failure, and surface quality failure due to linear unevenness. It is possible to provide.
[0007]
[Means for Solving the Problems]
As a result of detailed investigations on the linear irregularity of alloyed hot dip galvanizing, the present inventors have found that the Mn concentration is related to the occurrence of linear defects, and that the linear defects can be suppressed by reducing the Mn concentration. It was. Further, as a means for adjusting the strength, solid solution strengthening is mainly performed with P, and a generally good surface property can be obtained without impairing productivity by using an induction heating type alloying treatment furnace to prevent the alloying failure caused by P, which is generally said. It has been found that an alloyed hot-dip galvanized steel sheet having the following can be produced, and has led to the present invention. In addition, since it is possible to strengthen the process mainly with P, manufacturing costs can be reduced.
[0008]
Specifically, the characteristic configuration is as follows.
(1) In mass% ,
C: 0.0010 to 0.0025%
Si: 0.02% or less
Mn: 0.10 to 0.40%
P: 0.04-0.08%
S: 0.003-0.02%
SolAl: 0.03-0.1%
Nb: 0.003-0.02% and 93 / 12C or less
N: 0.0020% or less, the balance being substantially composed of Fe and unavoidable impurities , small variation in coil material , bake hardened alloyed hot dip galvanized with excellent workability and surface properties steel sheet.
(2) By mass% , Ti: 0.001 to 0.02% and 48 / 32S + 48 / 14N or less, characterized in that the material variation in the coil is small, the workability and the surface properties Excellent bake hardening type alloyed hot dip galvanized steel sheet.
(3) Bake-hardening type as described in the above (1) or (2), characterized by containing B: 0.0001 to 0.0010% by mass% , with small fluctuations in the material in the coil, and excellent workability and surface properties Alloyed hot-dip galvanized steel sheet.
(4) The steel having the composition described in any one of (1) to (3) above is slab ingot by continuous casting, then hot-rolled and cold-rolled. Hold at ~ 870 ° C, cool to 600 ° C or lower at 5-20 ° C / sec, after hot dip galvanizing, heat and hold at 450-580 ° C using an induction heating furnace, then cool to 100 ° C or lower and 1.0- A method for producing a bake hardened alloyed hot-dip galvanized steel sheet, characterized by performing 2.0% temper rolling, having small fluctuations in the material in the coil, and excellent workability and surface properties.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the action of each component and the reason for limiting the numerical value will be described.
First, components in steel will be described.
[0010]
C: C exists in the steel sheet as solute C or carbide. Among these, solid solution C bears BH property. Further, carbide inhibits crystal grain growth during annealing, and as the amount of carbide increases, YP increases and strain distribution in temper rolling becomes non-uniform, resulting in deterioration of normal temperature aging resistance. Therefore, in order to achieve both BH amount control and normal temperature aging resistance of the BH steel sheet, control of the C amount is extremely important. If C is less than 0.0010%, most of it is precipitated as carbides, and the amount of BH is insufficient. On the other hand, the amount of precipitates with a C concentration exceeding 0.0025% increases, resulting in not only excellent mechanical properties, but also deterioration in normal temperature aging resistance. Therefore, the C concentration needs to be 0.0010% to 0.0025%. Furthermore, in order to improve the normal temperature aging resistance, it is desirable that the C concentration is 0.0020% or less.
[0011]
Si: Si is added as a solid solution strengthening element. You may add suitably in order to adjust intensity | strength suitably. However, if it exceeds 0.02%, surface properties deteriorate due to poor adhesion of hot-dip plating, so it is necessary to make it 0.02% or less.
[0012]
Mn: Mn is added for the purpose of forming MnS, suppressing the decrease in hot ductility due to S, and adjusting the strength. However, Mn in steel generates linear color unevenness in the alloyed hot-dip galvanized layer. Although the details of the mechanism are unknown, Mn concentration varies due to the cast structure, and Mn in the steel is selectively oxidized during heating in the hot rolling furnace. It is considered that the non-uniform distribution of MnO generated in this way causes linear color unevenness of plating. When the Mn concentration exceeds 0.40%, the occurrence of surface defects becomes significant. On the other hand, if it is less than 0.10%, the effect of detoxifying S by MnS precipitation is not sufficient. Therefore, the Mn concentration needs to be 0.10 to 0.40%.
[0013]
P: P is added for the purpose of improving the r value and as a solid solution strengthening element. If it is less than 0.04%, the effect of improving the strength and the r value is insufficient. On the other hand, if it exceeds 0.08%, alloying tends to be insufficient even when alloying using an induction heating furnace is performed. Therefore, the P concentration needs to be 0.04 to 0.08%.
[0014]
S: S is an impurity element and deteriorates the formability of the steel sheet, so it must be reduced in the steel making process. If it exceeds 0.02%, the effect of ductility deterioration is significant. On the other hand, even if the content is reduced to less than 0.003%, not only the material improvement effect cannot be obtained, but also the production cost is extremely increased. Accordingly, the S concentration is set to 0.003 to 0.02%.
[0015]
Al: Al is a very important element for detoxifying N. Al serves to precipitate N as AlN after hot rolling and during annealing. If the Al concentration is less than 0.03%, it is not possible to precipitate all N. Therefore, the remaining solid solution N causes material deterioration due to normal temperature aging before molding due to strain aging, which is extremely harmful. On the other hand, if it exceeds 0.1%, the detoxification effect of N by AlN precipitation is saturated, and the surface properties of the galvanizing deteriorate. Therefore, the Al concentration needs to be 0.03 to 0.1%.
[0016]
Nb: Nb is added for the purpose of optimally and stably controlling the solid solution C concentration. If Nb is less than 0.003%, this effect is insufficient. On the other hand, if added over 0.02% or 93 / 12C, most of C precipitates as NbC, and the amount of BH becomes insufficient because solid solution C decreases. Therefore, the Nb concentration needs to be 0.003 to 0.02% and 93 / 12C or less.
[0017]
N: N is one of the important components of the present invention. N is considered to be harmful to normal temperature aging because it diffuses faster than C. Therefore, in general, a nitriding element such as Al, Ti, or B is added to reduce solute N. However, the nitride itself also causes material deterioration and material variation in the coil as the nitride. Such material deterioration becomes significant when the N concentration exceeds 0.0020%. Therefore, the N concentration needs to be 0.0020% or less. If it is 0.0015% or less, the material fluctuation in the coil is further reduced, so 0.0015% is desirable. More desirably, the content should be 0.0010% or less.
[0018]
Ti: Ti is added as necessary to further improve the r value by precipitating N and S in the steel as TiS, TiS, and TiCS. If it is less than 0.001%, there is no effect, and if it is added in excess of 48 / 32S + 48 / 14N, TiC is generated and the amount of BH decreases. If it exceeds 0.02%, the surface properties of the galvanized steel sheet deteriorate. Therefore, when it adds, it is necessary to make it 0.001-0.02% and 48 / 32S + 48 / 14N or less.
[0019]
B: B segregates at the grain boundary and suppresses secondary processing embrittlement. Therefore, when the degree of processing is high and the use temperature is low, it is added as necessary. If it is less than 0.0001%, the effect is not obtained, and if it is 0.0010% or more, the r value is extremely deteriorated. Therefore, when it is added, it is necessary to make it 0.0001 to 0.0010%.
[0020]
Next, a manufacturing method will be described.
[0021]
In the steel making process, after adjusting the components within the scope of the present invention, a slab is produced by continuous casting. At this time, the BH steel sheet has an extremely large influence on the material quality and surface quality of the C and N content. Therefore, desiliconization and dephosphorization processes are performed before the decarburization process in the converter, and Si and P are obtained up to the product level. It is desirable to reduce the concentration.
[0022]
The cast slab is subjected to hot rolling as it is or after reheating. The reheating temperature is desirably 1250 ° C. or lower in order to improve the surface properties. The hot rolling is preferably finished at Ar 3 or more and less than 920 ° C. If it is less than Ar 3 , coarse grains are generated on the surface layer of the steel sheet and the r value deteriorates, and if it is 920 ° C. or higher, crystal grains grow during cooling and deteriorate the r value. The hot-rolled sheet thus finished is desirably cooled to 20 ° C./sec or higher and 700 ° C. or lower. This is intended to suppress the grain growth of ferrite during cooling, and its effect is small at less than 20 ° C./sec. Substantially no grain growth occurs below 700 ° C. It is desirable to wind the hot-rolled sheet at 640 to 700 ° C. If the temperature is lower than 640 ° C., the formation and growth of precipitates during cooling of the hot-rolled coil do not sufficiently occur, which causes material deterioration and material variation in the coil. When it exceeds 700 ° C., the scale grows and the steel sheet surface properties are deteriorated.
[0023]
The hot-rolled steel sheet is descaled by pickling and cold-rolled. The cold rolling rate is preferably 65 to 83%. This is because the average r value is low below 65%, and Δr increases above 83%.
[0024]
The cold-rolled sheet is heated at an average temperature of 20 ° C./sec or more and heated to 800 to 870 ° C. When the average heating rate is less than 20 ° C./sec, a good texture does not grow and the r value becomes low. If it is less than 800 degreeC, the amount of BH will become inadequate. Above 870 ° C., the crystal grain size becomes too large, and rough press defects occur when press molding. Also, the solute C concentration becomes too high and the room temperature aging resistance deteriorates.
[0025]
After holding at a high temperature of 800 to 870 ° C., it is cooled to 600 ° C. or less at 5 to 20 ° C./sec. C is partially deposited as NbC by 600 ° C. If it is less than 5 ° C./sec, the solid solution C becomes too small, and the amount of BH is insufficient. At 20 ° C./sec or more, the amount of solid solution C increases, and the normal temperature aging resistance deteriorates.
[0026]
Next, after hot dip galvanization, alloying treatment is performed by heating and holding at 450 to 580 ° C. using an induction heating furnace. In order to produce a hot-dip galvanized steel sheet with excellent surface properties according to the present invention, an induction heating alloying treatment is essential. In the steel sheet of the present invention in which solid solution strengthening is mainly performed, alloying is difficult in a gas heating type alloying furnace. The advantages of induction heating type alloying furnaces are that it is possible to accelerate the reaction at the steel plate and plating interface by directly heating the steel plate by induction heating, and the steel plate can be heated to the desired temperature in a short time. It is conceivable that it can be heated up to Furthermore, in comparison with the gas heating method, the induction heating type alloying furnace has a lower atmospheric temperature if the steel plate temperature during the alloying process is the same, and the subsequent cooling is performed stably, so that the amount of dissolved C is stable. , BH content is stabilized. If the alloying temperature is less than 450 ° C., alloying tends to be insufficient. On the other hand, if it exceeds 580 ° C., alloying becomes excessive at the steel plate and plating interface, and a brittle Γ phase is generated, which is not preferable.
[0027]
After cooling to 100 ° C. or less, temper rolling is performed at a temper rolling ratio of 1.0 to 2.0%. When temper rolling is performed at a temperature exceeding 100 ° C., normal temperature aging resistance deteriorates due to dynamic strain aging and aging after winding. If the temper rolling rate is less than 1.0%, the effect of temper rolling is not sufficient, and the normal temperature aging resistance deteriorates. If it exceeds 2.0%, the effect of temper rolling will be saturated, and the formability will deteriorate due to work hardening.
[0028]
【Example】
Next, examples will be described.
Example 1
The components of pig iron were adjusted by a steel making process consisting of a desiliconization, a dephosphorization process, a decarburization process, and an RH degassing process, and a slab was formed by continuous casting. Hot rolling was started directly or by reheating. The hot rolling start temperature was 1170-1220 ° C. Hot rolling was performed to a plate thickness of 2.8 mm and completed at 890 to 910 ° C. Thereafter, the film was cooled to 640 ° C. at an average cooling rate of about 25 ° C./sec and then wound up. The hot-rolled steel sheet was cold-rolled to 0.7 mm after pickling. Annealing and galvannealing were performed using a continuous annealing and hot dip galvanizing line. At this time, the temperature was raised at about 25 ° C./sec and held at 850 ° C. for about 60 sec. The average cooling rate from the holding temperature to 600 ° C. was 9 to 15 ° C./sec. Further, after hot dip galvanizing on a continuous line, alloying treatment was performed using an induction heating type alloying furnace. The Al concentration in the plating bath was 0.12 to 0.13%, the amount of plating was 45 g / m 2 on one side, the alloying treatment temperature was 500 to 550 ° C., and the Fe concentration in the plating was adjusted to 10%. The temper rolling was performed at a rolling rate of 1.4%. The steel plate temperature at this time was about 80 ° C.
[0029]
Table 1 shows the components of the steel sheet thus manufactured. Table 2 shows the evaluation results of the characteristics of the steel sheet. The tensile test was performed using a JIS No. 5 type tensile test specimen taken from a material stable part (M part) in the center of the coil longitudinal direction in a direction perpendicular to the rolling direction. The r value was measured after pickling with hydrochloric acid to remove the influence of the plating layer. Further, an average r value: mean−r = (r 0 + 2 × r 45 + r 90 ) / 4 was calculated from the r value measurement results in three directions. Here, r 0 : r value in the direction parallel to the rolling direction, r 45 : r value in the rolling direction and 45 ° direction, r 90 : r value in the direction perpendicular to the rolling direction. The amount of BH was evaluated by the stress when 2% pre-strain was performed, and the amount of change in YP when the load was removed and heated in an oil bath at 170 ° C. for 20 minutes and then re-loaded. The room temperature aging characteristics were evaluated by the yield elongation (YPEl) after holding in a constant temperature bath at 38 ° C. for 180 days. In order to prevent the occurrence of stretcher strain marks during press molding, YPEl needs to be 0.3% or less. In addition, in order to evaluate the material variation in the coil, a tensile test piece is taken from the coil top part (T part), and the difference from the M part is measured by ΔTS (= TS (T part) −TS (M part)). It was used as an index of material fluctuation in the coil. As an evaluation method of the surface property, the quality of the surface property such as uneven color of the plating was visually judged in four stages of A (excellent) to D (inferior) rank.
[0030]
[Table 1]
Figure 0003562410
[0031]
[Table 2]
Figure 0003562410
[0032]
Steel Nos. 1 to 6 of the present invention examples have a TS of 340 MPa or more, a BH amount of 30 MPa or more, a 38 ° C. × 180 yield elongation after aging (YPEL180) of 0.3% or less, and a material variation in the coil of 10 MPa or less. The r value was 1.70 or more, and the surface properties of the plating surface were good.
[0033]
On the other hand, in the comparative example outside the scope of the present invention, any characteristic is not suitable as a BH steel sheet for an automobile outer sheet. For example, Steel No. 7 has an insufficient amount of BH because the C concentration is too low. Steel No. 8 has a high C concentration, so that the room temperature aging resistance is not good. Steel No. 9 has an excessively high Si concentration, resulting in poor plating adhesion and poor surface properties. Steel Nos. 10 and 11 had a Mn concentration that was too high, so that linear defects occurred on the plating surface. Steel No. 12 has a low P value, so that the strength is insufficient and the r value is low. Steel No. 13 has a P concentration that is too high, resulting in poor alloying and poor plating surface properties. Furthermore, elongation was degraded because the P concentration was too high. Steel No. 14 had a low Al concentration, so that the precipitation of AlN after hot-rolling was insufficient, and the material variation in the coil increased because it precipitated finely thereafter. Steel Nos. 15 and 16 have a large material variation in the coil because the N concentration is too high. In Steel No. 17, since the Nb concentration is too high, most of C atoms are precipitated as NbC, so that the amount of BH is insufficient. Steel No. 18 has a high Ti concentration, and solid solution C was lost due to TiC precipitation, so the amount of BH was insufficient. In addition, the surface properties of the steel sheet deteriorated. In Steel No. 19, since B is too high, elongation and r value are low, and furthermore, normal temperature aging resistance is not good.
(Example 2)
The components of pig iron were adjusted by a steel making process consisting of a desiliconization, a dephosphorization process, a decarburization process, and an RH degassing process, and a slab was formed by continuous casting. Hot rolling was started directly or by reheating. The hot rolling start temperature was 1170-1220 ° C. Hot rolling was performed to a plate thickness of 2.8 mm and completed at 890 to 910 ° C. Thereafter, the film was cooled to 640 ° C. at an average cooling rate of about 25 ° C./sec and then wound up. The hot-rolled steel sheet was cold-rolled to 0.7 mm after pickling. The alloying behavior of the cold-rolled steel plates with steel numbers 3 and 11 shown in Table 1 thus prepared was examined in a laboratory. Table 3 shows test conditions and survey results.
[0034]
[Table 3]
Figure 0003562410
[0035]
After annealing for 90 seconds in an inert gas atmosphere at 850 ° C., plating was performed by dipping in molten zinc having an Al concentration of 0.12% in the bath. The amount of adhesion was adjusted to about 45 g / m 2 on one side. These steel plates were alloyed by induction heating or gas heating at 550 ° C., and the alloying time until the Fe concentration reached 10% was measured. The surface properties were evaluated from the viewpoint of the occurrence of linear color unevenness.
[0036]
From the result of symbol 1, alloying in a short time and good surface properties are compatible only when the steel of the present invention is alloyed by induction heating. On the other hand, in the gas heating shown by the symbol 2, productivity is lowered because the time required for alloying is long. Although the alloying behavior is not a problem under the production conditions indicated by symbols 3 and 4, linear color unevenness occurred on the plating surface because of high Mn.
[0037]
【The invention's effect】
BH steel sheets are increasingly used for automobile outer panels against the background of the need for lighter automobiles. Under such circumstances, there is a need for a steel plate that is stable and excellent in surface properties, excellent in material stability in the coil, and excellent in room temperature aging resistance and easy to use for the user. According to the present invention, it is possible to stably provide a BH steel sheet that meets the needs of the world.

Claims (4)

質量%で、
C:0.0010〜0.0025%
Si:0.02%以下
Mn:0.10〜0.40%
P:0.04〜0.08%
S:0.003〜0.02%
SolAl:0.03〜0.1%
Nb:0.003〜0.02%かつ93/12C以下
N:0.0020%以下
を含有し、残部が実質的にFeおよび不可避的不純物からなることを特徴とする、コイル内材質変動が小さく、加工性と表面性状の優れた焼付硬化型合金化溶融亜鉛めっき鋼板。
% By mass
C: 0.0010 to 0.0025%
Si: 0.02% or less
Mn: 0.10 to 0.40%
P: 0.04-0.08%
S: 0.003-0.02%
SolAl: 0.03-0.1%
Nb: 0.003-0.02% and 93 / 12C or less
N: 0.0020% or less, the balance being substantially composed of Fe and unavoidable impurities , small variation in coil material , bake hardened alloyed hot dip galvanized with excellent workability and surface properties steel sheet.
質量%で、Ti:0.001〜0.02%かつ48/32S+48/14N以下を含有することを特徴とする請求項1記載の、コイル内材質変動が小さく、加工性と表面性状の優れた焼付硬化型合金化溶融亜鉛めっき鋼板。 The bake hardening with small material variation in the coil, excellent workability and surface properties, characterized by containing, in mass% , Ti: 0.001 to 0.02% and 48 / 32S + 48 / 14N or less. Type alloyed galvanized steel sheet. 質量%で、B:0.0001〜0.0010%を含有することを特徴とする請求項1または2記載の、コイル内材質変動が小さく、加工性と表面性状の優れた焼付硬化型合金化溶融亜鉛めっき鋼板。 The bake hardened galvannealed steel sheet having a small variation in the material in the coil and excellent workability and surface properties according to claim 1 or 2, characterized by containing B: 0.0001 to 0.0010 % in mass%. . 請求項1〜3のいずれかに記載の成分組成の鋼を連続鋳造によりスラブ造塊後、熱間圧延、冷間圧延し、平均20℃/sec以上で昇温し800〜870℃に保持し、600℃以下まで5〜20℃/secで冷却し、溶融亜鉛めっき後、誘導加熱炉を用いて450〜580℃に加熱保持後、100℃以下まで冷却した後1.0〜2.0%の調質圧延を施すことを特徴とする、コイル内材質変動が小さく、加工性と表面性状の優れた焼付硬化型合金化溶融亜鉛めっき鋼板の製造方法。The steel having the composition according to any one of claims 1 to 3 is slab ingot by continuous casting, then hot-rolled and cold-rolled, heated at an average of 20 ° C / sec or more and maintained at 800-870 ° C. , Cooled to 600 ° C or lower at 5-20 ° C / sec, hot dip galvanized, heated to 450-580 ° C using an induction heating furnace, cooled to 100 ° C or lower and temper rolled at 1.0-2.0% A method for producing a bake-hardened galvannealed steel sheet having a small variation in the material in the coil and excellent workability and surface properties.
JP32585599A 1999-11-16 1999-11-16 Bake-hardened galvannealed steel sheet with excellent workability and surface properties with small fluctuation in coil material and manufacturing method thereof Expired - Fee Related JP3562410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32585599A JP3562410B2 (en) 1999-11-16 1999-11-16 Bake-hardened galvannealed steel sheet with excellent workability and surface properties with small fluctuation in coil material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32585599A JP3562410B2 (en) 1999-11-16 1999-11-16 Bake-hardened galvannealed steel sheet with excellent workability and surface properties with small fluctuation in coil material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001140038A JP2001140038A (en) 2001-05-22
JP3562410B2 true JP3562410B2 (en) 2004-09-08

Family

ID=18181383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32585599A Expired - Fee Related JP3562410B2 (en) 1999-11-16 1999-11-16 Bake-hardened galvannealed steel sheet with excellent workability and surface properties with small fluctuation in coil material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3562410B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4804996B2 (en) * 2006-04-07 2011-11-02 新日本製鐵株式会社 Method for producing alloyed hot-dip galvanized steel sheet with good workability, powdering property and slidability
CN107532264B (en) * 2015-04-21 2019-03-15 杰富意钢铁株式会社 Alloyed zinc hot dip galvanized raw sheet and its manufacturing method and alloyed hot-dip galvanized steel sheet
CN107236853B (en) * 2017-06-26 2019-03-26 武汉钢铁有限公司 Short route rolls zinc-aluminum-magnesium coating hot forming steel and its manufacturing method

Also Published As

Publication number Publication date
JP2001140038A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
US8262818B2 (en) Method for producing high strength steel sheet excellent in formability
JP4177478B2 (en) Cold-rolled steel sheet, hot-dip galvanized steel sheet excellent in formability, panel shape, and dent resistance, and methods for producing them
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP5407591B2 (en) Cold-rolled steel sheet, manufacturing method thereof, and backlight chassis
JP3900619B2 (en) Hot rolled steel sheet, plated steel sheet, and hot rolled steel sheet manufacturing method excellent in bake hardenability and room temperature aging resistance
JP2682351B2 (en) Method for manufacturing bake hardened cold rolled steel sheet with excellent resistance to normal temperature aging
JP4177477B2 (en) Manufacturing method of cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent room temperature aging resistance and panel characteristics
JP3596398B2 (en) Manufacturing method of cold rolled steel sheet with excellent bake hardenability and normal temperature aging resistance
JP3562410B2 (en) Bake-hardened galvannealed steel sheet with excellent workability and surface properties with small fluctuation in coil material and manufacturing method thereof
JP3433619B2 (en) Manufacturing method of electrogalvanized steel sheet with excellent surface appearance and workability
JP5245914B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent workability
JPH0559970B2 (en)
JPH05195060A (en) Production of baking hardening type cold rolled steel sheet excellent in ageing resistance and press formability
JP3404798B2 (en) Method for producing high-strength steel sheet having bake hardenability
KR102484978B1 (en) High strength galvannealed steel sheet having excellent powdering resistance and manufacturing method for the same
JP3551105B2 (en) Cold rolled steel sheet with less material variation in coil and method of manufacturing the same
JPH04346625A (en) Manufacture of baking hardening type cold rolled steel sheet excellent in aging resistance and press formability
KR102508884B1 (en) Cold rolled steel sheet having excellent galvanizing property, galvanizing steel sheet and method for manufacturing the same
JPH1046289A (en) Steel sheet excellent in external appearance of panel and dent resistance after panel working
JP3932737B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent deep drawability
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
JP3390084B2 (en) Bake hardenable thin steel sheet excellent in formability and method for producing the same
JPH05171351A (en) Cold rolled steel sheet for deep drawing having non-aging characteristic and excellent in baking hardenability and its production
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040524

R150 Certificate of patent or registration of utility model

Ref document number: 3562410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees