KR20230085133A - 진공 펌프의 작동 파워 제어 방법 및 진공 펌프 - Google Patents
진공 펌프의 작동 파워 제어 방법 및 진공 펌프 Download PDFInfo
- Publication number
- KR20230085133A KR20230085133A KR1020237008505A KR20237008505A KR20230085133A KR 20230085133 A KR20230085133 A KR 20230085133A KR 1020237008505 A KR1020237008505 A KR 1020237008505A KR 20237008505 A KR20237008505 A KR 20237008505A KR 20230085133 A KR20230085133 A KR 20230085133A
- Authority
- KR
- South Korea
- Prior art keywords
- vacuum pump
- volume
- operating power
- pumped
- pressure
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000012545 processing Methods 0.000 claims description 22
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 230000000977 initiatory effect Effects 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 1
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- 239000011574 phosphorus Substances 0.000 claims 1
- 238000005086 pumping Methods 0.000 abstract description 20
- 230000008859 change Effects 0.000 description 8
- 238000001514 detection method Methods 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000013021 overheating Methods 0.000 description 6
- 238000009530 blood pressure measurement Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 2
- 238000013213 extrapolation Methods 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C25/00—Adaptations of pumps for special use of pumps for elastic fluids
- F04C25/02—Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/001—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/28—Safety arrangements; Monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2220/00—Application
- F04C2220/10—Vacuum
- F04C2220/12—Dry running
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/80—Other components
- F04C2240/81—Sensor, e.g. electronic sensor for control or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/02—Power
- F04C2270/025—Controlled or regulated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/18—Pressure
- F04C2270/185—Controlled or regulated
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
본 발명은 진공 펌프, 특히 펌핑 대상 가스가 흡입부와 토출부 사이에서 순환하는 일련의 다수의 펌핑단을 포함할 수 있는 진공 펌프의 작동 파워 제어 방법과, 또한 가스를 펌핑할 것이 요구되는 챔버에 연결되도록 구성되고 압력 센서가 토출부에 위치 설정되는 진공 펌프에 관한 것이다.
Description
본 발명은 진공 펌프와, 진공 펌프, 특히 펌핑 대상 가스가 흡입부와 토출부 사이에서 순환하는 일련의 다수의 펌핑단을 포함할 수 있는 진공 펌프의 작동 파워 제어 방법에 관한 것이다.
몇몇 어플리케이션, 예컨대 반도체 기판이나 평편한 스크린의 제조에 있어서, 상당한 체적을 가질 수 있는 챔버 내로 가스를 펌핑하는 것이 필요하다. 예컨대, 이것은 적재 및 하역을 위한 특정 에어락(“로드락”이라고도 함) 챔버의 경우이다.
적재/하역 에어락은 챔버의 내부를 적어도 하나의 기판의 적재를 위한 클린룸과 같은 대기압 하의 구역과 연결하는 제1 도어와, 배기 후 기판을 처리실로 하역하기 위한 제2 도어를 포함한다. 기판의 적재 또는 하역 각각은 챔버 내의 압력이 번갈아 하강된 다음 상승될 것을 요구한다. 상기한 압력 변화는 또한, 기판 처리를 위한 처리실을 대기압으로부터 배기할 시에 적재/하역 에어락이 부재하는 경우에도 발생할 수 있다.
진공 펌프에 의해 소비되는 모터 파워는, 펌핑 부하가 증가하는 경우에 증가하며, 이는 특히 대기압의 에어락이 배기될 때마다 발생한다. 예컨대 배기되는 체적이 상당한 것으로 인해 소비되는 모터 파워가, 과도하게 긴 기간에 걸쳐 너무 높은 것을 방지하기 위해, 진공 펌프의 모터 전류는 최대 파워값으로 유지될 수 있다. 진공 펌프 파워를 제한하면, 진공 펌프가 중단되거나 과열되는 것을 방지하는 것이 가능하다.
그러나, 진공 펌프 파워를 제한함으로써, 특히 적은 체적의 챔버를 배기하는 경우에 다른 경우에는 불필요한 성능 손실이 발생할 수 있는데, 그 이유는 파워의 증가가 가끔 발생하고, 진공 펌프에 대한 위험 없이 흡수될 수 있기 때문이다.
이러한 문제를 극복하기 위해, 진공 펌프가 연결될 챔버의 체적에 따라 작동 파워를 제한하도록 진공 펌프의 구성이 그 제조 중에 공장에서 조정될 수 있다.
그러나, 상기한 공장 구성은 제조 중에 진공 펌프를 추적하는 것과 같은 추가 단계를 구현해야 하며, 이것은 단 하나의 고유한 어플리케이션 분야에 대해 적절하게 구성된 진공 펌프를 사용해야 함을 의미한다.
따라서, 전술한 결점을 적어도 부분적으로 극복할 수 있는 해결책을 제공하고자 한다.
이를 위해, 본 발명의 보호 대상은 가스를 펌핑할 것이 요구되는 체적에 연결되도록 구성된 진공 펌프의 작동 파워 제어 방법으로서,
- 제1 미리 정해진 기간에 걸쳐 다음 파라메터,
- 진공 펌프의 작동 파워와,
- 진공 펌프 토출부에서 측정된 압력
중 적어도 하나의 파라메터의 추세를 제1 미리 정해진 문턱값과 비교하여 배기 개시를 검출하는 단계,
배기 개시가 검출된 경우,
- 제2 미리 정해진 기간에 걸쳐 다음 파라메터,
- 진공 펌프의 작동 파워, 및
- 진공 펌프의 토출부에서 측정된 압력
중 적어도 하나의 파라메터의 추세에 기초하여 펌핑 대상 체적을 추정하는 단계, 및
- 진공 펌프의 작동 파워가 추정된 체적에 따라 제한되는, 진공 펌프의 작동 파워를 제한하는 단계를 포함하는 방법이다.
진공 펌프는 펌핑 대상 체적에 직접 연결될 수도 있고, 보조 진공 펌프나 펌핑 대상 체적에 진공 펌프의 흡입부를 연결하는 파이프 세트를 통해 연결될 수도 있다. 보조 진공 펌프는 그 자체의 모터를 갖는 진공 펌프에 해당한다. 보조 진공 펌프는, 예컨대 루츠 타입 용적 진공 펌프이다.
본 발명의 다른 양태에 따르면, 파라메터의 추세는 제1 또는 제2 미리 정해진 시간에 있어서 파라메터의 시간에 대한 추세의 평균 기울기(또는 평균 미분)에 상응한다.
본 발명의 다른 양태에 따르면, 펌핑 대상 체적의 추정은 진공 펌프의 작동 파워 파레메터의 추세에 기초하여 이루어진 펌핑 대상 체적에 관한 제1 추정과, 진공 펌프의 토출부에서 측정된 압력 파라메터의 추세에 기초하여 이루어진 펌핑 대상 체적에 관한 제2 추정을 포함하고, 펌핑 대상 체적은 우선적으로 제2 미리 정해진 시간(기울기는 항상 양수 또는 음수이거나 미분 기호의 변화는 최소수)에 걸쳐 추세가 가장 규칙적인 파라메터에 기초하여 추정된다.
본 발명의 다른 양태에 따르면, 토출부에서의 압력 파라메터에 기초하여 추정된 체적과 진공 펌프의 작동 파워 파라메터에 기초하여 추정된 체적의 편차가 미리 정해진 값을 초과하면 경보가 생성된다.
본 발명의 다른 양태에 따르면, 진공 펌프의 작동 파워에 기초한 펌핑 대상 체적의 추정은, 제2 미리 정해진 기간 동안의 진공 펌프의 작동 파워 감소의 평균 기울기 추정과, 이렇게 추정된 기울기와 상이한 펌핑 대상 체적과 연관된, 저장된 파워 기울기값의 비교를 포함한다. 진공 펌프가 이 진공 펌프 상류에 위치 설정되는 추가의 진공 펌프와 일렬로 위치 설정되는 경우, 진공 펌프의 작동 파워에 기초한 펌핑 대상 체적의 추정은, 제2 미리 정해진 기간 동안의 진공 펌프의 작동 파워 증가의 평균 기울기 추정과, 이렇게 추정된 기울기와 상이한 펌핑 대상 체적과 연관된, 저장된 파워 기울기값의 비교를 포함할 수 있다.
본 발명의 다른 양태에 따르면, 진공 펌프의 토출부에서 측정된 압력에 기초한 펌핑 대상 체적의 추정은, 제2 미리 정해진 기간 동안의 진공 펌프의 토출부에서 측정된 압력 감소의 평균 기울기의 추정과, 이렇게 추정된 기울기와 상이한 펌핑 대상 체적과 연관된, 저장된 압력 기울기의 비교를 포함한다.
본 발명의 다른 양태에 따르면, 진공 펌프 단독에 있어서 제2 미리 정해진 기간은 3 내지 15초, 특히 10초이다.
본 발명의 다른 양태에 따르면, 보조 진공 펌프와 일렬로 연결된 1차 진공 펌프에 있어서 제2 미리 정해진 기간은 10 내지 100초, 특히 30초이다.
본 발명의 다른 양태에 따르면, 제1 미리 정해진 기간은 50 ms 내지 2초, 특히 1초이다.
본 발명의 다른 양태에 따르면, 펌핑 대상 체적은 진공 펌프의 흡입부에 연결된 챔버의 체적에 해당한다. 연결은 직접 또는 다른 진공 펌프를 통해 이루어질 수 있다.
본 발명은 가스를 펌핑할 것이 요구되는 챔버에 연결되도록 구성되고, 토출부에 위치 설정된 압력 센서를 포함하는 진공 펌프로서, 이 진공 펌프는 처리 유닛을 포함하고, 이 처리 유닛은
- 제1 미리 정해진 기간에 걸쳐 다음 파라메터,
- 진공 펌프의 작동 파워와,
- 진공 펌프 토출부에서 측정된 압력
중 하나 이상의 파라메터의 추세를 제1 미리 정해진 문턱값과 비교하여 배기의 개시를 검출하도록, 그리고
배기 개시가 검출된 경우에,
- 제2 미리 정해진 기간에 걸쳐 다음 파라메터,
- 진공 펌프의 작동 파워와,
- 진공 펌프의 토출부에서 측정된 압력
중 하나 이상의 파라메터의 추세에 기초하여 펌핑 대상 체적을 추정하도록, 그리고
- 추정된 체적에 따라 진공 펌프의 작동 파워를 제한하도록
구성되는 것인 진공 펌프에 관한 것이다.
추정된 펌핑 대상 체적이 클수록, 펌프가 과열되거나 중단되는 것을 방지하도록 작동 파워가 더욱 제한된다.
본 발명의 다른 양태에 따르면, 진공 펌프는 다단 1차 진공 펌프이다.
본 발명의 다른 양태에 따르면, 진공 펌프는 보조 진공 펌프와 일렬로 연결되도록 구성되고, 상기 보조 진공 펌프는 진공 펌프 상류에 위치 설정된다.
본 발명의 다른 피쳐(feature) 및 장점은 예시적이고 비제한적인 예로서 주어진 아래의 설명과 첨부 도면을 읽어봄으로써 보다 명확해질 것이다.
도 1은 챔버에 연결된 진공 펌프의 다이어그램이고,
도 2는 도 1의 진공 펌프의 개략적인 사시도이며,
도 3은 제1 실시예에 따른 진공 펌프의 작동 파워 제어 방법의 상이한 단계에 관한 흐름도이고,
도 4는 펌핑 대상인 2개의 상이한 체적을 배기하는 동안에 진공 펌프의 토출부에서의 압력의 시간에 따른 추세를 보여주는 2개의 곡선 C1 및 C2를 나타내며,
도 5는, 특히 도 4의 곡선 C1 및 C2로부터 결정된, 미리 정해진 기간, 여기에서는 10초에 걸친 평균 압력 기울기의 함수인 펌핑 대상 체적의 추정 곡선을 보여주고,
도 6은 제2 실시예에 따른 진공 펌프의 작동 파워 제어 방법의 상이한 단계의 흐름도를 보여주며,
도 7은 3개의 상이한 펌핑 대상 체적의 배기 중에 시간에 대한 진공 펌프의 작동 파워를 나타내는 3개의 곡선 p1, p2, p3를 보여주고,
도 8은, 특히 도 7의 곡선 p1, p2 또는 p3로부터 결정된, 미리 정해진 기간, 여기에서는 10초에 걸친 평균 파워 기울기의 함수인 펌핑 대상 체적의 추정 곡선을 보여주며,
도 9는 서로 일렬로 연결되고 챔버에 연결되는 2개의 펌프의 다이어그램을 보여주고,
도 10은 진공 펌프의 토출부에서의 압력뿐만 아니라 진공 펌프와 보조 펌프의 작동 파워를 각각 나타내는 3개의 곡선 q1, q2, q3를 보여준다.
이들 도면에서, 동일한 요소는 동일한 참조부호를 갖는다.
도 2는 도 1의 진공 펌프의 개략적인 사시도이며,
도 3은 제1 실시예에 따른 진공 펌프의 작동 파워 제어 방법의 상이한 단계에 관한 흐름도이고,
도 4는 펌핑 대상인 2개의 상이한 체적을 배기하는 동안에 진공 펌프의 토출부에서의 압력의 시간에 따른 추세를 보여주는 2개의 곡선 C1 및 C2를 나타내며,
도 5는, 특히 도 4의 곡선 C1 및 C2로부터 결정된, 미리 정해진 기간, 여기에서는 10초에 걸친 평균 압력 기울기의 함수인 펌핑 대상 체적의 추정 곡선을 보여주고,
도 6은 제2 실시예에 따른 진공 펌프의 작동 파워 제어 방법의 상이한 단계의 흐름도를 보여주며,
도 7은 3개의 상이한 펌핑 대상 체적의 배기 중에 시간에 대한 진공 펌프의 작동 파워를 나타내는 3개의 곡선 p1, p2, p3를 보여주고,
도 8은, 특히 도 7의 곡선 p1, p2 또는 p3로부터 결정된, 미리 정해진 기간, 여기에서는 10초에 걸친 평균 파워 기울기의 함수인 펌핑 대상 체적의 추정 곡선을 보여주며,
도 9는 서로 일렬로 연결되고 챔버에 연결되는 2개의 펌프의 다이어그램을 보여주고,
도 10은 진공 펌프의 토출부에서의 압력뿐만 아니라 진공 펌프와 보조 펌프의 작동 파워를 각각 나타내는 3개의 곡선 q1, q2, q3를 보여준다.
이들 도면에서, 동일한 요소는 동일한 참조부호를 갖는다.
아래의 실시예는 예이다. 설명은 하나 이상의 실시예를 인용하지만, 이것이, 반드시 각각의 인용이 동일한 실시예에 관한 것이라거나 피쳐가 오로지 하나의 실시예에만 적용됨을 의미하는 것은 아니다. 상이한 실시예의 간단한 피쳐들은 다른 실시예를 제공하도록 조합 또는 상호 교환될 수 있다.
본 발명은 진공 펌프와, 진공 펌프의 작동 파워 제어 방법에 관한 것이다. 진공 펌프는, 예컨대 다단 1차 진공 펌프이다. 도 1은 건식 타입의 상기한 진공 펌프(2)와, 챔버(3)를 펌핑하기 위해, 예컨대 밸브(4)를 통해 진공 펌프(2)가 연결되는 챔버(3)를 포함하는 설비의 단순화된 다이어그램을 보여준다. 수 slm 또는 수십 slm 정도의 상당한 가스 흐름이, 챔버(3)가 공정 챔버인 경우에 소위 "프로세스" 단계 중에, 예컨대 주기적으로 챔버(3) 내로 유입될 수 있다. 사실상, 챔버(3)는, 예컨대 기판이 공정 챔버에 대해 도입되거나 제거될 때에 대기압에서 매우 낮은 압력, 예컨대 기판 증착 또는 에칭 단계 동안에 10 Pa 미만으로 번갈아 변하는 전자 기판의 제조를 위한 공정 챔버에 상응한다. 이러한 공정 단계는, 유입되는 가스 흐름이 매우 적거나 0인 소위 "유휴" 단계에 선행 및 후행할 수 있다.
챔버(3)가 적재/하역 에어락, 즉 "로드락"인 경우에 상당한 흐름이 시간에 걸쳐 반복적으로 유입될 수도 있다.
도 2는 도 1의 진공 펌프(2)의 부분 단면 및 투명한 사시 개략도를 보여준다.
도 1 및 도 2의 예에서, 진공 펌프(2)는 스테이터(5), 제1 샤프트(6) 및 제2 샤프트(7) - 이들 샤프트 각각에 제1 로터(8a) 및 제2 로터(8b)가 배치됨 - 를 포함한다. 로터(8a, 8b)는, 펌핑 대상 가스(G)를 진공 펌프(2)의 흡입부(9)에서 진공 펌프(2)의 토출부(10)로 이동시키기 위해 스테이터(5)에서 역방향으로 동기식으로 회전하도록 구성된다. 로터(8a, 8b)는, 예컨대 "루츠(Roots)" 또는 "클로(Claw)" 타입과 같은 동일한 프로파일의 로브를 갖는다. 다른 예에 따르면, 펌핑 로터는 "스크루" 타입일 수 있다.
진공 펌프(2)는 적어도 하나의 펌핑단, 도 1의 예에의 경우에는 5개의 단 - 이들 단은 각각 T1, T2, T3, T4 및 T5로 표기됨 - 을 포함한다. 각각의 펌핑단은 각각의 유입구 및 유출구를 포함한다. 연속적인 펌핑단이, 선행하는 펌핑단의 유출구를 후행하는 단의 유입구에 연결하는 각각의 중간단 채널(14)(도 2에서 볼 수 있음)에 의해 서로 일렬로 연결된다. 회전하는 동안, 유입구로부터 흡입되는 가스는 로터(8a, 8b)에 의해 생성된 체적에 억류되고, 그 후 로터(8a, 8b)에 의해 토출부(10)로 이동된다(가스의 순환 방향은 도 1 및 도 2의 화살표 G로 표시된다). 진공 펌프(2)는 특히 "건식"이라고 하는데, 그 이유는 작동 시에 로터(8a, 8b)가 이들 로터 간 또는 스테이터(5)와의 기계적 접촉 없이 스테이터(5) 내부에서 회전하기 때문이며, 이로 인해 펌핑단에서 오일(T1 내지 T5)을 사용하지 않는 것이 가능하다. 이 예시적인 실시예에서, 건식 타입의 진공 펌프(2)는 다단 1차 진공 펌프이다. 1차 진공 펌프는 용적 진공 펌프로, 2개의 로터(8a, 8b)를 사용하여 대기압의 펌핑 대상 가스를 흡입하고, 이송하여, 토출한다.
이에 따라, 챔버(3)는 가스를 펌핑할 것이 요구되는 체적을 획정한다. 이 챔버(3)와 진공 펌프(2) 사이의 연결은 진공 펌프(2)의 흡입부(9)에서 이루어진다. 진공 펌프(2)는, 예컨대 그 토출부(10)에 위치 설정되는 압력 센서(12)를 더 포함할 수 있다. 토출부(10)에서 측정된 이러한 압력의 변화는, 이 변화가 큰 경우에 펌핑 대상 체적을 포함하는 챔버(3) 내부의 압력 변화를 나타낼 수 있다.
진공 펌프(2)는 또한 토출부(10)에 배치되는 압력 센서(12)에 연결 가능한 처리 유닛(13)을 포함한다. 처리 유닛(13)은 진공 펌프(2)에 연계된 상이한 기능 그리고 특히 아래의 설명에서 기술되는 진공 펌프(2)의 최대 작동 파워 제어 방법의 다양한 단계를 구현하는 일련의 프로그램 명령을 실행하기 위해 하나 이상의 제어기나 마이크로제어기 또는 프로세서와 메모리를 포함할 수 있다.
도 3은, 진공 펌프(2)가 그 토출부(10)에 압력 센서(12)를 포함하는 제1 실시예에 따른 진공 펌프(2)의 작동 파워 제어 방법의 상이한 단계에 관한 흐름도를 보여준다.
제1 단계(101)는 진공 펌프(2)의 토출부(10)에 위치 설정되는 압력 센서(12)에 의해 측정되는 압력 측정에 관한 것이다. 압력 측정은 규칙적인 시간 간격, 예컨대 50 ms마다 수행된다.
제2 단계(102)는 배기 개시 검출, 즉 챔버(3) 내부의 압력이 높고, 예컨대 압력이 대기압에 근접하고, 챔버(3) 내의 압력을 배기하여 미리 정해진 압력으로 감소시키는 펌핑 사이클이 시작되는 단계에 관한 것이다.
이러한 검출은 단계 101 동안에 수행되는 압력 측정에 기초하여 수행된다.
이러한 검출은 제1 미리 정해진 기간에 걸친 토출부(10)에서 측정된 압력값의 추세를 제1 미리 정해진 문턱값과 비교하는 것에 의해 수행된다.
제1 미리 정해진 기간은, 예컨대 2 s 미만, 특히 1 s 정도이다. 추세를 특징화하는 데 사용되는 파라메터는, 예컨대 제1 미리 정해진 기간 동안에 토출부(10)에서의 (시간에 따른) 압력 추세의 평균 기울기 또는 평균 미분(시간 미분)에 해당된다.
도 4는 배기 개시 시에 2개의 상이한 챔버 체적(3)을 위한 진공 펌프(2)의 토출부(10)에서 압력 센서(12)에 의해 측정되는 압력의 추세에 관한 일례를 보여준다.
배기의 개시는, 압력이 증가할 때에 검출된다. 배기 시작 전, 압력은, 예컨대 진공 펌프(2)의 토출부에서 대략 1000 mbar이고, 그 후 도 4에서 시간 t0에서 나타낸 바와 같이 1800 mbar로 급격히 증가한다(이러한 압력 증가 동안에 2개의 곡선 C1 및 C2가 중첩된다). 압력의 추세는, 예컨대 50 ms 내지 2초, 예컨대 1초의 시간에 대한 진공 펌프(2)의 토출부에서 측정된 압력의 시간 미분 계산에 의해 결정되며, 이는 지표로서 기능할 것이다. 이러한 미분이 양의 값이고 제1 미리 정해진 문턱값보다 크면, 예컨대 100 mbar/sec이면, 배기의 개시가 검출된다.
배기의 개시는 미리 정해진 문턱값을 상회하는 압력 측정값, 예컨대 1500 mbar에 의해 확인 가능하다. 도 4에서, 제1 곡선(C1)은 2 ㎥(또는 2000 L)의 제1 체적과 연관되고, 제2 곡선(C2)은 1 ㎥(또는 1000 L)의 제2 체적과 연관된다. 이에 따라, 순간 t0에서의 압력은 2개의 곡선(C1 및 C2)에 있어서 대략 1000 mbar(100 000 Pa)에서 대략 1800 mbar (180 000 Pa)로 상승한다. 이러한 압력은 그 후 처음 몇초 간은 급감하고, 그 후 점차 서서히 감소한다.
본 예에서와 같이, 평균 기울기의 값이 (절대값으로) 제1 미리 정해진 문턱값보다 크면, 배기의 개시가 검출된다. 사실상, 배기가 개시될 때, 챔버 내의 압력은 높고, 예컨대 대기압과 거의 동일하고, 배기가 개시되고 나면 급감한다. 이러한 강력한 감소는 진공 펌프(2)의 토츨부(10)에서 측정된 압력에서 검출될 수 있는데, 그 이유는 대량의 가스가 펌핑되는 것으로 인해 진공 펌프(2)의 토출부(10)에서의 압력은 급증하기 때문이다.
더욱이, 제1 미리 정해진 문턱값은, 작동 파워 제어 방법이 적용되는 진공 펌프(2)의 타입에 따라 조정될 수 있다.
제3 단계(103)는 단계 101에서 제2 미리 정해진 기간에 걸친 측정된 압력의 추세에 기초하여 펌핑 대상 체적을 추정하는 것에 관한 것이다.
이러한 제3 단계(103)는 배기의 개시가 단계 102에서 검출되는 경우 및 측정된 최대 압력값이 더 이상 증가하지 않는 경우(0 미분)에 수행된다.
제2 미리 정해진 기간은 제1 미리 정해진 시간보다 크고, 예컨대 5 s 내지 15 s, 특히 본 예에서는 10 s이다. 압력의 추세는, 예컨대 시간에 따른 토출부(10)에서의 압력을 나타내는 곡선의 제2 미리 정해진 시간에 걸친 평균 기울기값(또는 평균 시간 미분값)에 의해 결정된다.
최대 압력값에 대응하는 순간 t1에서부터 또는 배기 개시 검출 시(예컨대, t0 + 1 s)로부터 이러한 제2 미리 정해진 기간 동안에 압력 추세(C1, C2)의 평균 기울기값은 상이한 체적과 연관되고 저장된 값과 비교된다.
도 4의 경우, 곡선 C1은 t1으로부터 처음 10초간 -15 mbar/s ( 1500 Pa/s)의 평균 기울기(f1)을 갖는 반면, 곡선 C2는 t1으로부터 처음 10초간 -30 mbar/s (-3000 Pa/s)의 평균 기울기(f2)를 갖는다. 이러한 평균 기울기들은 데이터베이스에 저장된 평균 기울기값과 비교될 수 있다. 데이터베이스는, 예컨대 처리 유닛(13)의 메모리에 저장된다.
10초에 걸친 압력의 평균 기울기값들과 이들 평균 기울기값과 연관된 체적이 테이블 형태로 또는 x축 및 y축 각각이 평균 기울기값 및 체적값에 대응하거나 그 반대인 곡선 형태로 저장될 수 있다. 이러한 곡선은, 예컨대 소수의 결정된 값의 외삽에 의해 얻어진다. 도 5는 상기한 곡선의 일례이다. 이 곡선은 평균 압력 기울기와 연관된 체적을 제공하는 선형 방정식(여기에서는, y = 66.667x + 3000)을 제공하기 위해 선형 회귀에 의해 모델링될 수 있다.
이에 따라, 결정된 기울기값을 데이터베이스에 저장되거나 미리 형성된 곡선 방정식으로부터의 기울기값과 비교하는 것에 의해, 결정된 기울기와 연관된 체적을 추정하는 것이 가능하다. 도 4의 예에서, -15 mbar/s (-1500 Pa/s)의 평균 기울기는 2 ㎥의 체적과 연관되고, -30 mbar/s (-3000 Pa/s)의 평균 기울기는 1 ㎥의 체적과 연관된다.
제4 단계(104)는 단계 103에서 추정되는 체적에 따라 최대 작동 파워를 인가하는 것에 관한 것이다. 사실상, 과열을 방지하거나 진공 펌프(2)가 중단되는 것을 방지하기 위해, 진공 펌프(2)의 작동 파워를 제한하는 것이 필요할 수 있다. 챔버(3) 내의 체적이 클수록(그리고 이에 따라 펌핑 시간이 더 길수록), 더 많은 진공 펌프(2)의 파워를 감소시켜야만 한다. 이에 따라, 도 4의 경우에는 추정된 펌핑 대상 체적이 1 ㎥인 경우, 최대 파워는 4000 W로 설정될 수 있고, 추정된 펌핑 대상 체적이 2 ㎥인 경우, 최대 파워는 3500 W로 설정될 수 있다. 펌핑 대상 체적에 따른 최대 파워의 값은, 예컨대 테이블 또는 곡선 형태로 데이터베이스에 저장될 수 있다. 이에 따라, 작동 파워는 펌핑 대상 체적에 따라 제한되어, 체적이 클수록, 더 많은 작동 파워가 감소된다.
단계 103 및 104에서 설명되는 데이터베이스 및 곡선은 처리 유닛(13)의 메모리 또는 처리 유닛(13)이 연결되는, 처리 유닛(13) 외부의 메모리에 저장될 수 있다.
이에 따라, 진공 펌프(2)의 토출부(10)에서의 압력의 추세를 모니터링함으로써, 배기 개시를 검출할 수 있고 배기 시에 펌핑 대상 체적을 추정할 수 있으며, 배기 중에 진공 펌프(2)의 오작동 위험을 제한하도록 인가할 진공 펌프(2)의 최대 파워를 결정할 수 있다.
도 6은 제2 실시예에 따른 진공 펌프(2)의 작동 파워 제어 방법의 상이한 단계의 흐름도를 보여준다. 이 실시예에서, 토출부(10)의 압력 센서(12)는 불필요하다.
제1 단계(201)는 진공 펌프의 작동 파워 또는 작동 부하를 결정하는 것에 관한 것이다. 이러한 결정은, 예컨대 전술한 처리 유닛(13)과 같은 진공 펌프(2)의 처리 유닛(13)에 의해 이루어지고, 모터 전류와 같은 진공 펌프(2)의 작동 파워를 나타내는 파라메터를 측정하는 것에 의해 행해질 수 있다. 작동 파워는 펌핑 대상 가스 그리고 이에 따라 챔버(3) 내의 압력에 좌우된다.
제2 단계(202)는 배기 개시를 검출하는 것에 관한 것이며, 즉 챔버(3) 내 압력이 높고, 예컨대 압력이 대기압에 가깝고, 챔버(3) 내의 압력을 배기하고 미리 정해진 압력으로 감소시키는 펌핑 사이클이 시작되는 단계이다.
도 7은 배기 개시 시의 3개의 상이한 챔버(3) 체적에 있어서의 진공 펌프(2)의 작동 파워 추세에 관한 대표적인 곡선 - p1, p2, p3로 표기됨 - 의 예를 보여준다.
제1 곡선(p1)은 1000 L(1 ㎥)와 연관되고, 제2 곡선(p2)은 200 L(0.2 ㎥와 연관되며, 제3 곡선(p3)은 20 L(0.02 ㎥)와 연관된다.
작동 파워의 변화는 펌핑 대상 체적을 포함하는 챔버(3) 내 압력의 함수이다. 이에 따라, 토출부(10)의 압력에 관해서는 작동 파워가 제1 미리 정해진 문턱값을 넘어 변하는 경우에 배기 개시를 검출하는 것이 가능하다.
배기 개시는, 50 ms 내지 2 s, 예컨대 1 s의 제1 미리 정해진 기간 동안 파워의 증가가 미리 정해진 문턱값을 초과하는 경우에 검출된다. 이를 위해, 예컨대 이 제1 미리 정해진 기간에 걸친 시간 미분이 결정되고, 미리 정해진 문턱값, 예컨대 300 W/s와 비교된다. 도 7의 경우, 상이한 곡선들에 있어서 배기 개시 전에 파워는 대략 800 W이고, 4000 W를 초과하는 값(곡선 p1의 경우에는 대략 5800 W이고 곡선 p2 및 p3의 경우에는 대략 4500 W임)으로 급증하며, 이에 따라 1 s에 대한 시간 미분은 제1 미리 결정된 문턱값을 초과하고, 이에 따라 배기 개시가 검출된다. 이러한 배기 검출은 4000 W를 초과하는 파워값에 의해 확인될 수 있다.
압력에 관한 제1 실시예에 관하여, 제1 미리 정해진 기간, 여기에서는 1 s 동안에 파워 추세의 평균 기울기(또는 평균 시간 미분)값은 제1 미리 정해진 문턱값, 예컨대 300 W/s와 비교된다. 제1 미리 정해진 기간, 여기에서는 1 s 동안에 작동 파워 추세의 평균 기울기가 이 미리 정해진 문턱값보다 크면, 배기 개시가 검출된다. 이러한 제1 미리 정해진 문턱값은, 진공 펌프(2)의 작동 파워 제어 방법이 적용되는 진공 펌프(2)의 타입에 따라 조정될 수 있다.
제3 단계(203)는 제2 미리 정해진 기간에 걸친 진공 펌프(2)의 작동 파워 추세에 기초하여 펌핑 대상 체적을 추정하는 것에 관한 것이다.
이러한 제3 단계(203)는, 배기 개시가 단계 202에서 검출되고, 파워가 최대값(0 미분)을 넘어선 경우인 경우에 수행된다.
제2 미리 정해진 기간은 제1 미리 정해진 기간보다 길고, 예컨대 5 s 내지 15 s, 특히 본 경우에는 10 s이다.
최대 파워(0 미분)에 대응하는 시간 t1에서부터 이러한 제2 미리 정해진 기간 동안의 진공 펌프(2)의 작동 파워의 시간 추세에 관한 평균 기울기값은 이어서 상이한 체적과 연관되고 저장된 값과 비교된다(도 7의 경우, 상기 순간 t1은 3개의 곡선 p1, p2 및 p3에 대해서 거의 동일함).
도 7의 경우, 제1 곡선(p1)은 t1으로부터 처음 10초 간은 -27 W/s의 평균 기울기를 갖고, 제2 곡선(p2)는 t1으로부터 처음 10초 간은 -53 W/s의 평균 기울기를 가지며, 제3 곡선(p3)은 -350 W/s의 평균 기울기를 갖는다. 이들 평균 기울기는 이어서 데이터베이스에 저장된 평균 기울기값과 비교될 수 있다.
10초 간의 작동 파워의 평균 기울기값과, 이 평균 기울기값과 연관된 체적이 테이블 형태로 또는 곡선 - 이 곡선의 x축 및 y축은 각각 평균 기울기값 및 파워값에 대응하거나, 그 반대임 - 형태로 저장될 수 있다. 이러한 곡선은, 예컨대 소수의 결정된 값으로부터의 외삽에 의해 얻어진다. 도 8은, y축은 watts/sec 단위의 파워 기울기이고, x축은 리터 단위의 체적인, g로 표기된 곡선의 예를 보여준다. 이 곡선은 거의 쌍곡선형 감소를 보여주고, 2개의 곡선 부분과 연관된 2개의 선형 회귀에 의해 근사될 수 있으며, 제1 직선(g1)은 50 L 미만의 체적과 연관되고, 제2 직선(g2)은 50 L 이상의 체적과 연관된다.
이에 따라, 결정된 파워의 평균 기울기값을 데이터베이스에 저장되거나 하나 이상의 미리 획정한 대응 곡선에 기초한 값과 비교함으로써, 제2 미리 정해진 기간 동안에 결정된 평균 파워 기울기와 연관된 체적을 추정할 수 있다. 도 7의 예에서, -27 W/s의 평균 기울기는 1000 L의 체적과 연관되고, -53 W/s의 평균 기울기는 200 L의 체적과 연관되며, -350 W/s의 기울기는 20 L의 체적과 연관된다.
제4 단계(204)는 단계 203에서 추정된 체적에 따라 최대 작동 파워를 인가하는 것에 관한 것이다. 사실상, 과열을 방지하기 위해 또는 진공 펌프(2)가 중단되는 것을 방지하기 위해, 진공 펌프(2)의 파워를 제한하는 것이 필요할 수 있다. 챔버(3) 내의 체적이 클수록(그리고 이에 따라 배기 시에 펌핑 시간이 훨씬 길수록), 더 많은 진공 펌프(2)의 파워를 감소시켜야만 한다. 이에 따라, 도 7의 경우, 추정된 펌핑 대상 체적이 1000 L(1 ㎥)이면, 최대 파워는 3500 W로 설정되고, 추정된 펌핑 대상 체적이 200 L(0.2 ㎥)이면, 최대 파워는 4000 W로 설정되며, 추정된 펌핑 대상 체적이 20 L(0.02 ㎥)이면, 파워 제한이 없다. 최대 작동 파워값과 연관된 추정된 체적은, 예컨대 베이터베이스에 저장된다. 단계 203 및 204에서 설명한 데이터베이스와 곡선은 처리 유닛(13)의 메모리나, 처리 유닛(13)이 접속되는 처리 유닛(13) 외부의 메모리에 저장될 수 있다.
도 6에 기초하여 설명된 방법의 상이한 단계는 전술한 처리 유닛(13)과 같은 진공 펌프(2)의 처리 유닛(13)에 의해 수행될 수 있다.
더욱이, 제3 실시예에 따르면, 도 3을 바탕으로 전술한 압력에 기초한 체적 추정과 도 6을 바탕으로 전술한 파워에 기초한 체적의 추정 모두를 이룰 수 있고, 이에 따라 이들 2개의 파라메터에 기초하여 최대 작동 파워를 결정할 수 있다.
제1 미리 정해진 기간, 예컨대 1초에 걸친 압력 및 작동 파워의 추세를 사용하여 배기 개시를 검출할 수 있다. 압력 측정값은, 예컨대 검출을 위해 우선적으로 사용될 수 있고, 파워는 확인으로서 사용될 수 있다. 압력과 파워 간의 결과가 상이한 경우, 경보, 예컨대 청각 및/또는 시각 신호가 생성될 수 있다. 추세가 보다 규칙적인 파라메터, 즉 제1 미리 정해진 기간에 걸친 그 추세와 연관된 미분 기호의 변화 개수가 최저인(예컨대, 항시 증가하는 곡선) 파라메터를 우선적인 것으로 규정하는 것도 또한 가능하다.
제2 미리 정해진 기간, 예컨대 10초에 걸친 압력 및 작동 파워의 추세는 또한 각각 펌핑 대상 가스의 체적을 독립적으로 추정하는 데 사용될 수 있다.
2개의 추정된 체적을 비교할 수 있다.
2개의 추정된 체적의 차가 미리 정해진 문턱값(이 미리 정해진 문턱값은 추정된 체적의 퍼센티지에 대응할 수 있음) 미만이면, 추정된 체적은 2개의 추정된 체적의 평균값에 대응할 수도 있고, 하나의 방법으로 추정된 체적, 예컨대 추세가 가장 규칙적인, 즉 미분이 최소 기호 변화(예컨대, 제2 미리 정해진 기간에 걸쳐 항상 증가 또는 항상 감소)를 나타내는 파라메터에 의해 얻어진 체적이 우선적인 것으로 유지될 수 있다. 펌핑 중에 사용되는 최대 파워는 또한 데이터베이스나 전술한 대응 곡선으로부터 결정된다.
그 차이가 미리 정해진 문턱값보다 크면, 경보, 예컨대 청각적 및/또는 시각적 신호가 생성될 수 있고, 유지되는 체적은, 펌핑이 연장되는 경우에 과열의 위험을 제한하도록 최대 추정 체적에 상응할 수 있다.
이에 따라, 배기 개시 검출 및 펌핑 대상 체적의 추정을 위해 2개의 개별 파라메터, 즉 압력 및 파워를 사용함으로써, 확인을 달성하고, 이에 따라 검출과 펌핑 대상 체적의 추정에 관한 신뢰성이 향상되어, 최대 작동 파워를 훨씬 더 신뢰성 있게 선택할 수 있다.
도 9에 나타낸 다른 실시예에 따르면, 설비(1)는 1차 진공 펌프(2), 즉 그 토츨부가 대기압의 공기로 노출되는 1차 진공 펌프(2)와, 진공 펌프(2)와 일렬로 진공 펌프 상류에 위치 설정되는 보조 진공 펌프(2')를 포함한다. 여기에서 "상류" 및 "하류" 위치는 진공 펌프(2, 2')에 의한 가스의 흡입 방향에 관하여 정의된다. 이에 따라, 보조 진공 펌프(2')의 흡입부(9')는 챔버(3)의 오리피스에 연결되고, 보조 진공 펌프(2')의 토출부(10')는 진공 펌프(2)의 흡입부(9)에 연결된다. 이전 실시예에서와 같이, 압력 센서(12)는 진공 펌프(2)의 토출부(10)에 위치 설정될 수 있고, 보조 진공 펌프(2')는 그 전용 모터, 예컨대 루츠 타입의 용적 진공 펌프를 포함하는 진공 펌프이다.
도 10은, 진공 펌프(2)의 시간에 대한 작동 파워의 추세, 보조 진공 펌프(2')의 시간에 대한 작동 파워의 추세 및 진공 펌프(2)의 토출부에서의 시간에 대한 압력의 추세에 각각 대응하고, q1, q2 및 q3로 표기된 3개의 곡선을 보여준다. 진공 펌프(2)의 토출부(10)에서의 압력은, 예컨대 센서(12)에 의해 주어진다. 도 10에서, 순간 t0는 배기 개시에 대응한다. 순간 t0로부터, 진공 펌프(2)의 작동 파워는 t2까지 급증하고(곡선 q1), t2에서부터 진공 펌프(2)의 작동 파워는 감소한다. 보조 진공 펌프(2')의 작동 파워는 t2까지 낮게 유지된 다음, 급증한다. 이에 따라, 시간 t0와 t2 사이에서, 배기에 기여하는 것은 주로 진공 펌프(2)이고, 시간 t2에서부터 진공 펌프(2)의 기여는 보조 진공 펌프를 위해 감소한다. 시간 t2는 챔버(3)에서 특정 압력에 도달하는 순간에 상응한다. 진공 펌프(2)의 토출부(10)에서의 압력은, 순간 t0 이후에 단기간에 걸쳐 급증한 다음, 규칙적으로 감소한다.
이전 실시예에서와 같이, 시간에 대한 진공 펌프(2)의 작동 파워와 진공 펌프(2) 토출부에서의 압력의 추세와 연관된, 미리 정해진 기간에 걸친 평균 기울기로 인해, 한편으로는 배기 개시를 검출할 수 있고, 다른 한편으로는 펌핑 대상 체적을 추정할 수 있다. 배기 개시는, 예컨대 제1 미리 정해진 기간, 예컨대 100 ms 내지 2초의 기간에 걸친 진공 펌프(2)의 작동 파워 추세의 기울기가 미리 정해진 문턱값보다 큰 경우에 검출된다. 대안으로서 또는 추가로, 배기 개시는, 제1 미리 정해진 기간에 걸친 진공 펌프(2)의 토출부(10)에서의 압력 추세 기울기가 (절대값으로) 다른 미리 정해진 문턱값보다 큰 경우에 검출될 수 있다.
펌핑 대상 체적의 추정은, 예컨대 제2 미리 정해진 기간, 예컨대 10 s 내지 100 s, 특히 30 s의 기간에 걸친 진공 펌프의 작동 파워 추세의 기울기를 데이터베이스에 저장된 기울기값과 비교하는 것에 의해 수행된다.
대안으로서 또는 추가로, 펌핑 대상 체적의 추정은 제2 미리 정해진 기간에 걸친 진공 펌프(2)의 토출부에서의 압력 추세 기울기를 데이터베이스에 저장된 기울기값과 비교하는 것에 의해 수행될 수 있다. 데이터베이스는 또한 (압력 곡선 또는 작동 파워 곡선의) 이러한 기울기값과 연관된 펌핑 대상 체적의 값을 포함한다. 데이터베이스는, 예컨대 처리 유닛(13)의 메모리에 저장된다. 도 10의 예에서, 곡선 q1과 연관된 기울기 p1은 펌핑 대상 체적을 결정하는 데 사용될 수 있고, 곡선 q3의 기울기 p3도 또한 펌핑 대상 체적을 결정하는 데 사용될 수 있다. 도 10의 예에서, 토츨부(10)에서의 압력과 연관된 q3는 우선적으로 사용될 수 있는데, 그 이유는 제2 미리 정해진 기간에 걸쳐 그 변화가 훨씬 작기 때문이다. 이에 따라, 진공 펌프의 파워 제어 방법은 펌핑 대상 체적을 포함하는 챔버와 1차 진공 펌프(2) 사이에서 상류에 위치 설정된 다른 펌프와 일렬로 연결된 1차 펌프를 위해 사용될 수도 있다.
이에 따라, 진공 펌프의 작동 파워 또는 진공 펌프(2)의 토출부(10)에서의 압력과 같은 진공 펌프(2)의 작동 파라메터 모니터링으로 인해, 배기 개시를 검출할 수 있고, 펌핑 대상 체적, 예컨대 "웨이퍼" 제조를 위한 챔버(3)의 체적을 추정할 수 이고, 이에 따라 진공 펌프(2)의 과열이나 중단 위험 없이 배기 중에 진공 펌프(2)의 최대 작동 파워를 조정할 수 있다. 이로 인해, 진공 펌프(2)가 사용되는 어플리케이션에 기초한 공장에서의 수동 구성을 방지할 수 있고, 진공 펌프(2)의 제조 중에 진공 펌프(2)가 연결되는 챔버(3)의 체적을 알 필요가 없다.
본 발명은 또한 앞서 제시된 실시예들 중 어느 하나에 따른 작동 파워 제어 방법의 단계를 수행하도록 구성된 처리 유닛(13)을 포함하는 진공 펌프(2)에 관한 것이다.
Claims (13)
- 가스를 펌핑할 것이 요구되는 체적에 연결되도록 구성되는 진공 펌프(2)의 작동 파워 제어 방법에 있어서, 상기 방법은
- 제1 미리 정해진 기간에 걸쳐 다음 파라메터,
- 진공 펌프(2)의 작동 파워와,
- 진공 펌프(2)의 토출부(10)에서 측정된 압력
중 적어도 하나의 파라메터의 추세를 제1 미리 정해진 문턱값과 비교하여 배기 개시를 검출하는 단계(102, 202),
배기 개시가 검출된 경우,
- 제2 미리 정해진 기간에 걸쳐 다음 파라메터,
- 진공 펌프(2)의 작동 파워와,
- 진공 펌프(2)의 토출부(10)에서 측정된 압력
중 적어도 하나의 파라메터의 추세에 기초하여 펌핑 대상 체적을 추정하는 단계(103, 203), 및
- 진공 펌프(2)의 작동 파워가 추정된 체적에 따라 제한되는, 진공 펌프(2)의 작동 파워를 제한하는 단계(104, 204)
를 포함하는 것을 특징으로 하는 진공 펌프의 작동 파워 제어 방법. - 제1항에 있어서, 상기 파라메터의 추세는 제1 또는 제2 미리 정해진 기간에 걸친, 시간에 대한 파라메터의 추세의 평균 기울기에 해당하는 것인 진공 펌프의 작동 파워 제어 방법.
- 제1항 또는 제2항에 있어서, 펌핑 대상 체적의 추정은 진공 펌프(2)의 작동 파워 파라메터 추세에 기초하여 이루어지는 펌핑 대상 체적에 관한 제1 추정(203) 및 진공 펌프(2)의 토출부(10)에서 측정된 압력 파라메터 추세에 기초하여 이루어지는 펌핑 대상 체적에 관한 제2 추정(103)을 포함하고, 펌핑 대상 체적은 우선적으로 제2 미리 정해진 기간에 걸쳐 추세가 가장 규칙적인 파라메터에 기초하여 추정되는 것인 진공 펌프의 작동 파워 제어 방법.
- 제3항에 있어서, 토출부(10)에서의 압력 파라메터에 기초하여 추정된 체적과 진공 펌프(2)의 작동 파워 파라메터에 기초하여 추정된 체적의 편차가 미리 정해진 값을 초과한 경우에 경보가 생성되는 것인 진공 펌프의 작동 파워 제어 방법.
- 제1항 내지 제4항 중 어느 한 항에 있어서, 진공 펌프(2)의 작동 파워에 기초한 펌핑 대상 체적의 추정은, 제2 미리 정해진 기간 동안의 진공 펌프(2)의 작동 파워 감소의 평균 기울기 추정과, 이렇게 추정된 기울기와 상이한 펌핑 대상 체적과 연관된, 저장된 파워 기울기의 비교를 포함하는 것인 진공 펌프의 작동 파워 제어 방법.
- 제1항 내지 제5항 중 어느 한 항에 있어서, 진공 펌프(2)의 토출부(10)에서 측정된 압력에 기초한 펌핑 대상 체적의 추정은, 제2 미리 정해진 기간 동안의 진공 펌프(2)의 토출부(10)에서 측정된 압력 감소의 평균 기울기 추정과, 이렇게 추정된 기울기와 상이한 펌핑 대상 체적과 연관된, 저장된 압력 기울기의 비교를 포함하는 것인 진공 펌프의 작동 파워 제어 방법.
- 제1항 내지 제6항 중 어느 한 항에 있어서, 진공 펌프(2) 단독에 있어서 제2 미리 정해진 기간은 3 내지 15초, 특히 10초인 것인 진공 펌프의 작동 파워 제어 방법.
- 제1항 내지 제6항 중 어느 한 항에 있어서, 보조 진공 펌프(2')와 일렬로 연결된 1차 진공 펌프(2)에 있어서 제2 미리 정해진 기간은 10초 내지 100초, 특히 30초인 것인 진공 펌프의 작동 파워 제어 방법.
- 제1항 내지 제8항 중 어느 한 항에 있어서, 제1 미리 정해진 기간은 50 ms 내지 2초, 특히 1초인 것인 진공 펌프의 작동 파워 제어 방법.
- 제1항 내지 제9항 중 어느 한 항에 있어서, 펌핑 대상 체적은 진공 펌프(2)의 흡입부(9)에 연결되는 챔버(3)의 체적에 대응하는 것인 진공 펌프의 작동 파워 제어 방법.
- 가스를 펌핑할 것이 요구되는 챔버(3)에 연결되도록 구성되고, 토출부(10)에 위치 설정되는 압력 센서(12)를 포함하는 진공 펌프(2)로서, 이 진공 펌프는 처리 유닛(13)을 포함하고, 이 처리 유닛은
- 제1 미리 정해진 기간에 걸쳐 다음 파라메터,
- 진공 펌프(2)의 작동 파워와,
- 진공 펌프(2)의 토출부(10)에서 측정된 압력
중 적어도 하나의 파라메터의 추세를 제1 미리 정해진 문턱값과 비교하여 배기 개시를 검출하도록(102, 202),
배기 개시가 검출된 경우,
- 제2 미리 정해진 기간에 걸쳐 다음 파라메터,
- 진공 펌프(2)의 작동 파워와,
- 진공 펌프(2)의 토출부(10)에서 측정된 압력
중 적어도 하나의 파라메터의 추세에 기초하여 펌핑 대상 체적을 추정하도록(103, 203), 그리고
- 진공 펌프(2)의 작동 파워를 추정된 체적에 따라 제한하도록(104, 204)
구성되는 것인 진공 펌프. - 제11항에 있어서, 진공 펌프(2)는 다단 1차 진공 펌프(2)인 것인 진공 펌프.
- 제11항 또는 제12항에 있어서, 상기 진공 펌프는 보조 진공 펌프와 일렬로 연결되도록 구성되고, 상기 보조 펌프는 진공 펌프 상류에 위치 설정되는 것인 진공 펌프.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2010668A FR3112171B1 (fr) | 2020-10-16 | 2020-10-16 | Procédé de contrôle d’une puissance de fonctionnement d’une pompe à vide et pompe à vide |
FRFR2010668 | 2020-10-16 | ||
PCT/EP2021/076405 WO2022078738A1 (en) | 2020-10-16 | 2021-09-24 | Method for controlling an operating power of a vacuum pump, and vacuum pump |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20230085133A true KR20230085133A (ko) | 2023-06-13 |
Family
ID=73699109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020237008505A KR20230085133A (ko) | 2020-10-16 | 2021-09-24 | 진공 펌프의 작동 파워 제어 방법 및 진공 펌프 |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR20230085133A (ko) |
FR (1) | FR3112171B1 (ko) |
TW (1) | TW202223239A (ko) |
WO (1) | WO2022078738A1 (ko) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10253005A (ja) * | 1997-03-14 | 1998-09-25 | Miura Co Ltd | 脱気装置およびその運転方法 |
JP2001012379A (ja) * | 1999-06-29 | 2001-01-16 | Aisin Seiki Co Ltd | メンテナンス判定機能付き真空ポンプ |
US8715400B2 (en) * | 2009-12-24 | 2014-05-06 | Sumitomo Seiko Chemicals Co., Ltd. | Double vacuum pump apparatus, gas purification system provided with double vacuum pump apparatus, and exhaust gas vibration suppressing device in double vacuum pump apparatus |
US20160265532A1 (en) * | 2015-03-09 | 2016-09-15 | Ebara Corporation | Vacuum pump |
FR3054005B1 (fr) * | 2016-07-13 | 2018-08-24 | Pfeiffer Vacuum | Procede de descente en pression dans un sas de chargement et de dechargement et groupe de pompage associe |
FR3076582B1 (fr) * | 2018-01-09 | 2020-01-24 | Pfeiffer Vacuum | Pompe a vide de type seche et procede de commande d'un moteur synchrone de pompe a vide |
-
2020
- 2020-10-16 FR FR2010668A patent/FR3112171B1/fr active Active
-
2021
- 2021-09-24 WO PCT/EP2021/076405 patent/WO2022078738A1/en active Application Filing
- 2021-09-24 KR KR1020237008505A patent/KR20230085133A/ko active Search and Examination
- 2021-10-01 TW TW110136718A patent/TW202223239A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
FR3112171A1 (fr) | 2022-01-07 |
FR3112171B1 (fr) | 2022-07-08 |
TW202223239A (zh) | 2022-06-16 |
WO2022078738A1 (en) | 2022-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5769722B2 (ja) | 低電力消費の排気方法及び装置 | |
US6474949B1 (en) | Evacuating unit with reduced diameter exhaust duct | |
JP4737770B2 (ja) | 真空ポンプの運転制御装置および方法 | |
TWI535934B (zh) | 調諧幫浦速度的裝置與方法 | |
US20080145238A1 (en) | Vacuum exhaust apparatus and drive method of vacuum exhaust apparatus | |
RU2674297C2 (ru) | Система откачки для создания вакуума и способ откачки при помощи этой системы откачки | |
JP2006210728A5 (ko) | ||
RU2666720C2 (ru) | Способ откачивания в системе вакуумных насосов и система вакуумных насосов | |
JP5877532B2 (ja) | プロセシングシステムの自己同調装置および自己同調方法 | |
JP4180265B2 (ja) | 真空排気装置の運転方法 | |
JP2008088879A (ja) | 真空排気装置 | |
KR20230085133A (ko) | 진공 펌프의 작동 파워 제어 방법 및 진공 펌프 | |
TWI725943B (zh) | 用於產生真空的泵送系統及利用此泵送系統的泵送方法 | |
KR20210074368A (ko) | 진공 펌프의 온도를 제어하는 방법, 및 관련 진공 펌프 및 설비 | |
JP5102068B2 (ja) | 多段真空ポンプ | |
RU2666379C2 (ru) | Способ откачки в насосной системе и система вакуумных насосов | |
TWI829927B (zh) | 乾式主真空泵及控制沖洗氣體注入之方法 | |
RU2660698C2 (ru) | Способ откачки в системе вакуумных насосов и система вакуумных насосов | |
JP2849255B2 (ja) | 高性能半導体製造用の排気システムおよびその制御方法 | |
JP2003139080A (ja) | 真空排気装置の運転方法 | |
RU2789162C1 (ru) | Высоковакуумная система промышленных и лабораторных установок | |
CN113924417B (zh) | 涡轮分子泵、真空抽吸系统和排空真空腔室的方法 | |
WO2011052675A1 (ja) | ポンプユニット,ロードロックチャンバの排気装置,及び真空装置 | |
CN116770275A (zh) | 化学气相沉积设备的抽气控制方法、装置、介质及设备 | |
JP2003269354A (ja) | 真空排気システムおよびその運転方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination |