KR20220113555A - 플라즈마 처리 장치 및 플라즈마 처리 방법 - Google Patents

플라즈마 처리 장치 및 플라즈마 처리 방법 Download PDF

Info

Publication number
KR20220113555A
KR20220113555A KR1020227027285A KR20227027285A KR20220113555A KR 20220113555 A KR20220113555 A KR 20220113555A KR 1020227027285 A KR1020227027285 A KR 1020227027285A KR 20227027285 A KR20227027285 A KR 20227027285A KR 20220113555 A KR20220113555 A KR 20220113555A
Authority
KR
South Korea
Prior art keywords
plasma processing
electromagnet
substrate
annular
substrate support
Prior art date
Application number
KR1020227027285A
Other languages
English (en)
Other versions
KR102630511B1 (ko
Inventor
다카시 곤도
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Priority to KR1020247002420A priority Critical patent/KR20240015728A/ko
Publication of KR20220113555A publication Critical patent/KR20220113555A/ko
Application granted granted Critical
Publication of KR102630511B1 publication Critical patent/KR102630511B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32642Focus rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32669Particular magnets or magnet arrangements for controlling the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/4652Radiofrequency discharges using inductive coupling means, e.g. coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

[과제] 소위 틸팅 현상을 효과적으로 억제하여, 생산 효율의 향상과 생산 비용의 저감을 도모하는 것. [해결수단] 이 용량 결합형 플라즈마 에칭 장치에 있어서, 상부 전극(26)의 상부에는 전자석(32)이 배치되어 있다. 전자석(32)은 요크 부재(34) 및 코일(36, 38, 40, 42)을 가지고 있다. 요크 부재(34)는, 주상부(44), 복수의 원통부(46, 48, 50, 52) 및 백플레이트부(54)가 일체로 형성된 구조를 갖는다. 전자석 구동 회로(56)는, 제어부(60)의 제어 하에서 코일(36, 38, 40, 42) 중 어느 하나를 택일적으로 임의의 여기 전류로 통전시킬 수 있을 뿐만 아니라, 임의의 조합으로 복수의 코일을 동시에 공통 또는 개별의 임의의 여기 전류로 통전시킬 수 있다.

Description

플라즈마 처리 장치 및 플라즈마 처리 방법{PLASMA PROCESSING APPARATUS AND PLASMA PROCESSING METHOD}
본 발명은 용량 결합형의 플라즈마 처리 장치 및 플라즈마 처리 방법에 관한 것이다.
반도체 디바이스의 제조 프로세스에서는, 처리 가스의 플라즈마를 피처리 기판 예컨대 반도체 웨이퍼에 작용시켜, 피처리 기판에 에칭 등의 처리를 실시하는 플라즈마 처리 장치가 이용되고 있다. 종래부터, 매엽식의 플라즈마 에칭에는 용량 결합형의 플라즈마 에칭 장치가 많이 이용되고 있다.
일반적으로 용량 결합형의 플라즈마 에칭 장치는, 진공 챔버로서 구성되는 처리 용기 내에 상부 전극과 하부 전극을 평행하게 배치하고, 하부 전극 위에 반도체 웨이퍼를 배치하여, 양 전극 사이에 고주파 전력을 인가한다. 그러면, 양 전극 사이에서 처리 가스의 고주파 방전에 의한 플라즈마가 발생하여, 플라즈마 중의 라디칼이나 이온에 의해서 기판 표면에 원하는 패턴으로 에칭 가공이 실시된다.
종래부터, 용량 결합형의 플라즈마 에칭 장치에서는, 주로 처리 용기 내의 플라즈마 밀도 분포를 제어하기 위해서, 처리 용기 내의 처리 공간을 소정의 루트로 관통하는 폐루프의 자력선 또는 자계를 형성하는 자계 형성 기구가 이용되고 있다.
예컨대, 특허문헌 1에는, 처리 용기 측벽의 주위(바깥)에 이방성 세그먼트 기둥 자석으로 이루어지는 다수의 다이폴 링 자석을 환형으로 일정 간격으로 배치하고, 처리 용기 내의 처리 공간에 균일한 수평 자계를 형성하는 자계 형성 기구가 개시되어 있다. 특허문헌 2에는, 수평 방향으로 피처리 기판의 구경 사이즈보다도 충분히 떨어진 N극과 S극을 갖는 회전 자석을 처리 용기 천장 위에 배치하고, 처리 용기의 중심축을 회전 중심으로 하여 상기 회전 자석을 회전시켜 처리 용기 내의 처리 공간에 균일한 수평 자계를 형성하는 자계 형성 기구가 개시되어 있다. 또 특허문헌 3에는, N극과 S극을 연직 방향으로 세우는 다수의 전자석을 처리 용기 천장 위에 방사형으로 배치하여, 처리 용기 내의 처리 공간에 방사형의 자계를 형성하는 자계 형성 기구가 개시되어 있다.
일본 특허 제3375302호 일본 특허 제3037848호 일본 특허 제4107518호
그런데, 반도체 디바이스의 제조 공정에서는, 용량 결합형의 플라즈마 에칭 장치를 이용하여 반도체 웨이퍼 상에 고종횡비로 에칭 가공을 실시하는 경우에, 특히 고종횡비의 컨택트 홀을 형성하는 경우에, 웨이퍼 면내의 일부 영역(예컨대 웨이퍼 주변부 영역)에서 컨택트 홀이 기우는 현상(틸팅)이 발생하는 경우가 있어, 이것이 수율 저하의 원인으로 되고 있다.
이러한 틸팅이 발생하는 요인 중 하나로는, 피처리 기판 상에서 이온 시스와 벌크 플라즈마의 계면에 요철이 생기고, 이 오목부와 볼록부의 경계선 부근에서 상기 계면에 경사 부분이 생기는 데에 있다. 즉, 이온 시스와 벌크 플라즈마의 계면이 경사져 있으면, 그 부근에서 웨이퍼에 입사하는 이온의 각도(입사각)가 수직으로 되지 않고 비스듬하게 기울어, 에칭 홀 또는 에칭 홈에 기울기가 생기는 소위 틸팅(Tilting)이 일어나게 된다.
특히, 플라즈마 처리 장치의 처리 용기 내에서는, 피처리 기판의 외주연부와, 그보다도 반경 방향 외측의 부분에서는, 그 구조나 재질이 다르기 때문에, 위쪽에 형성되는 이온 시스의 두께에 단차나 변화가 생기기 쉽고, 이로 인해 이온 시스와 벌크 플라즈마의 계면에 요철이 생기기 쉽다.
또한, 어떤 형식의 용량 결합형 플라즈마 에칭 장치에 있어서, 처리 공간의 플라즈마 밀도 나아가서는 웨이퍼 면내의 에칭 레이트가 웨이퍼 주변부보다도 웨이퍼 중심부에서 상대적으로 높아지는 경향이 있는 경우는, 상부 전극과 하부 전극 사이의 전극 사이 갭이 웨이퍼 중심부보다도 웨이퍼 주변부에서 좁아지도록, 상부 전극의 주변부(웨이퍼 엣지의 바로 위쪽 내지 그보다도 반경 방향 외측 부분)에 테이퍼형의 경사부 또는 단차형의 돌출부를 형성하는 구성이 채용되고 있다. 그러나, 이러한 전극면의 구배에 의해서, 전극 표면에 형성되는 이온 시스에도 반경 방향으로 경사가 생긴다. 나아가서는, 전극 사이 갭이 불균일하게 존재하는 것도 이온 시스의 두께에 영향을 준다. 예컨대, 웨이퍼 중심부 위에 형성되는 이온 시스의 두께가 웨이퍼 주변부 위에 형성되는 이온 시스의 두께와 상이한 경우에는, 반도체 웨이퍼의 어떤 영역 예컨대 중간부 영역에서는 이온이 비스듬하게 입사하는 비율이 높아져, 틸팅이 발생하기 쉽게 된다.
종래의 용량 결합형 플라즈마 에칭 장치는, 상기 특허문헌 1, 2, 3에 기재된 바와 같은 자계 형성 기구를 구비하더라도 이러한 틸팅을 효과적으로 억제할 수는 없다.
본 발명은, 상기와 같은 종래 기술의 과제를 해결하고, 종래에 비해서 생산 효율의 향상과 생산 비용의 저감을 도모할 수 있는 플라즈마 처리 장치 및 플라즈마 처리 방법을 제공한다.
본 발명의 플라즈마 처리 장치는, 피처리 기판에 처리 가스의 플라즈마를 작용시켜 처리를 실시하는 플라즈마 처리 장치로서, 상기 피처리 기판을 출납 가능하게 수용하는 처리 용기와, 상기 처리 용기 내에 마련되며, 상기 피처리 기판이 배치되는 하부 전극과, 상기 처리 용기 내에 마련되며, 상기 하부 전극과 대향하는 상부 전극과, 상기 상부 전극과 상기 하부 전극 사이에 고주파 전력을 인가하는 고주파 전원과, 상기 처리 용기의 상부 또는 상측에서 상기 하부 전극의 중심을 상하 방향으로 통과하는 중심축선을 중심으로 하는 동심원을 따라서 설치되는 하나 또는 복수의 환형 코일을 갖는 전자석을 구비한다.
상기 구성의 플라즈마 처리 장치에서는, 전자석 중 어느 한 코일을 여기(통전)시키면, 처리 용기 내에서는 그 통전된 코일로부터 반경 방향 내측으로 오프셋된 영역에서 플라즈마 밀도가 높아지고, 그 코일 바로 아래 영역에서 플라즈마 밀도가 낮아지는 자기 효과가 발휘된다. 따라서, 예컨대, 일정한 요인으로 피처리 기판 상의 일부 또는 전부의 영역에서 틸팅 현상이 발생하는 경우는, 전자석 중 어느 코일을 선택적으로 여기(통전)시키면, 그 코일 둘레에서 상기와 같은 자기 효과를 발휘하게 함으로써, 피처리 기판의 상기 영역 상에서 이온 시스와 벌크 플라즈마의 계면을 평탄화하고, 이로써 기판의 표면에 이온을 수직으로 입사시켜, 틸팅을 억제할 수 있다.
본 발명의 플라즈마 처리 방법은, 피처리 기판을 출납 가능하게 수용하는 처리 용기와, 상기 처리 용기 내에 마련되며, 상기 피처리 기판이 배치되는 하부 전극과, 상기 처리 용기 내에 마련되며, 상기 하부 전극과 대향하는 상부 전극과, 상기 상부 전극과 상기 하부 전극 사이에 고주파 전력을 인가하는 고주파 전원과, 상기 처리 용기의 상부 또는 상측에서 상기 하부 전극의 중심을 상하 방향으로 통과하는 중심축선을 중심으로 하는 하나 또는 복수의 환형 코일을 갖는 전자석을 구비하는 플라즈마 처리 장치를 이용하여, 상기 피처리 기판에 처리 가스의 플라즈마를 작용시켜 처리를 실시하는 플라즈마 처리 방법으로서, 상기 전자석 중 어느 한 환형 코일을 선택적으로 통전시켜 그 주위에 자계를 발생시킴으로써, 상기 피처리 기판 위 및 상기 포커스 링 위에 형성되는 이온 시스와 벌크 플라즈마의 계면의 구배를 제어하는 것을 특징으로 한다.
본 발명의 플라즈마 처리 장치 또는 플라즈마 처리 방법에 따르면, 상기와 같은 구성 및 작용에 의해 소위 틸팅 현상을 효과적으로 억제할 수 있고, 생산 효율의 향상과 생산 비용의 저감을 도모할 수 있다.
도 1은 본 발명의 실시형태에 따른 플라즈마 에칭 장치의 개략 구성을 모식적으로 도시하는 도면이다.
도 2는 도 1의 플라즈마 에칭 장치의 주요부의 개략 구성을 모식적으로 도시하는 도면이다.
도 3은 전자석에 의해서 형성되는 자계의 예를 도시하는 도면이다.
도 4는 틸팅의 발생 상태를 설명하기 위한 도면이다.
도 5는 코일(36)을 통전시킨 경우에 얻어진 웨이퍼 상의 에칭 레이트 분포 특성 및 웨이퍼 상의 틸팅 각도 분포 특성의 측정 결과를 도시하는 그래프도이다.
도 6은 코일(38)을 통전시킨 경우에 얻어진 웨이퍼 상의 에칭 레이트 분포 특성 및 웨이퍼 상의 틸팅 각도 분포 특성의 측정 결과를 도시하는 그래프도이다.
도 7은 코일(40)을 통전시킨 경우에 얻어진 웨이퍼 상의 에칭 레이트 분포 특성 및 웨이퍼 상의 틸팅 각도 분포 특성의 측정 결과를 도시하는 그래프도이다.
도 8은 코일(42)을 통전시킨 경우에 얻어진 웨이퍼 상의 에칭 레이트 분포 특성 및 웨이퍼 상의 틸팅 각도 분포 특성의 측정 결과를 도시하는 그래프도이다.
도 9는 일 변형예에 있어서의 플라즈마 에칭 장치의 개략 구성을 모식적으로 도시하는 도면이다.
도 10은 다른 변형예에 있어서의 플라즈마 에칭 장치의 개략 구성을 모식적으로 도시하는 도면이다.
도 11은 다른 변형예에 있어서의 플라즈마 에칭 장치의 개략 구성을 모식적으로 도시하는 도면이다.
도 12는 다른 변형예에 있어서의 플라즈마 에칭 장치의 주요부의 구성을 모식적으로 도시하는 도면이다.
이하, 첨부 도면을 참조하여 본 발명의 실시형태를 설명한다. 도 1에, 일 실시형태에 있어서의 플라즈마 처리 장치의 개략 단면 구성을 모식적으로 도시한다. 이 플라즈마 처리 장치(10)는 용량 결합형의 플라즈마 에칭 장치로서 구성되어 있으며, 예컨대 300 mm 구경의 반도체 웨이퍼(W)를 출납할 수 있게 수용하는 밀폐 가능한 원통형의 챔버(처리 용기)(12)를 갖는다.
챔버(12) 내의 중앙 하부에는, 처리 대상의 반도체 웨이퍼(W)를 배치하는 원판형의 배치대(14)가 마련되어 있다. 이 배치대(14)는 기초부(14a) 및 정전 척(14b)을 포함하고 있다. 기초부(14a)는 알루미늄 등의 도전성 부재로 구성되어 있다.
기초부(14a) 상면의 주연부 영역에는, 반도체 웨이퍼(W)의 주위를 둘러싸도록 환형의 포커스 링(16)이 설치되어 있다. 또 기초부(14a) 상면의 중앙 영역에는 원판형의 정전 척(14b)이 설치되어 있다. 정전 척(14b)은 전극막을 봉입한 절연막을 갖는다. 이 전극막에는 직류 전원(도시하지 않음)으로부터 직류 전압이 공급되고, 이로써 정전 척(14b)의 발생 정전력에 의해 반도체 웨이퍼(W)를 흡착하여 유지하게 된다.
정전 척(14b) 위에 반도체 웨이퍼(W)가 배치된 상태에서는, 반도체 웨이퍼(W)의 중심을 상하 방향으로 통과하는 중심축선(Z)은 기초부(14a) 및 정전 척(14b)의 중심축선에 대략 일치한다.
기초부(14a)는 하부 전극을 구성한다. 이 기초부(14a)에는, 플라즈마 생성용의 고주파 전력을 발생시키는 제1 고주파 전원(18)이 제1 정합기(20)를 통해 전기적으로 접속되어 있다. 제1 고주파 전원(18)은 예컨대 주파수 100 MHz의 고주파 전력을 발생시킨다. 제1 정합기(20)는, 고주파 전원(18)의 출력 임피던스와 기초부(하부 전극)(14a) 측의 부하 임피던스를 정합시키기 위한 정합 회로를 갖는다.
이 실시형태에 있어서, 제1 고주파 전원(18)은, 처리 가스의 고주파 방전에 적절한 원하는 주파수(예컨대 50 kHz) 및 원하는 듀티비(예컨대 20%)로 플라즈마 생성용의 고주파 전력을 펄스형으로 출력할 수 있게 되어 있다. 이와 같이, 펄스 주파수의 1 사이클 내에 플라즈마 생성 기간과 플라즈마 비생성 기간을 둠으로써, 반도체 웨이퍼(W) 상의 특정 부위에 전하 축적이 생기는 것을 경감할 수 있게 되어 있다. 즉, 플라즈마 생성 기간 중에 플라즈마 내의 전자 밀도의 불균일에 의해서 반도체 웨이퍼(W) 상의 전자 밀도가 높은 특정 부위에 전하 축적이 생기더라도, 그와 같은 전하를 플라즈마 비생성 기간 중에 주위로 분산시켜, 전하 축적을 해소할 수 있다. 이에 따라, 웨이퍼 표면에서 절연막의 파괴 등이 생기는 것을 방지할 수 있다.
또, 기초부(14a)에는, 이온 인입용의 고주파 바이어스 전력을 발생시키는 제2 고주파 전원(22)이 제2 정합기(24)를 통해 전기적으로 접속되어 있다. 제2 고주파 전원(22)은, 배치대(14) 상의 반도체 웨이퍼(W)에 입사하는 이온의 에너지를 제어하기에 적절한 주파수(예컨대 3.2 MHz)의 고주파 전력을 발생시킨다. 제2 정합기(24)는, 고주파 전원(22)의 출력 임피던스와 하부 전극 측의 부하 임피던스를 정합시키기 위한 정합 회로를 갖는다.
배치대(하부 전극)(14)의 위쪽에는, 처리 공간(S)을 매개로 하여 배치대(14)와 대향하도록 상부 전극(26)이 마련되어 있다. 상부 전극(26)은 챔버(12)의 상부판을 구성하고 있으며, 처리 공간(S)을 그 위쪽에서 구획하고 있다. 상부 전극(26)은, 그 중심축선이 배치대(14)의 중심축선(Z)과 대략 일치하도록 배치되어 있다.
상부 전극(26)은, 소정의 처리 가스를 처리 공간(S) 내에 샤워형으로 도입하는 샤워 헤드의 기능을 겸하고 있다. 이 실시형태에서는, 상부 전극(26)에는, 버퍼실(26a), 내부 가스 라인(26b) 및 복수의 가스 구멍(26c)이 형성되어 있다. 버퍼실(26a)에는, 내부 가스 라인(26b) 및 외부 가스 라인(28)을 통해 처리 가스 공급부(30)가 접속되어 있다. 상부 전극(26)의 가스 구멍(26c)은 버퍼실(26a)에서 아래쪽으로 연장되고, 처리 공간(S)을 향해 개구되어 있다. 한편, 챔버(12)의 바닥부에는, 도시하지 않는 TMP(Turbo Molecular Pump) 및 DP(Dry Pump) 등의 배기 기구가 접속되어 있어, 챔버(12) 내의 처리 공간(S)을 소정 압력의 감압 분위기로 유지할 수 있게 되어 있다.
상부 전극(26)의 상부에는 전자석(32)이 배치되어 있다. 전자석(32)은 요크 부재(34) 및 코일(36, 38, 40, 42)을 갖는다. 요크 부재(34)는, 주상부(柱狀部)(44), 복수의 원통부(46, 48, 50, 52) 및 베이스부 또는 백플레이트부(54)가 일체로 형성된 구조를 가지며, 연자성체로 구성되어 있다. 백플레이트부(54)는, 수평으로 연장되어 대략 원판형을 가지며, 그 중심축선은 중심축선(Z)을 따르도록 마련되어 있다. 주상부(44) 및 원통부(46, 48, 50, 52)는 동심형으로 형성되고, 백플레이트부(54)의 하면에서 아래쪽으로 돌출되게 연장되어 있다. 주상부(44)는 대략 원주형을 가지며, 그 중심축선이 중심축선(Z)을 따르도록 마련되어 있다. 이 주상부(44)의 반경 L1(도 2 참조)은 예컨대 30 mm이다.
원통부(46, 48, 50, 52)의 각각은, 중심축선(Z)과 평행하게 연장되는 원통형을 갖는다. 도 2에 도시하는 바와 같이, 원통부(46, 48, 50, 52)는, 중심축선(Z)을 중심으로 하는 복수의 동심원(C2, C3, C4, C5)을 따라서 각각 설치되어 있다. 보다 상세하게는, 원통부(46)는 반경 L1보다도 큰 반경 L2의 동심원 C2을 따라서 배치되어 있다. 원통부(48)는 반경 L2보다도 큰 반경 L3의 동심원 C3을 따라서 배치되어 있다. 원통부(50)는 반경 L3보다도 큰 반경 L4의 동심원 C4을 따라서 배치되어 있다. 원통부(52)는 반경 L4보다도 큰 반경 L5의 동심원 C5을 따라서 배치되어 있다.
일례에서는, 반경 L2, L3, L4, L5은 각각 76 mm, 127 mm, 178 mm, 229 mm이다. 또 코일(36, 38, 40, 42)의 중심 위치는 각각 중심축선(Z)에서부터 대략 50 mm, 100 mm, 150 mm, 200 mm로 되어 있다.
요크 부재(34)에 있어서, 주상부(44)와 최내주(最內周)의 원통부(46)의 사이에는, 하면이 개방된 환형의 홈이 형성되어 있다. 도 1에 도시하는 바와 같이, 이 홈에는, 주상부(44)의 외주면을 따라서 휘감긴 코일(36)이 수용되어 있다. 이에 따라, 코일(36)의 하면이 노출되고, 코일(36)의 내측면, 외측면 및 상면이 요크 부재(34)의 주상부(44), 원통부(46) 및 백플레이트부(54)에 의해서 덮여 있다.
원통부(46)와 그 바깥에 이웃하는 원통부(48)의 사이에도 하면이 개방된 환형의 홈이 형성되어 있다. 이 홈에는, 원통부(46)의 외주면을 따라서 휘감긴 코일(38)이 수용되어 있다. 이에 따라, 코일(38)의 하면이 노출되고, 코일(38)의 내측면, 외측면 및 상면이 요크 부재(34)의 원통부(46, 48) 및 백플레이트부(54)에 의해서 덮여 있다.
원통부(48)와 그 바깥에 이웃하는 원통부(50)의 사이에도 하면이 개방된 환형의 홈이 형성되어 있고, 이 홈에는 원통부(48)의 외주면을 따라서 휘감긴 코일(40)이 수용되어 있다. 이에 따라, 코일(40)의 하면이 노출되고, 코일(40)의 내측면, 외측면 및 상면이 요크 부재(34)의 원통부(48, 50) 및 백플레이트부(54)에 의해서 덮여 있다.
또, 원통부(50)와 그 바깥에 이웃하는(최외주(最外周))의 원통부(52)의 사이에도 하면이 개방된 환형의 홈이 형성되어 있고, 이 홈에는 원통부(50)의 외주면을 따라서 휘감긴 코일(42)이 수용되어 있다. 이에 따라, 코일(42)의 하면이 노출되고, 코일(42)의 내측면, 외측면 및 상면이 요크 부재(34)의 원통부(50, 52) 및 백플레이트부(54)에 의해서 덮여 있다.
상기한 대로, 전자석(32)에 있어서, 반경 L4, L5은 반도체 웨이퍼(W)의 반경150 mm보다도 크다. 따라서, 도 1에 도시하는 바와 같이, 최외주의 코일(42)은, 반도체 웨이퍼(W)의 외주 엣지보다도 직경 방향 외측에 위치하고, 적어도 그 일부가 포커스 링(16)의 위쪽에 위치하도록 배치되어 있다. 또한, 최내주의 코일(36)은, 반도체 웨이퍼(W) 중심부의 위쪽에 위치하도록 배치되어 있다. 또, 중심축선(Z)에서 봤을 때 2번째의 코일(38)은, 반경 방향에 있어서 반도체 웨이퍼(W)의 중간부와 주변부에 걸치는 식으로 배치되어 있다. 그리고, 중심축선(Z)에서 봤을 때 3번째의 코일(40)은, 반경 방향에 있어서 반도체 웨이퍼(W)의 주변부와 외측에 걸치는 식으로 배치되어 있다.
코일(36, 38, 40, 42)의 각각의 양끝은 전자석 여기 회로(56)에 전기적으로 접속되어 있다. 전자석 여기 회로(56)는, 후술하는 제어부(60)의 제어 하에서 코일(36, 38, 40, 42) 중 어느 하나를 택일적으로 임의의 여기 전류로 통전시킬 수 있을 뿐만 아니라, 임의의 조합으로 복수의 코일을 동시에 공통 또는 개별의 임의의 여기 전류로 통전시킬 수 있다.
상기 구성의 전자석(32)에 따르면, 코일(36, 38, 40, 42) 중 하나 이상의 코일에 전류를 공급함으로써, 중심축선(Z)에 대하여 직경 방향을 따른 수평 자계 성분(BH)을 갖는 자계(B)를 처리 공간(S)에 형성할 수 있다. 도 3에, 전자석(32)에 의해서 형성되는 자계의 예를 도시한다.
도 3의 (a)에는, 중심축선(Z)에 대하여 반(半)평면 내에서의 전자석(32)의 단면 및 중심축선(Z)에서부터 2번째의 코일(38)에 전류가 공급되었을 때의 자계(B)가 도시되어 있다. 도 3의 (b)에는, 코일(38)에 전류가 공급되었을 때의 수평 자계 성분(BH)의 강도 분포가 도시되어 있다.
또, 도 3의 (c)에는, 중심축선(Z)에 대하여 반평면 내에서의 전자석(32)의 단면 및 최외주의 코일(54)에 여기 전류가 공급되었을 때의 자계(B)가 도시되어 있다. 도 3의 (d)에는, 코일(54)에 전류가 공급되었을 때의 수평 자계 성분(BH)의 강도 분포가 도시되어 있다. 도 3의 (b) 및 (d)에 도시하는 그래프에 있어서, 횡축은 중심축선(Z)의 위치를 0 mm로 했을 때의 직경 방향의 위치를 나타내고 있고, 종축은 수평 자계 성분(BH)의 강도(자속 밀도)를 나타내고 있다.
전자석(32)의 코일(38)에 전류를 공급하면, 도 3의 (a)에 도시하는 바와 같은 자계(B)가 형성된다. 즉, 주상부(44) 및 원통부(46)의 하단으로부터 나와 아래쪽의 처리 공간(S)를 경유하여 원통부(48, 50, 52)의 하단으로 들어가는 식의 자력선 루프를 갖는 자계(B)가 형성된다. 이 자계(B)의 자력선 루프는, 요크 부재(34) 중에서는, 원통부(48, 50, 52)의 하단으로부터 백플레이트부(54)를 돌아 주상부(44) 및 원통부(46)로 되돌아간다.
이러한 자계(B)의 수평 자계 성분(BH)의 직경 방향의 강도 분포는, 도 3의 (b)에 도시하는 바와 같이, 코일(38)의 코일 도체의 중심부의 아래쪽에 있어서 피크를 갖는 강도 분포가 된다. 일례에서는, 코일(38)의 코일 도체의 중심의 위치는, 축선(Z)에서부터 약 100 mm의 위치이며, 직경 300 mm의 웨이퍼(W)가 처리되는 경우에는, 직경 방향에 있어서 웨이퍼(W)의 중심과 엣지의 중간 위치이다.
또, 전자석(32)의 코일(42)에 전류를 공급하면, 도 3의 (c)에 도시하는 바와 같은 자계(B)가 형성된다. 즉, 주상부(44) 및 원통부(46, 48, 50)의 하단으로부터 나와 아래쪽의 처리 공간(S)을 경유하여 최외주의 원통부(52)의 하단으로 들어가는 식의 자력선 루프를 갖는 자계(B)가 형성된다. 이 자계(B)의 자력선 루프는, 요크 부재(34) 중에서는, 원통부(52)의 하단으로부터 백플레이트부(54)를 돌아 주상부(44) 및 원통부(46, 48, 50)로 되돌아간다.
이러한 자계(B)의 수평 자계 성분(BH)의 직경 방향의 강도 분포는, 도 3의 (d)에 도시하는 바와 같이, 코일(42)의 코일 도체의 중심부의 아래쪽에 있어서 피크를 갖는 강도 분포가 된다. 일례에서는, 코일(42)의 중심의 위치는, 축선(Z)에서부터 약 200 mm의 위치이며, 직경 300 mm(반경 150 mm)의 웨이퍼(W)가 처리되는 경우에는, 직경 방향에 있어서 웨이퍼(W)의 엣지의 외측, 즉 포커스 링(16)의 위치이다.
이 플라즈마 에칭 장치(10)에 있어서, 제어부(60)는 하나 또는 복수의 마이크로컴퓨터를 포함하며, 외부 메모리 또는 내부 메모리에 저장되는 소프트웨어(프로그램) 및 레시피 정보에 따라서, 장치 내의 각부, 특히 고주파 전원(18, 22), 정합기(20, 24), 처리 가스 공급부(30), 전자석 여기 회로(56), 배기 장치 등의 개개의 동작 및 장치 전체의 동작(시퀀스)을 제어한다.
또, 제어부(60)는 키보드 등의 입력 장치나 액정 디스플레이 등의 표시 장치를 포함하는 맨머신 인터페이스용의 조작 패널(도시하지 않음) 및 각종 프로그램이나 레시피, 설정치 등의 각종 데이터를 저장 또는 축적하는 외부 기억 장치(도시하지 않음) 등과도 접속되어 있다. 이 실시형태에서는, 제어부(60)가 하나의 제어 유닛으로서 나타내어져 있지만, 복수의 제어 유닛이 제어부(60)의 기능을 병렬적 또는 계층적으로 분담하는 형태를 채용하여도 좋다.
이 플라즈마 에칭 장치(10)에 있어서, 배치대(14) 상의 반도체 웨이퍼(W)에 에칭 가공을 실시할 때는, 처리 가스 공급부(30)로부터 샤워 헤드(상부 전극)(26)를 통해 챔버(12) 내의 처리 공간(S)에 처리 가스, 즉 에칭 가스를 공급하고, 제1 고주파 전원(18)으로부터의 고주파 전력을 배치대(하부 전극)(14)에 부여하여, 상부 전극(26)과 배치대(14) 사이에 고주파 전계를 발생시킨다. 이에 따라, 처리 공간(S)에 있어서 처리 가스의 고주파 방전에 의한 플라즈마가 생성된다. 그리고, 처리 가스를 구성하는 분자 또는 원자가 플라즈마 내에서 해리 내지 전리되어 생성된 라디칼 및 이온에 의해, 반도체 웨이퍼(W) 표면의 피처리막에 에칭 마스크로 규정되는 소정 패턴의 에칭 가공을 실시할 수 있다. 또, 제2 고주파 전원(22)으로부터 하부 전극으로서의 배치대(14)에 부여하는 고주파 바이어스의 전력을 조정함으로써, 반도체 웨이퍼(W)에 입사하는 이온의 에너지를 제어할 수 있다.
그러나, 반도체 웨이퍼(W) 상에 고종횡비로 에칭 가공을 실시하는 경우에는, 특히 고종횡비의 컨택트 홀을 형성하는 경우에는, 웨이퍼 면내의 일부의 영역에서 컨택트 홀이 기우는 현상(틸팅)이 발생하는 경우가 있다.
도 4에, 반도체 웨이퍼(W)에 플라즈마 에칭에 의해 홀이나 라인 형상을 형성한 경우의 직경 방향을 따른 단면의 확대도의 예를 모식적으로 도시한다. 또한 도 4에서, 좌측이 반도체 웨이퍼(W)의 중심 방향, 우측이 포커스 링(반도체 웨이퍼(W)의 주연부)의 방향으로 되어 있다.
도 4에 도시하는 바와 같이, 플라즈마 에칭에 의해 홀이나 홈을 형성한 경우, 이온이 반도체 웨이퍼(W)에 대하여 비스듬하게 입사하여, 에칭 상태에 반도체 웨이퍼(W)에 대하여 기울기가 생기면, 형성된 홀이나 홈의 상단부에 있어서의 공간의 중심 위치(상단부 공간 중심)와, 바닥부에 있어서의 공간의 중심 위치(바닥부 공간 중심)에 직경 방향으로 어긋남이 생기고, 이들을 연결한 선(A1)이, 상단부 공간 중심에서 내려 그은 수선(A2)에 대하여 기운 상태가 된다.
이러한 상태가 틸팅이 발생한 상태이며, 이 선 A1과 수선 A2이 이루는 각도(이하, 「틸팅 각도」라고 함)를 측정함으로써, 틸팅의 발생 상태를 정량적으로 평가할 수 있다. 이러한 틸팅은, 미세화의 진전이나 예컨대 3차원 NAND에 있어서의 다층화의 진전에 있어서 큰 과제가 되고 있다.
여기서, 이 실시형태의 플라즈마 에칭 장치를 이용하여, 반도체 웨이퍼(W) 표면의 절연막에 틸팅을 실질적으로 발생시키지 않고서 고종횡비의 홀을 형성하는 플라즈마 에칭의 애플리케이션에 있어서, 전자석(32)의 코일(36, 38, 40, 42) 중 하나를 선택적으로 통전시킨 경우의 작용을 설명한다. 또한 이 실험에 있어서의 주된 에칭 조건은 다음과 같다.
챔버 내 압력: 5.32 Pa(40 mTorr)
처리 가스: C4F8/C4F6/Ar/O2=35/10/400/20 sccm
제1 고주파: 주파수 100 MHz, 전력 300 W, 펄스 주기 50 kHz, 듀티비 20%
제2 고주파: 주파수 3.2 MHz, 전력 10000 W
처리 시간: 60초
도 5에, 최내주의 코일(36)에 전류를 흘려 15 G의 자계를 형성한 경우에 얻어진 웨이퍼 상의 에칭 레이트 분포 특성 및 틸팅 각도 분포 특성의 측정 결과를 각각 도시한다.
도 5에 도시하는 바와 같이, 에칭 레이트 분포 특성은, 코일(36)보다 반경 방향 내측으로 오프셋된 중심부의 영역(약 0~20 mm)에서 높게 고조되고, 코일(36)의 바로 아래 영역(약 30~70 mm)에서는 웨이퍼 중심 측에서부터 웨이퍼 엣지 측에 걸쳐서 저하하는 경향을 보였다.
이 에칭 레이트 분포 특성으로부터, 코일(36)을 여기(통전)시키면, 처리 공간(S) 내의 플라즈마 밀도는, 중심부 영역(약 0~20 mm)에서 상대적으로 높고, 코일(36)의 바로 아래 영역(약 30~70 mm)에서 상대적으로 낮은 것을 알 수 있다. 일반적으로, 처리 공간(S) 내의 어떤 장소에 자장이 존재하면, 그 부근에서는, 전자가 로렌츠력을 받아 드리프트 운동함으로써, 처리 가스의 분자나 원자와의 전리 충돌을 많이 반복하는 결과, 플라즈마 밀도가 높아진다. 검증 결과, 플라즈마 밀도를 좌우하는 자장은, 코일(36)보다 반경 방향 내측으로 오프셋된 중심부 영역(약 0~20 mm)에서 포지티브하게 작용하고, 코일(36)의 바로 아래 영역(약 30~70 mm)에서는 네거티브하게 작용하는 것을 알 수 있었다.
또, 틸팅 각도 분포 특성은, 도시하는 바와 같이, 웨이퍼(W)의 중심에서부터 0 mm, 30 mm, 60 mm, 80 mm, 100 mm, 125 mm, 145 mm의 각각의 위치에서 -0.6, 0.4, 2.7, 1.3, 0.3, 1.9, -0.3도(deg)였다. 즉, 코일(36)보다 반경 방향 내측 영역에서 틸팅 각도가 마이너스의 값(-0.6도)을 보이는 부위(0 mm)가 존재하고, 코일(36) 바로 아래에서부터 웨이퍼 엣지 위치 부근에 이르기까지의 영역(약 30~125 mm)에서 틸팅 각도가 플러스의 값을 보였다. 또한, 웨이퍼 엣지 위치(150 mm)에서는 틸팅 각도가 마이너스의 값(-0.3도)이었다. 그러나, 웨이퍼 엣지 위치는, 코일(36)로부터 상당히 떨어져 있어, 코일(36)에 의해서 형성되는 자장의 영향을 거의 받지 않기 때문에, 틸팅 각도가 마이너스의 값(-0.3도)이 되는 것은 다른 요인이라고 생각된다.
이 틸팅 각도 분포 특성으로부터, 웨이퍼(W) 내지 포커스 링(16) 상에 형성되는 이온 시스의 프로파일을 추정 또는 동정(同定)할 수 있다.. 즉, 이온은 전자에 비해서 현저히 무거운데다 운동 속도가 작기 때문에, 처리 공간(S) 내는 물론 이온 시스 내에서도 이온이 자장으로부터 받는 로렌츠력 내지 가속도는 무시할 수 있을 정도로 작다. 즉, 이온이 웨이퍼(W)의 표면에 입사할 때의 운동 속도(벡터)는, 이온 시스 내의 전계(벡터)에 의해서 결정된다고 할 수 있다. 또, 이온 시스 내의 전계(벡터)의 방향은 이온 시스의 평탄도 또는 경사도에 의존하고, 웨이퍼(W)의 표면이 평탄하다고 가정하면, 이온 시스와 벌크 플라즈마의 계면의 평탄도 또는 경사도에 의존한다.
따라서, 상기한 바와 같이, 코일(36)의 바로 아래 위치(60 mm)에서 틸팅 각도가 플러스의 값(2.7도)을 보였다는 점에서 보면, 도 5에 1점쇄선(SH)으로 나타내는 바와 같이 그 부근에서는 웨이퍼(W) 상에서 이온 시스와 벌크 플라즈마의 계면이 반경 방향에 있어서 상승세로 기울어져 있고, 바꿔 말하면 플라즈마 밀도가 감소세로 기울어져 있다고 추측할 수 있다. 이것은, 상기와 같은 도 5의 에칭 레이트 분포 특성과도 잘 부합한다.
다른 영역에서도, 틸팅 각도가 플러스의 값을 보이는 위치에서는, 그 부근의 웨이퍼(W) 상에서 이온 시스와 벌크 플라즈마의 계면이 반경 방향에 있어서 상승세로 기울어져 있고, 즉 플라즈마 밀도가 감소세로 기울어져 있다고 추정하여도 좋다. 또, 틸팅 각도가 마이너스의 값을 보이는 위치에서는, 그 부근의 웨이퍼(W) 상에서 이온 시스와 벌크 플라즈마의 계면이 반경 방향에 있어서 감소세로 기울어져 있고, 즉 플라즈마 밀도가 상승세로 기울어져 있다고 추정하여도 좋다.
도 6에, 코일(38)에 전류를 흘려 15 G의 자계를 형성한 경우에 얻어진 웨이퍼 상의 에칭 레이트 분포 특성 및 틸팅 각도 분포 특성의 측정 결과를 각각 도시한다.
도 6에 도시하는 바와 같이, 에칭 레이트 분포 특성은, 코일(38)보다 반경 방향 내측으로 오프셋된 영역(약 30~60 mm)에서 높게 고조되고, 코일(38)의 바로 아래 영역(약 80~110 mm)에서는 웨이퍼 중심 측에서부터 웨이퍼 엣지 측에 걸쳐서 저하하는 경향을 보였다.
이 때문에, 코일(38)을 여기(통전)시키면, 처리 공간(S) 내의 플라즈마 밀도를 좌우하는 자장은, 코일(38)보다 반경 방향 내측으로 오프셋된 중심부 쪽의 영역(약 30~60 mm)에서 포지티브하게 작용하고, 코일(36)의 바로 아래 영역(약 80~110 mm)에서는 네거티브하게 작용하고 있음을 알 수 있다.
또, 틸팅 각도 분포 특성은, 도시하는 바와 같이, 웨이퍼(W)의 중심에서부터 0 mm, 30 mm, 60 mm, 80 mm, 100 mm, 125 mm, 145 mm의 각각의 위치에서 -0.4, -2.3, -2.2, 1.0, 0.8, 1.1, 0.0도(deg)였다. 즉, 코일(38)의 반경 방향 내측에서 틸팅 각도가 마이너스의 값(-2.3도, -2.2도)을 보이는 부위(30 mm, 60 mm)가 존재하고, 코일(38)의 바로 아래 및 그보다 반경 방향 외측의 모든 영역(약 100~150 mm)에서 틸팅 각도가 플러스 또는 영의 값을 보였다.
이와 같이 코일(38)의 바로 아래 위치(100 mm)에서 틸팅 각도가 플러스의 값(1.0도)을 보였다는 점에서 보면, 도 6에 1점쇄선(SH)으로 나타내는 바와 같이 그 부근에서는 웨이퍼(W) 상에서 이온 시스와 벌크 플라즈마의 계면이 반경 방향에 있어서 상승세로 기울어져 있고, 즉 플라즈마 밀도가 감소세로 기울어져 있다고 추측할 수 있다. 또한, 코일(38)보다 반경 방향 내측으로 오프셋된 중심 부근 위치(30 mm, 60 mm)에서 마이너스의 값(-2.3도, -2.2도)을 보였으므로, 1점쇄선(SH)으로 나타내는 바와 같이 그 부근에서는 웨이퍼(W) 상에서 이온 시스와 벌크 플라즈마의 계면이 반경 방향에 있어서 감소세로 기울어져 있고, 즉 플라즈마 밀도가 상승세로 기울어져 있다고 추측할 수 있다. 따라서, 틸팅 각도가 마이너스의 값에서 플러스의 값으로 반전하는 부근(70 mm 부근)에서 플라즈마 밀도가 극대가 되고 있다고 추측할 수 있다.
도 7에, 코일(40)에 전류를 흘려 15 G의 자계를 형성한 경우에 얻어진 웨이퍼 상의 에칭 레이트 분포 특성 및 틸팅 각도 분포 특성의 측정 결과를 각각 도시한다.
도 7에 도시하는 바와 같이, 에칭 레이트의 분포 특성은, 코일(40)의 반경 방향 내측 근방의 영역(약 80~110 mm)에서 높게 고조되고, 코일(40)의 바로 아래 영역(약 130 mm~)에서는 웨이퍼 중심 측에서부터 웨이퍼 엣지 측에 걸쳐서 저하하는 경향을 보였다.
이 때문에, 코일(40)을 여기(통전)시키면, 처리 공간(S) 내의 플라즈마 밀도를 좌우하는 자장은, 코일(40)보다 반경 방향 내측으로 오프셋된 웨이퍼 중간부 위의 영역(약 80~110 mm)에서 포지티브하게 작용하고, 코일(40)의 바로 아래 영역(약 130 mm~)에서는 네거티브하게 작용하는 것을 알 수 있다.
또, 틸팅 각도는, 도시하는 바와 같이, 웨이퍼(W)의 중심에서부터 0 mm, 30 mm, 60 mm, 80 mm, 100 mm, 125 mm, 145 mm의 각각의 위치에서 0.5, -0.6, -1.7, -1.9, 0.0, 3.2, 0.5도(deg)였다. 즉, 코일(40)보다 반경 방향 내측에서 틸팅 각도가 마이너스의 값(-0.6도, -1.7도, -1.9도)을 보이는 영역(30 mm, 60 mm, 80 mm)이 존재하고, 코일(40)의 바로 아래 및 그보다 반경 방향 외측의 모든 영역(약 125 mm~150 mm)에서 틸팅 각도가 플러스의 값을 보였다.
이와 같이 코일(40)의 바로 아래 부근의 위치(125 mm, 145 mm)에서 틸팅 각도가 플러스의 값(3.2도, 0.5도)을 보였다는 점에서 보면, 도 7에 1점쇄선(SH)으로 나타내는 바와 같이 그 부근에서는 웨이퍼(W) 상에서 이온 시스와 벌크 플라즈마의 계면이 반경 방향에 있어서 상승세로 기울어져 있고, 즉 플라즈마 밀도가 감소세로 기울어져 있다고 추측할 수 있다. 또, 코일(40)보다 반경 방향 내측으로 오프셋된 웨이퍼 중간부 위의 위치(60 mm, 80 mm)에서 마이너스의 값(-1.7도, -1.9도)을 보였다는 점에서 보면, 1점쇄선(SH)으로 나타내는 바와 같이 그 부근에서는 웨이퍼(W) 상에서 이온 시스와 벌크 플라즈마의 계면이 반경 방향에 있어서 감소세로 기울어져 있고, 즉 플라즈마 밀도가 상승세로 기울어져 있다고 추측할 수 있다. 따라서, 틸팅 각도가 마이너스의 값에서 플러스의 값으로 반전하는 근처(100 mm 부근)에서 플라즈마 밀도가 극대가 되고 있다고 추측할 수 있다.
도 8에, 코일(42)에 전류를 흘려 15 G의 자계를 형성한 경우에 얻어진 웨이퍼 상의 에칭 레이트 분포 특성의 측정 결과 및 틸팅 각도 분포 특성의 측정 결과를 각각 도시한다.
도 8에 도시하는 바와 같이, 에칭 레이트 분포 특성은 코일(42)의 반경 방향 내측 근방의 영역(약 110~140 mm)에서 높게 고조되는 경향을 보였다.
이 때문에, 코일(42)을 여기(통전)시키면, 처리 공간(S) 내의 플라즈마 밀도를 좌우하는 자장은, 코일(42)보다 반경 방향 내측으로 오프셋된 웨이퍼 주변부 위의 영역(약 110~140 mm)에서 포지티브하게 작용하는 것을 알 수 있다.
또 틸팅 각도 분포 특성은, 도시하는 바와 같이, 웨이퍼(W)의 중심에서부터 0 mm, 30 mm, 60 mm, 80 mm, 100 mm, 125 mm, 145 mm의 각각의 위치에서, 0.0, 0.1, 0.1, -0.5, -0.1, -0.6, -1.8도(deg)였다. 즉, 코일(42)보다 반경 방향 내측에서 틸팅 각도가 마이너스의 값(-0.5도, -0.1도, -0.6도, -1.8도)을 보이는 영역(60 mm, 80 mm, 125 mm, 145 mm)이 존재했다.
이와 같이 코일(42)보다 반경 방향 내측으로 오프셋된 웨이퍼 주변부 상의 위치(140 mm)에서 마이너스의 값(-1.8도)을 보였으므로, 1점쇄선(SH)으로 나타내는 바와 같이 그 부근에서는 웨이퍼(W) 상에서 이온 시스와 벌크 플라즈마의 계면이 반경 방향에 있어서 상승세로 기울어져 있고, 즉 플라즈마 밀도가 감소세로 기울어져 있다고 추측할 수 있다.
상기한 바와 같이, 전자석(32)의 코일(36, 38, 40, 42) 중 하나를 선택적으로 통전시키면, 반도체 웨이퍼(W) 상에서는, 그 통전된 코일, 즉 처리 공간(S) 내에 자계를 형성하는 코일보다 반경 방향 내측으로 다소 오프셋된 영역에서, 에칭 레이트, 즉 플라즈마 밀도가 상대적으로 높아지고, 그로써 마이너스의 틸팅 각도가 발생하기 쉽게 되고, 상기 코일과 상하 방향으로 겹치는 바로 아래의 영역에서는, 에칭 레이트, 즉 플라즈마 밀도가 상대적으로 낮아지고, 그로써 플러스의 틸팅 각도가 발생하기 쉬운 것을 알 수 있다.
이 때문에, 상기 실시형태의 플라즈마 에칭 장치(도 1)의 일 변형예로서, 예컨대 도 9에 도시하는 바와 같이, 상부 전극(26)과 하부 전극(배치대)(14) 사이의 전극 사이 갭이, 반경 방향의 적어도 한 부위 또는 한 영역에서 연속적으로 변화하는 경우에, 전자석(32)을 틸팅의 발생을 억제하는 데 유효하게 이용할 수 있다.
도 9의 예에서는, 상부 전극(26)과 하부 전극(배치대)(14) 사이의 전극 사이 갭이 300 mm 구경의 반도체 웨이퍼(W)의 엣지의 바로 위쪽 부근(φ= 150 mm)에서부터 반경 방향 외측으로 향해 일정한 각도로 테이퍼형으로 좁아지고 있다. 상부 전극(26)은, 하부 전극(배치대)(14) 상에 배치되어 있는 반도체 웨이퍼(W)의 중심부와 평행하게 마주 향하는 제1 하면 영역(26e)과, 반도체 웨이퍼(W)의 주변부와 비스듬하게 마주 보는 제2 하면 영역(26f)을 포함한다. 이와 같이 전극 사이 갭이 반도체 웨이퍼(W)의 엣지 위치(φ=150 mm) 부근에서부터 반경 방향 외측으로 향해 테이퍼형으로 좁아지는 경우는, 상부 전극(26)의 제2 하면 영역(26f)의 바로 아래에서 플라즈마 밀도가 상대적으로 높아지기 때문에, 웨이퍼(W) 상에서는 이온 시스와 벌크 플라즈마의 계면이 반경 방향에 있어서 감소세로 기울어진다. 이 때문에, 반도체 웨이퍼(W)의 주변부 영역에서는 이온이 외측에서 비스듬하게 입사하는 비율이 높아져, 틸팅 각도가 마이너스의 값으로 되는(도 4에서 -방향으로 기우는) 틸팅이 발생하기 쉽게 된다.
이러한 경우에는, 전자석(32)에 있어서 중심축선(Z)에서 봤을 때 3번째의 코일(40)을 선택적으로 통전시켜 처리 공간(S)에 자계(B)를 형성하는 형태를 적합하게 채용할 수 있다. 이 경우, 전술한 바와 같이, 코일(40)을 통전시켜 처리 공간(S)에 자계(B)를 형성함으로써, 코일(40)보다 반경 방향 내측으로 오프셋된 웨이퍼 중간부 영역 상에서 플라즈마 밀도를 높게 하고, 코일(40)의 바로 아래 영역에서 플라즈마 밀도를 낮게 하는 자기 효과가 발휘된다. 이에 따라, 반도체 웨이퍼(W)의 주변부 영역 상에서 이온 시스와 벌크 플라즈마의 계면을 평탄화하고, 그로써 웨이퍼(W)의 표면에 이온을 수직으로 입사시키는 것, 즉 틸팅을 억제하는 것이 가능하게 된다. 이렇게 해서, 반도체 웨이퍼(W)에 대한 에칭 프로세스의 수율을 향상시키고, 나아가서는 생산 효율의 향상과 생산 비용의 저감을 도모할 수 있다.
상기 실시형태의 플라즈마 에칭 장치(도 1)의 다른 변형예로서, 도 10에 도시하는 바와 같이, 상부 전극(26)과 하부 전극(배치대)(14) 사이의 전극 사이 갭이 반경 방향의 적어도 한 부위 또는 한 영역에서 스텝형으로 변화하는 경우에도, 상기와 같이 전자석(32)을 틸팅 발생의 억제에 유효하게 이용할 수 있다.
도 10의 예에서는, 상부 전극(26)은, 반도체 웨이퍼(W)와 제1 갭(G1)을 통해 평행하게 마주 향하는 제1 하면 영역(26g)과, 제1 갭(G1)보다 작은 제2 갭(G2)을 통해 평행하게 마주 향하는 제2 하면 영역(26h)을 포함한다. 여기서, 제1 하면 영역(26g)과 제2 하면 영역(26h)의 경계(26j)는, 반도체 웨이퍼(W)의 엣지 위치(φ=150 mm) 부근에 형성되어 있다. 이러한 경우에도, 전극 사이 갭이 반도체 웨이퍼(W)의 엣지 위치(φ=150 mm) 부근에서 좁아짐으로써, 웨이퍼(W)의 엣지 부근 상에서는 이온 시스와 벌크 플라즈마의 계면이 반경 방향에 있어서 감소세로 기울어지고, 이온이 외측에서부터 비스듬하게 입사하는 비율이 높아져, 틸팅 각도가 마이너스의 값으로 되는(도 4에서 - 방향으로 기우는) 틸팅이 발생하기 쉽게 된다.
이 경우에도, 상기와 같이, 전자석(32)에 있어서 코일 중심에서부터 3번째의 코일(40)을 선택적으로 통전시켜 처리 공간(S)에 자계(B)를 형성하는 형태를 채용함으로써, 반도체 웨이퍼(W)의 엣지 부근 상에서 이온 시스와 벌크 플라즈마의 계면을 평탄화하고, 그로써 웨이퍼(W)의 엣지 부근에 이온을 수직으로 입사시킬 수 있고, 즉 틸팅을 억제할 수 있다.
[다른 실시형태 또는 변형예]
본 발명은 상기한 실시형태 및 실시예에 한정되는 것이 아니라, 각종 변형이 가능함은 물론이다.
특히, 상부 전극(26)과 하부 전극(배치대)(14) 사이의 전극 사이 갭의 프로파일 혹은 상부 전극(26) 하면의 요철 형상에 관해서는, 상기 실시형태 외에도 다양한 형태가 가능하며, 그에 따라서 전자석(32)에 있어서 코일(36, 38, 40, 42) 중 하나 또는 복수를 선택적으로 통전시키는 방식도 다양한 형태가 가능하다.
상기한 바와 같이, 본 발명의 플라즈마 처리 장치에서는, 전자석(32)의 코일(36, 38, 40, 42)을 선택적으로 통전시킴으로써, 챔버(12)의 처리 공간(S)에서 생성되는 플라즈마의 밀도 분포를 반경 방향으로 임의로 제어할 수 있다. 도 12에 도시하는 플라즈마 에칭 장치는, 이러한 전자석(32)의 플라즈마 밀도 제어 기능에 감안하여, 샤워 헤드(상부 전극)(26)의 가스 버퍼실을 링 형상의 격벽(70)에 의해 반경 방향으로 복수(예컨대 4개)의 독립된 작은 가스실(26(1), 26(2), 26(3), 26(4))로 분할하고 있다. 평면에서 봤을 때는, 중심부의 작은 가스실(26(1))은 원형이며, 다른 작은 가스실(26(2), 26(3), 26(4))은 중심부의 작은 가스실(26(1))의 반경 방향 외측에 다른 직경으로 환형으로 분포해 있다. 이들 독립된 작은 가스실(26(1), 26(2), 26(3), 26(4))로부터, 처리 가스를 독립된 가스종, 혼합비 및 유량으로 처리 공간(S) 내에 도입할 수 있도록 구성하고 있다.
따라서, 이들 독립된 작은 가스실(26(1), 26(2), 26(3), 26(4))로부터 동일 처리 가스를 처리 공간(S) 내에 공급하는 경우는, 각각의 가스 유량의 비를 제어함으로써, 전자석(32)에 의한 상기한 자기 효과로부터 독립하여, 코일 처리 공간(S) 내에서 생성되는 라디칼의 밀도 분포를 반경 방향으로 임의로 제어할 수 있다. 이에 따라, 예컨대, 에칭 레이트에 관해서 웨이퍼 상의 면내 균일성을 용이하게 향상시킬 수 있게 된다.
상기 실시형태의 용량 결합형 플라즈마 에칭 장치는, 하부 2고주파 인가 방식을 채용하고 있고, 챔버(12) 내의 배치대(하부 전극)(14)에 플라즈마 생성용의 제1 고주파 전원(18)과 이온 인입용의 제2 고주파 전원(22)을 접속하고 있다. 그러나, 도 11에 도시하는 바와 같이, 상부 전극(26)에 플라즈마 생성용의 제1 고주파 전원(18)을 접속하고, 배치대(하부 전극)(14)에 이온 인입용의 제2 고주파 전원(22)을 접속하는 구성에도 본 발명을 적용할 수 있다.
본 발명은, 플라즈마 에칭 장치에 한정되지 않고, 용량 결합형의 플라즈마 CVD 장치, 플라즈마 산화 장치, 플라즈마 질화 장치 등에도 적용할 수 있다. 또 본 발명에 있어서의 피처리 기판은 반도체 웨이퍼에 한정되는 것이 아니라, 플랫 패널 디스플레이, 유기 EL, 태양전지용의 각종 기판이나 포토마스크, CD 기판, 프린트 기판 등도 가능하다.
10: 플라즈마 에칭 장치, 12: 챔버(처리 용기), 14: 배치대, 26: 상부 전극, 18: (플라즈마 생성용) 제1 고주파 전원, 20: (이온 인입용) 제2 고주파 전원, 32: 전자석, 34: 요크 부재, 36, 38, 40, 42: 코일, 44: 주상부, 46, 48, 50, 52: 원통부, 54: 백플레이트부, 56: 코일 여기 회로, 60: 제어부

Claims (23)

  1. 플라즈마 처리 챔버와,
    상기 플라즈마 처리 챔버 내에 배치되고, 하부 전극을 포함하는 기판 지지부와,
    상기 기판 지지부의 상측에 배치되는 상부 전극과,
    제1 주파수를 갖는 제1 고주파 전력을 상기 상부 전극 또는 상기 하부 전극에 공급하도록 구성되는 제1 고주파 전원과,
    제2 주파수를 갖는 제2 고주파 전력을 상기 하부 전극에 공급하도록 구성되는 제2 고주파 전원과,
    상기 기판 지지부 상의 기판을 둘러싸도록 상기 기판 지지부 상에 배치되는 환형 부재와,
    상기 플라즈마 처리 챔버의 위에 배치되는 적어도 하나의 환형 전자석과,
    상기 제1 고주파 전력 및 상기 제2 고주파 전력의 공급에 의해 상기 기판의 위 및 상기 환형 부재의 위에 형성되는 이온 시스와 벌크 플라즈마의 계면의 구배를 제어하도록 상기 적어도 하나의 환형 전자석에 대하여 전력을 공급하도록 구성되는 전자석 여기 회로
    를 갖는 플라즈마 처리 장치.
  2. 제1항에 있어서, 상기 적어도 하나의 환형 전자석은, 평면에서 봤을 때에 상기 기판 지지부 상의 기판보다 외측에 위치하도록 배치되는 제1 환형 전자석을 포함하는 플라즈마 처리 장치.
  3. 제1항에 있어서, 상기 적어도 하나의 환형 전자석은, 상기 기판 지지부 상의 기판의 엣지 영역과 세로방향으로 중복되도록 배치되는 제1 환형 전자석을 포함하는 플라즈마 처리 장치.
  4. 제1항에 있어서, 상기 적어도 하나의 환형 전자석은, 평면에서 봤을 때에 상기 환형 부재보다 내측에 위치하도록 배치되는 제1 환형 전자석을 포함하는 플라즈마 처리 장치.
  5. 제1항에 있어서, 상기 적어도 하나의 환형 전자석은,
    상기 기판 지지부 상의 기판과 세로방향으로 중복되도록 배치되는 제1 환형 전자석과,
    상기 제1 환형 전자석을 둘러싸도록, 또한, 상기 기판 지지부 상의 기판과 세로방향으로 중복되도록 배치되는 제2 환형 전자석과,
    상기 제2 환형 전자석을 둘러싸도록, 또한, 상기 기판 지지부 상의 기판 및 상기 환형 부재와 세로방향으로 중복되도록 배치되는 제3 환형 전자석과,
    상기 제3 환형 전자석을 둘러싸도록 배치되는 제4 환형 전자석
    을 포함하는 플라즈마 처리 장치.
  6. 제5항에 있어서, 상기 제4 환형 전자석은, 평면에서 봤을 때에 상기 환형 부재보다 외측에 위치하도록 배치되는 플라즈마 처리 장치.
  7. 제1항에 있어서, 상기 적어도 하나의 환형 전자석은, 상기 상부 전극과 상기 하부 전극 사이의 갭의 간격이 변화하는 영역과 세로방향으로 중복되도록 배치되는 플라즈마 처리 장치.
  8. 제7항에 있어서, 상기 영역은, 평면에서 봤을 때에 상기 기판 지지부 상의 기판의 엣지 위치에 대응하는 플라즈마 처리 장치.
  9. 제1항에 있어서, 상기 상부 전극은, 상기 기판 지지부 상의 기판과 평행하게 마주 향하는 제1 하면 영역과, 상기 제1 하면 영역에 연속하여 그 반경 방향 외측으로 연장되어 상기 기판 지지부 상의 기판과 비스듬하게 마주 보는 제2 하면 영역을 포함하고,
    상기 적어도 하나의 환형 전자석은, 상기 상부 전극의 상기 제2 하면 영역과 세로방향으로 중복되어 있는 플라즈마 처리 장치.
  10. 제1항에 있어서, 상기 상부 전극은, 상기 기판 지지부 상의 기판과 제1 갭을 통해 평행하게 마주 향하는 제1 하면 영역과, 상기 환형 부재와 상기 제1 갭보다 작은 제2 갭을 통해 평행하게 마주 향하는 제2 하면 영역을 포함하고,
    상기 적어도 하나의 환형 전자석은, 상기 상부 전극의 제2 하면 영역과 세로방향으로 중복되어 있는 플라즈마 처리 장치.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서, 상기 제2 주파수는 상기 제1 주파수보다 작은 플라즈마 처리 장치.
  12. 플라즈마 처리 공간을 갖는 플라즈마 처리 챔버와,
    상기 플라즈마 처리 챔버 내에 배치되는 기판 지지부와,
    상기 기판 지지부 상의 기판을 둘러싸도록 상기 기판 지지부 상에 배치되는 환형 부재와,
    상기 플라즈마 처리 공간의 상측에 배치되는 적어도 하나의 환형 전자석과,
    상기 플라즈마 처리 공간에 있어서 상기 기판의 위 및 상기 환형 부재의 위에 형성되는 이온 시스와 벌크 플라즈마의 계면의 구배를 제어하도록 상기 적어도 하나의 환형 전자석에 대하여 전력을 공급하도록 구성되는 전자석 여기 회로
    를 갖는 플라즈마 처리 장치.
  13. 제12항에 있어서, 상기 적어도 하나의 환형 전자석은, 평면에서 봤을 때에 상기 기판 지지부 상의 기판보다 외측에 위치하도록 배치되는 제1 환형 전자석을 포함하는 플라즈마 처리 장치.
  14. 제12항에 있어서, 상기 적어도 하나의 환형 전자석은, 상기 기판 지지부 상의 기판의 엣지 영역과 세로방향으로 중복되도록 배치되는 제1 환형 전자석을 포함하는 플라즈마 처리 장치.
  15. 제12항에 있어서, 상기 적어도 하나의 환형 전자석은, 평면에서 봤을 때에 상기 환형 부재보다 내측에 위치하도록 배치되는 제1 환형 전자석을 포함하는 플라즈마 처리 장치.
  16. 제12항에 있어서, 상기 적어도 하나의 환형 전자석은,
    상기 기판 지지부 상의 기판과 세로방향으로 중복되도록 배치되는 제1 환형 전자석과,
    상기 제1 환형 전자석을 둘러싸도록, 또한, 상기 기판 지지부 상의 기판과 세로방향으로 중복되도록 배치되는 제2 환형 전자석과,
    상기 제2 환형 전자석을 둘러싸도록, 또한, 상기 기판 지지부 상의 기판 및 상기 환형 부재와 세로방향으로 중복되도록 배치되는 제3 환형 전자석과,
    상기 제3 환형 전자석을 둘러싸도록 배치되는 제4 환형 전자석
    을 포함하는 플라즈마 처리 장치.
  17. 제16항에 있어서, 상기 제4 환형 전자석은, 평면에서 봤을 때에 상기 환형 부재보다 외측에 위치하도록 배치되는 플라즈마 처리 장치.
  18. 플라즈마 처리 공간을 갖는 플라즈마 처리 챔버와,
    상기 플라즈마 처리 챔버 내에 배치되는 기판 지지부와,
    상기 기판 지지부 상의 기판을 둘러싸도록 상기 기판 지지부 상에 배치되는 환형 부재와,
    상기 플라즈마 처리 공간의 상측에 배치되는 전자석 유닛과 - 상기 전자석 유닛은, 제1 환형 전자석 및 제2 환형 전자석을 포함하고, 상기 제1 환형 전자석은, 평면에서 봤을 때에 상기 기판 지지부 상의 기판의 엣지 영역과 세로방향으로 중복되도록 배치되고, 상기 제2 환형 전자석은, 평면에서 봤을 때에 상기 환형 부재보다 외측에 위치하도록 배치됨 -,
    상기 제1 환형 전자석 및 상기 제2 환형 전자석에 대하여 선택적으로 전력을 공급하도록 구성되는 전자석 여기 회로
    를 갖는 플라즈마 처리 장치.
  19. 제18항에 있어서, 상기 기판 지지부에 접속되는, 이온 인입용의 전원을 더 갖는 플라즈마 처리 장치.
  20. 플라즈마 처리 공간을 갖는 플라즈마 처리 챔버와,
    상기 플라즈마 처리 챔버 내에 배치되는 기판 지지부와,
    상기 기판 지지부 상의 기판을 둘러싸도록 상기 기판 지지부 상에 배치되는 환형 부재와,
    상기 플라즈마 처리 공간의 상측에 배치되고, 평면에서 봤을 때에 상기 환형 부재보다 외측에 위치하도록 배치되는 전자석과,
    상기 전자석에 대하여 전력을 공급하도록 구성되는 전자석 여기 회로
    를 갖는 플라즈마 처리 장치.
  21. 제20항에 있어서, 상기 기판 지지부에 접속되는, 이온 인입용의 전원을 더 갖는 플라즈마 처리 장치.
  22. 플라즈마 처리 공간을 갖는 플라즈마 처리 챔버와,
    상기 플라즈마 처리 챔버 내에 배치되는 기판 지지부와,
    상기 기판 지지부 상의 기판을 둘러싸도록 상기 기판 지지부 상에 배치되는 환형 부재와,
    상기 플라즈마 처리 공간의 상측에 배치되고, 평면에서 봤을 때에 상기 기판 지지부 상의 기판의 엣지 영역과 세로방향으로 중복되도록 배치되는 전자석과,
    상기 전자석에 대하여 전력을 공급하도록 구성되는 전자석 여기 회로
    를 갖는 플라즈마 처리 장치.
  23. 제22항에 있어서, 상기 기판 지지부에 접속되는, 이온 인입용의 전원을 더 갖는 플라즈마 처리 장치.
KR1020227027285A 2014-04-09 2015-02-26 플라즈마 처리 장치 KR102630511B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247002420A KR20240015728A (ko) 2014-04-09 2015-02-26 플라즈마 처리 장치 및 플라즈마 처리 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014079837A JP6204869B2 (ja) 2014-04-09 2014-04-09 プラズマ処理装置及びプラズマ処理方法
JPJP-P-2014-079837 2014-04-09
PCT/JP2015/000997 WO2015155923A1 (ja) 2014-04-09 2015-02-26 プラズマ処理装置及びプラズマ処理方法
KR1020227003784A KR102434088B1 (ko) 2014-04-09 2015-02-26 플라즈마 처리 장치 및 플라즈마 처리 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020227003784A Division KR102434088B1 (ko) 2014-04-09 2015-02-26 플라즈마 처리 장치 및 플라즈마 처리 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020247002420A Division KR20240015728A (ko) 2014-04-09 2015-02-26 플라즈마 처리 장치 및 플라즈마 처리 방법

Publications (2)

Publication Number Publication Date
KR20220113555A true KR20220113555A (ko) 2022-08-12
KR102630511B1 KR102630511B1 (ko) 2024-01-29

Family

ID=54287517

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020247002420A KR20240015728A (ko) 2014-04-09 2015-02-26 플라즈마 처리 장치 및 플라즈마 처리 방법
KR1020227003784A KR102434088B1 (ko) 2014-04-09 2015-02-26 플라즈마 처리 장치 및 플라즈마 처리 방법
KR1020167024629A KR102361240B1 (ko) 2014-04-09 2015-02-26 플라즈마 처리 장치 및 플라즈마 처리 방법
KR1020227027285A KR102630511B1 (ko) 2014-04-09 2015-02-26 플라즈마 처리 장치

Family Applications Before (3)

Application Number Title Priority Date Filing Date
KR1020247002420A KR20240015728A (ko) 2014-04-09 2015-02-26 플라즈마 처리 장치 및 플라즈마 처리 방법
KR1020227003784A KR102434088B1 (ko) 2014-04-09 2015-02-26 플라즈마 처리 장치 및 플라즈마 처리 방법
KR1020167024629A KR102361240B1 (ko) 2014-04-09 2015-02-26 플라즈마 처리 장치 및 플라즈마 처리 방법

Country Status (5)

Country Link
US (1) US10074545B2 (ko)
JP (1) JP6204869B2 (ko)
KR (4) KR20240015728A (ko)
CN (1) CN106104769B (ko)
WO (1) WO2015155923A1 (ko)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11605546B2 (en) 2015-01-16 2023-03-14 Lam Research Corporation Moveable edge coupling ring for edge process control during semiconductor wafer processing
US11295935B2 (en) * 2015-05-11 2022-04-05 Ebara Corporation Electromagnet device, electromagnet controller, electromagnet control method, and electromagnet system
US10957561B2 (en) 2015-07-30 2021-03-23 Lam Research Corporation Gas delivery system
US10825659B2 (en) 2016-01-07 2020-11-03 Lam Research Corporation Substrate processing chamber including multiple gas injection points and dual injector
US10699878B2 (en) 2016-02-12 2020-06-30 Lam Research Corporation Chamber member of a plasma source and pedestal with radially outward positioned lift pins for translation of a substrate c-ring
US10651015B2 (en) 2016-02-12 2020-05-12 Lam Research Corporation Variable depth edge ring for etch uniformity control
US10438833B2 (en) 2016-02-16 2019-10-08 Lam Research Corporation Wafer lift ring system for wafer transfer
US11011353B2 (en) 2016-03-29 2021-05-18 Lam Research Corporation Systems and methods for performing edge ring characterization
US10312121B2 (en) * 2016-03-29 2019-06-04 Lam Research Corporation Systems and methods for aligning measurement device in substrate processing systems
US10410832B2 (en) 2016-08-19 2019-09-10 Lam Research Corporation Control of on-wafer CD uniformity with movable edge ring and gas injection adjustment
EP3457212A1 (en) * 2017-09-18 2019-03-20 ASML Netherlands B.V. Method of controlling a patterning process, device manufacturing method
JP6937644B2 (ja) * 2017-09-26 2021-09-22 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP2019109980A (ja) * 2017-12-15 2019-07-04 株式会社日立ハイテクノロジーズ プラズマ処理装置
JP7038593B2 (ja) * 2018-04-16 2022-03-18 東京エレクトロン株式会社 処理装置及び処理装置の制御方法
CN108595820B (zh) * 2018-04-19 2021-01-22 广东电网有限责任公司电力科学研究院 一种分子电离碰撞截面的计算方法及装置
JP6965205B2 (ja) * 2018-04-27 2021-11-10 東京エレクトロン株式会社 エッチング装置、及びエッチング方法
JP7089977B2 (ja) * 2018-08-02 2022-06-23 東京エレクトロン株式会社 プラズマエッチング方法及びプラズマ処理装置
JP7198609B2 (ja) * 2018-08-21 2023-01-04 東京エレクトロン株式会社 エッチング方法及びプラズマ処理装置
CN112585726B (zh) * 2019-07-29 2023-07-14 株式会社日立高新技术 等离子处理装置
CN112466734A (zh) * 2019-09-09 2021-03-09 东京毅力科创株式会社 等离子体处理装置及处理基板的方法
CN113690127B (zh) * 2020-05-18 2023-09-08 长鑫存储技术有限公司 晶圆清洗装置及晶圆清洗方法
JP2023136461A (ja) 2022-03-17 2023-09-29 東京エレクトロン株式会社 予測方法及び情報処理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267237A (ja) * 1992-03-23 1993-10-15 Nippon Telegr & Teleph Corp <Ntt> プラズマ・ダメージ低減法およびプラズマ処理装置
JP3037848U (ja) 1996-08-26 1997-05-27 永田醸造機械株式会社 連続浸漬吸水装置
JP2005217240A (ja) * 2004-01-30 2005-08-11 Matsushita Electric Ind Co Ltd ドライエッチング装置およびドライエッチング方法
JP2006332075A (ja) * 2006-08-18 2006-12-07 Foi:Kk プラズマ発生装置
KR20130093566A (ko) * 2012-02-14 2013-08-22 도쿄엘렉트론가부시키가이샤 기판 처리 장치

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107481A (ja) 1989-09-22 1991-05-07 Ulvac Japan Ltd プラズマ処理装置
JP3037848B2 (ja) 1992-04-17 2000-05-08 東京エレクトロン株式会社 プラズマ発生装置およびプラズマ発生方法
JP4107518B2 (ja) 1996-07-03 2008-06-25 東京エレクトロン株式会社 プラズマ処理装置
JP3375302B2 (ja) 1998-07-29 2003-02-10 東京エレクトロン株式会社 マグネトロンプラズマ処理装置および処理方法
JP2000150472A (ja) 1998-11-10 2000-05-30 Hitachi Ltd プラズマ処理装置
US6853141B2 (en) * 2002-05-22 2005-02-08 Daniel J. Hoffman Capacitively coupled plasma reactor with magnetic plasma control
JP4355157B2 (ja) * 2003-03-31 2009-10-28 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置及び磁場発生装置
JP2005303099A (ja) 2004-04-14 2005-10-27 Hitachi High-Technologies Corp プラズマ処理装置およびプラズマ処理方法
JP4593413B2 (ja) * 2005-09-15 2010-12-08 株式会社日立ハイテクノロジーズ プラズマ処理方法及び処理装置
JP4884047B2 (ja) * 2006-03-23 2012-02-22 東京エレクトロン株式会社 プラズマ処理方法
JP5264231B2 (ja) * 2008-03-21 2013-08-14 東京エレクトロン株式会社 プラズマ処理装置
KR101117922B1 (ko) * 2008-03-27 2012-03-14 도쿄엘렉트론가부시키가이샤 전극 구조체 및 기판 처리 장치
JP2012164766A (ja) * 2011-02-04 2012-08-30 Ulvac Japan Ltd エッチング装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267237A (ja) * 1992-03-23 1993-10-15 Nippon Telegr & Teleph Corp <Ntt> プラズマ・ダメージ低減法およびプラズマ処理装置
JP3037848U (ja) 1996-08-26 1997-05-27 永田醸造機械株式会社 連続浸漬吸水装置
JP2005217240A (ja) * 2004-01-30 2005-08-11 Matsushita Electric Ind Co Ltd ドライエッチング装置およびドライエッチング方法
JP2006332075A (ja) * 2006-08-18 2006-12-07 Foi:Kk プラズマ発生装置
KR20130093566A (ko) * 2012-02-14 2013-08-22 도쿄엘렉트론가부시키가이샤 기판 처리 장치

Also Published As

Publication number Publication date
WO2015155923A1 (ja) 2015-10-15
KR102434088B1 (ko) 2022-08-18
CN106104769B (zh) 2019-07-19
US10074545B2 (en) 2018-09-11
KR20240015728A (ko) 2024-02-05
KR20220021032A (ko) 2022-02-21
KR20160141711A (ko) 2016-12-09
KR102630511B1 (ko) 2024-01-29
CN106104769A (zh) 2016-11-09
JP2015201552A (ja) 2015-11-12
US20170018407A1 (en) 2017-01-19
JP6204869B2 (ja) 2017-09-27
KR102361240B1 (ko) 2022-02-09

Similar Documents

Publication Publication Date Title
KR102434088B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
US10170284B2 (en) Plasma processing method and plasma processing apparatus
US10651012B2 (en) Substrate processing method
US20110056912A1 (en) Plasma processing apparatus and plasma processing method
JP6284825B2 (ja) プラズマ処理装置
JPWO2010090127A1 (ja) プラズマ処理装置、プラズマ処理方法、および被処理基板を備える素子の製造方法
JP2006511945A (ja) 容量結合型プラズマを増強して局在化させるための方法および装置ならびに磁石アセンブリ
TW201523683A (zh) 下電極裝置以及電漿加工裝置
WO2015133071A1 (ja) プラズマ処理装置のクリーニング方法及びプラズマ処理装置
JP6462072B2 (ja) プラズマ処理装置及びプラズマ処理方法
TWI774132B (zh) 用於加工基材的設備
JP5097074B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP5236777B2 (ja) プラズマ処理装置
JP2011034705A (ja) プラズマ処理装置
CN117476425A (zh) 等离子体处理装置
JP2001338911A (ja) プラズマ処理装置および半導体装置の製造方法
JP2004079918A (ja) プラズマ処理装置及びプラズマ処理方法
KR20110093250A (ko) 기판 처리 장치 및 방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant