KR20220112838A - 미스트 성막 장치 및 미스트 성막 방법 - Google Patents

미스트 성막 장치 및 미스트 성막 방법 Download PDF

Info

Publication number
KR20220112838A
KR20220112838A KR1020227024600A KR20227024600A KR20220112838A KR 20220112838 A KR20220112838 A KR 20220112838A KR 1020227024600 A KR1020227024600 A KR 1020227024600A KR 20227024600 A KR20227024600 A KR 20227024600A KR 20220112838 A KR20220112838 A KR 20220112838A
Authority
KR
South Korea
Prior art keywords
mist
substrate
temperature
film
electrode
Prior art date
Application number
KR1020227024600A
Other languages
English (en)
Other versions
KR102691590B1 (ko
Inventor
요시아키 기토
히로시 가지야마
야스타카 니시
고타로 오쿠이
Original Assignee
가부시키가이샤 니콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 니콘 filed Critical 가부시키가이샤 니콘
Priority to KR1020247025800A priority Critical patent/KR20240122581A/ko
Publication of KR20220112838A publication Critical patent/KR20220112838A/ko
Application granted granted Critical
Publication of KR102691590B1 publication Critical patent/KR102691590B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/057Arrangements for discharging liquids or other fluent material without using a gun or nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/08Plant for applying liquids or other fluent materials to objects
    • B05B5/14Plant for applying liquids or other fluent materials to objects specially adapted for coating continuously moving elongated bodies, e.g. wires, strips, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/03Discharge apparatus, e.g. electrostatic spray guns characterised by the use of gas, e.g. electrostatically assisted pneumatic spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0221Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work characterised by the means for moving or conveying the objects or other work, e.g. conveyor belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B14/00Arrangements for collecting, re-using or eliminating excess spraying material
    • B05B14/30Arrangements for collecting, re-using or eliminating excess spraying material comprising enclosures close to, or in contact with, the object to be sprayed and surrounding or confining the discharged spray or jet but not the object to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B16/00Spray booths
    • B05B16/20Arrangements for spraying in combination with other operations, e.g. drying; Arrangements enabling a combination of spraying operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0615Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced at the free surface of the liquid or other fluent material in a container and subjected to the vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/001Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means incorporating means for heating or cooling, e.g. the material to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/005Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means the high voltage supplied to an electrostatic spraying apparatus being adjustable during spraying operation, e.g. for modifying spray width, droplet size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • B05B5/0533Electrodes specially adapted therefor; Arrangements of electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/08Plant for applying liquids or other fluent materials to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/08Plant for applying liquids or other fluent materials to objects
    • B05B5/082Plant for applying liquids or other fluent materials to objects characterised by means for supporting, holding or conveying the objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/08Plant for applying liquids or other fluent materials to objects
    • B05B5/082Plant for applying liquids or other fluent materials to objects characterised by means for supporting, holding or conveying the objects
    • B05B5/084Plant for applying liquids or other fluent materials to objects characterised by means for supporting, holding or conveying the objects the objects lying on, or being supported above conveying means, e.g. conveyor belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/08Plant for applying liquids or other fluent materials to objects
    • B05B5/087Arrangements of electrodes, e.g. of charging, shielding, collecting electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0012Apparatus for achieving spraying before discharge from the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0208Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • B05B12/126Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus responsive to target velocity, e.g. to relative velocity between spray apparatus and target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • B05B17/0669Excitation frequencies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • B05D2252/02Sheets of indefinite length

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Nozzles (AREA)
  • Spray Control Apparatus (AREA)
  • Coating Apparatus (AREA)

Abstract

미립자를 함유하는 미스트를 기판에 공급하고, 기판의 표면에 미립자를 포함하는 막을 형성하는 성막 장치는, 기판의 표면 중 적어도 일부를 덮는 도풍 부재와, 기판의 표면과 도풍 부재 사이의 공간에 미스트를 공급하는 미스트 공급부를 구비한다. 미스트 공급부는, 미스트를 정 또는 부로 대전시키는 대전 부여부와, 대전 부여부에 의해서 대전된 미스트를 공간 내에 분출하는 미스트 분출부를 포함한다. 도풍 부재는, 기판의 표면에 대향하는 벽면을 갖고, 대전 부여부에 의해서 대전되는 미스트와 동일한 부호의 전위를 벽면에 발생시키는 정전계 발생부를 포함한다.

Description

미스트 성막 장치 및 미스트 성막 방법
본 발명은 미세한 재료 입자 (나노 입자) 를 함유하는 용액을 박무화한 미스트를 피처리 기판에 분무하고, 피처리 기판의 표면에 미세한 입자에 의한 재료 물질의 박막을 형성하는 미스트 성막 장치 및 미스트 성막 방법에 관한 것이다.
전자 디바이스의 제조 과정에서는, 전자 디바이스가 형성되는 기판 (피처리 대상) 의 표면에 각종 재료 물질에 의한 박막을 형성하는 성막 공정 (성막 처리) 이 실시되고 있다. 성막 공정에서의 성막 방법에는 각종 방식이 있고, 최근, 재료 물질의 분자나 미립자 (나노 입자) 를 함유하는 용액으로부터 발생시킨 미스트를 기판의 표면에 분무하고, 기판에 부착된 미스트 (용액) 에 함유되는 용매 성분을 반응 또는 증발시켜, 기판의 표면에 재료 물질 (금속 재료, 유기 재료, 산화물 재료 등) 에 의한 박막을 형성하는 미스트 성막법이 주목되고 있다. 미스트 성막법과 유사한 성막 방식으로서, 일본 공개특허공보 2005-281679호에 개시되어 있는 정전 분무 퇴적법 (일렉트로 스프레이 디포지션법) 이 알려져 있다. 정전 분무 퇴적법이란, 도포해야 할 액체를 정전적으로 대전시키고, 대전된 액체를 미소한 액적 (미스트) 상, 또는 선상체로 하여 피대상물에 부착시키는 방법이다. 일본 공개특허공보 2005-281679호에는, 절연성의 필름의 표면에 성막하기 위한 수지를 용매에 용해시킨 용액, 또는 수지와 무기 미립자를 분산시킨 분산액을, 선단에 모세관을 갖는 분사 노즐에 공급하고, 그 분사 노즐에 일정 유량이 되는 압력을 가하면서, 분사 노즐에 고전압을 인가함으로써, 직경이 0.수 미크론 내지 수 십 미크론의 대전된 액적 또는 선상체를 노즐 선단의 모세관으로부터 필름 표면에 분출하는 구성이 개시되어 있다. 또한, 일본 공개특허공보 2005-281679호에서는, 필름의 면적보다 큰 도전판 상에 필름을 재치 (載置) 하고, 그 도전판과 분사 노즐 사이에 일정한 전위차를 부여함으로써, 대전된 액적 또는 선상체를 효율적으로 필름 표면에 부착시키고 있다.
정전 분무 퇴적법에서는, 분사 노즐의 모세관으로부터 분출되는 액적이나 선상체는, 노즐 선단으로부터 필름 표면까지의 거리, 혹은 분사 노즐과 도전판 사이의 전위차에도 의존하지만, 일본 공개특허공보 2005-281679호에서는, 분사 노즐의 선단 (모세관) 의 직경을, 바람직하게는 0.4 ∼ 1 ㎜ 의 범위로 하고, 분사 노즐과 도전판 사이에 인가하는 전압을, 바람직하게는 10 ∼ 20 ㎸k 의 범위로 함으로써, 정전 반발력에 의해서 노즐 선단으로부터 액적이나 선상체를 분사시키는 구성으로 되어 있다. 그 때문에, 노즐 선단의 모세관의 분출 방향의 연장선이 필름 표면과 교차하는 중앙 부분에 형성되는 막두께가 가장 두껍고, 그 중앙 부분으로부터 주변으로 감에 따라서 막두께가 얇아지는 경향이 있다. 그러므로, 큰 필름 표면에, 수지나 무기 미립자에 의한 박막을 균일하게 정확한 두께로 형성하기 위해서는, 필름과 분사 노즐을 필름 표면과 평행한 면 내에서 2 차원적으로 일정한 속도로 정밀하게 상대 이동시킬 필요가 있다.
본 발명의 제 1 양태는, 재료 물질의 미립자를 함유한 미스트를 기판에 분무하고, 상기 기판의 표면에 상기 재료 물질에 의한 막층을 형성하는 미스트 성막 장치로서, 상기 미립자를 함유하는 용액을 박무화하여 발생된 미스트를 포함하는 미스트 기체를 송출하는 미스트 발생 기구와, 상기 미스트 기체를 유입하여 상기 기판을 향하여 분출하는 미스트 분출 기구와, 상기 미스트 분출 기구로부터의 상기 미스트 기체를 상기 기판의 표면을 따라서 흐르게 하기 위해서, 상기 기판의 표면과 소정 간격으로 대향된 벽면을 갖는 도풍 (導風) 기구와, 상기 기판의 표면에 상기 미스트를 끌어들이는 인력을 발생시키기 위해서, 상기 도풍 부재의 상기 벽면과 상기 미스트 사이에서 척력을 발생시키는 미스트 유도 기구를 구비한다.
본 발명의 제 2 양태는, 미립자를 함유하는 미스트를 캐리어 기체에 실은 미스트 기체를 기판의 표면에 분무하고, 상기 미립자를 상기 기판의 표면에 박막상으로 형성하는 미스트 성막 장치로서, 상기 기판의 표면으로부터 소정의 간격으로 대향한 노즐 개구부를 갖고, 상기 미스트 기체를 상기 노즐 개구부로부터 상기 기판을 향하여 분출하는 미스트 분무부와, 상기 미스트 분무부에 상기 미스트 기체를 소정 유량으로 공급함과 함께, 상기 노즐 개구부로부터 분출되는 상기 미스트 기체를 환경 온도보다 낮은 제 1 온도로 설정하는 미스트 공급 장치와, 상기 기판을 지지하여, 상기 기판의 표면을 따른 방향으로 이동시키는 이동 기구와, 상기 미스트 기체가 분무되는 상기 기판을 상기 제 1 온도보다 낮은 제 2 온도로 설정하는 기판 온조 (溫調) 기구를 구비한다.
본 발명의 제 3 양태는, 미립자를 함유하는 미스트를 캐리어 기체에 실은 미스트 기체를 피처리 기판의 표면에 분무하고, 상기 미립자를 상기 피처리 기판의 표면에 박막상으로 형성하는 미스트 성막 방법으로서, 상기 피처리 기판의 표면을 향하여 미스트 분출부로부터 분무되는 상기 미스트 기체의 온도를, 제 1 온조기에 의해서 0 ℃ 보다 높고 30 ℃ 이하의 제 1 온도로 설정하는 것과, 상기 피처리 기판의 온도를 제 2 온조기에 의해서 상기 제 1 온도 이하의 제 2 온도로 설정하는 것과, 이동 기구에 의해서 상기 피처리 기판과 상기 미스트 분출부를 상기 피처리 기판의 표면을 따라서 상대 이동시키면서, 상기 제 1 온도로 설정된 상기 미스트 기체를, 상기 제 2 온도로 설정된 상기 피처리 기판의 표면에 분무하는 것, 을 포함한다.
본 발명의 제 4 양태는, 미립자를 함유하는 미스트를 기판에 공급하고, 상기 기판의 표면에 상기 미립자를 포함하는 막을 형성하는 성막 장치로서, 상기 기판의 표면 중 적어도 일부를 덮는 도풍 부재와, 상기 기판의 표면과 상기 도풍 부재 사이의 공간에 상기 미스트를 공급하는 미스트 공급부를 구비하고, 상기 미스트 공급부는, 상기 미스트를 정 또는 부로 대전시키는 대전 부여부와, 상기 대전 부여부에 의해서 대전된 상기 미스트를 상기 공간 내에 분출하는 미스트 분출부를 포함하고, 상기 도풍 부재는, 상기 기판의 표면에 대향하는 벽면을 갖고, 상기 대전 부여부에 의해서 대전되는 상기 미스트와 동일한 부호의 전위를 상기 벽면에 발생시키는 정전계 발생부를 구비한다.
본 발명의 제 5 양태는, 미립자를 함유한 미스트를 기판에 공급하고, 기판의 표면에 상기 미립자를 포함하는 막을 형성하는 성막 장치로서, 상기 미립자를 함유하는 액체를 박무화하여 상기 미스트를 발생시키는 미스트 발생부와, 상기 기판에 상기 미스트를 공급하는 미스트 공급부를 구비하고, 상기 미스트 공급부는, 상기 미스트의 온도를 제 1 온도로 하는 온조부와, 상기 기판의 온도를 제 2 온도로 하는 기판 온조부를 포함한다.
본 발명의 제 6 양태는, 도전막의 제조 장치로서, 상기한 제 1 양태 또는 제 2 양태의 성막 장치와, 상기 성막 장치에 의해서 성막된 상기 기판 상의 미스트를 건조시키는 건조부를 포함한다.
본 발명의 제 7 양태는, 미립자를 함유하는 미스트를 기판에 공급하고, 상기 기판의 표면에 상기 미립자를 포함하는 막을 형성하는 성막 방법으로서, 대전 부여부에 의해서 상기 미스트를 정 또는 부로 대전시키고, 대전된 상기 미스트를 상기 기판의 표면 중 적어도 일부를 덮는 도풍 부재와 상기 기판의 표면 사이의 공간에 미스트 분출부에 의해서 공급하는 미스트 공급 공정과, 대전된 상기 미스트와 동일한 부호의 전위를 상기 기판의 표면에 대향하는 상기 도풍 부재의 벽면에 발생시키는 정전계 발생 공정을 포함한다.
본 발명의 제 8 양태는, 미립자를 함유한 미스트를 기판에 공급하고, 기판의 표면에 상기 미립자를 포함하는 막을 형성하는 성막 방법으로서, 상기 미립자를 함유하는 액체를 박무화하여 미스트를 발생시키는 미스트 발생 공정과, 상기 기판에 상기 미스트를 공급하는 미스트 공급 공정을 구비하고, 상기 미스트 공급 공정에서는, 온조부에 의해서 상기 미스트의 온도를 제 1 온도로 하고, 기판 온조부에 의해서 상기 기판의 온도를 제 2 온도로 한다.
본 발명의 제 9 양태는, 도전막의 제조 방법으로서, 상기한 제 4 양태 또는 제 5 양태의 성막 방법을 이용하여 상기 기판 상에 도전막 재료를 성막하는 성막 공정과, 성막된 상기 기판을 건조시키는 건조 공정을 포함한다.
도 1 은, 제 1 실시형태에 의한 미스트 성막 장치 (MDE) 의 개략적인 전체 구성을 나타내는 도면이다.
도 2 는, 도 1 에 나타낸 미스트 성막 장치 (MDE) 의 미스트 성막부의 구체적인 외관을 내려다본 사시도이다.
도 3a 는, 미스트 성막부에 있어서의 미스트 분출부의 정면도이고, 도 3b 는 도 3a 중의 k1-k2 화살표 단면도이다.
도 4 는, 제 1 실시형태의 변형예 1 에 의한 미스트 성막 장치 (MDE) 의 미스트 성막부의 개략적인 구성을 나타내는 도면이다.
도 5 는, 제 1 실시형태의 변형예 2 에 의한 구성을 나타내고, 도 4 에 나타낸 회전 드럼 (DR) 과 챔버부 (40) 를 중심선 (AXo) 을 포함하는 평면에서 파단한 부분 단면도이다.
도 6 은, 제 2 실시형태에 의한 미스트 성막 장치 (MDE) 의 개략적인 전체 구성을 나타내는 도면이다.
도 7 은, 도 6 에 나타낸 미스트 성막 장치 (MDE) 에 있어서의 나노 입자의 퇴적 균등화부의 구체적인 구성을 나타내는 도면이다.
도 8 은, 도 7 의 퇴적 균등화부의 기능이나 효과를 확인하기 위한 예비 실험 장치의 구성을 모식적으로 나타낸 도면이다.
도 9 는, 도 8 의 예비 실험 장치에 의해서, ITO 나노 입자를 포함하는 액막에 교류 전계를 인가할 때의 주파수 의존성을 조사하는 예비 실험 1 의 실험 결과를 나타내는 그래프이다.
도 10 은, 도 8 의 예비 실험 장치에 의해서, ITO 나노 입자를 포함하는 액막에 교류 전계를 인가할 때의 전계 강도의 의존성을 조사하는 예비 실험 2 의 실험 결과를 나타내는 그래프이다.
도 11 은, 도 8 의 예비 실험 장치에 의해서, ITO 나노 입자를 포함하는 액막에 교류 전계를 인가할 때, 나노 입자의 입경의 차이에 의한 주파수 의존성을 조사하는 예비 실험 3 의 실험 결과를 나타내는 그래프이다.
도 12a ∼ 도 12c 는, 도 6 이나 도 7 에 나타낸 미스트 성막 장치의 교류 전계 발생부 (90) 에 의해서, 전극판 (Ef1 ∼ Ef4) 과 전극판 (Em) 사이에 인가되는 교류 전압 Ev 의 파형의 몇몇 예를 나타내는 도면이다.
도 13 은, 변형예 5 에 의한 퇴적 균등화부 (영동 부여부) 의 구성을 나타내는 상면도와 정면도이다.
도 14 는, 제 3 실시형태에 의한 미스트 성막 장치 (MDE) 의 개략적인 구성을 나타내는 도면이다.
도 15 는, 도 14 의 미스트 성막 장치의 미스트 성막부에 형성되는 미스트 유도 기구와, 미스트 성막 두께의 퇴적 균등화부 (영동 부여부) 의 각각에 인가하는 교류 전계의 파형을 나타내는 도면이다.
도 16 은, 도 14 에 나타낸 교류 전계 발생부 (92) 의 구체적인 회로 구성의 일례를 나타내는 회로도이다.
도 17 은, 외형상이 비직방체 형상으로 결정화하는 ITO 나노 입자의 용액 (Lq) 내에서의 영동의 유무를 확인하는 실험 장치의 개략 구성을 나타내는 도면이다.
도 18 은, 도 17 의 실험 장치에 의한 실험 결과를 나타내는 표이다.
도 19 는, 제 4 실시형태에 의한 미스트 성막 장치 (MDE) 의 개략적인 구성을 나타내는 도면이다.
도 20 은, 제 4 실시형태에 의한 미스트 성막법의 효과를 확인하기 위한 예비 실험 장치의 개략적인 구성을 나타내는 사시도이다.
도 21 은, 도 20 의 예비 실험 장치에 의한 실험에 의해서 얻어진 기판 온도와 나노 입자의 막두께의 관계를 나타내는 그래프이다.
도 22 는, 제 5 실시형태에 의한 미스트 성막 장치 (MDE) 의 미스트 성막부의 개략적인 구성을 나타내는 도면이다.
도 23 은, 도 19 의 미스트 성막 장치 (MDE) 를 변형시킨 변형예 6 에 의한 미스트 성막 장치 (MDE) 의 개략적인 구성을 나타내는 사시도이다.
도 24a, 도 24b 는, 도 23 에 나타낸 보조 미스트 분무부 (SMD) 에의 미스트 기체 (Msg) 의 공급 상태와 비공급 상태를 고속으로 전환하기 위한 밸브 기구 (310) 의 구성을 나타내는 도면이다.
도 25 는, 도 1 에 나타낸 미스트 발생부 (14) 의 구체적인 구성을 변형예 7로서 나타내는 부분 단면도이다.
도 26 은, 도 25 에 나타낸 미스트 발생부 (14) 의 외부 용기 (14D) 의 바닥부에 배치되는 4 개의 초음파 진동자 (14C1 ∼ 14C4) 의 평면 내의 배치를 나타내는 도면이다.
본 발명의 양태에 관련된 미스트 성막 장치 및 미스트 성막 방법에 대해서, 바람직한 실시형태를 들어, 첨부 도면을 참조하면서, 이하에서 상세하게 설명한다. 또한, 본 발명의 양태는, 이들 실시형태에 한정되는 것이 아니고, 다양한 변경 또는 개량을 추가한 것도 포함된다. 요컨대, 이하에 기재한 구성 요소에는, 당업자가 용이하게 상정할 수 있는 것, 실질적으로 동일한 것이 포함되고, 이하에 기재한 구성 요소는 적절히 조합하는 것이 가능하다. 또, 본 발명의 요지를 일탈하지 않는 범위에서 구성 요소의 다양한 생략, 치환 또는 변경을 행할 수 있다.
[제 1 실시형태]
도 1 은, 제 1 실시형태에 의한 미스트 성막 장치 (MDE) 의 개략적인 전체 구성을 나타내는 도면이다. 도 1 에 있어서, 특별히 언급이 없는 한 중력 방향을 Z 방향으로 하는 XYZ 직교 좌표계를 설정하고, 도 1 에 나타내는 화살표에 따라서, 피처리 기판으로서의 가요성의 시트 기판 (P) (간단히 기판 (P) 라고도 한다) 의 반송 방향을 X 방향, 반송 방향과 직교하는 시트 기판 (P) 의 폭 방향을 Y 방향으로 하고, 미스트 성막시에 시트 기판 (P) 의 표면은, 본 실시형태에서는 XY 면과 평행하는 수평면이 되도록 설정되는 것으로 한다. 시트 기판 (P) 은, 본 실시형태에서는, X 방향으로 장척인 PET (폴리에틸렌·테레프탈레이트), PEN (폴리에틸렌·나프탈레이트), 또는 폴리이미드 등의 수지를 모재로 한 두께가 수 백 ㎛ ∼ 수 십 ㎛ 정도의 플렉시블 시트로 하지만, 그 밖의 재료, 예를 들어, 스테인리스, 알루미늄, 놋쇠, 구리 등의 금속 재료를 얇게 압연한 금속박 시트, 두께를 100 ㎛ 이하로 하여 가요성을 갖게 한 극박 유리 시트, 셀룰로오스 나노 파이버를 함유하는 플라스틱 시트여도 된다. 또한, 시트 기판 (P) 은, 반드시 장척일 필요는 없고, 예를 들어, A4 사이즈, A3 사이즈, B4 사이즈, B3 사이즈와 같이 장변이나 단변의 치수가 규격화된 매엽의 시트 기판, 혹은 규격 외의 부정형인 매엽의 시트 기판이어도 된다.
도 1 에 나타내는 바와 같이, 본 실시형태에 의한 미스트 성막 장치 (MDE) 는, 개략적으로, 시트 기판 (P) 을 지지하여 X 방향으로 반송하는 반송 유닛 (반송부) (5), 성막의 재료 물질이 되는 나노 입자를 분산시킨 용액 (분산액 혹은 액체) (Lq) 을 저류하는 용액 탱크 (10), 용액 (Lq) 으로부터 수 ㎛ ∼ 수 십 ㎛ 정도의 입경의 미스트를 효율적으로 발생시키는 미스트 발생부 (14), 미스트 발생부 (14) 에서 발생된 미스트를 캐리어 가스 (CGS) 에 실은 미스트 기체 (Msg) 가 가요성의 파이프 (17) 를 통하여 공급되고, 미스트 기체 (Msg) 를 시트 기판 (P) 을 향하여 분무하는 미스트 분출부 (30), 시트 기판 (P) 에 부착되지 않고 부유하는 미스트를 포함하는 미스트 기체 (Msg) 를 회수하는 미스트 회수부 (32), 및, 미스트 기체 (Msg) 의 외기 (장치 외부) 에의 누출을 억제하기 위해서, 미스트 분출부 (30), 미스트 회수부 (32), 반송 유닛 (5) 으로 지지되는 시트 기판 (P) 을 덮도록 형성된 챔버부 (40) 로 구성된다. 이하, 각 부의 구성을 더욱 상세하게 설명한다.
도 1 에 나타낸 반송 유닛 (5) 은, Y 축과 평행한 중심축 (AXa) 의 둘레로 회전하는 롤러 (5A) 와, 중심축 (AXa) 으로부터 X 방향으로 소정 거리만큼 떨어져 중심축 (AXa) 과 평행하게 배치되는 중심축 (AXb) 의 둘레로 회전하는 롤러 (5B) 와, 2 개의 롤러 (5A, 5B) 사이에 걸쳐서 걸리고, 평탄 부분의 상면에서 시트 기판 (P) 을 평탄하게 지지하는 무단상의 벨트 (5C) 와, 벨트 (5C) 의 시트 기판 (P) 을 지지하는 평탄 부분의 이면측에 배치되어, 벨트 (5C) 를 평탄하게 지지하는 지지 테이블 (5D) 을 구비한다. 벨트 (5C) 의 Y 방향의 폭은 기판 (P) 의 Y 방향의 폭 (단척 치수) 보다 조금 커지도록 설정되고, 벨트 (5C) 는, 지지 테이블 (5D) 의 상면에 대응한 영역에서 기판 (P) 을 진공 흡착함과 함께, 지지 테이블 (5D) 의 상면과 벨트 (5C) 의 이면 사이에 생성되는 정압 기체층 (에어 베어링) 에 의해서 지지 테이블 (5D) 의 상면과 비접촉인 상태 (또는 저마찰인 상태) 에서 반송 구동된다. 이와 같은 구성의 반송 유닛 (5) 은, 예를 들어, 국제 공개 제2013/150677호 팜플렛에 개시되어 있다. 벨트 (5C) 는 강성이 높고 평탄성을 확보할 수 있는 스테인리스 등의 금속 박판 (도전성 박판) 이 바람직하다. 또한, 벨트 (5C) 의 하류측 (-X 방향측) 에는, 벨트 (5C) 상에 시트 기판 (P) 을 주름 없이 흡착하기 위해서, 시트 기판 (P) 에 장척 방향의 텐션을 부여하는 닙 롤러 (5E, 5F) 가 형성된다.
용액 탱크 (10) 내에 저류되는 용액 (Lq) 의 용매 (분산매도 포함한다) 는, 취급이 간편하고 안전성이 높은 순수로 하고, 그 용매 (순수) 에는, 재료 물질의 일례로서, 산화인듐주석 (ITO : Indium Tin Oxide) 등의 투명 도전막의 재료가 되는 나노 입자가 원하는 농도로 분산되어 있다. 용액 탱크 (10) 내의 용액 (Lq) 은, 정밀 펌프 (12) 에 의해서 단속적 또는 연속적으로 미스트 발생부 (박무화 용기) (14) 에 공급된다. 미스트 발생부 (14) 는, 밀폐된 외부 용기 (14D) (도 25 참조) 내에 설치되어, 정밀 펌프 (12) 로부터의 용액 (Lq) 을 모으는 내부 용기 (컵) (14A) 와, 내부 용기 (14A) 를 개재하여 용액 (Lq) 에 2.4 ㎒ 정도의 진동을 부여하여 용액 (Lq) 의 액면으로부터 미스트를 발생시키는 초음파 진동자 (14C) 를 구비하고 있다. 또한, 미스트 발생부 (14) 의 내부 용기 (14A) 의 상부 공간에는, 유량 조정 밸브 (15) 에 의해서 소정의 유량 (또는 압력) 으로 조정된 캐리어 가스 (CGS) 가 파이프 (16) 를 통과하여 공급된다. 이상의 구성에 있어서, 정밀 펌프 (12), 초음파 진동자 (14C), 및 유량 조정 밸브 (15) 의 각각은, 도시 생략된 상위 제어 컨트롤러 (통괄 제어용 컴퓨터 등) 로부터의 지령을 받아, 적절한 구동량, 타이밍, 인터벌 등으로 구동된다.
또한, 성막 재료 물질로서의 나노 입자가 순수 중에서 응집하기 쉬운 경우에는, 용액 (Lq) 의 용매에 계면 활성제를 소정의 농도로 함유시킴으로써, 나노 입자의 응집을 억제하여 분산성을 유지할 수 있다. 또, 용액 (Lq) 중에 계면 활성제를 함유시키지 않을 경우에는, 예를 들어, 국제 공개 제2017/154937호 팜플렛에 개시되어 있는 바와 같이, 내부 용기 (14A) 내의 용액 (Lq) 에 나노 입자의 응집을 억제하기 위한 초음파 진동 (주파수 200 ㎑ 이하) 을 부여하는 진동자를 형성할 수 있다. 또한, ITO (산화인듐주석) 의 나노 입자로서, 국제 공개 제2019/138707호 팜플렛, 국제 공개 제2019/138708호 팜플렛에 개시된 제법 (製法) 으로 만들어진 비직방체 형상의 ITO 나노 입자 (방위가 갖추어진 결정) 를 사용하면, 계면 활성제를 함유하지 않는 순수에 의한 용액 (Lq) 중이어도, 장시간에 걸쳐서 응집이나 침전을 일으키지 않고 분산 상태를 유지할 수 있다.
미스트 성막 장치 (MDE) 에서 성막 가능한 나노 입자는, 예시한 ITO 나노 입자 이외에, 많이 사용하는 재료 물질 (도전 물질, 절연 물질, 반도체 물질) 의 나노 입자로 할 수 있다. 나노 입자는, 일반적으로는 100 ㎚ 보다 작은 입자로 되어 있지만, 미스트 성막에 있어서는, 미스트의 입경 (수 ㎛ ∼ 수 십 ㎛) 보다 작고, 미스트 내에 포착되어 캐리어 가스 (CGS) 에 의해서 부유할 수 있는 사이즈이면 된다. 그와 같은 나노 입자로는, 금속계에서는, 금 나노 입자, 백금 나노 입자, 은 나노 입자, 구리 나노 입자, 혹은 양도체에 정제된 카본 나노 로드 (튜브) 등을 사용할 수 있고, 산화물계에서는, 산화철 나노 입자, 산화아연 나노 입자, 산화규소 (실리카) 나노 입자 등을 사용할 수 있으며, 질화물계에서는, 질화규소 나노 입자, 질화알루미늄 나노 입자 등을 사용할 수 있다. 또한, 반도체계로는, 반도체에 정제된 카본 나노 로드 (튜브) 나 실리콘 나노 입자 등도 사용할 수 있다. 실리콘 나노 입자로는, 예를 들어, 국제 공개 제2016/185978호 팜플렛에 개시되어 있는 바와 같이, pn 접합 태양 전지를 형성하는 반도체층의 표면에 성막 (도포) 하여 효율을 향상시키는 탄화수소로 분자 종단한 실리콘 나노 입자여도 된다.
그런데, 도 1 에 나타낸 바와 같이, 미스트 발생부 (14) 의 내부 용기 (14A) 내에서 발생된 미스트는, 캐리어 가스 (CGS) 의 흐름을 타고 파이프 (17) 를 통과하여, 미스트 기체 (Msg) 로 되어 미스트 분출부 (30) 에 공급된다. 캐리어 가스 (CGS) 는, 진애 (파티클) 를 제거한 청정한 대기 (H2O : 클린 에어) 외에, 청정한 질소 (N2) 가스나 아르곤 (Ar) 가스 등의 불활성 가스로 할 수 있다. 본 실시형태에서는, 상온의 대기압의 환경 하에서 간단히 미스트 성막을 행하기 때문에, 캐리어 가스 (CGS) 는 클린 에어 또는 질소 가스로 한다. 그러나, 예를 들어 국제 공개 제2016/133131호 팜플렛에 개시되어 있는 바와 같이, 미스트 분출부 (30) 로부터 시트 기판 (P) 에 분무되는 미스트 기체 (Msg) 에, 비열평형 상태의 플라즈마를 조사하는 구성 (플라즈마 어시스트·미스트 성막법) 으로 할 경우에는, 캐리어 가스 (CGS) 를 아르곤 가스로 하면 된다.
또한, 미스트 분출부 (30) 로부터 분무되는 미스트 기체 (Msg) 의 온도를 상온보다 높게 (또는 낮게) 설정할 필요가 있는 경우에는, 필요에 따라서 캐리어 가스 (CGS) 의 온도나 미스트 발생부 (14) 내의 온도, 또는 파이프 (17) 내의 온도를 설정치로 조정하는 온조 기구 (히터, 쿨러 등) 가 형성된다. 또, 도 1 에 나타내는 바와 같이, 미스트 발생부 (14) (내부 용기 (14A)) 는, 중력 방향 (Z 방향) 에 관하여 미스트 분출부 (30) 보다 상방에 배치하면 된다.
미스트 분출부 (30) 의 상부로부터 공급된 미스트 기체 (Msg) 는, 시트 기판 (P) 과 대향하는 미스트 분출부 (30) 의 바닥부에 형성된 슬릿상의 개구부 (노즐 개구부) 로부터 소정의 유량 (풍속) 이 되어 기판 (P) 에 분무된다. 노즐 개구부는, 기판 (P) 의 Y 방향의 폭 치수를 커버하는 길이, 혹은 폭 치수보다 짧은 길이로 형성되고, 기판 (P) 의 장척 방향인 X 방향으로는 1 ㎜ ∼ 수 ㎜ 정도의 폭으로 형성된다. 기판 (P) 의 장척 방향의 반송 (이동) 방향을 +X 방향으로 했을 때, 미스트 회수부 (32) 는, 기판 (P) 의 반송 방향에 관하여 미스트 분출부 (30) 의 하류측에 배치된다. 미스트 분출부 (30) 의 바닥부의 노즐 개구부로부터 하향 (-Z 방향) 으로 분무된 미스트 기체 (Msg) 는, 미스트 회수부 (32) 에서의 감압 작용 (부압) 에 의해서, 챔버부 (40) 내를 통과하는 시트 기판 (P) 의 표면을 따라서 하류측 (+X 방향) 으로 흐르고, 그 동안에 미스트가 시트 기판 (P) 의 표면에 부착되어, 시트 기판 (P) 의 표면에 미스트의 용매 (본 실시형태에서는 순수) 에 의한 얇은 액막이 형성된다.
미스트 회수부 (32) 의 바닥부에는, Y 방향으로 슬롯상으로 연장된 회수 포트부 (회수용 개구부) 가 형성되고, 시트 기판 (P) 에 부착되지 않은 미스트를 포함하는 잉여의 미스트 기체 (Msg') 는 회수용 개구부로 유입되고, 미스트 회수부 (32) 의 상부에 접속된 파이프 (33) 를 통하여 진공 펌프 등의 감압원을 갖는 미스트 기체 포집부 (34) 에 받아들여진다. 미스트 기체 포집부 (34) (이하, 간단히 포집부 (34) 라고도 한다) 는, 포집된 잉여의 미스트 기체 (Msg') 에 포함되는 미스트를 결로에 의해서 용액 (Lq) 의 상태로 되돌리고, 튜브 (35A) 를 통하여 포집 탱크 (36) 에 송출한다. 포집 탱크 (36) 에 모인 용액 (Lq) 은, 적절히 용액 탱크 (10) 에 보충되어 재이용된다.
또, 본 실시형태에서는 상세한 것은 후술하지만, 미스트 분출부 (30) 의 내벽면에 부착된 미스트의 집합에 의해서 성장한 액적이, 내벽면을 타고 미스트 분출부 (30) 의 바닥부의 노즐 개구부로부터 시트 기판 (P) 상으로 적하되는 것을 방지하기 위해서, 미스트 분출부 (30) 의 하부에 액적 포집부 (트랩부) (30T) 가 형성된다. 마찬가지로, 미스트 회수부 (32) 의 하부에는, 미스트 회수부 (32) 의 내벽면에 부착된 미스트 (잉여의 미스트) 의 집합에 의해서 성장한 액적이, 내벽면을 타고 미스트 회수부 (32) 의 바닥부의 회수용 개구부로부터 시트 기판 (P) 상으로 적하되는 것을 방지하기 위한 액적 포집부 (트랩부) (32T) 가 형성된다. 액적 포집부 (30T) 에서 포집된 액적은, 원래의 용액 (Lq) 상태로 되어 튜브 (35B) 를 통하여 소형 펌프 (37) 로 흡인되어, 포집 탱크 (36) 에 보내진다. 마찬가지로, 액적 포집부 (32T) 에서 포집된 액적은, 원래의 용액 (Lq) 상태로 되어 튜브 (35C) 를 통하여 소형 펌프 (37) 로 흡인되어, 포집 탱크 (36) 에 보내진다.
챔버부 (40) 는, 미스트 분출부 (30) 의 바닥부의 노즐 개구부로부터 미스트 회수부 (32) 의 바닥부의 회수용 개구부까지의 사이에 미스트 기체 (Msg) 를 매끄럽게 흐르게 하기 위해서, 시트 기판 (P) 의 표면으로부터 +Z 방향으로 소정의 공간을 형성하는 판상의 도풍 부재 (스커트 부재, 정류 부재라고도 한다) (40A) 가 형성되어 있다. 도 1 의 구성으로부터 명확한 바와 같이, 시트 기판 (P) 의 표면은, 미스트 분출부 (30) 의 노즐 개구부로부터 미스트 회수부 (32) 의 회수용 개구부에 이르는 미스트 기체 (Msg) 의 층류에 노출되면서 +X 방향으로 이동한다. 시트 기판 (P) 의 반송 유닛 (5) 에 의한 이동 속도와, 시트 기판 (P) 의 표면을 따라서 흐르는 미스트 기체 (Msg) 의 유속의 관계를 조정함으로써, 최종적으로 시트 기판 (P) 의 표면에 퇴적되는 나노 입자 (ITO 등) 에 의한 막의 두께를 변경할 수 있다. 챔버부 (40) (도풍 부재 (40A)), 미스트 분출부 (30), 미스트 회수부 (32), 액적 포집부 (30T, 32T) 등을 구성하는 재료는, 화학적으로 안정되고 내열성, 내약품성이 우수하며, 전기적인 절연성이 높고, 가공성이 좋은 수지 재료가 바람직하다. 그 수지 재료로는, 불소 원자와 탄소 원자로 이루어지는 폴리테트라플루오로에틸렌 (Poly-Tetra-Fluoro-Ethylene : PTFE) 등의 불소 수지 (불화 탄소 수지) 가 적합하다.
도 1 의 구성에 있어서, 미스트 분출부 (30) 의 노즐 개구부로부터 분출되는 미스트 기체 (Msg) 의 단위 시간당 분출 유량을 Qf (mL/초) 로 하고, 미스트 회수부 (32) 의 회수용 개구부에서의 단위 시간당 배기 유량을 Qv (mL/초) 로 했을 때, Qf ≒ Qv 의 관계, 또는 Qf < Qv 의 관계로 설정하는 것이 바람직하고, 유체 시뮬레이션에 의하면, 배기 유량 Qv 를 분출 유량 Qf 의 1.5 배 이상으로 하면, 챔버부 (40) 내에 분무된 미스트 기체 (Msg) 의 거의 전량을 회수할 수 있다. 분출 유량 Qf 와 배기 유량 Qv 의 밸런스는, 캐리어 가스 (CGS) 의 유량을 제어하는 유량 조정 밸브 (15) 와, 파이프 (33) 에 접속되는 미스트 기체 포집부 (34) 의 감압원의 유량 조정에 의해서 용이하게 설정할 수 있다.
또한, 도 1 에서는 도시를 생략했지만, 챔버부 (40) (또는 닙 롤러 (5E, 5F)) 의 상류측에는, 시트 기판 (P) 의 표면을 친액화하는 처리 유닛을 형성할 수 있다. 또한, 챔버부 (40) 의 하류측에는, 챔버부 (40) 에서 미스트 성막된 직후의 시트 기판 (P) 의 표면을 덮는 수 ㎛ ∼ 수 십 ㎛ 정도의 두께가 얇은 액막 (수막) 을 증발시키는 건조 유닛을 형성할 수 있다.
또한, 본 실시형태에서는, 미스트 기체 (Msg) 에 포함되는 미스트의 시트 기판 (P) 에의 부착률을 향상시키기 위해서, 미스트 공급부 (31) 가 형성된다. 미스트 공급부 (31) 는, 시트 기판 (P) 의 표면과 챔버부 (40) 사이의 공간에 미스트를 공급한다. 이 미스트 공급부 (31) 는, 미스트 분출부 (30) 와, 파이프 (17) 를 통하여 미스트 분출부 (30) 의 공간 내에 공급된 미스트 기체 (Msg) 중의 미스트에 부의 전하를 부여하는 미스트 대전 장치 (대전 부여부) (60) 를 구비한다. 이로써, 미스트 분출부 (30) 는, 미스트 대전 장치 (60) 에 의해서 대전된 미스트를, 시트 기판 (P) 의 표면과 챔버부 (40) 사이의 공간에 공급할 수 있다. 또, 본 실시형태에서는, 챔버부 (40) 내의 공간에 Z 방향의 정전계를 인가하여, 대전된 미스트를 효율적으로 시트 기판 (P) 상에 부착시키는 정전계 발생 장치 (정전계 발생부) (70) 가 형성된다. 미스트 대전 장치 (60) 는, 미스트 분출부 (30) 의 X 방향으로 대향한 내벽면의 각각의 상방 부분에 배치된 1 쌍의 전극 (Ea, Eb) 간에, 수 ㎸ 이상의 고전압 펄스를 반복하여 인가하고, 전극 (Ea, Eb) 간에 방전 (코로나 방전 등) 을 발생시켜, 미스트를 부의 전하로 대전시킨다. 정전계 발생 장치 (70) 는, 미스트 분출부 (30) 의 X 방향으로 대향한 내벽면의 각각의 하방 부분에 평면상으로 장착된 전극판 (Ec) 과, 챔버부 (40) 의 도풍 부재 (40A) 의 내벽면 (XY 면과 평행) 에 평면상으로 장착된 전극판 (Ed) 의 각각에, 배선 (70a) 을 통하여 정전계의 부극을 인가한다. 또한, 정전계 발생 장치 (70) 는, 반송 장치의 롤러 (5A) 측의 위치에서 벨트 (스테인리스제) (5C) 와 접촉하는 접촉자 (브러시) (71) 에 정전계의 정극을 인가한다.
정전계 발생 장치 (70) 의 정극과 부극의 전위차는, 챔버부 (40) 내를 흐르는 미스트 기체 (Msg) 의 유속, 시트 기판 (P) 의 반송 속도, 미스트의 용매의 종류, 미스트에 포함되는 나노 입자의 종류, 나노 입자에 의한 박막의 목표 막두께 등에 따라서, 수 V 내지 수 백 V 사이에서 적절히 조정된다. 미스트 분출부 (30) 의 노즐 개구부로부터 분출되는 미스트 기체 (Msg) 에 포함되는 미스트는 부로 대전되어 있기 때문에, 챔버부 (40) 내를 부유하는 미스트에는, 도풍 부재 (40A) 측의 부극성의 전극판 (Ed) 으로부터 멀어지는 힘 (척력), 그리고 정극성의 벨트 (5C) 측으로 끌어들여지는 힘 (쿨롱력) 이 부여된다. 벨트 (5C) 는 시트 기판 (P) 에 밀착되어 있기 때문에, 챔버부 (40) 내를 미스트 기체 (Msg) 를 타고 +X 방향으로 흐르는 미스트는, 시트 기판 (P) 의 표면을 향하도록 편향되어, 시트 기판 (P) 의 표면에의 미스트의 부착률이 향상된다.
대전된 미스트가 -Z 방향의 힘 (쿨롱력) 을 받는 것은, 도풍 부재 (40A) 측의 전극판 (Ed) 과 벨트 (5C) 가 대향하고 있는 공간 내뿐이다. 그 때문에, 미스트 분출부 (30) 의 노즐 개구부로부터 미스트 회수부 (32) 의 회수용 개구부까지의 X 방향의 거리가 짧을 경우, 전극판 (Ed) 의 X 방향의 길이도 짧아지고, 미스트 기체 (Msg) 의 유속이 빠르면, 많은 미스트가 시트 기판 (P) 에 유효하게 부착되기 전에, 미스트 회수부 (32) 로 회수되어 버리기도 한다. 그 경우에는, 정전계 발생 장치 (70) 로부터 전극판 (Ed) 과 벨트 (5C) 사이에 인가되는 전위차를 크게 하면 된다. 반대로, 챔버부 (40) 내를 흐르는 미스트 기체 (Msg) 의 유속이 느릴 경우, 많은 미스트가 시트 기판 (P) 에 부착되기 때문에, 시트 기판 (P) 의 표면을 덮는 액막 (수막) 이 과잉된 두께 (예를 들어 0.5 ㎜ 이상) 가 되어, 시트 기판 (P) 의 표면 상에서 액체 (용매) 에 흐름이 발생되어 버린다. 그 경우에는, 정전계 발생 장치 (70) 로부터 전극판 (Ed) 과 벨트 (5C) 사이에 인가되는 전위차를 작게 하면 된다. 또한, 정전계 발생 장치 (70) 로부터 인가되는 전위차의 절대치는, 직류의 일정 전압으로 하는 것이 바람직한데, 예를 들어, 벨트 (5C) 측을 제로 전위 (어스) 로 하고, 전극판 (Ed) 측을 부극성의 중립 전위 (평균 전위) 를 중심으로 소정 진폭 및 소정 주파수로 전압의 절대치가 변화하는 맥동 전압 (교류 전압) 으로 해도 된다. 바꾸어 말하면, 중립 전위 (평균 전위) 는, 맥동 전압 (교류 전압) 의 전위의 최대치와 최소치의 평균치이다.
도 2 는, 도 1 에 나타낸 미스트 성막 장치 (MDE) 의 미스트 분출부 (30), 미스트 회수부 (32), 챔버부 (40) 로 구성되는 성막부의 배치를 상방으로부터 경사지게 본 사시도이고, 도 3a 는, 도 1, 도 2 에 나타낸 미스트 분출부 (30) 의 YZ 면 내에서의 구성을 +X 방향측에서 본 정면도이며, 도 3b 는 도 3a 의 미스트 분출부 (30) 의 k1-k2 화살표 단면도이다. 도 2, 도 3a, 도 3b 중의 각 부재에 대해서, 도 1 에서 설명한 부재나 부품과 동일한 것에는 동일한 부호 또는 번호를 붙이고, 그 상세한 설명은 생략 또는 간략화한다.
도 2 에 있어서, 미스트 분출부 (30) 의 상부에는, 도 1 에서 나타낸 파이프 (17) 에 상당하는 2 개의 파이프 (17a, 17b) 가 접속되어 있다. 파이프 (17a, 17b) 의 각각은, 도 1 의 미스트 발생부 (14) 의 하나로부터 발생된 미스트 기체 (Msg) 를 분기시켜 미스트 분출부 (30) 에 공급하는데, 파이프 (17) 의 개수는 3 개 이상이어도 된다. 이와 같이, 복수 개의 파이프 (17) 를 미스트 분출부 (30) 의 Y 방향으로 소정의 간격으로 배열하여, 미스트 분출부 (30) 의 내부 공간에 미스트 기체 (Msg) 를 공급함으로써, 도 3a, 도 3b 에서 나타낸 미스트 분출부 (30) 의 바닥부의 Y 방향으로 슬릿상으로 연장된 노즐 개구부 (30A) 로부터의 미스트 기체 (Msg) 의 Y 방향에 있어서의 유량 분포 (또는 유속 분포) 의 불균일을 억제하여, 균일화할 수 있다. 또한, 미스트 기체 (Msg) 의 총유량을 증대시키기 위해서, 2 개의 파이프 (17a, 17b) (또는 3 개 이상의 파이프) 의 각각에 대응하여 개별적으로 미스트 발생부 (14) 를 형성해도 된다.
도 2 에 있어서, 도 1 에서 나타낸 미스트 대전 장치 (60) 로부터의 고전압이 인가되는 일방의 전극 (Ea) 은, 도 3b 에 나타내는 바와 같이 미스트 분출부 (30) 의 -X 방향측의 벽면에 형성되는 절연성의 세라믹판 (30Na) 에 고정되고, 타방의 전극 (Eb) 은, 도 3b 에 나타내는 바와 같이 미스트 분출부 (30) 의 +X 방향측의 벽면에 형성되는 절연성의 세라믹판 (30Nb) 에 고정되어 있다. 도 3a, 도 3b 에 나타내는 바와 같이, 본 실시형태에서는, 전극 (Ea) 은 선단이 뾰족한 침상으로 하고, Y 방향으로 일정 간격으로 세라믹판 (30Na) 에 장착되고, 전극 (Eb) 은, 침상의 복수의 전극 (Ea) 이 배열된 Y 방향을 따라서 연장된 판상 (또는 봉상, 선) 으로서 세라믹판 (30Nb) 에 장착되어 있다.
도 3b 에 나타내는 바와 같이, 미스트 분출부 (30) 의 내부 공간은, XZ 면 내에서 보았을 때, 파이프 (17) (17a) 가 접속되는 상단부 (천판) 로부터 -Z 방향으로 높이 위치 Zu 까지는, YZ 면과 평행하고 X 방향으로 일정 간격으로 대향한 내벽면으로 둘러싸인다. 그 대향하는 내벽면은, 높이 위치 Zu 로부터 미스트 분출부 (30) 의 바닥부의 노즐 개구부 (30A) 에 이르기까지의 동안에서, X 방향의 간격이 서서히 감소되도록 성형되고, 최종적으로 노즐 개구부 (30A) 의 위치에서 X 방향의 폭이 수 ㎜ 이하가 되도록 좁혀진다. 미스트 분출부 (30) 의 X 방향으로 대향하는 내벽면의 각각에는, 도 1 에서 나타낸 전극판 (Ec) 이, 도 3a 에 나타내는 바와 같이, 내벽면의 Y 방향의 거의 전체에 걸쳐서 부설되어 있다. 전극판 (Ec) 은, 미스트 대전 장치 (60) 에 의해서 대전된 미스트에 척력을 부여하여, 미스트의 내부 공간의 내벽면에의 부착을 저감한다. 단, 미스트 분출부 (30) 의 내벽면을 발액성이 높은 불소 수지 (PTFE) 로 구성했을 경우에는, 전극판 (Ec) 을 생략할 수 있다.
도 2, 도 3b 에 나타내는 바와 같이, 미스트 분출부 (30) 의 +X 방향, -X 방향의 외벽부의 각각의 하방에는, Y 방향으로 연장 형성된 액적 포집부 (30T) 가 형성된다. 액적 포집부 (30T) 는, 미스트 분출부 (30) 의 바닥부의 노즐 개구부 (30A) 로부터 +Z 방향으로 약간 떨어진 내벽면에, Y 방향으로 연장되도록 형성된 슬리팅 (홈) (30s) 과 연통되어 있다. 슬리팅 (30s) 의 Z 방향의 두께 (홈 폭) 는, 미스트 분출부 (30) 의 내벽면을 타고 흘러 오는 액적이 모세관 현상에 의해서 빨아 들여질 정도, 예를 들어 0.5 ㎜ ∼ 2 ㎜ 로 설정된다. 또한, 슬리팅 (30s) 의 내면은, 높은 친액성이 되는 표면 처리 (친액성의 도막 형성등) 가 실시되어 있다. 액적 포집부 (30T) 는, 도 1, 도 2 에 나타낸 소형 펌프 (37) 에 의한 흡인력에 의해서, 슬리팅 (30s) 내에 모이는 액적을 적당한 인터벌로 빨아내고, 튜브 (35B) 를 통하여 포집 탱크 (36) 에 송출한다.
도 2 에 나타낸 미스트 회수부 (32) 의 +X 방향, -X 방향의 외벽부의 각각의 하방에도, Y 방향으로 연장 형성된 액적 포집부 (32T) 가 형성된다. 미스트 회수부 (32) 의 바닥부의 슬릿상의 회수용 개구부로부터 +Z 방향으로 약간 멀어진 내벽면에도, Y 방향으로 연장되도록 형성된 슬리팅 (홈) 가 동일하게 형성되고, 액적 포집부 (32T) 는, 도 1, 도 2 에 나타낸 소형 펌프 (37) 에 의한 흡인력에 의해서, 슬리팅 (30s) 내에 모이는 액적을 적당한 인터벌로 빨아내고, 튜브 (35C) 를 통하여 포집 탱크 (36) 에 송출한다.
도 1 에서 나타낸 바와 같이, 챔버부 (40) 의 도풍 부재 (40A) 의 내벽면 (XY 면과 평행) 에는 평면상의 전극판 (Ed) 이 형성되지만, 도 2 에서는, 전극판 (Ed) 을 시트 기판 (P) 의 반송 방향 (X 방향) 으로 분할된 2 개의 전극판 (Ed1, Ed2) 으로서 나타낸다. 시트 기판 (P) 의 반송 방향의 상류측에 배치되는 전극판 (Ed1) 은, 도풍 부재 (40A) 상 외벽면으로 돌출되어 형성되는 접속 단자 (JH1) 와 도통하고, 접속 단자 (JH1) 는 도 1 중의 정전계 발생 장치 (70) 의 부극측의 배선 (70a) 에 접속된다. 마찬가지로, 시트 기판 (P) 의 반송 방향의 하류측에 배치되는 전극판 (Ed2) 은, 도풍 부재 (40A) 상 외벽면으로 돌출되어 형성되는 접속 단자 (JH2) 와 도통하고, 접속 단자 (JH2) 는 정전계 발생 장치 (70) 의 부극측의 배선 (70a) 에 접속된다.
도 2 와 같이, 챔버부 (40) 내의 미스트 분출부 (30) 와 미스트 회수부 (32) 사이의 반송로 중에서 전극판 (Ed) 을 분할했을 경우, 상류측의 전극판 (Ed1) 에 인가되는 부전압과, 하류측의 전극판 (Ed2) 에 인가되는 부전압을 다르게 한 값으로 조정할 수 있다. 그러기 위해서는, 정전계 발생 장치 (70) 의 전압 출력단의 정극과 부극 사이에 가변 저항기를 형성하여, 가변 저항기에서 분압된 전압 (부극성) 을 전극판 (Ed1, Ed2) 의 어느 일방에 인가하고, 타방에는 분압 전의 전압 (부극성) 을 인가하도록 구성하면 된다. 이와 같이, 시트 기판 (P) 의 반송 방향의 상류측과 하류측에서, 전극판 (Ed1, Ed2) 의 각각에 인가되는 부극성의 전위를 다르게 함으로써, 미스트의 시트 기판 (P) 의 표면에의 부착 정도를 시간적으로 조정할 수 있다. 또한, 전극판 (Ed) 의 분할은, 챔버부 (40) 내를 통과하는 시트 기판 (P) 의 반송 방향을 따라서 3 개 이상으로 하고, 분할된 각각의 전극판을 서로 다른 부전위로 설정하도록 해도 된다.
[변형예 1]
이상의 제 1 실시형태에서는, 미스트 성막시에, 시트 기판 (P) 이 수평으로 이동하는 벨트 (5C) 상에 지지되고, 시트 기판 (P) 의 표면을 수평 상태 (XY 면과 평행한 상태) 로 하여 미스트 기체 (Msg) 가 분무되는 구성으로 하였다. 이와 같이, 벨트 (5C) 에 의해서 시트 기판 (P) 을 지지하는 구성의 경우, 시트 기판 (P) 은, 예를 들어 A4 판, A3 판, B4 판과 같이, 종횡 치수가 정해진 매엽의 시트 기판으로 할 수 있다. 그러나, 수 십 m ∼ 수 백 m 등의 장척의 시트 기판에 대해서, 롤 투 롤 (Roll to Roll) 방식으로 연속적으로 안정된 막두께 상태에서 미스트 성막할 경우, 시트 기판의 벨트 (5C) 에의 진공 흡착 등에 의한 주름의 발생이 우려되기 때문에, 시트 기판의 장척 방향의 일부를 회전 드럼의 외주면에서 밀착 지지하여 시트 기판을 연속 이동시키는 반송 기구의 이용이 생각된다.
도 4 는, 회전 드럼에 의한 반송 기구 (반송부) 를 사용한 미스트 성막 장치에 있어서의 미스트 성막부의 개략적인 변형 구성을 나타내는 도면이다. 도 4 의 직교 좌표계 XYZ 는, 앞서의 도 1 ∼ 도 3b 의 각각에 있어서의 좌표계 XYZ 와 동일하게, Z 방향이 연직 방향 (중력 방향), XY 면이 수평면으로 설정되어 있다. 또, 도 4 에 나타내는 부재 중, 앞서의 도 1 ∼ 도 3b 에 나타낸 부재와 동일한 것, 혹은 동등한 기능을 갖는 것에는 동일한 부호를 붙인다.
도 4 에 있어서, 철이나 알루미늄에 의한 금속제의 회전 드럼 (DR) 은, Y 축과 평행한 중심선 (AXo) 의 둘레로 회전함과 함께, 중심선 (AXo) 으로부터 일정 반경 Rd 의 외주면 (DRa) 을 갖는다. 외주면 (DRa) 의 Y 방향의 길이는 장척의 시트 기판 (P) 의 단척 방향 (Y 방향) 의 폭 치수보다 조금 길게 설정되지만, 반경 Rd 는 폭 치수에도 의존하지만 비교적 자유롭게 설정 가능하고, 일례로서 5 ㎝ ≤ Rd ≤ 50 ㎝ 의 범위로 설정된다. 회전 드럼 (DR) 의 Y 방향의 양단에는, 중심선 (AXo) 과 동축에 금속제의 샤프트 (Sft) 가 형성된다. 샤프트 (Sft) 는, 미스트 성막 장치 (MDE) 의 본체 프레임 (케이싱) 에 베어링을 개재하여 장착되고, 도시 생략된 회전 구동원 (모터 또는 감속기) 의 토크축에 연결되어, 회전 드럼 (DR) 을 소정의 각속도로 회전시킨다. 회전 드럼 (DR) 의 Y 방향의 단부로부터 Y 방향으로 떨어진 샤프트 (Sft) 에는, 중심선 (AXo) 과 동축에 인코더 계측용의 스케일 원반 (SD) 이 고정되어 있다. 스케일 원반 (SD) 의 중심선 (AXo) 과 수직인 면측 (XZ 면과 평행한 면) 에는, 중심선 (AXo) 으로부터 일정한 반경 영역에, 인코더 헤드 (EH1) 에 의해서 판독되는 눈금 (Gm) 이 둘레 방향으로 윤대상으로 새겨져 있다. 인코더 헤드 (EH1) 는, 스케일 원반 (SD) 의 측면 (XZ 면과 평행) 에 대향해서 배치되고, 회전 드럼 (DR) 의 시계 방향의 회전에 따라서 둘레 방향으로 이동하는 눈금 (Gm) 의 격자 (예를 들어, 둘레 방향으로 20 ㎛ 의 피치로 새겨진 회절 격자) 의 위치 변화를 광학적으로 검출하여, 회전 드럼 (DR) 의 회전 각도 위치부터, 외주면 (DRa) 의 둘레 방향의 이동량, 혹은 외주면 (DRa) 의 둘레 방향의 이동 속도를 계측하기 위해서 사용된다.
시트 기판 (P) 은, 중심선 (AXo) 과 평행한 회전축을 갖고, 회전 드럼 (DR) 의 하방에 배치되는 롤러 (5G) 에 의해서 되접어 꺾여, 회전 드럼 (DR) 의 외주면 (DRa) 의 일부에 일정한 텐션이 부여되고, 원호상으로 지지된 상태에서 감겨진 후, 중심선 (AXo) 과 평행한 회전축을 갖고, 회전 드럼 (DR) 의 상방에 배치되는 롤러 (5H) 에 건네어져 걸리고, 장척 방향으로 반송된다. 그 때, 시트 기판 (P) 은, 회전 드럼 (DR) 의 둘레 방향의 각도 위치 (진입 위치) (Ct1) 로부터 각도 위치 (이탈 위치) (Ct2) 의 약 90 도의 범위에 걸쳐서 외주면 (DRa) 과 밀접한다. 미스트 분출부 (30), 미스트 회수부 (32), 및 챔버부 (40) 로 구성되는 미스트 성막부는, 회전 드럼 (DR) 의 외주면 (DRa) 의 진입 위치 (Ct1) 와 이탈 위치 (Ct2) 의 각도 범위 내에서 둘레 방향으로 만곡되어 배치된다.
도 4 와 같이, 챔버부 (40) 는, 회전 드럼 (DR) 의 반경 방향에 관하여, 외주면 (DRa) 또는 시트 기판 (P) 의 표면으로부터 일정한 간격 공간을 형성하도록 만곡된 도풍 부재 (40A) 를 갖는다. 시트 기판 (P) 의 반송 방향에 관하여 도풍 부재 (40A) 의 상류측에는, 미스트 분출부 (30) 의 노즐 개구부 (30A) 로부터 분무되는 미스트 기체 (Msg) 의 분출 방향 (선 (CL) 의 방향) 이 수평면 (XY 면) 에 대해서, 각도 -θu 만큼 경사지도록 미스트 분출부 (30) 가 배치된다. 이와 같이 미스트 분출부 (30) 의 노즐 개구부 (30A) 를 상방을 향하여 경사지게 함으로써, 미스트 분출부 (30) 의 내벽면에 미스트가 부착되어 모아진 액적이, 내벽면을 타고 노즐 개구부 (30A) 로부터 시트 기판 (P) 상으로 적하하는 것이 방지된다. 노즐 개구부 (30A) 로부터 분출되는 미스트 기체 (Msg) 는, 도풍 부재 (40A) 의 시트 기판 (P) 과 대향하는 만곡된 내벽면과 시트 기판 (P) 의 표면 사이의 공간을, 회전 드럼 (DR) 의 외주면 (DRa) 의 둘레 방향을 따라서 흐르고, 잉여의 미스트 기체 (Msg') 는 미스트 회수부 (32) 에서 회수된다.
도풍 부재 (40A) 의 만곡된 내벽면에는, 정전계 발생 장치 (70) 의 부극측의 배선 (70a) 에 접속되는 전극판 (Ed) 이 만곡되어 부설되고, 회전 드럼 (DR) 의 샤프트 (Sft) 와 접촉하는 접촉자 (71) 는, 배선 (70b) 을 통하여 정전계 발생 장치 (70) 의 정극에 접속된다. 이로써, 만곡된 전극판 (Ed) 과 회전 드럼 (DR) 의 외주면 (DRa) 사이에는, 미스트를 시트 기판 (P) 측으로 끌어들이는 정전계가 형성된다.
챔버부 (40) 내를 통과한 후의 시트 기판 (P) 의 표면의 전체에는, 미스트 성막에 의해서 얇은 액막이 형성되는데, 시트 기판 (P) 은 이탈 위치 (Ct2) 로부터 롤러 (5H) 를 향하여, 수평면 (XY 면) 에 대해서 각도 +θp 만큼 상방으로 경사진 상태에서 반송된다. 시트 기판 (P) 의 표면의 액막 (용매) 은, 이탈 위치 (Ct2) 로부터 롤러 (5H) 까지의 반송 중에 건조 (증발) 되어, 시트 기판 (P) 의 표면에는 미스트에 함유되어 있던 나노 입자에 의한 퇴적막 (도전막) 이 형성된다. 이탈 위치 (Ct2) 로부터 롤러 (5H) 까지의 거리 L 은, 시트 기판 (P) 의 반송 속도 Vp (회전 드럼 (DR) 의 회전 속도) 와, 미스트 성막 직후에 시트 기판 (P) 의 표면을 덮는 액막의 건조 (증발) 완료까지의 시간 Tv 의 곱 (L = Vp·Tv) 에 의해서 설정된다. 또한, 이탈 위치 (Ct2) 로부터 롤러 (5H) 까지의 시트 기판 (P) 의 경사각 +θp 는, 미스트의 용매 (액막) 의 종류에 따라서, 0°≤ θp < 50°의 범위에서 조정할 수 있도록, 롤러 (5H) 의 Z 방향이나 X 방향의 위치가 변경되는 기구를 준비해 두면 된다.
또한, 인코더 헤드 (EH1) 는, 중심선 (AXo) 에서 보았을 때 챔버부 (40) 의 방위와 동일한 방위, 혹은 미스트 분출부 (30) 의 노즐 개구부 (30A) 와 동일한 방위가 되도록, 스케일 원반 (SP) 의 눈금 (Gm) 에 대향 배치된다. 그 때문에, 챔버부 (40) 와 회전 드럼 (DR) 의 외주면 (DRa) 사이의 간극으로부터 미스트 기체 (Msg) 가 새었을 경우, 그 미스트 기체 (Msg) 가 인코더 헤드 (EH1) 내의 광학 부품 등에 부착되어, 눈금 (Gm) 의 판독에 문제 (신호 강도의 저하 등) 가 발생될 가능성도 있다. 그와 같은 경우에는, 도 4 중에 파선으로 나타낸 바와 같이, 중심선 (AXo) 에 관하여 인코더 헤드 (EH1) 와 점대칭인 방위 (약 180 도 회전된 위치), 즉, 챔버부 (40) 로부터 가장 떨어진 위치에 인코더 헤드 (EH2) 를 배치할 수 있다. 도 4 의 구성에서는, 인코더 헤드 EH1, 또는 EH2 가 스케일 원반 (SD) 의 중심선 (AXo) 과 수직인 측면에 대향하도록 배치했지만, 눈금 (Gm) 이 스케일 원반 (SD) 의 중심선 (AXo) 과 평행한 외주면을 따라서 형성되어 있을 경우에는, 인코더 헤드 EH1 (또는 EH2) 와 스케일 원반 (SD) 의 배치를, 변형예 2 로서 나타내는 도면 5 와 같이 하면 된다.
[변형예 2]
도 5 는, 도 4 에 나타낸 중심선 (AXo) 과 선 (CL) 을 포함하고, 미스트 분출부 (30) 의 노즐 개구부 (30A) 를 통과하는 평면에서 회전 드럼 (DR) 과 챔버부 (40) 를 파단했을 때의 부분 단면도이다. 도 5 에 있어서, 회전 드럼 (DR) 은 경량화를 위해서 중공 구조로 되어 있지만, 샤프트 (Sft) 는 회전 드럼 (DR) 의 Y 방향의 양단을 관통하도록 형성되어 있다. 시트 기판 (P) 은 회전 드럼 (DR) 의 반경 Rd 의 외주면 (DRa) 에 밀착 지지된다. 인코더 계측 시스템의 스케일 원반 (SD) 은, 회전 드럼 (DR) 의 -Y 방향측으로 샤프트 (Sft) 와 동축에 고정된다. 도 5 의 스케일 원반 (SD) 의 반경은, 회전 드럼 (DR) 의 반경 Rd 와 거의 동일 (반경 Rd 에 대해서 ±10 % 의 반경) 하게 설정되고, 눈금 (Gm) 은 스케일 원반 (SD) 의 외주면에 형성된다. 그 때문에, 인코더 헤드 (EH1) (또는 EH2) 는 눈금 (Gm) 과 대향하도록 스케일 원반 (SD) 의 직경 방향에 배치된다.
챔버부 (40) 의 도풍 부재 (40A) 의 내벽면은, 시트 기판 (P) 의 표면으로부터 직경 방향으로 일정한 간격 ΔSv (수 ㎜ ∼ 수 십 ㎜) 의 공간이 형성되도록, 회전 드럼 (DR) 의 외주면 (DRa) 을 따라서 둘레 방향으로 만곡되어 배치된다. 미스트 분출부 (30) 의 노즐 개구부 (30A) 로부터의 미스트 기체 (Msg) 는, 시트 기판 (P) 의 표면의 법선 방향으로부터 분출된 후, 간격 ΔSv 의 공간을 둘레 방향으로 흐른다. 본 변형예에서는, 간격 ΔSv 의 공간으로부터 Y 방향 (인코더 헤드 (EH1) 측) 을 향하여 미스트 기체 (Msg) 가 새어 나가는 것을 억제하기 위해서, 도풍 부재 (40A) 의 Y 방향의 단부에, 직경 방향으로 연장 형성된 플랜지부 (스커트) (41A, 41B) 가 형성되어 있다. 플랜지부 (41A, 41B) 는 중심선 (AXo) 과 수직인 YZ 면 내에서 보면 부채형으로 형성되고, 플랜지부 (41A, 41B) 의 샤프트 (Sft) 측의 선단 위치의 중심선 (AXo) 으로부터의 거리는, 회전 드럼 (DR) 의 반경 Rd 보다 작아지도록 형성되어 있다. 또, 플랜지부 (41A, 41B) 의 각각과 회전 드럼 (DR) 의 Y 방향의 측단면의 간격은, 예를 들어, 1 ㎜ ∼ 수 ㎜ 정도의 작은 간극이 되도록 설정된다.
이로써, 간격 ΔSv 의 공간으로부터 챔버부 (40) 의 외방향 (Y 방향) 을 향하여 새어 나가는 미스트 기체 (Msg) 는, 플랜지부 (41A, 41B) 와 회전 드럼 (DR) 의 Y 방향의 측단면 사이의 간극으로부터 샤프트 (Sft) 의 방향 (직경 방향) 을 향하도록 흘러, 인코더 헤드 (EH1) 부근에의 분무가 방지된다. 또한, 본 변형예에서는, 스케일 원반 (SD) 과 회전 드럼 (DR) 의 -Y 방향의 측단면 사이에, 샤프트 (Sft) 와 동축에 원반상의 차풍판 (45) 이 형성된다. 차풍판 (45) 의 중심선 (AXo) 으로부터의 반경은, 회전 드럼 (DR) 의 반경 Rd (또는 스케일 원반 (SD) 의 반경) 보다 크게 설정되고, 바람직하게는 도 5 와 같이, 중심선 (AXo) 으로부터 인코더 헤드 (EH1) 까지의 직경 방향의 거리를 커버할 정도로 설정된다. 이로써, 간격 ΔSv 의 공간으로부터 챔버부 (40) 의 외방향 (Y 방향) 을 향하여 플랜지부 (41A) 로부터 새어 나가는 미스트 기체 (Msg) 가, 스케일 원반 (SD) 의 눈금 (Gm) 으로 분무되는 것이 방지된다. 또한, 새어 나가는 미스트 기체 (Msg) 의 인코더 헤드 (EH1) 나 스케일 원반 (SD) 의 눈금 (Gm) 에의 분무가 충분히 방지되는 경우에는, 플랜지부 (41A) 와 차풍판 (45) 중 어느 일방을 생략할 수도 있다.
또, 챔버부 (40) 에 장착되는 도풍 부재 (40A) 의 만곡된 내벽면 (또는 미스트 분출부 (30) 의 노즐 개구부 (30A) 의 선단) 과 시트 기판 (P) 의 직경 방향의 간격 ΔSv 를 일정하게 유지하기 위해서, 본 변형예에서는, 플랜지부 (41A, 41B) 의 각각의 내측 (회전 드럼 (DR) 측) 에, 회전축이 중심선 (AXo) 과 평행하게 설치되어, 회전 드럼 (DR) 의 외주면 (DRa) 의 Y 방향의 단부에 맞닿아 자유롭게 회전할 수 있는 전동체 (베어링) (43A, 43B) 가 장착되어 있다. 전동체 (43A) 는 XZ 면 내에서 보았을 때, 부채형의 플랜지부 (41A) 의 둘레 방향으로 떨어진 2 개 지점의 각각에 형성되고, 마찬가지로, 전동체 (43B) 는 XZ 면 내에서 보았을 때, 부채형의 플랜지부 (41B) 의 둘레 방향으로 떨어진 2 개 지점의 각각에 형성된다. 챔버부 (40) 는, 도 4 와 같이 회전 드럼 (DR) 의 -X 방향측에 배치되기 때문에, 합계 4 개 지점의 전동체 (43A, 43B) 가 항상 회전 드럼 (DR) 의 외주면 (DRa) 에 맞닿도록, +X 방향으로 탄성 지지되어 있다. 또한, 4 개 지점에 형성되는 전동체 (43A, 43B) 의 각각은, 외주면 (DRa) 과의 사이에서 에어 베어링 (정압 기체층) 을 형성하도록 기체를 분출하는 에어 패드로 해도 된다.
이상, 제 1 실시형태, 및 변형예 1, 변형예 2 에 의하면, 재료 물질의 미립자를 함유하는 용액 (Lq) 을 박무화하여 발생된 미스트를 포함하는 미스트 기체 (Msg) 를 송출하는 미스트 발생 기구로서의 미스트 발생부 (14) 와, 미스트 기체 (Msg) 를 유입하여 피처리 기판으로서의 시트 기판 (P) 을 향하여 분출하는 미스트 분출 기구로서의 미스트 분출부 (30) 와, 그 미스트 분출부 (30) 로부터의 미스트 기체 (Msg) 를 시트 기판 (P) 의 표면을 따라서 흐르게 하기 위해서, 시트 기판 (P) 의 표면과 소정 간격 (ΔSv) 으로 대향한 내벽면을 갖는 도풍 부재 (40A) 로 구성되는 도풍 기구로서의 챔버부 (40) 와, 시트 기판 (P) 의 표면으로 미스트를 끌어들이는 인력을 발생시키기 위해서, 챔버부 (40) 의 도풍 부재 (40A) 의 내벽면과 미스트 사이에서 척력 (반발력) 을 발생시키는 미스트 유도 기구로서, 시트 기판 (P) 을 지지하는 벨트 (5C) (또는 회전 드럼 (DR)) 와 도풍 부재 (40A) 에 설치된 전극판 (Ed) 사이에 정전계가 발생되는 정전계 발생 장치 (70) 를 형성함으로써, 시트 기판 (P) 의 표면에의 미스트의 부착률을 향상시켜, 재료 물질의 미립자의 퇴적에 의한 막층의 성막률을 향상시킨 미스트 성막 장치가 얻어진다.
[제 2 실시형태]
도 6 은, 제 2 실시형태에 의한 미스트 성막 장치 (MDE) 의 전체적 구성을 나타내는 개략도로서, 직교 좌표계 XYZ 는 도 1 과 동일하게 Z 방향을 중력 방향으로 하도록 설정된다. 도 6 의 미스트 성막 장치 (MDE) 는, 앞서의 도 4 와 마찬가지로, 장척의 시트 기판 (P) 을 원통면상으로 지지하는 회전 드럼 (DR) 의 회전에 의해서 장척 방향으로 반송하면서, 회전 드럼 (DR) 상에서 미스트 성막하도록 구성된다. 또, 도 6 의 미스트 성막 장치 (MDE) 에 있어서, 앞서의 도 1 ∼ 4 의 각각에서 나타난 부재나 구성과 동일한 기능을 갖는 부재나 구성에 대해서는 동일한 부호를 붙이고, 그 설명을 생략, 또는 간략화한다. 본 실시형태에서는, 미스트 성막에 의해서 시트 기판 (P) 의 표면에 형성되는 얇은 액막의 용매 (순수 등) 가 건조되기 전에, 액막 중에 함유되는 나노 입자를 전기적인 힘으로 진동시켜, 시트 기판 (P) 의 표면에 퇴적되는 나노 입자의 불균일한 두께 분포를 균등화한다.
도 6 에 있어서, 시트 기판 (P) 은, 롤러 (5G) 를 개재하여 회전 드럼 (DR) 의 도전성의 외주면 (DRa) 에 걸려 회전되고, 미스트 분출부 (30) 와 미스트 회수부 (32) 를 갖는 챔버부 (40) 아래에서 미스트 성막된 후, 회전 드럼 (DR) 의 외주면 (DRa) 의 +Z 방향의 상단부로부터 +X 방향으로 거의 수평으로 일정한 텐션을 유지하여 반송된다. 그 수평으로 반송되는 시트 기판 (P) 은, 반송 방향 (X 방향) 으로 배열된 복수의 롤러 (5J) 로 지지되고, 최후의 롤러 (5H) 에 의해서 하방 (-Z 방향) 으로 절곡된다. 본 실시형태에서는, 복수의 롤러 (5J) 로 지지된 시트 기판 (P) 의 수평 반송로에 있어서, 시트 기판 (P) 의 표면에 미스트 성막으로 형성된 액막 (순수 등의 용매) 의 건조 공정이 실시된다. 그 건조 공정을 위해서, 복수의 롤러 (5J) 에 의한 수평 반송로의 상방에는, 배기 덕트 (86) 를 개재하여, 수평 반송되는 시트 기판 (P) 의 표면 부근의 기체 (공기) 를 빨아 올리는 배기 건조부 (건조부) (85) 가 배치된다.
또, 본 실시형태의 미스트 성막부를 구성하는 챔버부 (40) 에는, 시트 기판 (P) 의 만곡된 반송 방향에 관하여, 미스트 분출부 (30) 의 하류측뿐만 아니고, 상류측에도 미스트 회수부 (32) 와 동일한 미스트 회수부 (32') 가 장착되고, 미스트 분출부 (30) 로부터 상류측으로 흐르기 시작하는 잉여의 미스트 기체 (Msg') 가, 파이프 (33') 를 통하여 도 1 에 나타낸 미스트 기체 포집부 (34) 에서 포집된다. 본 실시형태의 미스트 분출부 (30) 의 노즐 개구부 (30A) 로부터의 미스트 기체 (Msg) 의 분출 방향은, XZ 면 내에서 보았을 때, 도 6 중의 선 (CL) 과 같이 YZ 면과 평행으로 중심선 (AXo) 을 포함하는 면에 대해서 0°∼ -90° (바람직하게는 -45°) 의 범위에서 경사지도록 설정된다.
회전 드럼 (DR) 은, 샤프트 (Sft) 에 결합된 회전 구동부 (80) 에 포함되는 모터에 의해서 회전되고, 회전 구동부 (80) 는, 스케일 원반 (SD) 의 눈금 (Gm) 을 판독하는 인코더 헤드 (EH2) 로부터의 검출 신호에 의해서 계측되는 속도 정보와 드라이브 회로 (82) 로부터의 지령 정보에 기초하여, 회전 드럼 (DR) 의 외주면 (DRa) (시트 기판 (P)) 이 지령된 주속도로 정밀하게 이동되도록 모터를 서보 제어한다. 드라이브 회로 (82) 에 부여되는 지령 정보는, 장치 전체를 통괄적으로 제어하는 제어부 (CPU) (100) 에서 만들어진다.
또한, 본 실시형태에서는, 회전 드럼 (DR) 으로부터 이탈하여 수평 반송로를 따라서 이동하는 시트 기판 (P) 의 이면측 (-Z 방향측) 에서, 복수의 롤러 (5J) 의 각각의 X 방향의 사이에는, 시트 기판 (P) 과 평행하게 복수의 전극판 (Ef1 ∼ Ef4) 이 배치된다. 전극판 (Ef1 ∼ Ef4) 은 시트 기판 (P) 의 이면으로부터 일정한 간격 (예를 들어 수 ㎜ 이상) 으로 배치된다. 또, 회전 드럼 (DR) 으로부터 이탈하여 수평 반송로를 따라서 이동하는 시트 기판 (P) 의 상면측 (+Z 방향측) 에는, 전극판 (Ef1 ∼ Ef4) 의 전체를 커버하는 면적을 갖는 메시상의 전극판 (메시 전극) (Em) 이, 시트 기판 (P) 과 평향하게 시트 기판 (P) 과 배기 건조부 (85) 사이에 배치된다. 전극판 (Em) 은 시트 기판 (P) 의 상면으로부터 일정한 간격 (예를 들어 수 ㎜ 이상) 으로 배치된다. 전극판 (Em) 과 전극판 (Ef1 ∼ Ef4) 의 Z 방향의 간격 (전극간 갭) 은, X 방향에 걸쳐서 거의 일정하고, 일례로서 10 ∼ 30 ㎜ 의 범위로 설정된다. 전극판 (Ef1 ∼ Ef4) 과 전극판 (Em) 사이에는, 배선 (Wa, Wb) 을 통하여, 교류 전계 발생부 (90) 로부터의 교류 전위가 인가된다. 그 교류 전위는 제어부 (100) 로부터의 지령에 의해서 설정된다.
도 7 은, 도 6 의 전극판 (Em) 과 전극판 (Ef1 ∼ Ef4), 및 교류 전계 발생부 (90) 에 의해서 구성되는 나노 입자의 퇴적 균등화부 (입자 진동부, 또는 영동 부여부라고도 한다) 의 상세한 구성을 나타낸다. 도 7 에 있어서, 도 6 에 나타낸 부재와 동일한 부재에는 동일한 부호를 붙인다. 전극판 (Em) 은, 예를 들어, 스테인리스판에 무수한 개구부 (Emh) 를 매트리스상으로 내어, 가는 선상부에 의해서 메시상으로 형성된다. 전극판 (Ef1 ∼ Ef4) 도 스테인리스판으로 형성되고, 전극판 (Em) 과의 Z 방향의 간격을 Zh 로 한다. 교류 전계 발생부 (90) 는, 제어부 (100) 로부터의 지령 정보 (Sfc) 에 따른 주파수 fp 로 교류 신호 (정현파) 를 발생시키는 발진 회로 (90A) 와, 제어부 (100) 로부터의 지령 정보 (Swc) 에 따라서 교류 신호 (정현파) 의 파형을 변형시킴과 함께, 지령 정보 (Svc) 에 따라서 교류 신호의 진폭을 조정하여 배선 (Wa, Wb) 에 인가하는 조정 회로 (90B) 를 구비한다. 또한, 전극판 (Em) 과 전극판 (Ef1 ∼ Ef4) 사이에 인가되는 주파수 fp 의 교류 전압 Ev 는 피크 진폭치, 또는 실효 진폭치로 한다.
도 7 에 나타내는 바와 같이, 시트 기판 (P) 이 +X 방향으로 속도 Vp 로 이동하고 있는 동안에, 시트 기판 (P) 의 표면 (상면) 에 형성된 두께 Δh 의 용액 (Lq) 에 의한 액막 (여기에서는 편의상, Lq 로 한다) 으로부터는, 용매 (순수 등) 의 건조에 수반하여 증발 성분 wx 가 발생되고, 메시상의 전극판 (Em) 의 개구부 (Emh) 를 통과하여 배기 건조부 (85) 에서 빨아 들여진다. 액막 (Lq) 중에는, 무수히 많은 나노 입자 (np) 가 시트 기판 (P) 의 표면에 퇴적된 상태, 또는 부유된 상태에서 존재한다. 그 상태에서, 교류 전계 발생부 (90) 에 의해서, 액막 (Lq) 에 주파수 fp 로 Z 방향으로 강도 변화하는 교류 전계가 인가되면, 나노 입자 (np) 가 교류 전계의 강도에 따른 영동력 fz 로 진동하고, 퇴적 상태의 편향이 개선되어, 나노 입자 (np) 의 퇴적에 의한 막두께 분포가 균등화된다. 교류 전압 Ev 에 의한 전계는, 시트 기판 (P) 의 표면의 액막 (Lq) 이 대체로 건조될 때까지 계속하는 것이 바람직하다.
그 때문에, 전극판 (Em) 과 전극판 (Ef1 ∼ Ef4) 사이의 전계 공간의 X 방향의 길이 HGx 는, 시트 기판 (P) 상의 액막 (Lq) 이 대체로 건조될 때까지의 건조 시간을 Tvp 로 하면, 시트 기판 (P) 의 속도 Vp 로부터, HGx ≥ Tvp·Vp 로 설정하면 된다. 또, 액막 (Lq) 의 건조 시간 Tvp 는, 시트 기판 (P) 의 온도, 주위 환경의 온도나 습도, 시트 기판 (P) 이 닿는 주위 기체의 풍량 등에 의해서 달라지지만, 조금이라도 건조 시간 Tvp 를 짧게 하기 위해서, 시트 기판 (P) 의 이면측에 배치되는 전극판 (Ef1 ∼ Ef4) 의 온도를 상온 (24 ℃) 이상의 값, 예를 들어, 수 십 ℃ ∼ 100 ℃ 로 하는 히터부를 형성해도 된다.
이와 같이, 시트 기판 (P) 상의 액막 (Lq) 이 건조되기 전에 교류 전계를 인가함으로써, 최종적으로 시트 기판 (P) 상에 형성되는 나노 입자에 의한 막의 상태가 개선되는 것을 예비 실험에 의해서 확인하였다. 도 8 은, 액막 (Lq) 에 교류 전계를 인가하여, 나노 입자에 의한 박막의 성막 상태가 어떻게 변화하는지를 확인하기 위한 예비 실험 장치의 구성을 나타낸다. 도 8 의 직교 좌표계 XYZ 에 있어서, Z 방향은 중력 방향이고, 그것과 직교하는 XY 면은 수평면으로 한다. 예비 실험 장치에서는, 미스트 기체 (Msg) 가 일정 시간만 분무되는 시료로서, 가로세로 50 ㎜ 의 유리 기판 (P') 을 사용한다. 유리 기판 (P') 은, 절연성의 바닥판 (BPd) 의 상면에 전극판 (Ef) 으로서 형성된 도전막 상에 재치되고, 바닥판 (BPd) 의 X 방향의 양측의 각각에는, Z 방향으로 높이 Zh 의 지주 (支柱) (HSP) 가 형성된다. 지주 (HSP) 의 상부에는, 절연성의 천판 (BPu) 이 바닥판 (BPd) 과 평행이 되도록 재치된다. 천판 (BPu) 의 하면에는, 전극판 (Em) 로서의 도전막이 형성되어 있다. 전극판 (Ef), 전극판 (Em) 으로서의 각 도전막 사이에는, 스위치 (Swo) 를 개재하여 정현파상의 교류 전압 Ev (주파수 fp) 가 인가된다.
예비 실험 1 에서는, 먼저, 입경이 30 ∼ 50 ㎚ (평균 입경 40 ㎚) 인 ITO 나노 입자를 소정의 농도 (예를 들어, 10 wt.%) 로 함유하는 용액 (Lq) 을 미스트 기체 (Msg) 로 하여, 바닥판 (BPd) 에 재치된 유리 기판 (P') 의 표면에 일정 시간만 분무하여 액막 (Lq) 을 형성한 후, 액막 (Lq) 이 건조될 때까지의 동안에 인가되는 교류 전압 Ev 의 주파수 fp 에 의해서, 성막된 ITO 나노 입자의 박막이 어떠한 저항 변화를 나타내는지를 조사하였다. 도 9 는, 교류 전압 Ev 의 주파수 fp (㎐) 를 가로축에 취하고, ITO 나노 입자의 박막의 저항치 (㏀/㎠) 을 세로축에 취한 예비 실험 1 의 실험 결과 1 을 나타내는 그래프이다. 예비 실험 1 에서는, 전극판 (Ef) 과 전극판 (Em) 의 전극 간격 (지주 (HSP) 의 높이) Zh 를 20 ㎜ 로 유지하고, 교류 전압 Ev (치실효) 를 20 V 로 함 (즉, 교류 전계 강도를 치실효로 1 V/㎜ 로 한다) 과 함께, 유리 기판 (P') 을 교환하여 액막 (Lq) 을 형성하고 난 후에, 주파수 fp 가, 1 ㎐, 10 ㎐, 100 ㎐, 1 ㎑, 10 ㎑, 100 ㎑, 1 ㎒, 10 ㎒, 100 ㎒ 의 각 교류 전계 하에서 성막된 ITO 나노 입자의 저항치를 계측하였다.
도 9 에 나타내는 바와 같이, 예비 실험 1 에서 사용한 ITO 나노 입자의 경우, 주파수 fp 가 200 ㎐ ∼ 20 ㎑ 사이에서, ITO 나노 입자에 의한 박막의 저항치가 거의 반감되는 것을 알았다. 또한, 도 9 에 있어서, 주파수 fp 가 0 ㎐ (교류 전계를 인가하지 않는다), 또는 10 ㎒ 이상의 교류 전계 하에서 얻어진 가장 높은 저항치는 약 100 ㏀/㎠ 였다. 이와 같은 교류 전계의 인가에 의한 저항치의 저감은, 액막 (Lq) 중에서의 ITO 나노 입자가 분극성을 가짐으로써 진동하고, 유리 기판 (P') 의 표면에 퇴적되는 ITO 나노 입자의 표면을 따른 방향에서의 국소적 소밀 상태가 완화되고, 면 내에서의 ITO 나노 입자끼리의 접촉 경로 (도통 패스) 가 증가하여, 평균적으로 ITO 나노 입자에 의한 박막의 도전성이 높아졌기 때문으로 생각된다.
다음으로, 예비 실험 2 로서, 교류 전압 Ev 를 20 V, 주파수 fp 를 10 ㎑ 로 설정하고, 전극 간격 Zh 를 5 ㎜ ∼ 50 ㎜ 의 범위에서 5 ㎜ 간격마다의 ITO 나노 입자 (평균 입경 40 ㎚) 에 의한 박막의 저항치 변화를 조사하였다. 도 10 은, 전극 간격 Zh (㎜) 를 가로축에 취하고, ITO 나노 입자의 박막의 저항치 (㏀/㎠) 을 세로축에 취한 예비 실험 2 의 실험 결과 2 를 나타내는 그래프이다. 예비 실험 2 에서는, 예비 실험 1 에서 얻어진 지견에 기초하여, 교류 전계의 주파수 fp 를 저항치가 가장 작아진 10 ㎑ 로 설정하였다. 도 10 에 나타내는 바와 같이, 예비 실험 2 에서는, 전극 간격 Zh 가 40 ㎜ 이상에서는 저항치의 저감이 보이지 않고, 전극 간격 Zh 가 40 ㎜ 로부터 20 ㎜ 로 좁아짐에 따라서 저항치가 점차 저감하고, 전극 간격 Zh 가 20 ㎜ 이하에서는 저항치가 거의 일정해졌다. 이 예비 실험 2 에 의해서, 실험에 사용한 ITO 나노 입자의 경우, 액막 (Lq) 의 건조 중에 인가하는 교류 전계의 강도는, 치실효로 0.5 V/㎜ (20 V/40 ㎜) 이상, 바람직하게는 1 V/㎜ 이상인 것을 알 수 있다.
또한, 예비 실험 3 으로서, 교류 전압 Ev 를 20 V, 전극 간격 Zh 를 20 ㎜ 로 하고, 예비 실험 1, 2 에서 사용한 평균 입경 40 ㎚ 의 ITO 나노 입자와의 비교를 위해서, 평균 입경 10 ㎚ 의 극소의 ITO 나노 입자의 경우에 대해서, 주파수 fp 에 대한 의존성을 조사하였다. 예비 실험 3 에서는, 전극 간격 Zh 를 20 ㎜ 로 유지하고, 교류 전압 Ev (치실효) 를 20 V 로 함과 함께, 유리 기판 (P') 을 교환하여 액막 (Lq) 을 형성하고 난 후에, 주파수 fp 가, 1 ㎐, 10 ㎐, 100 ㎐, 1 ㎑, 10 ㎑, 100 ㎑, 1 ㎒, 10 ㎒ 의 각 교류 전계 하에서 성막된 평균 입경 10 ㎚ 의 ITO 나노 입자의 저항치를 계측하였다.
도 11 은, 교류 전압 Ev 의 주파수 fp (㎐) 를 가로축에 취하고, ITO 나노 입자의 박막의 저항치 (㏀/㎠) 을 세로축에 취한 예비 실험 3 의 실험 결과 3 을 나타내는 그래프이다. 도 11 에 나타내는 바와 같이, 예비 실험 3 에서 사용한 평균 입경 10 ㎚ 의 ITO 나노 입자의 경우, 주파수 fp 가 10 ㎐ ∼ 1 ㎑ 사이에서, ITO 나노 입자에 의한 박막의 저항치가 거의 반감하는 것을 알 수 있었다. 또한, 도 11 에 있어서, 주파수 fp 가 0 ㎐ (교류 전계를 인가하지 않는다), 또는 10 ㎒ 이상의 교류 전계 하에서, 평균 입경 40 ㎚ 의 ITO 나노 입자에 의한 박막의 가장 높은 저항치는 약 100 ㏀/㎠ (앞서의 예비 실험 1 과 동일함) 이고, 평균 입경 10 ㎚ 의 ITO 나노 입자에 의한 박막의 가장 높은 저항치는 약 150 ㏀/㎠ 였다. 이 예비 실험 3 으로부터, 동일한 재료에 의한 나노 입자여도, 입경의 차이에 의해서 영동력 fz 가 발생되는 교류 전계의 주파수 대역이 상이한 것을 알 수 있었다.
이상의 예비 실험의 지견에 기초하여, 도 6, 도 7 에 나타낸 미스트 성막 장치 (MDE) 의 전극판 (Ef1 ∼ Ef4) 과 전극판 (Em) 의 전극 간격 Zh 와, 교류 전계 발생부 (90) 에 의해서 전극간에 인가되는 교류 전압 Ev 의 치실효와 주파수 fp 가 설정된다. 그 간격 Zh, 교류 전압 Ev, 주파수 fp 의 최적치는, 용액 (Lq) 의 종류, 나노 입자의 종류나 입경 등에 따라서 상이하기 때문에, 도 8 과 같은 예비 실험 장치 등에 의해서 결정된다. 또한, 액막 (Lq) 중에서 나노 입자에 영동력 fz 가 발생되는 하나의 요인은, 나노 입자가 분극성을 갖기 때문으로 생각된다.
그런데, 도 6, 도 7 에 나타낸 미스트 성막 장치 (MDE) 의 교류 전계 발생부 (90) 에 의해서, 전극판 (Ef1 ∼ Ef4) 과 전극판 (Em) 사이에 인가되는 교류 전압 Ev 의 파형은, 도 12a ∼ 도 12c 에 나타내는 바와 같이 변형 가능하다. 도 12a 는, 교류 전압으로서 전형적인 정현파 WF1 이고, 그 특성은 주파수 fp 와 실효치 Eva (피크치의 1/[20.5]) 로 나타내어진다. 도 12B 는, 피크치를 ±Evp 로 한 톱니파 WF2 이고, 도 12c 는 주파수 fp 의 정현파를 시간 Tb (Tb > 1/fp) 마다 진폭 변조에 의해서 감쇠시킨 버스트 파형 WF3 이다. 그 밖에, 교류 전계의 파형으로는, 주파수 fp 로 듀티비 (1/fp 의 1 주기 중에서 차지하는 고레벨의 계속 시간의 비율) 를 조정 가능하게 한 구형파이어도 된다.
도 12c 와 같은 버스트 파형 WF3 은, 도 12a 의 정현파 WF1 를 도 12B 와 같은 톱니파 WF2 로 진폭 변조한 것으로서, 주파수 성분으로서, 시간 Tb 에서 정해지는 주파수 1/Tb 와 정현파 WF1 의 주파수 fp 를 포함하는 것이 된다. 따라서, 도 9 의 실험 결과 1 이나 도 11 의 실험 결과 3 의 지견으로부터, 예를 들어, 주파수 fp 를 1 ㎑ ∼ 10 ㎑, 주파수 1/Tb 를 50 ∼ 500 ㎐ 로 설정할 수 있다. 이와 같이, 복수의 상이한 주파수로 교류 전계를 발생시키면, 시트 기판 (P) 의 표면의 액막 (Lq) 중에, 입경의 편차가 큰 나노 입자 (예를 들어, 최소 입경이 10 ㎚ 와 최대 입경이 100 ㎚) 가 혼재하여 포함되어 있는 경우여도, 그것들의 나노 입자의 각각에 영동력 fz 를 효과적으로 부여할 수 있다.
[변형예 3]
도 6 에서는, 전극판 (Em, Ef1 ∼ Ef4) 과 교류 전계 발생부 (90) 에 의해서 구성되는 퇴적 균등화부에서는, 시트 기판 (P) 이 +X 방향으로 수평 반송되는 건조 공정 동안, 시트 기판 (P) 의 표면의 액막 (Lq) 에 대해서, 일정한 주파수 fp 로 일정한 강도의 교류 전계가 인가되었다. 그러나, 시트 기판 (P) 의 이면측에 배치되는 4 개의 전극판 (Ef1 ∼ Ef4) 은, 시트 기판 (P) 의 수평 반송로를 따라서 분할되어 있기 때문에, 전극판 (Ef1 ∼ Ef4) 의 각각에 인가되는 교류 전압 Ev 와 주파수 fp 를 다르게 해도 된다. 그러기 위해서는, 도 7 에 나타낸 교류 전계 발생부 (90) 내의 발진 회로 (90A), 조정 회로 (90B) 를 복수 형성할 필요가 있다.
[변형예 4]
도 7 에 나타낸 전극판 (Em, Ef1 ∼ Ef4) 과 교류 전계 발생부 (90) 로 구성되는 퇴적 균등화부는, 나노 입자 (np) 의 영동이 가능한 두께 (예를 들어 나노 입자의 입경의 수 배 이상) 로 액막 (Lq) 이 시트 기판 (P) 상에 형성되고 있으면 기능할 수 있다. 따라서, 시트 기판 (P) 상에 액막 (Lq) 을 형성하는 공정은 미스트 성막법에 한정되지 않고, 각종 인쇄 방식 (그라비어 인쇄, 실크 인쇄, 다이 코터 인쇄 등) 이나 잉크젯 방식의 도포 장치로 액막 (Lq) 을 형성해도 된다. 특히, 잉크젯 방식으로 금속계의 나노 입자를 함유하는 미소한 액적을 기판 (P) 의 표면에 선택적으로 도포하여 도전성의 배선 패턴이나 전극 패턴 등을 형성하는 경우, 도포된 액적의 건조 전에, 기판 (P) 을 도 7 과 같은 퇴적 균등화부에 통과시킴으로써, 기판 (P) 상에 형성되는 나노 입자에 의한 배선 패턴이나 전극 패턴의 저항치를 저감시킬 수 있다.
[변형예 5]
제 2 실시형태, 변형예 3, 4 에서는, 도 7 에 나타낸 전극판 (Em) 과 전극판 (Ef1 ∼ Ef4) 사이, 즉, 시트 기판 (P) 상의 액막 (Lq) 이 확대되는 면과 수직인 방향으로 교류 전계를 인가하고 있었다. 그러나, 전극판의 구성이나 배치를 변경함으로써, 액막 (Lq) 중의 나노 입자에 작용하는 영동력 fz 의 방향을 세로 방향 (Z 방향) 뿐만 아니고, 적극적으로 횡방향 (XY 면 내) 의 벡터를 갖게 하도록 변경할 수 있다.
도 13 은 변형예 5 에 의한 퇴적 균등화부 (영동 부여부) 의 구성을 나타내고, 도 13 의 상단은 XY 면 내에서의 구성을 위에서 본 상면도, 하단은 XZ 면 내에서의 구성을 옆에서 본 정면도이다. 변형예 5 에서는, 시트 기판 (P) 의 상면측에 배치되는 전극판 (Em) 대신에, Y 방향으로 시트 기판 (P) 의 폭 (Y 방향 치수) 보다 길어지도록 직선상으로 연장 형성한 전극선 (와이어나 강선) (Em') 의 복수 개를 X 방향 (시트 기판 (P) 의 반송 방향) 으로 일정 간격으로 배치한다. 복수 개의 전극선 (Em') 의 각각의 Y 방향의 양단은, 금속제의 프레임 (TF1) 에 고정되고, 앞서의 도 7 의 교류 전계 발생부 (90) 로부터의 배선 (Wb) 에 접속된다. 또한, 변형예 5 에서는, 시트 기판 (P) 의 이면측에 배치되는 전극판 (Ef1 ∼ Ef4) 대신에, Y 방향으로 시트 기판 (P) 의 폭 (Y 방향 치수) 보다 길어지도록 직선상으로 연장 형성된 전극선 (와이어나 강선) (Ef') 의 복수 개를 X 방향 (시트 기판 (P) 의 반송 방향) 으로 일정 간격으로 배치한다. 복수 개의 전극선 (Ef') 의 각각의 Y 방향의 양단은, 금속제의 프레임 (TF2) 에 고정되고, 앞서의 도 7 의 교류 전계 발생부 (90) 로부터의 배선 (Wa) 에 접속된다.
시트 기판 (P) 의 상면측의 복수 개의 전극선 (Em') 과, 시트 기판 (P) 의 이면측의 복수 개의 전극선 (Ef') 은, XY 면 내에서 보면, X 방향으로 일정한 간격으로 교대로 배열된다. 배선 (Wa, Wb) 을 통하여, 프레임 (TF1 과 TF2) 사이에 교류 전압 Ev 가 인가되면, 도 13 의 하단에 나타내는 바와 같이, 상측의 전극선 (Em') 의 각각과 하측의 전극선 (Ef') 의 각각 사이에, X 방향으로 경사진 교류 전계 Fe 가 발생된다. 그 때문에, 시트 기판 (P) 의 표면의 액막 (Lq) 중의 나노 입자에는, X 방향으로 경사진 영동력 fz, 즉 Z 방향의 영동력과 X 방향의 영동력이 부여된다. 이로써, 액막 (Lq) 중의 나노 입자는, 시트 기판 (P) 의 표면을 따른 횡방향으로도 적극적으로 미소 이동 (미소 진동) 하게 되어, 건조 후의 나노 입자에 의한 박막의 퇴적 상태의 균등화를 높이는 것이 가능해진다.
또한, 도 13 에 나타낸 복수 개의 전극선 (Em') 과 복수 개의 전극선 (Ef') 은, 서로 평행한 상태인 채, XY 면 내에서 Y 축 (또는 X 축) 에 대해서 일정한 각도 (예를 들어, 45°또는 90°) 만큼 전체적으로 경사져도 된다. 또한, XY 면 내에서 보았을 때, 복수 개의 전극선 (Em') 과 전극선 (Ef') 은, 직선상일 필요는 없고, 원호상 (궁상) 으로 만곡시키거나, 지그재그상이나 파상으로 굴곡시키거나 해도 된다.
이상의 제 2 실시형태, 변형예 3 ∼ 변형예 5 에 의하면, 피처리 기판으로서의 시트 기판 (P) 의 표면에 미립자 (나노 입자 (np)) 를 소정의 두께로 퇴적시키는 성막 장치로서, 나노 입자 (np) 를 함유하는 용액에 의한 액막 (Lq) 을 시트 기판 (P) 의 표면에 소정의 두께로 형성하기 위한 미스트 성막부, 혹은 인쇄 방식이나 잉크젯 방식에 의한 도포 장치로 구성되는 액막 형성부와, 시트 기판 (P) 의 표면에 형성된 액막 (Lq) 이 증발 또는 휘발하기 전에, 액막 (Lq) 에 교류 전계를 부여하여, 액막 (Lq) 중의 나노 입자 (np) 에 영동력 fz 를 부여하는 영동 부여부로서의 퇴적 균등화부를 구비한 성막 장치가 제공된다. 또한, 도 6 에 나타낸 미스트 성막 장치 (MDE) 는, 도전성의 외주면을 갖는 회전 드럼 (DR) 에서 시트 기판 (P) 을 밀착 지지하기 때문에, 시트 기판 (P) 과 대향하는 챔버부 (40) 의 내벽면에 제 1 전극 (Em) 을 형성하고, 회전 드럼 (DR) 의 외주면을 제 2 전극 (Ef) 으로 하여, 제 1 전극 (Em) 과 제 2 전극 (Ef) 사이에 교류 전계를 인가해도 된다.
[제 3 실시형태]
도 14 는, 제 3 실시형태에 의한 미스트 성막 장치 (MDE) 의 개략적인 구성을 나타내고, 도 14 의 직교 좌표계 XYZ 는, 앞서의 도 1, 도 6 의 직교 좌표계 XYZ 와 동일하게 설정된다. 본 실시형태는, 앞서의 제 1 실시형태의 도 2 에 나타낸 미스트 성막부와, 제 2 실시형태의 도 7 에 나타낸 퇴적 균등화부를 조합한 것이다. 따라서, 도 14 중의 각 부재 중, 앞서의 도 1 이나 도 6 의 부재와 실질적으로 동일한 구성, 또는 동일한 기능의 부재에는, 동일한 부호를 붙인다.
도 14 에 있어서, 시트 기판 (P) 은, 롤러 (5A, 5B) 사이에 걸쳐서 걸린 금속제의 무단 벨트 (5C) 의 수평 부분에서 지지되어 -X 방향으로 반송되고, 수평으로 지지되는 시트 기판 (P) 의 표면에는, 미스트 분출부 (30), 미스트 회수부 (32), 및 챔버부 (40) 에 의한 미스트 성막부로부터의 미스트 기체 (Msg) 가 분무된다. 벨트 (5C) 는, 접촉자 (71) 를 개재하여 교류 전계 발생부 (92) 로부터의 배선 (Wa) 과 전기적으로 접속되고, 챔버부 (40) 내의 시트 기판 (P) 의 상방 (+Z 방향) 에 설치되는 전극판 (Ed) 은, 교류 전계 발생부 (92) 로부터의 배선 (Wb) 과 전기적으로 접속된다. 본 실시형태에서도, 벨트 (5C), 전극판 (Ed), 및 교류 전계 발생부 (92) 에 의해서, 미스트 유도 기구가 구성된다.
미스트 성막부에서 표면에 액막 (Lq) 이 형성된 시트 기판 (P) 은, 롤러 (5B) 의 위치에서 벨트 (5C) 로부터 이탈하여, 수평면 (XY 면) 으로부터 약 45°만큼 하방으로 경사진 직선적인 반송로를 따라서 퇴적 균등화부 내로 반송된다. 그 반송로에는, 앞서의 도 6 의 구성과 동일하게, 시트 기판 (P) 의 이면측에 배치되는 복수의 롤러 (5J) 와 복수의 전극판 (Ef1 ∼ Ef4) 과, 시트 기판 (P) 의 상면측에 배치되는 메시상의 전극판 (Em) 이 형성되어 있다. 그리고, 전극판 (Ef1 ∼ Ef4) 는 교류 전계 발생부 (92) 로부터의 배선 (Wa) 과 전기적으로 접속되고, 전극판 (Em) 은 교류 전계 발생부 (92) 로부터의 배선 (Wb) 과 전기적으로 접속된다. 본 실시형태에서도, 전극판 (Ef1 ∼ Ef4), 전극판 (Em), 및 교류 전계 발생부 (92) 에 의해서 퇴적 균등화부가 구성된다. 또한, 전극판 (Ef1 ∼ Ef4) 은, 앞서의 도 13 에서 나타낸 복수 개의 전극선 (Ef') 으로 변경하고, 전극판 (Em) 은, 앞서의 도 13 에서 나타낸 복수 개의 전극선 (Em') 으로 변경해도 된다.
본 실시형태에서는, 미스트 유도 기구에서 발생되는 정전계와, 퇴적 균등화부에서 발생되는 교류 전계를, 1 개의 교류 전계 발생부 (92) 로부터 부여하도록 구성한다. 앞서의 각 실시형태나 변형예에서 설명한 바와 같이, 미스트 유도 기구에서는, 부극으로 대전된 미스트를 시트 기판 (P) 측으로 유도하도록, 벨트 (5C) 에 대해서 전극판 (Ed) 이 대체로 부극성으로 되어 있으면 된다. 그래서, 교류 전계 발생부 (92) 가, 일례로서 도 15 에 나타내는 바와 같은 교류 전압 Ev 를 발생시키도록 구성한다. 도 15 에 있어서, 세로축을 교류 전압 Ev, 가로축을 시간으로 하고, 진폭이 실효치 Eva 에서 정현파상으로 주파수 fp 로 강도 변화되는 교류 전압 Ev 의 파형의 중립 전위 (평균 전위) 를, 제로 전위 (본체 보디의 어스 전위) 에 대해서 부극측의 -Ene (V) 로 설정한다. 진폭의 실효치 Eva 의 절대치 |Eva| 와 중립 전위 -Ene 의 절대치 |Ene| 는, |Ene| ≥ |Eva| 의 관계로 설정된다.
도 15 와 같은 교류 전압 Ev 를, 도 14 중의 벨트 (5C) 와 전극판 (Ed) 사이에서 인가하면, 미스트가 시트 기판 (P) 측으로 끌어들여지는 힘의 크기는, 주파수 fp 로 시간적으로 변화하게 되지만, 정전계의 평균적인 강도는 중립 전위 -Ene 가 되기 때문에, 미스트의 시트 기판 (P) 에의 부착률 향상의 효과는, 앞서의 제 1 실시형태와 동일한 정도로 얻어진다. 한편으로, 도 14 에 나타낸 퇴적 균등화부 (영동 부여부) 의 전극판 (Ef1 ∼ Ef4) 과 전극판 (Em) 사이에, 도 15 와 같은 교류 전압 Ev 를 인가하면, 시트 기판 (P) 상의 액막 (Lq) 에는, 정상적으로 부극측으로 오프셋하여 실효치 Eva 에서 진폭 변화하는 교류 전계가 인가되기 때문에, 앞서의 제 2 실시형태와 동일하게, 액막 (Lq) 중의 나노 입자에 영동력 fz 가 부여된다.
도 16 은, 도 15 와 같은 교류 전압 Ev 를 발생시키는 교류 전계 발생부 (92) 내의 구체적인 회로의 일례를 나타내고, 비교적 높은 전원 전압 ±Vcc (예를 들어, ±50 V 이상) 로 동작 가능한 차동 앰프 (OPA) 가 사용된다. 차동 앰프 (OPA) 의 반전 입력 (-) 에는, 저항기 (RS1) 를 개재하여 직류의 가변 전원 (DCO) 으로부터의 전압 +Eni 가 인가되고, 반전 입력 (-) 과 차동 앰프 (OPA) 의 출력 사이에는 저항기 (RS2) 가 접속되어 있다. 가변 전원 (DCO) 으로부터의 전압 +Eni 는, 도 15 에 나타낸 중립 전위 (오프셋 전압) -Ene 를 생성하는 것이다. 차동 앰프 (OPA) 의 비반전 입력 (+) 과 어스 전위 (0 V) 사이에는, 저항기 (RS4) 가 접속되고, 차동 앰프 (OPA) 의 비반전 입력 (+) 에는, 커플링 콘덴서 (CC1) 와 저항기 (RS3) 의 직렬 접속을 개재하여, 도 7 중에 나타낸 발진 회로 (90A) 로부터 출력되는 주파수 fp 의 정현파상의 교류 전압 Evi 가 인가된다. 또한, 콘덴서 (CC1) 의 용량은, 교류 전압 Evi 의 주파수 fp 의 저역 차단 주파수가 1 ㎐ 정도가 되도록, 저항기 RS3 과 RS4 의 직렬 저항치에 따라서 정해진다.
도 16 의 회로 구성에 있어서, 저항기 (RS1) 와 저항기 (RS3) 를 동일한 저항치로 하고, 저항기 (RS2) 와 저항기 (RS4) 를 동일한 저항치로 하면, 차동 앰프 (OPA) 의 출력에 나타나는 어스 전위 (배선 (Wa) 에 접속된다) 에 대한 출력 전압 Vout 는, Vout = (RS2/RS1)·(Evi - Eni) 가 된다. 교류 전압 Evi 는, 시간적으로 정현파상으로 진폭 변화하는 파형이기 때문에, 그 피크치를 Epi, 시간을 t 로 하여, Evi = Epi·sin(2π·fp·t) 로 나타내어진다. 교류 전압 Evi 의 피크치 Epi 와 가변 전원 (DCO) 으로부터의 전압 +Eni 의 각 절대치를, Epi ≤ Eni 의 관계로 설정하면, 출력 전압 Vout 는, 앞서의 도 15 와 같은 파형이 된다. 차동 앰프 (OPA) 의 출력 전압 Vout 는, 배선 (Wb) 을 통하여 도 14 에 나타낸 전극판 (Ed, Em) 에 인가된다.
일례로서, 저항기 (RS1, RS3) 를 20 ㏀, 저항기 (RS2, RS4) 를 100 ㏀ 로 하고, 도 15 중의 중립 전위 (평균 전위) -Ene 를 -25 V, 도 15 중의 교류 전압 Ev 의 진폭의 피크치 Evp 를 22 V 로 설정하는 경우, 가변 전원 (DCO) 에 의한 전압 +Eni 는 +5 V 로 설정되고, 발진 회로 (90A) 로부터의 교류 전압 Evi 의 진폭의 피크치는 4.4 V (치실효에서는 약 3.08 V) 로 설정된다. 또한, 도 15 와 같이, 0 V (어스 전위) 이외의 중립 전위 (오프셋 전위) Ene 를 기준으로 주파수 fp 로 진폭 변화하는 교류 전압 Ev 를 생성하는 회로 구성은, 도 16 의 회로 구성에 한정되지 않고, 다른 여러 가지 회로 구성에 의해서도 실현 가능하다.
본 실시형태에서는, 도 14 에서 나타낸 바와 같이, 미스트 성막부에 있어서 시트 기판 (P) 을 수평 반송하기 위해서, 롤러 (5A, 5B) 와 벨트 (5C) 에 의한 컨베이어 반송 방식을 이용했지만, 앞서의 도 6 에서 나타낸 바와 같이, 미스트 성막부에 있어서 시트 기판 (P) 을 회전 드럼 (DR) 에 감아서 반송하는 롤 반송 방식을 이용해도 된다.
이상, 제 3 실시형태에 의하면, 미스트 성막부에 형성되는 미스트 유도 기구로서의 전극판 (Ed) 과 벨트 (5C) 사이에서 정전계를 생성하는 정전계 발생부를, 미스트 성막 직후의 건조 과정 중에 기판 상의 액막 중에서의 나노 입자의 퇴적 분포의 균등화를 도모하는 퇴적 균등화부 (영동 부여부) 로서의 전극판 (Ef1 ∼ Ef4) 과 전극판 (Em) 사이에 교류 전계를 생성하는 교류 전계 발생부에서 겸용하는 것이 가능해져, 장치 구성을 간략화할 수 있다. 또, 퇴적 균등화부 (영동 부여부) 에 의해서 시트 기판 (P) 상의 액막 (Lq) 에 교류 전계를 인가할 때, 교류 전계의 중립 전위 (Ene) 나 진폭 범위가 일방의 극성측 (부극성) 으로 오프셋되어 있기 때문에, 액막 (Lq) 중에서 분극되어 있는 나노 입자 (np) 에는 영동력 (진동) 이 부여됨과 함께, 시트 기판 (P) 측으로 끌어들여지는 유도력도 부여된다.
또한, 국제 공개 제2019/138707호 팜플렛, 국제 공개 제2019/138708호 팜플렛에 개시된 제법에 의해서 비직방체 형상으로 결정화한 ITO 나노 입자를 분산시킨 용액 (Lq) (액막 (Lq)) 중에 2 개의 전극 바늘을 소정의 간격으로 침지하고, 전극 바늘 사이에 직류 전압을 일정 시간 거는 실험을 행한 결과, 일방의 전극 바늘의 표면에 ITO 나노 입자의 퇴적에 의한 박막이 형성되었다. 도 17 은, 그 실험 장치의 개략 구성을 나타내고, 샬레 등의 용기 (CK) 내에, 비직방체 형상의 ITO 나노 입자를 소정의 농도로 분산시킨 용액 (Lq) (용매는 순수) 을 일정한 깊이로 모으고, 액면과 평행한 방향으로 간격 dX 로 이간시킨 2 개의 금 도금된 전극 바늘 (SHa, SHb) 의 각각을 액면과 수직으로 침지하고, 전극 바늘 (SHa, SHb) 간에 직류의 가변 전원 (DCO) 으로부터 40 V 를 인가하였다.
그 실험에서는, 직류의 가변 전원 (DCO) 의 전압을 40 V 로 한 상태에서, 2 개의 전극 바늘 (SHa, SHb) 의 간격 dX 를 변화시키고, 일방의 전극 바늘에 ITO 나노 입자가 성막 (퇴적) 되는지의 여부를 육안으로 확인하였다. 전극 바늘 ((SHa, SHb)) 의 표면은 금 도금되어 있기 때문에, ITO 나노 입자의 퇴적이 시작되면, 전극 바늘 (SHb) 의 침지 부분이 회색으로 변색하기 시작하기 때문에, 용이하게 육안 관찰할 수 있다. 실험 결과, 도 18 에 나타내는 바와 같이, 간격 dX 가 10 ㎜ 이상에서는 퇴적을 확인할 수 없었지만, 간격 dX 가 2 ㎜, 5 ㎜, 7 ㎜ 에서는, 용액 (Lq) 중에 직접 전극을 담근 상태에서, 비직방체 형상의 ITO 나노 입자가 일방의 전극 바늘에 성막 (퇴적) 되는 점에서, 전극 바늘 ((SHa, SHb)) 사이에서 전계가 작용하는 영역 (공간) 에 있어서, ITO 나노 입자에 운동력 (척력, 혹은 인력) 이 부여된 것으로 생각된다.
[제 4 실시형태]
도 19 는, 제 4 실시형태에 의한 미스트 성막 장치 (MDE) 의 개략적인 구성을 나타내고, 직교 좌표계 XYZ 는, 앞서의 도 1, 도 4, 도 6, 도 14 와 마찬가지로, Z 방향을 중력 방향 (연직 방향) 으로 하고, XY 면을 수평 방향으로 한다. 본 실시형태에 있어서의 미스트 성막부는, 앞서의 도 1 ∼ 도 3b, 또는 도 14 에 나타낸 컨베이어 반송 방식에 의해서 시트 기판 (P) 을 장척 방향으로 이동시키면서, 시트 기판 (P) 의 표면에 미스트 기체 (Msg) 를 분무하여 액막 (Lq) 을 형성하는 구성으로 되어 있다. 따라서, 도 19 에 나타낸 장치 구성에 있어서, 앞서의 도 1 ∼ 도 3b, 혹은 도 6 에서 나타낸 부재나 기구와 동일한 기능을 얻는 부재나 기구에는 동일한 부호를 붙이고, 그 설명을 간소화 또는 생략한다.
본 실시형태에서는, 롤러 (5A, 5B), 벨트 (5C) 에 의한 컨베이어 반송 기구에 있어서, 롤러 (5A) 로부터 롤러 (5B) 를 향하여 직선적으로 이동함과 함께, 시트 기판 (P) 을 평면상으로 지지하는 벨트 (5C) 의 부분이, 시트 기판 (P) 의 이동 방향에 관하여 XY 면으로부터 일정한 각도만큼 경사지도록 경사 배치된다. 즉, 시트 기판 (P) 의 반송 방향의 하류측에 위치하는 롤러 (5B) 가, 롤러 (5A) 의 Z 방향의 위치보다 높아지도록 배치된다. 이와 같이 시트 기판 (P) 의 표면을 반송 방향으로 경사지게 하는 것에 수반하여, 미스트 분출부 (30), 미스트 회수부 (32, 32'), 및 챔버부 (40) 로 구성되는 미스트 성막부도, 전체적으로 경사지게 배치된다. 또한, 앞서의 도 1 과 마찬가지로, 롤러 (5A) 와 롤러 (5B) 사이에는, 벨트 (5C) 와 시트 기판 (P) 을 평면상으로 지지하는 지지 테이블 (5D') 이, XY 면에 대해서 반송 방향으로 경사지게 형성된다. 지지 테이블 (5D') 의 지지면에는, 벨트 (5C) 의 이면을 향하여 가압한 기체를 분출하는 분출공과, 분출된 기체를 분출공의 근방에서 흡인하는 흡인공의 조합이, 일정한 간격으로 2 차원적으로 복수 형성되고, 벨트 (5C) 의 이면과 지지면 사이에 에어 베어링층 (기체층) 이 형성된다.
본 실시형태에서는, 지지 테이블 (5D') 의 지지면과 벨트 (5C) 의 이면 사이에 형성되는 에어 베어링층을, 미스트 분출부 (30) 의 노즐 개구부 (30A) 로부터 분출되는 미스트 기체 (Msg) 의 온도 (혹은 환경 온도) 보다 저온화하기 위해서, 공급/배기 유닛 (200), 온조 (냉각) (온조부) 유닛 (202), 온도 센서 (204) 가 형성된다. 공급/배기 유닛 (200) 은, 지지 테이블 (5D') 의 지지면에 형성된 복수의 흡인공 모두에 연통된 튜브 (TPc) 를 통하여, 에어 베어링층의 기체를 배기함과 함께, 온조 (냉각) 유닛 (202) 을 향하여 튜브 (T㎩) 를 통하여 가압한 기체를 공급한다. 온조 (냉각) 유닛 (202) 은, 지지 테이블 (5D') 의 지지면에 형성된 복수의 분출공 모두에 연통된 튜브 (TPb) 를 통과하여, 에어 베어링층을 위해서 온도 조정된 기체를 공급한다. 온도 센서 (204) 는, 에어 베어링층으로부터 회수되어 튜브 (TPc) 를 흐르는 기체의 온도에 대응한 계측 정보 (실측치) (204s) 를 온조 (냉각) 유닛 (202) 에 출력한다. 온조 (냉각) 유닛 (202) 은, 계측 정보 (실측치) (204s) 가 제어부 (CPU) (100) 로부터의 목표 온도 정보 (지령치) (100a) 와 일치하도록, 기체의 온도를 서보 제어한다.
제어부 (100) 는, 앞서의 도 6 에 나타낸 것과 동일하고, 본 실시형태에서는, 벨트 (5C) 를 반송하도록 롤러 (5A) 를 회전 구동시키는 모터나 감속기를 포함하는 구동부 (80') 의 구동 회로부 (82') 에 제어 신호를 출력한다. 또한, 본 실시형태에서는, 롤러 (5A) 의 내부에 형성된 온도 조정 소자 (예를 들어, 펠티에 소자) (210A) 와, 롤러 (5B) 의 내부에 형성된 온도 조정 소자 (예를 들어, 펠티에 소자) (210B) 를, 제어부 (100) 로부터의 목표 온도 정보 (100b) 에 대응한 소정 온도로 설정되도록 구동하는 온도 제어 유닛 (212) 이 형성된다. 온도 조정 소자 (온조부) (210A, 210B) 는, 각각 롤러 (5A, 5B) 의 벨트 (5C) 와 접촉하는 외주면의 온도를, 지지 테이블 (5D') 의 지지면에 형성되는 에어 베어링층의 온도와 동일하게 한다. 그와 같은 온도 조정 소자 (210A, 210B) 와 온조 (냉각) 유닛 (202) 의 협동 (協動) 에 의해서, 벨트 (5C) 는 제어부 (100) 에서 지령된 목표 온도로 설정되고, 벨트 (5C) 에 밀착 지지되는 시트 기판 (P) 도 목표 온도로 설정된다.
또한, 벨트 (5C) 가 스테인리스 등의 금속 박판인 경우에는, 열전도가 빠르기 때문에, 롤러 (5B) (시트 기판 (P) 의 반송의 하류측) 내의 온도 조정 소자 (210B) 를 생략하고, 롤러 (5A) 측의 온도 조정 소자 (210A) 만으로 벨트 (5C) 의 온조를 행해도 되고, 나아가서는 온도 조정 소자 (210A), 그리고 온도 제어 유닛 (212) 도 생략해도 된다. 또, 온도 센서 (204) 는, 튜브 (TPc) 를 통과하는 기체의 온도를 계측하는 것으로 했지만, 지지 테이블 (5D') 의 지지면에 반도체 등에 의한 온도 센서를 매립하여, 지지면의 온도, 혹은 에어 베어링층의 기체의 온도를 계측하고, 그 계측 신호를 계측 정보 (실측치) (204s) 로서 온조 (냉각) 유닛 (202) 에 보내도 된다.
본 실시형태에서는, 미스트 분출부 (30) 의 노즐 개구부 (30A) 로부터 분출되는 미스트 기체 (Msg) 중의 미스트를, 시트 기판 (P) 의 표면에 효율적으로 부착시키기 위해서, 시트 기판 (P) 의 온도가 미스트 기체 (Msg) 의 온도 (혹은 환경 온도) 보다 낮아지도록, 제어부 (100) 로부터의 목표 온도 정보 (100a, 100b) 가 설정된다. 여기에서, 도 19 의 미스트 성막 장치 (MDE) 가 설치되는 환경의 온도를 Tev ℃, 미스트 분출부 (30) 의 노즐 개구부 (30A) 로부터 분무되는 미스트 기체 (Msg) 의 온도를 Tms ℃, 시트 기판 (P) (피성막물) 의 온도를 Tfs ℃ 로 했을 때, Tev ≥ Tms > Tfs 의 관계로 설정하는 것이 바람직하다. 그 때, 시트 기판 (P) 의 온도 Tfs 가, 미스트의 바탕이 되는 용액 (Lq) 의 용매액의 동결 온도 정도, 혹은 동결 온도보다 약간 높은 온도가 되도록, 온조 (냉각) 유닛 (202), 온도 제어 유닛 (212) 에 의해서 온도 조정된다.
저온화하는 시트 기판 (P) 의 온도의 최적치 등을 확인하기 위해서, 도 20 에 나타내는 바와 같은 예비 실험 장치에 의해서, 미스트의 부착률의 온도 의존성을 조사하였다. 도 20 의 예비 실험 장치에는, 샘플로서의 유리 기판 (P') 을 재치하여, 유리 기판 (P') 의 온도를 상온 (환경 온도) 으로부터 -5 ℃ 까지 냉각 가능한 온조 유닛 (기판 온조부) (230) 과, 유리 기판 (P') 의 표면을 따라서 미스트 기체 (Msg) 가 분무되도록 배치된 미스트 발생기로부터의 파이프 (17) 가 형성된다. 파이프 (17) 는, 일례로서, 앞서의 도 1 에 나타낸 미스트 발생부 (14) 로부터 미스트 분출부 (30) 에 접속되어 있는 가요성의 파이프 (17) (PTFE : 불소 수지재) 와 동일한 것으로 한다. 파이프 (17) 는, 내경 (직경) φm 가 15 ㎜ 인 원형의 선단 개구부 (분출구) (17T) 로부터 분출되는 미스트 기체 (Msg) 의 분무의 중심선 (17x) (선단 개구부 (17T) 의 원형 개구의 중심점을 통과하는 선) 이, 유리 기판 (P') 의 표면과 거의 평행이 되도록 설치되어 있다. 또한, 유리 기판 (P') 은, 표면이 친액성으로 처리된 두께가 0.5 ㎜ 인 유리판 (반도체 웨이퍼여도 된다) 으로부터, 거의 가로세로 25 ㎜ 의 정방형이 되도록 잘라내었다.
여기에서, 중심선 (17x) 은, Z 방향을 중력 방향으로 하는 직교 좌표계 XYZ 의 X 축과 평행으로 설정되는 것으로 한다. 따라서, 유리 기판 (P') 의 표면은 XY 면과 평행으로 설정되고, 유리 기판 (P') 의 표면의 중심점을 통과하는 법선 (Lz) 은 Z 축과 평행으로 설정되며, 또한 파이프 (17) 의 선단 개구부 (17T) 의 개구면은 YZ 면과 평행으로 설정된다. 또, 유리 기판 (P') (직사각 형상) 은, 파이프 (17) 측의 단면 (Eg) 이 Y 축과 거의 평행이며, 또한, 파이프 (17) 의 선단 개구부 (17T) 로부터 단면 (Eg) 까지의 X 방향의 거리가 항상 거의 일정 (예를 들어, 10 ㎜) 해지도록, 온조 유닛 (230) 에 탑재된다. 또한, 파이프 (17) 의 선단 개구부 (17T) 는, 유리 기판 (P') 의 표면과 중심선 (17x) 의 Z 방향의 간격이, 예를 들어 내경 φm 의 0.5 배 ∼ 1.5 배의 범위의 일정치가 되도록, 도시 생략된 지지 부재에 의해서 고정되어 있다.
온조 유닛 (기판 온조부) (230) 은, 유리 기판 (P') 을 재치하는 온조 플레이트부 (230A) 와, 그 온조 플레이트부 (230A) 의 온도를 조정하기 위한 온조액 (쿨런트액) (LLc) 이 유입되는 공급 포트부 (230B) 와, 온조액 (LLc) 을 배출하는 배출 포트부 (230C) 와, 온도 센서 (230S) 를 구비하고 있다. 온조액 (LLc) 은, 별체로 형성되는 칠러 장치 (냉각수·온수 순환 장치) 로부터 튜브를 통하여 공급 포트부 (230B) 로 송출되고, 배출 포트부 (230C) 로부터 튜브를 통하여 칠러 장치로 되돌려진다. 온도 센서 (230S) 는, 온조액 (LLc) 의 온도에 따른 검출 신호 (Sgt) 를 칠러 장치에 보내고, 칠러 장치는, 검출 신호 (Sgt) 를 피드백 신호로서 이용하여, 온조액 (LLc) 이 지정된 목표 온도가 되도록 온도 제어한다. 또한, 온조액 (LLc) 의 온도를 계측하는 온도 센서 (230S) 는, 칠러 장치측에 형성된 것이어도 된다.
도 20 의 실험 장치를 사용한 실험에서는, 유리 기판 (P') 의 온도를, +27 ℃ 의 실온 (환경 온도), 그리고 +25 ℃ 에서 -5 ℃ 까지의 5 ℃ 마다의 온도의 각각으로 변화시키도록, 칠러 장치의 목표 온도를 설정하였다. 또, 유리 기판 (P') 의 온도 변화 외에, 파이프 (17) 로부터 분무되는 미스트 기체 (Msg) 의 온도에 의한 영향도 함께 확인하기 위해서, 미스트 기체 (Msg) 를, +10 ℃, +30 ℃, +50 ℃ 로 변경했을 경우에 대해서도 실험을 행하였다. 도 20 의 실험 장치에 의한 실험을 위해서, 앞서의 도 1 에서 나타낸 미스트 발생부 (박무화 용기) (14) 의 내부 용기 (14A) 내에 저류되는 용액 (순수로 한다) (Lq) 에는, 국제 공개 제2019/138707호 팜플렛, 국제 공개 제2019/138708호 팜플렛에 개시된 제법으로 만들어진 비직방체 형상의 ITO 나노 입자 (평균 입경이 30 ㎚) 를 10 wt.% 의 농도로 분산시켰다.
또, 미스트 기체 (Msg) 를 분무하는 시간 (성막 시간) 은, 샘플이 되는 유리 기판 (P') 마다 일정한 5 분 (300 초) 으로 하고, 파이프 (17) 의 선단 개구부 (17T) 로부터 분출되는 미스트 기체 (Msg) 의 유량은 어느 유리 기판 (P') 에 대해서도 일정치 (10 ℓ/분) 가 되도록, 도 1 에 나타낸 캐리어 가스 (CGS) 의 유량 조정 밸브 (15) 에 의해서 설정하였다. 또한, 미스트 기체 (Msg) 의 온도는, 도 1 에 나타낸 미스트 발생부 (14) 에 도입되는 캐리어 가스 (CGS) 의 온도 조정으로 용이하게 변경 가능하다. 그러나, 보다 엄밀한 실험으로 하기 위해서, 유리 기판 (P') 을 온조 플레이트부 (230A) 상의 소정 위치에 재치하기 전에, 선단 개구부 (17T) 의 근방에서 분출되는 미스트 기체 (Msg) 에 알코올주 (柱) 또는 수은주에 의한 봉상 온도계를 장착하여 직접 온도 계측하여, 소정의 온도 (+10 ℃, +30 ℃, +50 ℃) 가 되도록 캐리어 가스 (CGS) 의 온도를 관리하였다.
실험에서는, 먼저, 미스트 기체 (Msg) 의 온도를 +10 ℃ 로 설정하고, 온조 플레이트부 (230A) (및 재치되는 유리 기판 (P')) 의 온도를 실온의 +27 ℃ 로 설정한 상태에서, 파이프 (17) 의 선단 개구부 (17T) 로부터 미스트 기체 (Msg) 를 5 분간 분무 (미스트 성막) 한 후, 그 유리 기판 (P') 을 온조 플레이트부 (230A) 로부터 떼어내어 건조시켰다. 건조 후의 유리 기판 (P') 상에 형성되는 비직방체 형상의 ITO 나노 입자에 의한 박막의 두께를 조사하기 위해서, 유리 기판 (P') 의 중심 부분의 박막을 국소적으로 깎아내어 나타나는 유리 기판 (P') 의 표면과, 박막의 윗 표면의 단차량 (즉, 막두께) 을 촉침식 막두께 측정기 (예를 들어, KLA-Tencor 사 제조의 Surface Profiler P16) 로 계측하였다.
이하, 마찬가지로, 온조 플레이트부 (230A) (및 재치되는 유리 기판 (P')) 의 온도를, +25 ℃, +20 ℃, +15 ℃, +10 ℃, +5 ℃, 0 ℃, -5 ℃ 의 각각으로 변경하고 난 후에, 유리 기판 (P') 의 표면에, +10 ℃ 의 미스트 기체 (Msg) 로 미스트 성막하여, 건조 후의 ITO 나노 입자에 의한 박막의 두께를 조사하였다. 그 결과, 미스트 기체 (Msg) 의 온도를 +10 ℃ 로 했을 때, 성막된 ITO 나노 입자에 의한 박막의 막두께와 기판의 온도의 관계는, 도 21 에 나타내는 그래프의 특성 A 와 같이 되었다. 도 21 은, 성막되는 박막의 막두께의 기판 온도의 의존성을 나타내는 그래프로서, 가로축은 기판 온도 (℃) 를 나타내고, 세로축은 박막 (ITO 나노 입자) 의 막두께 (㎚) 를 나타낸다.
미스트 기체 (Msg) 의 온도가 +10 ℃ 인 경우에는, 특성 A 와 같이, 기판 온도가 실온의 +27 ℃ 내지 +10 ℃ 사이에서는, 성막된 박막의 막두께는 약 350 ㎚ 로 변화가 없었다. 그러나, 기판 온도가 +10 ℃ 미만 (미스트 기체 (Msg) 의 온도 이하) 인 +5 ℃, 0 ℃, -5 ℃ 가 되면, 성막된 박막의 막두께는 약 1.43 배의 500 ㎚ 정도로 증가되어 있었다. 이것은, 미스트 성막시에 미스트 기체 (Msg) 에 포함되는 미스트가, 미스트의 온도보다 낮은 온도의 유리 기판 (P') 측으로, 보다 많이 끌어들여진 것, 즉, 미스트의 기판 표면에의 부착률이 향상된 것을 의미한다. 이 점에서, 피성막체로서의 시트 기판 (P) 의 온도를 미스트 기체 (Msg) 의 온도보다 낮춤으로써, 미스트의 부착률을 향상시켜, 피성막체의 표면에 무수한 미스트 (입경이 수 ㎛) 의 집합에 의해서 형성되는 액막층을, 보다 빨리 성장시키는 것이 가능해진다.
또한, 기판 온도를 -5 ℃ 로 했을 경우, 유리 기판 (P') 의 표면에 부착된 미스트 (순수) 는 즉시 얼기 때문에, 미스트 분무 시간 (5 분간) 의 경과 후의 유리 기판 (P') 의 표면에는, 엷은 서리에 의한 층 (빙층) 이 형성된다. 그 경우여도, 미스트 분무 후의 시간 경과에 수반하여, 빙층으로부터 액막으로 층 변화하고, 이윽고 액막도 증발 (또는 기화) 하기 때문에, 마찬가지로, ITO 나노 입자의 퇴적에 의한 박막의 두께를 계측할 수 있다.
다음으로, 캐리어 가스 (CGS) 의 온도를 조정하여, 미스트 기체 (Msg) 의 온도를 +30 ℃ 로 올리고, +10 ℃ 의 경우와 동일한 실험을 행한 결과, 기판 온도와 ITO 나노 입자의 박막의 막두께의 관계는, 도 21 의 그래프 중의 특성 B 와 같이 되었다. 유리 기판 (P') 의 온도가 실온의 +27 ℃ (또는 +25 ℃) 일 때, 미스트 기체 (Msg) 의 온도가 +30 ℃ 에서는, 막두께는 약 200 ㎚ 가 되고 미스트 기체 (Msg) 의 온도가 +10 ℃ 일 때의 막두께 (약 350 ㎚) 와 비교하여, 성막량 (성막 레이트) 이 낮았다. 또한, 유리 기판 (P') 의 온도를, +20 ℃, +15 ℃, +10 ℃, +5 ℃, 0 ℃ 의 각각으로 설정하고, 성막되는 ITO 나노 입자의 박막의 막두께를 계측한 결과, 기판 온도가 +10 ℃ 이하의 영역에서는, 특성 B 와 같이, 기판 온도에 대한 막두께양의 변화는, 온도 +10 ℃ 의 미스트 기체 (Msg) 의 경우와 동일한 경향을 나타내고, 기판 온도 +5 ℃ 이하에서는, 약 500 ㎚ 의 막두께가 얻어졌다.
또한, 캐리어 가스 (CGS) 의 온도를 조정하여, 미스트 기체 (Msg) 의 온도를 +50 ℃ 로 올리고, +10 ℃ 나 +30 ℃ 의 경우와 동일한 실험을 행한 결과, 기판 온도와 ITO 나노 입자의 박막의 막두께의 관계는, 도 21 의 그래프 중의 특성 C 와 같이 되었다. 유리 기판 (P') 의 온도가 실온의 +27 ℃ (또는 +25 ℃) 일 때, 미스트 기체 (Msg) 의 온도가 +50 ℃ 에서는, 막두께는 약 160 ㎚ 가 되고, 미스트 기체 (Msg) 의 온도가 +10 ℃ 일 때의 막두께 (약 350 ㎚) 와 비교해서, 성막량 (성막 레이트) 은 절반 이하로 되었다. 계속해서, 유리 기판 (P') 의 온도를, +20 ℃, +15 ℃, +10 ℃, +5 ℃, 0 ℃ 의 각각으로 설정하여, 성막되는 ITO 나노 입자의 박막의 막두께를 계측하였다. 기판 온도가 +10 ℃ 인 경우의 막두께는 약 300 ㎚ 가 되어, 기판 온도가 실온 (+27 ℃) 또는 +25 ℃ 일 때의 막두께 160 ㎚ 의 약 2 배가 되었다. 또한, 기판 온도를 +5 ℃ 로 했을 경우의 막두께는 약 480 ㎚ 가 되어, 기판 온도가 실온 (+27 ℃) 또는 +25 ℃ 일 때의 막두께 160 ㎚ 의 약 3 배가 되었다.
이상의 예비 실험 결과, 미스트 기체 (Msg) 의 온도에 대해서 기판 온도를 낮춤으로써, 미스트의 부착률 (액막의 성장률) 이 향상되어, 나노 입자에 의한 박막의 성막 레이트가 향상되는 것을 알 수 있다. 또한, 미스트의 바탕이 되는 용액을 순수로 했을 경우에는, 기판 온도를 +10 ℃ ∼ 0 ℃ 의 범위, 더욱 바람직하게는 +5 ℃ ∼ 0 ℃ 의 범위로 설정하면, 미스트 기체 (Msg) 의 온도에 관계없이, 미스트의 부착률을 가장 높일 수 있는 것도 알 수 있었다.
또, 도 20 의 실험 장치에서는, 미스트 기체 (Msg) 가 파이프 (17) 의 선단 개구부 (17T) 로부터 수평 방향으로 유리 기판 (P') 의 표면을 따르도록, 실온 +27 ℃ 의 해방 공간 중에 분출된다. 그 경우, 미스트 기체 (Msg) 의 온도가 실온 +27 ℃ 보다 높으면, 파이프 (17) 의 선단 개구부 (17T) 로부터 분출된 미스트 기체 (Msg) 는 상방 (+Z 방향) 을 향하는 상승력 (부상력) 을 갖게 되고, 환경 온도와 동일한 온도로 설정된 유리 기판 (P') 의 경우, 그 표면에 부착되는 (강하되는) 미스트의 양이 저감한다. 그러나, 유리 기판 (P') 의 온도를 미스트 기체 (Msg) 의 온도보다 충분히 낮게 해 두면, 유리 기판 (P') 의 표면을 횡단하는 미스트 기체 (Msg) 의 일부의 온도가 주위의 온도 (실온) 보다 저하되어, 미스트 기체 (Msg) 의 일부는 강하하는 힘 (침강력) 을 갖게 되어, 미스트 부착력이 향상되는 것으로 생각된다.
여기에서, 도 19 에 나타낸 미스트 성막 장치 (MDE) 에 있어서, 미스트 분출부 (30) 의 노즐 개구부 (30A) 로부터 챔버부 (40) 내의 기판 (P) 을 향하여 분출되는 미스트 기체 (Msg) 의 온도를 Tms (℃), 온조 (냉각) 유닛 (202) 에 의해서 온조되는 지지 테이블 (5D') 과 벨트 (5C) 를 개재하여 온도 조정되는 기판 (P) 의 표면의 온도를 Tpp (℃), 챔버부 (40) 내의 온도 (챔버부 (40) 의 내부 공간의 온도, 혹은 내부 공간을 규정하는 내벽면의 온도) 를 Tct (℃) 로 하면, 온도 Tpp 를 미스트의 바탕이 되는 용액의 동결 온도 이상으로 하며, 또한, Tpp < Tms ≤ Tct 의 관계로 설정하는 것이 좋다. 또한, 챔버부 (40) 내에 미스트 기체 (Msg) 를 긴 시간에 걸쳐서 계속 분무하면, 챔버부 (40) 내 (내벽면) 의 온도 Tct 는 미스트 기체 (Msg) 의 온도 Tms 에 가까워져 동일하게 된다.
그래서, 도 19 에 나타낸 미스트 성막 장치 (MDE) 에서는, 온조 (냉각) 유닛 (202) 이나 온도 제어 유닛 (212) 에 의해서 온도 조정되는 시트 기판 (P) 의 온도 (Tpp) 를, 일례로서 0 ℃ ∼ +5 ℃ 로 설정하고, 미스트 분출부 (30) 의 노즐 개구부 (30A) 로부터 분출되는 미스트 기체 (Msg) 의 온도 (Tms) 를, 일례로서 실온 (환경 온도) 보다 낮고, 시트 기판 (P) 의 온도에 가까운 +5 ℃ ∼ +10 ℃ 로 설정한다. 또한, 미스트 기체 (Msg) 의 온도 (Tms) 는, 미스트가 동결하지 않는 범위에서, 기판 (P) 의 설정 온도 (Tpp) 와 동일하게 해도 된다. 이와 같이, 시트 기판 (P) 의 온도 (Tpp) 를, 미스트가 동결하지 않는 범위에서 저온화함으로써, 미스트의 부착률이 향상되어, 기판 (P) 의 표면에 형성되는 액막이 조기에 성장하게 되고, 그 결과, 미스트에 포함되는 나노 입자에 의한 박막의 성막 레이트를 향상시킬 수 있다. 성막 레이트의 향상은, 시트 기판 (P) 의 반송 속도의 향상, 미스트 분출부 (30) 로부터의 미스트 기체 (Msg) 의 유량 (유속) 의 저감화 (미스트 발생부 (14) 에서의 용액 (Lq) 의 소비량의 저감화) 등의 효과로 이어져, 성막되는 재료 물질의 나노 입자를 보다 효율적으로 이용할 수 있다.
[제 5 실시형태]
도 19 와 같이 시트 기판 (P) 을 저온화하는 구성은, 앞서의 도 4 ∼ 도 6 에서 나타낸, 시트 기판 (P) 을 회전 드럼 (DR) 에서 지지하여 장척 방향으로 반송하는 미스트 성막 장치에도 적용 가능하다. 도 22 는, 회전 드럼 (DR) 을 사용한 제 5 실시형태에 의한 미스트 성막 장치 (MDE) 의 구성을 나타내고, 기본적인 구성, 그리고 기본적인 부재는, 앞서의 도 4 ∼ 도 6 에 나타낸 구성이나 부재와 동일하고, 그들 부재와 동일한 기능의 부재에는 동일한 부호를 붙인다. 또, 직교 좌표계 XYZ 도 도 4 와 동일하게 설정되어 있다. 본 실시형태에서는, 시트 기판 (P) 을 지지하는 회전 드럼 (DR) 의 외주면 (DRa) 을 냉각시키기 위해서, 온도 조정 유닛 (칠러) (202) 으로부터의 튜브 (TPb) 를 통하여 공급되는 온조 유체 (온도 제어된 기체나 액체) 가 통과되는 파이프상의 냉각관 (열 교환관) (HF) 의 복수 개 (도 22 에서는 12 개) 가 회전 드럼 (DR) 의 내부에 형성되어 있다. 복수 개의 냉각관 (HF) 의 각각은, 도 22 의 경우, 회전 드럼 (DR) 의 회전의 중심선 (AXo) 으로부터 일정 반경의 위치에, 중심선 (AXo) 과 평행하게 연장 형성되고, 회전 드럼 (DR) 의 외주면 (DRa) 의 둘레 방향에 관하여 일정한 각도 간격 (본 변형예에서는 30 도) 으로 배치되어 있다.
튜브 (TPb) 를 통하여 공급되는 온조 유체는, 회전 드럼 (DR) 의 샤프트 (Sft) 의 부분에 형성되는 포트부 (JS) 와 회전 드럼 (DR) 내에 형성되는 유로 (Fv) 를 개재하여, 12 개의 냉각관 (HF) 의 각각에 순환하도록 공급된다. 냉각관 (HF) 을 순환한 온조 유체는, 내부의 유로 (Fv), 포트부 (JS), 튜브 (TPc) 를 통하여 온도 조정 유닛 (202) 으로 되돌려지고, 다시 소정의 온도로 제어되어, 튜브 (TPb) 에 보내진다. 또, 본 실시형태에서는, 회전 드럼 (DR) 에 진입하기 전의 시트 기판 (P) 을 예비 온조 (냉각) 하기 위해서, 회전 드럼 (DR) 의 상류측에 배치되는 롤러 (5G') 의 외주면을, 온도 조정 유닛 (202) 으로부터의 온조 유체에 의해서 환경 온도보다 낮은 온도로 설정하는 구성이 형성된다.
시트 기판 (P) 은, 앞서의 도 4 의 장치 구성에서 설명한 바와 같이, 회전 드럼 (DR) 의 둘레 방향에 관하여, 진입 위치 (Ct1) 로부터 이탈 위치 (Ct2) 까지의 범위에서 외주면 (DRa) 와 접촉 (밀착) 하고, 미스트 성막부를 구성하는 챔버부 (40) 는, 진입 위치 (Ct1) 로부터 이탈 위치 (Ct2) 까지의 각도 범위 내에서, 둘레 방향으로 원통상으로 만곡되어, 시트 기판 (P) 을 덮도록 배치된다. 챔버부 (40) 에는, 미스트 분출부 (30) 와 미스트 회수부 (32, 32') 가, 앞서의 도 6 의 배치와 동일하게 형성되지만, 본 실시형태에서는, 미스트 분출부 (30) 의 노즐 개구부 (30A) 로부터 분출되는 미스트 기체 (Msg) 의 분출 방향을 나타내는 선 (CL) 이, 노즐 개구부 (30A) 와 대향하는 시트 기판 (P) 의 표면의 위치 (도 22 중의 중심선 (AXo) 으로부터 직경 방향으로 연장된 선 (CLj) 이 통과하는 위치) 에 있어서의 접평면의 법선과 평행이 되지 않도록, 미스트 분출부 (30) 를 경사지게 하여 형성한다.
본 실시형태의 경우, 미스트 분출부 (30) 의 노즐 개구부 (30A) 측이 파이프 (17) 측보다 +Z 방향에 위치하도록, 즉, XZ 면 내에서 보았을 때, 선 (CL) 의 +X 방향측이 -X 방향측보다 높아지도록 미스트 분출부 (30) 를 경사지게 하여 배치한다. 이와 같은 구성에 의해서, 미스트 분출부 (30) 의 내벽면에, 미스트 기체 (Msg) 중의 미스트의 일부가 모여 액적으로 되어 부착된 경우여도, 그 액적이 커져 내벽면을 타고 노즐 개구부 (30A) 로부터 시트 기판 (P) 으로 낙하할 가능성을 매우 작게 할 수 있다. 또한, 도 22 와 같이, 미스트 분출부 (30) 의 내벽면에 부착된 액적은 중력 방향의 -Z 방향으로 흘러 떨어지기 때문에, 내벽면 중 가장 하방에 위치하는 부분에, 액적의 트랩부 (수집부) (30u) 를 형성할 수 있다.
또, 챔버부 (40) 의 도풍 부재 (40A) 의 내벽면을 적절히 친액성으로 해 두면, 미스트가 국소적으로 모여 액적 (입) 이 되기 전에, 도풍 부재 (40A) 의 내벽면을 덮는 액막상이 되고, 그 액막은 이윽고 내벽면을 따라서 하방 (-Z 방향) 으로 흘러 간다. 그래서 본 실시형태에서는, 중력 방향에 관하여 챔버부 (40) 의 가장 하방에 위치하는 단부 부근에, 도풍 부재 (40A) 의 내벽면을 따라서 흘러 떨어지는 액막의 수집부 (40u) 가 형성된다.
도 22 와 같이, 회전 드럼 (DR) 의 외주면 (DRa) 을 실온 (환경 온도) 보다 저온화하는 경우, 시트 기판 (P) 은 진입 위치 (Ct1) 에서 비로소 저온의 외주면 (DRa) 에 접촉 (밀착) 하게 되고, 진입 위치 (Ct1) 로부터 이탈 위치 (Ct2) 까지 이동하고 있는 동안에 저온화된다. 본 실시형태의 경우, 미스트 성막 (미스트의 기판 표면에의 부착) 은, 주로 미스트 분출부 (30) 의 노즐 개구부 (30A) 의 위치 (선 (CLj) 의 위치) 로부터 하류측의 미스트 회수부 (32) 의 위치 (이탈 위치 (Ct2) 의 근방) 까지의 동안에 이루어진다. 따라서, 시트 기판 (P) 이 선 (CLj) 의 위치로부터 이탈 위치 (Ct2) 의 위치까지 이동하고 있는 동안에는, 시트 기판 (P) 을 목표로 하는 온도로 유지해 둘 필요가 있다.
예를 들어, 진입 위치 (Ct1) 보다 상류측의 시트 기판 (P) 의 온도가 실온 (예를 들어 +20 ℃ ∼ +25 ℃) 이고, 회전 드럼 (DR) 의 외주면 (DRa) 의 온도가 0 ℃ ∼ +5 ℃ 사이에 설정되어 있을 경우, 기판 (P) 의 열전도율이 낮을 때에는, 진입 위치 (Ct1) 로부터 선 (CLj) 의 위치 (노즐 개구부 (30A) 의 바로 아래의 위치) 까지 시트 기판 (P) 이 이동하는 시간 내에, 기판 (P) 의 표면의 온도가 회전 드럼 (DR) 의 외주면 (DRa) 의 온도까지 충분히 저하되지 않을 경우가 일어날 수 있다. 그래서, 본 실시형태에서는, 회전 드럼 (DR) 의 상류측에 배치되는 롤러 (5G') 의 표면을, 온도 조정 유닛 (202) 으로부터의 온조 유체 (쿨런트) 에 의해서, 예를 들어 +10 ℃ 이하 (0 ℃ 근방이어도 된다) 로 저온화한다. 시트 기판 (P) 은 롤러 (5G') 에 접촉 (밀착) 하고 있는 시간 동안에 예비 냉각되지만, 그 시간 Tph (초) 는, 롤러 (5G') 의 외주면의 직경을 φd (㎜), 시트 기판 (P) 의 롤러 (5G') 에서의 사잇각 (접촉하고 있는 각도 범위) 을 Δθr (도), 시트 기판 (P) 의 반송 속도를 Vp (㎜/초) 로 했을 때, Tph = (π·φd·Δθr)/(360·Vp) 에 의해서 정해진다.
롤러 (5G') 에서 예비 냉각된 시트 기판 (P) 은, 회전 드럼 (DR) 의 외주면 (DRa) 의 진입 위치 (Ct1) 에 도달한 시점에서, 회전 드럼 (DR) 의 외주면 (DRa) 의 온도 (0 ℃ ∼ +5 ℃) 에 가까운 온도까지 냉각되고, 그 후, 진입 위치 (Ct1) 로부터 선 (CLj) 의 위치 (노즐 개구부 (30A) 의 바로 아래의 위치) 까지 이동하는 동안에, 목표하는 외주면 (DRa) 의 온도에 가까워진 상태로 되어, 미스트 성막 (미스트 분무) 이 행해진다.
이상의 본 실시형태에서는, 미스트 분출부 (30) 의 노즐 개구부 (30A) 로부터의 미스트 기체 (Msg) 의 분출 방향 (선 (CL)) 을, 시트 기판 (P) 의 반송 방향의 하류측을 향하여 경사지게 했기 때문에, 챔버부 (40) 내의 공간 (도풍 부재 (40A) 와 기판 (P) 사이의 공간) 중 노즐 개구부 (30A) 로부터 하류측의 미스트 회수부 (32) 까지의 공간 내를 흐르는 미스트 기체 (Msg) 의 유량을, 노즐 개구부 (30A) 로부터 상류측의 미스트 회수부 (32') 까지의 공간 내를 흐르는 미스트 기체 (Msg) 의 유량보다 많게 할 수 있다. 이와 같이, 미스트 분출부 (30) 의 노즐 개구부 (30A) 로부터의 미스트 기체 (Msg) 의 분출 방향을, 시트 기판 (P) 과 수직인 방향으로부터 경사지게 하는 구성은, 앞서의 도 1 ∼ 도 3b, 도 4, 도 6, 도 14, 도 19 의 각각에 나타낸 미스트 성막 장치에도 동일하게 적용 가능하다.
또한, 도 19, 도 22 에 나타낸 미스트 성막 장치 (MDE) 에 있어서, 미스트 분출부 (30) 의 노즐 개구부 (30A) 로부터 분출되는 미스트 기체 (Msg) 의 온도를 0 ℃ ∼ 15 ℃ 의 범위의 제 1 온도가 되도록 설정할 경우, 도 19 중의 온조 (냉각) 유닛 (202) 이나 도 22 중의 온도 조정 유닛 (칠러) (202) 에 의한 기판 온조 기구에 의해서 저온화되는 시트 기판 (P) 의 온도는, 제 1 온도보다 낮은 0 ℃ ∼ 15 ℃ 의 범위의 제 2 온도로 설정된다. 단, 미스트의 바탕이 되는 용액 (Lq) 의 용매가 순수인 경우, 시트 기판 (P) 의 온도를 0 ℃ 로 하면, 부착된 미스트가 서리와 같이 얼 가능성이 있기 때문에, 시트 기판 (P) 의 온도는 실제로는 0 ℃ 보다 높은 온도 (예를 들어, +4 ℃ 이상) 로 설정된다.
[변형예 6]
도 23 은, 앞서의 도 19 (제 4 실시형태) 에 나타낸 미스트 성막 장치의 변형예에 의한 미스트 성막 장치 (MDE) 의 개략적인 구성을 나타내는 사시도이다. 도 23 에 있어서, 직교 좌표계 XYZ 의 Z 축은 중력 방향이고, Z 축과 직교하는 XY 면은 미스트 성막되는 시트 기판 (P) 의 표면과 평행으로 설정되는 것으로 한다. 단, 도 19 의 형태와 같이, 본 변형예에서도 시트 기판 (P) 을 XY 면에 대해서 장척 방향 (X 방향) 으로 경사지게 해도 된다. 또한, 도 23 에서도, 도 19 에서 설명한 롤러 (5A, 5B), 벨트 (5C), 지지 테이블 (5D') 과 동일한 것이 시트 기판 (P) 의 하방 (-Z 방향) 에 형성되고, 시트 기판 (P) 은 저온화되는 것으로 한다.
도 23 에 있어서, 평면상으로 반송되는 시트 기판 (P) 의 반송 방향 (+X 방향) 의 상류측에는, 시트 기판 (P) 의 표면을 덮도록 챔버부 (40) 가 설치되고, 챔버부 (40) 에는, 2 개의 파이프 (17a, 17b) 를 통하여 미스트 기체 (Msg) 가 공급되는 미스트 분출부 (30) 와, 챔버부 (40) 의 내부로 분출되는 미스트 기체 (Msg) 의 잉여분을 회수하여 파이프 (33, 33') 를 통하여 외부로 배출하는 미스트 회수부 (32, 32') 가 형성된다. 또한, 미스트 분출부 (30) 의 미스트 기체 (Msg) 를 분출하는 슬릿상의 노즐 개구부 (30A) (도 23 에서는 도시를 생략) 와, 시트 기판 (P) 의 표면 사이에는, 예를 들어 국제 공개 제2016/133131호 팜플렛에 개시되어 있는 바와 같이, 미스트 분출부 (30) 로부터 시트 기판 (P) 에 분무되는 미스트 기체 (Msg) 에 비열평형 상태의 플라즈마를 조사하기 위한 2 개의 전극봉 (Ema, Emb) 이 Y 방향으로 연장되어 X 방향으로 일정한 간격으로 서로 평행이 되도록, 챔버부 (40) 에 고정되어 있다.
본 변형예에서는, 도 21 의 예비 실험에서의 지견에 기초하여, 챔버부 (40) 아래를 통과하는 시트 기판 (P) 의 온도를 0 ℃ 이하, 예를 들어 -5 ℃ 로까지 저온화하고, 미스트 분출부 (30) 로부터 분무되는 미스트 기체 (Msg) 의 온도는, 미스트 (순수) 가 얼지 않는 온도, 예를 들어 +5 ℃ ∼ +10 ℃ 정도의 온도로 설정된다. 그 때문에, 챔버부 (40) 아래를 통과하는 시트 기판 (P) 의 표면에는, 부착된 미스트가 얼어 백탁된 서리상으로 성막된다. 시트 기판 (P) 의 반송 방향 (+X 방향) 에 관하여 챔버부 (40) 의 하류측에는, 시트 기판 (P) 의 표면 상태를 관찰하기 위한 관찰부 (OVS) 가 형성된다.
관찰부 (OVS) 에는, 시트 기판 (P) 의 표면으로부터 상방 (+Z 방향) 으로 일정한 높이 위치에 배치되고, Y 방향으로 소정의 간격으로 배치되는 2 개의 촬상 유닛 (CV1, CV2) 과, 시트 기판 (P) 상의 촬상 영역을 조명하는 조명 유닛 (ILU) 이 형성된다. 촬상 유닛 (CV1) 의 촬상 범위는, 시트 기판 (P) 의 Y 방향의 폭 중 -Y 방향의 절반에 걸치는 영역 (Aim) 을 커버하도록 설정되고, 촬상 유닛 (CV2) 의 촬상 범위는, 시트 기판 (P) 의 폭 중 +Y 방향의 절반에 걸치는 영역을 커버하도록 설정된다. 촬상 유닛 (CV1, CV2) 에서 축차적으로 촬상되는 화상 정보는 도시 생략된 화상 해석 유닛에 보내지고, 화상 해석 유닛은 시트 기판 (P) 의 표면에 성막된 백탁된 서리 상태 (백탁의 농도 분포 등) 를 해석하여, 특히 백탁이 엷은 영역을 특정한다.
시트 기판 (P) 의 반송 방향에 관하여 관찰부 (OVS) 의 하류측에는, 보조 미스트 분무부 (SMD) 가 형성되어 있다. 보조 미스트 분무부 (SMD) 는, 시트 기판 (P) 의 상방에, Y 방향의 길이가 시트 기판 (P) 의 폭보다 긴 가이드 부재 (300) 와, 가이드 부재 (300) 의 X 방향의 측부에 형성된 직선 가이드면 (300a) 으로 안내되고, Y 방향으로 이동 가능한 슬라이더부 (302) 와, 슬라이더부 (302) 에 고정되어, 시트 기판 (P) 의 표면을 향하여 미스트 기체 (Msg) 를 분무하는 보조 미스트 분출부 (304) 와 보조 미스트 회수부 (305A, 305B) 를 갖는다. 또, 가이드 부재 (300) 의 X 방향의 중앙에는, Y 방향으로 연장 형성된 슬롯상의 개구부 (300b) 가 형성되고, 개구부 (300b) 는, 슬라이더부 (302) 의 Y 방향의 이동 중에, 보조 미스트 분출부 (304) 에 미스트 기체 (Msg) 를 공급하는 파이프 (mp1) 와, 보조 미스트 회수부 (305A, 305B) 에서 회수되는 미스트 기체 (Msg') 를 배출하는 파이프 (mp2) 가 통과하는 치수로 설정된다.
보조 미스트 분출부 (304) 의 시트 기판 (P) 과 대향한 바닥면부에는, X 방향의 길이가 영역 (Aim) 의 X 방향의 치수보다 짧고, Y 방향의 폭이 수 ㎜ 이하로 형성되며, 미스트 기체 (Msg) 를 분출하는 가늘고 긴 노즐 개구부가 형성되어 있다. 보조 미스트 분출부 (304) 를 사이에 두고 Y 방향으로 병치된 보조 미스트 회수부 (305A, 305B) 의 각각의 바닥면부에는, 보조 미스트 분출부 (304) 의 바닥면부에 형성된 슬릿상의 노즐 개구부와 평행하게, 미스트 기체 (Msg') 를 흡인하는 슬릿상의 개구부가 형성되어 있다. 슬라이더부 (302) 는, 보조 미스트 분출부 (304) 의 바닥면부의 노즐 개구부가, 시트 기판 (P) 의 Y 방향의 폭 치수의 범위 내의 임의의 Y 방향 위치로 이동하도록, 리니어 모터 등의 구동원에 의해서 구동된다.
보조 미스트 분출부 (304) 는, 관찰부 (OVS) 의 촬상 유닛 (CV1, CV2) 에서 관찰된 시트 기판 (P) 상에서 서리상으로 백탁된 성막 상태 중 성막 두께가 얇은 부분에 대해서, 국소적으로 추가적인 미스트 성막을 행한다. 그 때문에, 시트 기판 (P) 상에서 추가의 미스트 성막을 행하는 영역에 대향하도록 보조 미스트 분출부 (304) 의 노즐 개구부를 위치 결정한 후, 그 노즐 개구부로부터 시트 기판 (P) 을 향하여 미스트 기체 (Msg) 를 단시간만 분무하는 기구가 형성된다. 그 기구는, 예를 들어, 도 24a 및 도 24b 와 같이 구성된다. 도 24a, 도 24b 는, 보조 미스트 분출부 (304) 에 미스트 기체 (Msg) 를 공급하는 유로 중에 형성되는 밸브 기구 (310) 의 개략적인 구성을 나타낸다. 밸브 기구 (310) 에는, 앞서의 도 1 에 나타낸 미스트 발생부 (14) 로부터의 미스트 기체 (Msg) 가 공급되는 파이프 (mp0) 와, 보조 미스트 분출부 (304) 를 향하여 미스트 기체 (Msg) 를 송출하는 파이프 (mp1) 와, 앞서의 도 1 에 나타낸 미스트 기체 포집부 (34) 를 향하여 미스트 기체 (Msg) 를 송출하는 파이프 (mp3) 가 접속되어 있다.
밸브 기구 (310) 는, 플런저 (구동원) (312) 에 의해서, 90 도만큼 시계 방향 또는 반시계 방향으로 왕복 회전하여 미스트 기체 (Msg) 의 유로를 전환하기 위해서, 내부에 3 개의 포트부 (a, b, c) 에 의한 T 자상의 통로가 형성된 회전 밸브부 (310S) 를 갖는다. 도 24a 는, 파이프 (mp0) 로부터 공급되는 미스트 기체 (Msg) 가 포트부 (b) 로부터 포트부 (c) 의 통로를 통하여 파이프 (mp1) 를 향하여 흐르도록 회전 밸브부 (310S) 가 위치한 상태 (미스트 기체 (Msg) 의 공급 상태) 를 나타낸다. 도 24b 는, 회전 밸브부 (310S) 가 도 24a 의 상태로부터 시계 방향으로 90 도 회전한 상태로서, 파이프 (mp0) 로부터 공급되는 미스트 기체 (Msg) 가 포트부 (a) 로부터 포트부 (b) 의 통로를 통하여 파이프 (mp3) 를 향하여 흐르도록 회전 밸브부 (310S) 를 전환한 상태 (미스트 기체 (Msg) 의 비공급 상태) 를 나타낸다. 회전 밸브부 (310S) 에 의한 유로의 전환은 플런저 (구동원) (312) 에 의해서 고속으로 행해지기 때문에, 보조 미스트 분출부 (304) 로부터 시트 기판 (P) 에의 미스트 기체 (Msg) 의 분무를 임의의 타이밍으로 단시간만으로 제한할 수 있다.
이상의 본 변형예에서는, 관찰부 (OVS) 의 촬상 유닛 (CV1, CV2) 에 의해서 관찰되는 시트 기판 (P) 상의 성막 상태 (서리상으로 언 미스트의 백탁된 농도 분포) 에 기초하여, 시트 기판 (P) 상의 성막 두께가 얇은 부분이 특정되고, 그 부분에 대해서 보조 미스트 분무부 (SMD) (보조 미스트 분출부 (304)) 가 대향하도록, 슬라이더부 (302) 가 이동하고, 밸브 기구 (310) 의 회전 밸브부 (310S) 가 도 24b 의 상태로부터 도 24a 의 상태로 일시적으로 전환되어, 성막 두께가 얇은 부분에만 추가적인 미스트 성막이 행해진다. 이로써, 보조 미스트 분무부 (SMD) 아래를 통과한 시트 기판 (P) 의 표면에는 두께 불균일이 저감되어, 균일성이 향상된 나노 입자에 의한 박막이 형성된다. 보조 미스트 분무부 (SMD) 를 통과한 후의 시트 기판 (P) 은, 예를 들어 25 ℃ 정도의 상온으로 되돌려지고, 시트 기판 (P) 상의 서리상으로 언 액막은 액 상태로 상 변화하여 건조된다. 또한, 도 23 에 나타낸 미스트 성막 장치 (MDE) 의 하류측에는, 앞서의 도 7, 도 13, 도 14 에 나타낸 바와 같이, 시트 기판 (P) 의 표면의 액막에 교류 전계를 인가하는 구성을 형성할 수 있다.
[변형예 7]
도 25 는, 도 1 에 나타낸 미스트 발생부 (14) 의 변형예를 나타내는 부분 단면도로서, 설명의 편의상, 직교 좌표계 XYZ 의 Z 축을 중력 방향 (상하 방향), XY 면을 수평면으로 하고, 도 25 는 미스트 발생부 (14) 를 XZ 면과 평행한 면에서 파단한 모습을 나타낸다. 또, 도 25 중의 각 부재 중, 도 1 중의 미스트 발생부 (14) 의 부재와 동일한 기능의 부재에는 동일한 부호를 붙인다. 도 26 은, 도 25 의 미스트 발생부 (14) 의 Z 방향의 높이 Cj 를, XY 면과 평행한 면에서 파단하고, 그 바닥면측을 위에서 본 도면이다. 또, 도 25, 도 26 에 나타낸 미스트 발생부 (14) 는, 앞서의 각 실시형태, 각 변형예, 혹은 예비 실험에서 사용되는 미스트 기체 (Msg) 의 발생 장치로서 이용된다.
도 25 에 있어서, 미스트 발생부 (14) 는, XY 면 내에서의 단면 형상이 직사각형이고, 바닥부에 복수의 초음파 진동자 (14C1, 14C2) …) 가 설치되고, 초음파 진동을 전파하기 위한 액체 (물) (Wq) 를 채우는 외부 용기 (14D) 와, XY 면 내에서의 단면 형상이 원형이고, 액체 (Wq) 내에 가라앉도록 설치되고, 미스트의 바탕이 되는 용액 (Lq) 을 소정의 용량으로 모으는 내부 용기 (컵) (14A) 와, 외부 용기 (14D) 내의 공간의 소정 위치에 내부 용기 (14A) 를 지지함과 함께, 외부 용기 (14D) 의 상방의 개구부를 밀폐하는 덮개 부재 (14E) 와, 내부 용기 (14A) 의 상방의 개구부를 밀폐하는 덮개 부재 (14B) 를 갖는다. 덮개 부재 (14B) 에는, 도 1 에 나타낸 유량 조정 밸브 (15) 를 개재하여 캐리어 가스 (CGS) 를 도입하기 위한 유입 포트부로서의 파이프 (16) 와, 미스트 기체 (Msg) 를 분출하기 위한 유출 포트부로서의 파이프 (17) 와, 용액 (Lq) 을 보충하기 위한 파이프 (18) 가 장착되어 있다.
내부 용기 (14A) 내의 용액 (Lq) 의 액면의 높이 (Z 방향의 위치) 는, 액면의 상방에 적당한 공간이 형성되도록 내부 용기 (14A) 의 절반 정도로 설정됨과 함께, 외부 용기 (14D) 내에 채워지는 액체 (Wq) 의 액면의 높이와 거의 동일하게 설정된다. 내부 용기 (14A) 는 반투명의 폴리프로필렌 수지로 구성되고, 외부 용기 (14D) 는 투명한 아크릴 수지로 구성된다. 캐리어 가스 (CGS) 를 도입하는 파이프 (16) 의 선단부 (유입 포트부) (16E) 는, 캐리어 가스 (CGS) 가 용액 (Lq) 의 액면에 직접 분사되지 않도록, 액면과 평행한 방향으로 90 도에 굽혀진다. 이로써, 선단부 (16E) 로부터 분출되는 캐리어 가스 (CGS) 는, 용액 (Lq) 의 액면에 직접 분사되지 않고, 내부 용기 (14A) 의 액면 상의 공간 내를 내부 용기 (14A) 의 원통면상의 내벽면을 따라서 환류하기 때문에, 용액 (Lq) 의 액면으로부터 피어오르는 미스트의 생성을 억제하는 것을 피할 수 있다.
도 25 에 모식적으로 나타낸 초음파 진동자 (14C1, 14C2 …) 는, 구체적으로는 도 26 에 나타내는 바와 같이, 외부 용기 (14D) 의 바닥부의 4 개 지점의 구석의 각각에 고정되는 초음파 진동자 (14C1, 14C2, 14C3, 14C4) 로 구성된다. 초음파 진동자 (14C1, 14C2, 14C3, 14C4) 의 각각은, 얇은 진동판 (Vpu) 과 구동 회로를 내장한 구동부 (Sdu) 를 방수 구조의 금속 케이스에 수납한 구성으로 되어 있다. 도 26 과 같이, 진동판 (Vpu) 의 각각은, XY 면 내에서 보면, 내부 용기 (14A) 의 원형의 바닥면부의 주변 부근에 위치하도록 배치된다. 4 개의 초음파 진동자 (14C1 ∼ 14C4) 는, 도 26 에 나타낸 구동부 (Sdu) 에 구동 신호나 전원을 공급하는 제어 회로 (400) 에 의해서, 선택적으로 구동 제어 (On/Off 제어) 된다. 4 개의 초음파 진동자 (14C1 ∼ 14C4) 모두를 구동시키면, 용액 (Lq) 의 액면으로부터의 미스트 발생량을 최대로 할 수 있고, 구동되는 초음파 진동자 (14C1 ∼ 14C4) 의 개수를 줄임으로써, 미스트 발생량을 조정 (저감) 할 수 있다. 또한, 제어 회로 (400) 는, 캐리어 가스 (CGS) 의 유량을 조정하는 유량 조정 밸브 (15) 도 제어한다.
투입형의 초음파 진동자 (14C1 ∼ 14C4) 는, 장시간 (수 십분) 구동 시키면, 수 십 ℃ 정도로 온도 상승하고, 주위의 액체 (Wq) 의 온도도 40 ℃ 정도로 상승한다. 액체 (Wq) 의 온도는, 내부 용기 (14A) 를 통하여 용액 (Lq) 에도 전달되고, 용액 (Lq) 의 온도도 40 ℃ 정도로 상승한다. 그에 수반하여, 내부 용기 (14A) 내의 액면의 상방의 공간 내의 온도도 상승하고, 캐리어 가스 (CGS), 그리고 미스트 기체 (Msg) 의 온도도 상온 (예를 들어, 25 ℃) 이상으로 상승한다. 그 때문에, 각 실시형태나 변형예에서 나타낸 미스트 분출부 (30) 로부터 시트 기판 (P) 에 분무되는 미스트 기체 (Msg) 의 온도 상승으로, 시트 기판 (P) 의 표면에의 미스트의 부착률이 저하된다. 그래서, 본 변형예에서는, 외부 용기 (14D) 내의 액체 (Wq) 의 온도를 냉각시키기 위한 냉각기 (온조기) (402) 가 형성된다. 냉각기 (402) 는, 제어 회로 (400) 로부터의 온도 설정 정보와, 외부 용기 (14D) 내에 설치된 온도 센서 (14S) 로부터의 계측 온도에 기초하여, 온도 제어된 액체 (Wq) 를 공급 파이프 (14G) 를 통하여 외부 용기 (14D) 내에 소정 유량으로 공급함과 함께, 외부 용기 (14D) 내의 액체 (Wq) 를 회수 파이프 (14H) 로부터 회수하여 순환시킨다.
액체 (Wq) 의 설정 온도는, 일례로서 상온 이하의 10 ℃ 정도로 설정되고, 냉각기 (402) 는, 온도 센서 (14S) 에 의한 계측 온도가 설정 온도 (10 ℃) 가 되도록, 순환하는 액체 (Wq) 의 온도를 피드백 제어한다. 이로써, 내부 용기 (14A) 로부터 파이프 (17) 를 통과하여 미스트 분출부 (30) (혹은, 도 23 중의 보조 미스트 분무부 (SMD)) 에 공급되는 미스트 기체 (Msg) 는, 0 ℃ 보다 높고 30 ℃ 이하인 제 1 온도, 예를 들어 10 ℃ 정도의 온도로 설정된다. 또한, 냉각기 (402) 는, 액체 (Wq) 를 부동액 (에틸렌글리콜 등의 쿨런트) 으로 했을 경우, 액체 (Wq) 의 온도를 0 ℃ 이하, 예를 들어 -20 ℃ 근처까지 냉각시키는 능력을 갖는다. 또, 내부 용기 (14A) 내에 저류되는 용액 (Lq) 의 용매를 순수로 했을 경우에는, 동결을 피하기 위해서 액체 (Wq) 의 온도를 0 ℃ 이하로 하는 경우는 없지만, 용액 (Lq) 의 용매로서 나노 입자의 응집을 억제하기 위해서 순수에 계면 활성제를 첨가했을 경우, 용액 (Lq) 의 동결 온도를 0 ℃ 이하로 할 수도 있다. 또한, 도 25 에 나타낸 유입 포트부로서의 파이프 (16) 로부터 내부 용기 (14A) 내의 공간에 도입되는 캐리어 기체 (CGS) 를, 용액 (Lq) 의 온도와 동일한 정도로 설정하면 된다.
이상과 같이, 투입식의 초음파 진동자 (14C1 ∼ 14C4) 를 사용한 미스트 발생부 (14) 에 있어서, 액체 (Wq) 를 통하여 초음파 진동을 내부 용기 (14A) 내의 용액 (Lq) 에 전파시키는 구성에서는, 초음파 진동자 (14C1 ∼ 14C4) 의 발열에 의한 액체 (Wq) 의 온도 상승, 그리고 용액 (Lq) 의 온도 상승이 일어나고, 그 결과, 용액 (Lq) 의 액면으로부터 발생되는 미스트의 온도도 상온 이상으로 상승한다. 그에 따라서, 미스트 성막시에 시트 기판 (P) 에 분무되는 미스트 기체 (Msg) 의 온도가 주위 환경의 온도 (상온) 보다 높아져, 시트 기판 (P) 에의 미스트의 부착률이 저하되지만, 본 변형예와 같이, 냉각기 (온조기, 온조부) (402) 에 의해서 액체 (Wq) 의 온도 상승을 억제하여 저온화함으로써, 부착률의 저하가 억제된다. 또한, 본 변형예에 의하면, 앞서의 도 19 ∼ 도 22 와 같은 시트 기판 (P) 을 저온화하는 구성과 조합함으로써, 환경 온도 (상온) > 미스트 기체 (Msg) 의 온도 > 시트 기판 (P) 의 온도 관계가 되도록 설정하여, 분무된 미스트의 시트 기판 (P) 에의 부착률을 향상시킬 수 있다.
본 변형예에 의하면, 시트 기판 (P) 으로서의 피처리물의 표면에 재료 물질에 의한 미립자에 의한 박막을 미스트 성막으로 형성하기 위해서, 미립자가 분산된 용액 (Lq) 으로부터 미스트를 발생시키는 미스트 발생 장치로서, 액면 상에 소정의 공간이 형성되도록 용액 (Lq) 을 저류하는 내부 용기 (14A) 와, 바닥부에 박무화용의 초음파 진동자 (14C1 ∼ 14C4) 가 형성되어, 초음파 진동을 전파하기 위한 액체 (Wq) 를 채워 내부 용기 (14A) 를 액체 (Wq) 중에 가라앉히도록 수용하는 외부 용기 (14D) 와, 내부 용기 (14A) 의 공간 내에 소정 유량으로 캐리어 기체 (CGS) 를 유입하는 유입 포트부로서의 파이프 (16), 선단부 (16E) 와, 초음파 진동자 (14C1 ∼ 14C4) 의 구동에 의해서 내부 용기 (14A) 내의 용액 (Lq) 의 액면으로부터 발생되는 미스트를 캐리어 기체 (CGS) 에 실어 내부 용기 (14A) 의 외부에 미스트 기체 (Msg) 로서 유출시키는 유출 포트부로서의 파이프 (17) 와, 내부 용기 (14A) 내에 저류되는 용액 (Lq) 의 온도를 주위의 환경 온도 이하로 조정하기 위한 온조 장치로서의 냉각기 (온조기) (402) 를 구비하는 미스트 발생부 (14) 가 구성된다. 또한, 본 변형예에서는, 온조 장치로서의 냉각기 (온조기) (402) 는, 외부 용기 (14D) 에 채워지는 액체 (Wq) 의 온도를 환경 온도 이하로 냉각시킴으로써, 내부 용기 (14A) 를 개재하여 용액 (Lq) 의 온도를 조정하는 구성이 된다.
[그 밖의 변형예]
이상의 각 실시형태나 각 변형예에 있어서, 미스트 기체 (Msg) 로서 시트 기판 (P) 에 분무되는 미스트에 함유되는 재료 물질의 나노 입자가 분극하는 특성을 갖는 경우에는, 미스트 성막 후에 형성되는 시트 기판 (P) 상의 액막에 교류 전계를 인가함으로써, 나노 입자의 시트 기판 (P) 상의 막두께 분포를 균등화할 수 있다. 성막용의 재료 물질의 나노 입자가 분극 특성을 갖지 않고, 자기에 작용하는 특성을 갖는 경우, 시트 기판 (P) 을 지지하는 지지 테이블 (5D, 5D') 이나 회전 드럼 (DR) 의 기판 지지면에 발자체 (發磁體) (영구 자석이나 전자석 등) 를 매설함으로써, 미스트 기체 (Msg) 중의 미스트의 시트 기판 (P) 에의 부착률을 향상시킬 수도 있다. 또한, 미스트 성막 후에 형성되는 시트 기판 (P) 상의 액막에 교류 자계를 부여함으로써, 나노 입자의 시트 기판 (P) 상의 막두께 분포를 균등화하는 것도 가능해진다.
또한, 이상의 각 실시형태나 각 변형예에서는, 미스트 발생부 (미스트 발생 장치) (14) 로서, 초음파 진동자 (14C) (14C1 ∼ 14C4) 를 사용하여 용액 (Lq) 을 박무화했지만, 용액 (Lq) 을 저류하는 내부 용기 (14A) 내에, 입상으로 한 드라이아이스를 소정량씩 소정 시간마다 투입하는 구성으로 하여, 용액 (Lq) 의 액면으로부터 미스트를 발생시켜도 된다. 이 경우, 내부 용기 (14A) 의 상방의 공간 내에는, 드라이아이스의 기화에 의해서 발생된 차가워진 탄산 가스 (CO2) 가 충만한다. 그 탄산 가스는, 파이프 (16) (선단부 (16E)) 로부터 공급되는 캐리어 기체 (CGS) 와 함께, 파이프 (17) 를 통하여 미스트 기체 (Msg) 가 되어 미스트 분출부 (30) 에 공급된다. 미스트 분출부 (30) 의 노즐 개구부 (30A) 로부터 분출되는 미스트 기체 (Msg) 의 온도는, 주위의 환경 온도 (예를 들어, +20 ℃ ∼ +30 ℃) 보다 낮아지기 때문에, 시트 기판 (P) 에의 미스트의 부착률을 향상시킬 수 있다.
이상의 각 실시형태나 각 변형예에서는, 시트 기판 (P) 의 표면의 거의 전체 면에, 미스트 성막에 의해서 나노 입자의 퇴적막을 형성하는 구성을 예시했지만, 국제 공개 제2013/176222호 팜플렛에 개시되어 있는 바와 같이, 감광성 실란 커플링제를 시트 기판 (P) 의 표면에 도포한 후, 감광성 실란 커플링제의 층에, 자외선에 의한 패턴 노광 장치에 의해서 발액성이 높은 부분과 친액성이 높은 부분을 형성하고, 친액성이 높은 부분에 미스트를 적극적으로 부착시킴으로써, 나노 입자에 의한 퇴적막을 시트 기판 (P) 상의 부분적인 영역에만 패턴화하여 형성할 수도 있다.
혹은, 스크린 인쇄와 같이, 부분적으로 개구부를 형성한 얇은 자성체의 금속박 (두께가 100 ㎛ 이하의 스테인리스박 등이 바람직하다) 에 의한 마스크판을, 시트 기판 (P) 의 표면에 밀착시킨 상태에서, 마스크판 상으로부터 미스트 성막을 행하고, 시트 기판 (P) 상의 마스크판의 개구부에 상당하는 부분에만, 나노 입자에 의한 적층막을 형성할 수도 있다. 그 때, 시트 기판 (P) 의 이면을 지지하는 지지 테이블 (5D, 5D') 이나 회전 드럼 (DR) 에는 영구 자석이나 전자석을 매립하고, 마스크판이 자력에 의해서 시트 기판 (P) 의 표면에 강제적으로 밀착되도록 구성하면 된다. 그 경우, 마스크판은, 시트 기판 (P) 상에 미스트 성막으로 형성된 마스크판의 개구부에 대응한 부분의 액막이 건조되고 나서, 시트 기판 (P) 의 표면으로부터 벗겨진다. 앞서의 각 실시형태와 동일하게, 미스트 성막시에 시트 기판 (P) (또는 마스크판) 를 저온화하거나, 액막의 건조까지의 동안에 액막에 교류 전계를 인가하여 나노 입자를 미소 진동시킬 수 있다.
5A, 5B : 롤러
5C : 벨트
5D, 5D' : 지지 테이블
10 : 용액 탱크
14 : 미스트 발생부
14C, 14C1 ∼ 14C4 : 초음파 진동자
16, 17, 18 : 파이프
30 : 미스트 분출부
30A : 노즐 개구부
31 : 미스트 공급부
32, 32' : 미스트 회수부
40 : 챔버부 (도풍 기구)
60 : 미스트 대전 장치
70 : 정전계 발생 장치 (정전계 발생부)
90, 92 : 교류 전계 발생부
100 : 제어부 (CPU)
202 : 온조 (냉각) 유닛 (온조부)
212 : 온도 제어 유닛
402 : 냉각기 (온조기)
AXo : 중심선
CGS : 캐리어 가스 (캐리어 기체)
DR : 회전 드럼
Ea, Eb : 전극
Ec, Ed : 전극판
Ef1 ∼ Ef4, Em : 전극판
Ef', Em' : 전극선
HF : 냉각관 (열 교환관)
Lq : 용액
Msg : 공급되는 미스트 기체
Msg' : 배기되는 미스트 기체
np : 나노 입자 (미립자)
OVS : 관찰부
P : 시트 기판
SMD : 보조 미스트 분무부
Wq : 액체

Claims (28)

  1. 미립자를 함유하는 미스트를 기판에 공급하고, 상기 기판의 표면에 상기 미립자를 포함하는 막을 형성하는 성막 장치로서,
    상기 기판의 표면 중 적어도 일부를 덮는 도풍 부재와,
    상기 기판의 표면과 상기 도풍 부재 사이의 공간에 상기 미스트를 공급하는 미스트 공급부를 구비하고,
    상기 미스트 공급부는, 상기 미스트를 정 또는 부로 대전시키는 대전 부여부와, 상기 대전 부여부에 의해서 대전된 상기 미스트를 상기 공간 내에 분출하는 미스트 분출부를 포함하고,
    상기 도풍 부재는, 상기 기판의 표면에 대향하는 벽면을 갖고,
    상기 대전 부여부에 의해서 대전되는 상기 미스트와 동일한 부호의 전위를 상기 벽면에 발생시키는 정전계 발생부를 구비하는, 성막 장치.
  2. 제 1 항에 있어서,
    상기 기판을 반송하는 반송부를 갖고,
    상기 정전계 발생부는, 상기 벽면에 상기 미스트와 동일한 부호의 전위를 발생시키는 제 1 전극과 상기 반송부에 상기 미스트와 반대의 부호의 전위를 발생시키는 제 2 전극을 갖는, 성막 장치.
  3. 제 2 항에 있어서,
    상기 정전계 발생부는, 상기 제 1 전극과 상기 제 2 전극 사이에 시간적인 평균 전위의 절대치가 0 보다 큰 전압을 인가하는, 성막 장치.
  4. 제 2 항 또는 제 3 항에 있어서,
    상기 정전계 발생부는, 상기 제 1 전극과 상기 제 2 전극 사이에, 절대치가 0 보다 큰 평균 전위를 중심으로 소정의 진폭으로 시간적으로 전압 변화하는 교류 전압을 인가하는, 성막 장치.
  5. 제 2 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 반송부는, 상기 기판을 원호상으로 지지하는 도전성의 외주면을 갖는 회전 드럼을 갖고, 상기 외주면을 상기 제 2 전극으로 하는, 성막 장치.
  6. 미립자를 함유한 미스트를 기판에 공급하고, 기판의 표면에 상기 미립자를 포함하는 막을 형성하는 성막 장치로서,
    상기 미립자를 함유하는 액체를 박무화하여 상기 미스트를 발생시키는 미스트 발생부와,
    상기 기판에 상기 미스트를 공급하는 미스트 공급부를 구비하고,
    상기 미스트 공급부는, 상기 미스트의 온도를 제 1 온도로 하는 온조부와, 상기 기판의 온도를 제 2 온도로 하는 기판 온조부를 포함하는, 성막 장치.
  7. 제 6 항에 있어서,
    상기 기판 온조부는, 상기 제 2 온도를 상기 제 1 온도보다 낮은 온도로 설정하는, 성막 장치.
  8. 제 6 항 또는 제 7 항에 있어서,
    상기 미스트 공급부는, 상기 기판을 지지하는 지지부를 갖고,
    상기 기판 온조부는, 상기 지지부의 온도를 조정하여 상기 기판을 상기 제 2 온도로 설정하는, 성막 장치.
  9. 제 8 항에 있어서,
    상기 기판을 상기 지지부에서 지지하여 반송하는 반송부를 갖는, 성막 장치.
  10. 제 9 항에 있어서,
    상기 반송부는, 회전 드럼을 갖는 상기 지지부에서 상기 기판을 원호상으로 지지하여 반송하는, 성막 장치.
  11. 제 6 항 내지 제 10 항 중 어느 한 항에 있어서,
    상기 액체는, 순수, 또는 계면 활성제를 함유하는 액체에, 상기 미립자를 분산시킨 분산액인, 성막 장치.
  12. 제 6 항 내지 제 11 항 중 어느 한 항에 있어서,
    상기 온조부는, 분산액의 온도가 0 ℃ ∼ 15 ℃ 의 범위의 온도가 되도록 상기 제 1 온도를 설정하는, 성막 장치.
  13. 제 12 항에 있어서,
    상기 기판 온조부에 의해서 설정되는 상기 제 2 온도는, 상기 제 1 온도보다 낮으며, 또한, 0 ℃ ∼ 15 ℃ 의 범위의 온도로 설정되는, 성막 장치.
  14. 제 1 항 내지 제 13 항 중 어느 한 항에 기재된 성막 장치와,
    상기 성막 장치에 의해서 성막된 상기 기판 상의 미스트를 건조시키는 건조부를 포함하는, 도전막의 제조 장치.
  15. 미립자를 함유하는 미스트를 기판에 공급하고, 상기 기판의 표면에 상기 미립자를 포함하는 막을 형성하는 성막 방법으로서,
    대전 부여부에 의해서 상기 미스트를 정 또는 부로 대전시키고, 대전된 상기 미스트를 상기 기판의 표면 중 적어도 일부를 덮는 도풍 부재와 상기 기판의 표면 사이의 공간에 미스트 분출부에 의해서 공급하는 미스트 공급 공정과,
    대전된 상기 미스트와 동일한 부호의 전위를 상기 기판의 표면에 대향하는 벽면에 발생시키는 정전계 발생 공정을 포함하는, 성막 방법.
  16. 제 15 항에 있어서,
    상기 미스트 공급 공정에서는, 반송부에 의해서 반송되는 상기 기판에 상기 미스트를 공급하고,
    상기 정전계 발생 공정에서는, 제 1 전극에 의해서 상기 도풍 부재에 상기 미스트와 동일한 부호의 전위를 발생시키고, 제 2 전극에 의해서 상기 반송부에 상기 미스트와 반대의 부호의 전위를 발생시키는, 성막 방법.
  17. 제 16 항에 있어서,
    상기 정전계 발생 공정에서는, 상기 제 1 전극과 상기 제 2 전극 사이에, 시간적인 평균 전위의 절대치가 0 보다 큰 전압을 인가하는, 성막 방법.
  18. 제 16 항 또는 제 17 항에 있어서,
    상기 정전계 발생 공정에서는, 상기 제 1 전극과 상기 제 2 전극 사이에, 절대치가 0 보다 큰 평균 전위를 중심으로 소정의 진폭으로 시간적으로 전압 변화하는 교류 전압을 인가하는, 성막 방법.
  19. 제 16 항 내지 제 18 항 중 어느 한 항에 있어서,
    상기 반송부는, 상기 기판을 원호상으로 지지하는 도전성의 외주면을 갖는 회전 드럼을 갖고, 상기 외주면을 상기 제 2 전극으로 하는, 성막 방법.
  20. 미립자를 함유한 미스트를 기판에 공급하고, 기판의 표면에 상기 미립자를 포함하는 막을 형성하는 성막 방법으로서,
    상기 미립자를 함유하는 액체를 박무화하여 미스트를 발생시키는 미스트 발생 공정과,
    상기 기판에 상기 미스트를 공급하는 미스트 공급 공정을 구비하고,
    상기 미스트 공급 공정에서는, 온조부에 의해서 상기 미스트의 온도를 제 1 온도로 하고, 기판 온조부에 의해서 상기 기판의 온도를 제 2 온도로 하는, 성막 방법.
  21. 제 20 항에 있어서,
    상기 미스트 공급 공정에서는, 상기 기판 온조부에 의해서 상기 제 2 온도를 상기 제 1 온도보다 낮게 설정하는, 성막 방법.
  22. 제 20 항 또는 제 21 항에 있어서,
    상기 미스트 공급 공정에서는, 지지부에 의해서 상기 기판을 지지하고, 상기 기판 온조부에 의해서 상기 지지부의 온도를 조정하여 상기 기판을 상기 제 2 온도로 설정하는, 성막 방법.
  23. 제 22 항에 있어서,
    상기 미스트 공급 공정에서는, 상기 지지부를 갖는 반송부에 의해서 상기 기판을 상기 지지부에서 지지하여 반송하는, 성막 방법.
  24. 제 23 항에 있어서,
    상기 미스트 공급 공정에서는, 회전 드럼을 갖는 상기 지지부에 의해서 상기 기판을 원호상으로 지지하는, 성막 방법.
  25. 제 20 항 내지 제 24 항 중 어느 한 항에 있어서,
    상기 액체는, 순수, 또는 계면 활성제를 함유하는 액체에, 상기 미립자를 분산시킨 분산액인, 성막 방법.
  26. 제 20 항 내지 제 25 항 중 어느 한 항에 있어서,
    상기 미스트 공급 공정에서는, 상기 온조부에 의해서 분산액의 온도가 0 ℃ ∼ 15 ℃ 의 범위의 온도가 되도록 상기 제 1 온도를 설정하는, 성막 방법.
  27. 제 26 항에 있어서,
    상기 미스트 공급 공정에서는, 상기 기판 온조부에 의해서 상기 제 2 온도는, 상기 제 1 온도보다 낮아지도록, 0 ℃ ∼ 15 ℃ 의 범위의 온도로 설정되는, 성막 방법.
  28. 제 15 항 내지 제 26 항 중 어느 한 항에 기재된 성막 방법을 이용하여 상기 기판 상에 도전막 재료를 성막하는 성막 공정과,
    성막된 상기 기판을 건조시키는 건조 공정을 포함하는, 도전막의 제조 방법.
KR1020227024600A 2020-01-21 2021-01-20 미스트 성막 장치 및 미스트 성막 방법 KR102691590B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247025800A KR20240122581A (ko) 2020-01-21 2021-01-20 미스트 성막 장치 및 미스트 성막 방법

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2020-007524 2020-01-21
JP2020007524 2020-01-21
PCT/JP2021/001749 WO2021149695A1 (ja) 2020-01-21 2021-01-20 ミスト成膜装置及びミスト成膜方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020247025800A Division KR20240122581A (ko) 2020-01-21 2021-01-20 미스트 성막 장치 및 미스트 성막 방법

Publications (2)

Publication Number Publication Date
KR20220112838A true KR20220112838A (ko) 2022-08-11
KR102691590B1 KR102691590B1 (ko) 2024-08-05

Family

ID=76992986

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020227024600A KR102691590B1 (ko) 2020-01-21 2021-01-20 미스트 성막 장치 및 미스트 성막 방법
KR1020247025800A KR20240122581A (ko) 2020-01-21 2021-01-20 미스트 성막 장치 및 미스트 성막 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020247025800A KR20240122581A (ko) 2020-01-21 2021-01-20 미스트 성막 장치 및 미스트 성막 방법

Country Status (6)

Country Link
US (1) US20220355316A1 (ko)
JP (2) JP7452556B2 (ko)
KR (2) KR102691590B1 (ko)
CN (2) CN115003418A (ko)
TW (1) TW202144082A (ko)
WO (1) WO2021149695A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3193313A1 (en) * 2020-08-31 2022-03-03 Spraying Systems Co. Electrostatic spray dryer apparatus and method
CN115230028A (zh) * 2022-06-10 2022-10-25 大连理工大学 一种分段式分区控制薄膜中颗粒沉降程度的隧道炉
WO2024044306A1 (en) * 2022-08-24 2024-02-29 Spraying Systems Co. Controllably providing a coating of nanoparticles on a conveyed substrate
CN118268185B (zh) * 2024-06-03 2024-10-18 昆山晟成光电科技有限公司 一种自下而上的超声波雾化镀膜工艺

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3745034A (en) * 1970-08-14 1973-07-10 Nat Steel Corp Electrostatic coating of metal powder on metal strip
US4060648A (en) * 1974-10-15 1977-11-29 Union Carbide Corporation Surface coating process
US4143962A (en) * 1977-06-09 1979-03-13 Eastman Kodak Company Electrographic imaging apparatus and method
DE3827629A1 (de) * 1988-08-16 1990-03-15 Hoechst Ag Verfahren und vorrichtung zur oberflaechenvorbehandlung von ein- oder mehrschichtigem formmaterial mittels einer elektrischen koronaentladung
US5271970A (en) * 1988-08-16 1993-12-21 Hoechst Aktiengesellschaft Process for passing a hydrophobic substrate through a corona discharge zone and simultaneously introducing an adhesive promoting aerosol
US5063085A (en) * 1989-08-01 1991-11-05 Mazda Motor Corporation Coating method
DE3925539A1 (de) * 1989-08-02 1991-02-07 Hoechst Ag Verfahren und vorrichtung zum beschichten eines schichttraegers
JP2002289803A (ja) * 2001-03-26 2002-10-04 Seiko Epson Corp 強誘電体薄膜の形成方法、強誘電体薄膜形成装置および強誘電体メモリの製造方法
KR100721504B1 (ko) * 2001-08-02 2007-05-23 에이에스엠지니텍코리아 주식회사 플라즈마 강화 원자층 증착 장치 및 이를 이용한 박막형성방법
US7320814B2 (en) * 2003-12-19 2008-01-22 Kimberly-Clark Worldwide, Inc. Methods for applying a liquid to a web
WO2010011076A2 (ko) * 2008-07-24 2010-01-28 주식회사 펨빅스 고상파우더 연속 증착장치 및 고상파우더 연속 증착방법
CN102985593B (zh) * 2010-06-21 2015-04-01 Beneq有限公司 用于涂布玻璃基板的设备和方法
JP2012196623A (ja) * 2011-03-22 2012-10-18 Sharp Corp 成膜装置
TWI607809B (zh) * 2011-10-12 2017-12-11 1366科技公司 用於將抗蝕劑薄層沉積於基材上之裝置及方法
JP2015003301A (ja) * 2013-06-21 2015-01-08 東レエンジニアリング株式会社 エレクトロスプレー装置
JP2015029971A (ja) * 2013-08-06 2015-02-16 東レエンジニアリング株式会社 エレクトロスプレー装置
US9004670B2 (en) * 2013-08-21 2015-04-14 Panasonic Intellectual Property Management Co., Ltd. Temperature adjusting member and printer including the same
CN107611287A (zh) * 2014-01-21 2018-01-19 科迪华公司 用于电子装置封装的设备和技术
KR101657643B1 (ko) * 2014-03-14 2016-09-19 주식회사 알란텀 정전식 금속 다공체 형성장치 및 이를 이용한 정전식 금속 다공체 형성방법
JP6264275B2 (ja) * 2014-12-12 2018-01-24 株式会社島津製作所 マトリックス膜形成装置
WO2016133131A1 (ja) * 2015-02-18 2016-08-25 株式会社ニコン 薄膜製造装置、及び薄膜製造方法
KR20210158882A (ko) * 2016-03-11 2021-12-31 가부시키가이샤 니콘 미스트 발생장치, 성막장치, 미스트 발생 방법, 성막 방법, 및 디바이스 제조 방법
KR102011456B1 (ko) * 2018-01-26 2019-08-16 한국표준과학연구원 결정화된 반도체 입자의 증착을 위한 반도체 소자 제조 장치 및 방법

Also Published As

Publication number Publication date
WO2021149695A1 (ja) 2021-07-29
TW202144082A (zh) 2021-12-01
KR102691590B1 (ko) 2024-08-05
CN117983435A (zh) 2024-05-07
KR20240122581A (ko) 2024-08-12
JP2024037732A (ja) 2024-03-19
JPWO2021149695A1 (ko) 2021-07-29
US20220355316A1 (en) 2022-11-10
CN115003418A (zh) 2022-09-02
JP7452556B2 (ja) 2024-03-19

Similar Documents

Publication Publication Date Title
KR20220112838A (ko) 미스트 성막 장치 및 미스트 성막 방법
US20180066361A1 (en) Thin film manufacturing device and thin film manufacturing method
US6869484B2 (en) Continuous feed coater
Wei et al. High-resolution ac-pulse modulated electrohydrodynamic jet printing on highly insulating substrates
US7927668B2 (en) Coater of electric insulating sheet and method for producing electric insulating sheet with coated film
US20210291222A1 (en) Mist generator, mist film formation method and mist film formation apparatus
JP5597551B2 (ja) 移動基材のプラズマ表面処理の装置、方法および当該方法の使用
Zabihi et al. Substrate vibration-assisted spray coating (SVASC): significant improvement in nano-structure, uniformity, and conductivity of PEDOT: PSS thin films for organic solar cells
Prasetyo et al. Ag dot morphologies printed using electrohydrodynamic (EHD) jet printing based on a drop-on-demand (DOD) operation
CN106098244B (zh) 一种大面积柔性功能石墨烯薄膜的卷对卷印刷制备方法
CN101400599A (zh) 各向异性形状部件的安装方法和安装装置、电子器件的制造方法、电子器件和显示装置
Park et al. Deposition of charged aerosol particles on a substrate by collimating through an electric field assisted coaxial flow nozzle
CN102016727A (zh) 用于改变电介质材料上电荷的设备和方法
CN106782748A (zh) 一种制作银纳米线柔性透明导电薄膜的方法
US20230099077A1 (en) Mist generator, thin film manufacturing device, and thin film manufacturing method
JP3212074U (ja) 固体表面上にナノ構造化コーティングを製造する装置
CN101386226B (zh) 液体喷射设备及其方法、用于形成电路板的布线图案的方法
Holmberg et al. Electrostatic charging and manipulation of semiconductor nanowires
JP2000117097A (ja) 粒子薄膜形成方法
JP5139754B2 (ja) レジスト塗布装置
TW201700394A (zh) 用於在固體表面上形成奈米機構的塗層的裝置
JP2009154046A (ja) 液体材料塗布装置、液体材料塗布方法、及び液体材料塗布装置を用いて作製された電子デバイス
JP5888061B2 (ja) 電気絶縁性シートの製造装置および製造方法
Aoboun et al. High-precision electrospinning of Ag fluid fibers with electric field-guided deposition on flexible substrates
McEnnis Particle behavior on anisotropically curved interfaces

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant