KR20220100665A - 수전 장치 및 와이어리스 급전 시스템 - Google Patents

수전 장치 및 와이어리스 급전 시스템 Download PDF

Info

Publication number
KR20220100665A
KR20220100665A KR1020227020060A KR20227020060A KR20220100665A KR 20220100665 A KR20220100665 A KR 20220100665A KR 1020227020060 A KR1020227020060 A KR 1020227020060A KR 20227020060 A KR20227020060 A KR 20227020060A KR 20220100665 A KR20220100665 A KR 20220100665A
Authority
KR
South Korea
Prior art keywords
power
power receiving
circuit
current
voltage
Prior art date
Application number
KR1020227020060A
Other languages
English (en)
Inventor
히데히토 요시다
도모카즈 사카시타
다쿠야 나카니시
Original Assignee
미쓰비시덴키 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쓰비시덴키 가부시키가이샤 filed Critical 미쓰비시덴키 가부시키가이샤
Publication of KR20220100665A publication Critical patent/KR20220100665A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • H02M7/2195Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration the switches being synchronously commutated at the same frequency of the AC input voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Rectifiers (AREA)

Abstract

전력원(5)에 접속되고, 송전 코일(111)을 갖는 송전 회로(11)로부터 전력을 수전하는 와이어리스 급전 시스템(1)의 수전 장치(10)로서, 수전 장치(10)는 수전 회로(12), 전력 변환기(13a), LC 필터(14), 수전 회로(12)의 출력 전압을 검출하는 전압 검출 수단(16)에서 검출된 전압(V2)에 근거하여 제어 장치(17)에 의해 제어되고 비급전 시에 수전 회로(12)와 전력 변환기(13a) 사이를 차단하는 스위치(135a, 136b)를 구비하였다.

Description

수전 장치 및 와이어리스 급전 시스템
본원은, 수전 장치 및 와이어리스 급전 시스템에 관한 것이다.
공간을 사이에 둔 2개의 코일 사이에서의 자계 결합에 의해 전력을 전송하는 와이어리스 급전 기술이 있다. 와이어리스 급전 기술에 있어서 급전 전력을 조정하는 방법은 다양하며, 그 대부분은 송전 측의 전력 변환기를 제어하는 것에 의해 행해진다. 그렇지만, 와이어리스 급전 기술의 적용처에 있어서의 부하의 대부분은 배터리 등의 축전 요소이기 때문에, 그 축전 요소의 충전 상황에 따라 급전 전력을 조정하기 위해서는 부하 측(수전 측)에 있는 전력 변환기로 전력 제어를 행하는 것이 바람직하다. 이상의 이유로부터, 수전 측의 전력 변환기만에 의해 전송 전력을 제어하는 방법에 대해, 여러 가지의 수법이 보고되고 있다(예를 들면, 특허 문헌 1 참조).
특허 문헌 1에 개시된 수전 장치는, 송전 측으로부터 교류 전력을 수전하는 코일에 2개의 전력 변환기가 접속되고, 코일 측의 제 1 전력 변환기는 교류 전압을 직류 전압으로 정류하고, 제 1 전력 변환기에 접속된 제 2 전력 변환기는 정류된 직류 전압을, 임의의 직류 전압 또는 교류 전압으로 변환한다. 그리고, 한쪽의 전력 변환기에 의해, 전송 측과의 사이의 전송 효율을 제어하고, 다른 쪽의 전력 변환기에 의해 수전 전력을 제어하는 것으로, 수전 측의 전력 변환기만으로 전송 효율의 제어와 급전 전력의 전력 제어의 양립을 꾀하고 있다.
[특허 문헌 1] 일본 특개 2017-93094호 공보
특허 문헌 1에 개시된 제어 방법에서는, 제 1 전력 변환기의 동작에 의해 수전 코일이 단락하여, 제 1 전력 변환기 이후에 전력을 공급하지 않게 하는 단락 모드를 포함하고 있기 때문에, 코일로부터의 출력이 전류원으로 동작하는 공진기의 구성에 적용 가능한 방법이다. 그러나, 전압원으로 동작하는 공진기를 구성하면 과전류가 발생하여, 스위칭 소자의 발열 및 파괴의 우려가 있다. 그 때문에, 특허 문헌 1에 기재의 방법을 행하는 경우는, 특정의 공진기의 구성으로 할 필요가 있었다.
본원은, 상기의 과제를 해결하기 위한 기술을 개시하는 것으로, 수전 코일로부터의 전력을 회로의 개방에 의해 차단 가능으로 하여, 수전 측의 전력 변환기에 의해 전력 제어를 실현할 수 있는 수전 장치를 제공하는 것을 목적으로 한다.
본원에 개시되는 수전 장치는, 와이어리스 급전 시스템의 수전 장치로서, 수전 코일을 갖고, 송전 회로로부터 보내지는 교류 전력을 수전하는 수전 회로와, 상기 수전 회로가 수전한 교류 전력을 직류 전력으로 변환하는 전력 변환기와, 상기 수전 회로의 출력 전압을 검출하는 전압 검출 수단과, 상기 수전 회로와 상기 전력 변환기 사이의 회로의 도통과 개방을 전환하는 적어도 1개의 스위치와, 상기 전압 검출 수단에 의해 검출된 전압에 근거하여, 상기 스위치를 제어하는 제어 장치를 구비한 것이다.
본원에 개시되는 수전 장치에 의하면, 수전 코일로부터의 전력을 회로의 개방에 의해 차단 가능하게 되기 때문에, 전압원으로 동작하는 공진기의 구성에 대해서, 수전 측의 전력 변환기를 이용한 전력 제어를 행하는 것이 가능해진다.
도 1은 실시의 형태 1에 따른 와이어리스 급전 시스템의 예를 나타내는 개략 구성도이다.
도 2는 실시의 형태 1에 따른 수전 장치의 구성을 나타내는 개략 회로도이다.
도 3a은 도 2에 나타내는 수전 장치의 동작을 설명하는 도면이다.
도 3b는 도 2에 나타내는 수전 장치의 동작을 설명하는 도면이다.
도 4a는 도 2에 나타내는 수전 장치의 동작을 설명하는 도면이다.
도 4b는 도 2에 나타내는 수전 장치의 동작을 설명하는 도면이다.
도 5a는 실시의 형태 1에 따른 수전 장치에 있어서의 각 신호의 파형의 개략도로, 전력 제어의 기본적인 제어 방법을 설명하기 위한 도면이다.
도 5b는 실시의 형태 1에 따른 수전 장치에 있어서의 각 신호의 파형의 개략도로, 전력 제어의 기본적인 제어 방법을 설명하기 위한 도면이다.
도 5c는 실시의 형태 1에 따른 수전 장치에 있어서의 각 신호의 파형의 개략도로, 전력 제어의 기본적인 제어 방법을 설명하기 위한 도면이다.
도 6a는 실시의 형태 1에 따른 수전 장치에 있어서의 각 신호의 파형의 개략도로, 전력 제어의 제어 방법의 예를 설명하기 위한 도면이다.
도 6b는 실시의 형태 1에 따른 수전 장치에 있어서의 각 신호의 파형의 개략도로, 전력 제어의 제어 방법의 다른 예를 설명하기 위한 도면이다.
도 6c는 실시의 형태 1에 따른 수전 장치에 있어서의 각 신호의 파형의 개략도로, 전력 제어의 제어 방법의 또 다른 예를 설명하기 위한 도면이다.
도 7은 실시의 형태 2에 따른 수전 장치의 구성을 나타내는 개략 회로도이다.
도 8은 도 7의 구성에 있어서의 비급전 기간의 전류 경로를 나타내는 도면이다.
도 9a는 실시의 형태 2에 따른 수전 장치에 있어서의 각 신호의 파형의 개략도로, 전력 제어의 제어 방법의 예를 설명하기 위한 도면이다.
도 9b는 실시의 형태 2에 따른 수전 장치에 있어서의 각 신호의 파형의 개략도로, 전력 제어의 제어 방법의 예를 설명하기 위한 도면이다.
도 9c는 실시의 형태 2에 따른 수전 장치에 있어서의 각 신호의 파형의 개략도로, 전력 제어의 제어 방법의 예를 설명하기 위한 도면이다.
도 10은 실시의 형태 3에 따른 수전 장치의 구성을 나타내는 개략 회로도이다.
도 11a는 실시의 형태 3에 따른 수전 장치에 있어서의 각 신호의 파형의 개략도로, 리액터 전류 제어에 이용하는 구동 신호 패턴 I을 설명하기 위한 도면이다.
도 11b는 실시의 형태 3에 따른 수전 장치에 있어서의 각 신호의 파형의 개략도로, 리액터 전류 제어에 이용하는 구동 신호 패턴 II를 설명하기 위한 도면이다.
도 11c은 실시의 형태 3에 따른 수전 장치에 있어서의 각 신호의 파형의 개략도로, 리액터 전류 제어에 이용하는 구동 신호 패턴 III을 설명하기 위한 도면이다.
도 11d는 실시의 형태 3에 따른 수전 장치에 있어서의 각 신호의 파형의 개략도로, 리액터 전류 제어에 이용하는 구동 신호 패턴 IV를 설명하기 위한 도면이다.
도 12a는 실시의 형태 3에 따른 수전 장치에 있어서의 리액터 전류 제어에 의한 전력 제어를 행하는 흐름도이다.
도 12b는 실시의 형태 3에 따른 수전 장치에 있어서의 리액터 전류 제어에 의한 전력 제어를 행하는 흐름도이다.
도 12c는 실시의 형태 3에 따른 수전 장치에 있어서의 리액터 전류 제어에 의한 전력 제어를 행하는 흐름도이다.
도 12d는 실시의 형태 3에 따른 수전 장치에 있어서의 리액터 전류 제어에 의한 전력 제어를 행하는 흐름도이다.
도 12e는 실시의 형태 3에 따른 수전 장치에 있어서의 리액터 전류 제어에 의한 전력 제어를 행하는 흐름도이다.
도 13은 실시의 형태 4에 따른 수전 장치의 구성을 나타내는 개략 회로도이다.
도 14a는 실시의 형태 4에 따른 수전 장치에 있어서의 각 신호의 파형의 개략도로, 전력 제어의 제어 방법의 예를 설명하기 위한 도면이다.
도 14b는 실시의 형태 4에 따른 수전 장치에 있어서의 각 신호의 다른 파형의 개략도로, 전력 제어의 제어 방법의 예를 설명하기 위한 도면이다.
도 14c는 실시의 형태 4에 따른 수전 장치에 있어서의 각 신호의 또 다른 파형의 개략도로, 전력 제어의 제어 방법의 예를 설명하기 위한 도면이다.
도 15는 제어 장치의 하드웨어 구성도이다.
이하, 본 실시의 형태에 대해 도면을 참조하여 설명한다. 또한, 각 도면 중, 동일 부호는, 동일 또는 상당하는 부분을 나타내는 것으로 한다.
실시의 형태 1.
이하, 실시의 형태 1에 따른 와이어리스 급전 시스템에 대해 설명한다.
도 1은, 본 실시의 형태 1에 따른 와이어리스 급전 시스템의 개략 구성을 나타내는 도면이다. 도 1에 있어서, 와이어리스 급전 시스템(1)은, 주 전원인 교류 전원(5)로부터 공급된 전력을 송전하는 송전 회로(11)와, 송전 회로(11)로부터의 전력을 수전하여, 부하(15)에 출력하는 수전 장치(10)를 구비한다. 수전 장치(10)는, 수전 회로(12), 전력 변환기(13), 및 LC 필터(14)를 구비한다.
교류 전원(5)으로부터 공급된 전력은, 송전 회로(11)와 수전 회로(12) 사이에 있어서 비접촉으로 보내진다. 전력 변환기(13)는, 수전 회로(12)에서 수전한 교류 전력을 직류 전력으로 변환하고, 수전 전력을 미리 설정된 전력으로 조정하는 전력 변환기의 역할을 담당한다. LC 필터(14)에서는 전력 변환기(13)의 출력 전력에 포함되는 교류 성분을 감쇠시킨다. LC 필터(14)로부터 출력된 전력은 부하(15)에서 소비 혹은 축전 등이 행해진다.
송전 회로(11)는, 적어도 하나의 코일을 포함한 회로이며, 도 1에 있어서는 송전 코일(111)과 송전 측 콘덴서(112)가 직렬 접속된 구성으로 되어 있다. 와이어리스 급전을 행하는데 있어서 송전 측 콘덴서(112)는 필수는 아니지만, 송전 측 콘덴서(112)가 없는 경우에는 송수전 코일 간의 전력 전송 효율이 큰 폭으로 저하한다. 그 때문에, 송전 측 콘덴서(112)를 사용하여 역률 보상을 행하는 것이 바람직하다.
수전 회로(12)는, 적어도 하나의 코일을 포함하는 회로이며, 도 1에 있어서는 수전 코일(121)과 수전 측 콘덴서(122)가 병렬 접속된 구성으로 되어 있다. 와이어리스 급전을 행하는데 있어서 수전 측 콘덴서(122)는 필수는 아니지만, 수전 측 콘덴서(122)가 없는 경우에는 송수전 코일 간의 전력 전송 효율이 큰 폭으로 저하한다. 그 때문에, 수전 측 콘덴서(122)를 사용하여 역률 보상을 행하는 것이 바람직하다.
상술한 송전 회로(11)와 수전 회로(12)의 구성에 의존하여, 수전 회로(12)의 출력이 전압원으로 동작 혹은 전류원으로 동작한다. 도 1에 나타내는 송전 회로(11)와 수전 회로(12)의 구성에 있어서는, 전원이 전압원이며, 공진기가 이미턴스(immittance) 변환 특성을 가지지 않기 때문에, 수전 회로(12)의 출력은 전압원으로 동작한다. 또한, 도 1에 나타내는 송전 회로(11)와 수전 회로(12)의 구성은 일례이며, 각각의 구성을 한정하는 것은 아니지만, 본 실시의 형태에서는 수전 회로(12)의 출력이 전압원으로 동작하는 구성을 대상으로 하고 있다.
도 2는 실시의 형태 1에 따른 수전 장치(10)의 구성을 나타내는 개략 회로도이다. 본 실시의 형태에 있어서는, 전력 변환기(13)으로서 정류 회로(13a)를 이용한 예로 설명한다. 정류 회로(13a)는 4개의 다이오드(131), (132), (133), (134)와 2개의 반도체 스위치(135a), (136a)를 구비하고 있고, 다이오드(132)와 반도체 스위치(135a)가 직렬 접속되고, 다이오드(134)와 반도체 스위치(136a)가 직렬 접속된 구성으로 되어 있다. 반도체 스위치(135a), (136a)는, 예를 들면 MOS-FET(Metal-Oxide-Semiconductor Field-Effect Transistor:MOS형 전계 효과 트랜지스터) 혹은 IGBT(Insulated Gate Bipolar Transistor:절연 게이트 바이폴러 트랜지스터) 등의 스위치와 다이오드가 역병렬로 접속된 특성을 갖는 전기 부품이다. 반도체 스위치(135a)는, 스위치가 오프인 상태에 있어서, 다이오드(132)에 전류가 흐르지 않는 방향으로 다이오드(132)와 직렬 접속된다. 마찬가지로, 반도체 스위치(136a)는, 스위치가 오프인 상태에 있어서, 다이오드(134)에 전류가 흐르지 않는 방향으로 다이오드(134)와 직렬 접속된다. 도 2에서는, 정류 회로(13a)의 음 측 아래 암인 다이오드(132)와 다이오드(134)에 반도체 스위치(135a), (136a)가 각각 직렬로 접속되어 있지만, 양 측의 위 암인 다이오드(131)와 다이오드(133)에 반도체 스위치(135a), (136a)가 각각 직렬 접속된 구성이어도 좋다.
LC 필터(14)는, DC 리액터(141)와 DC 콘덴서(142)로 구성되어 있고, 정류 회로(13a)의 출력 전압 및 전류가 갖는 교류 성분을 감쇠시키는 역할을 가진다.
부하(15)는, 전력 소비를 행하는 모터 또는 축전용의 배터리 등이다.
전압 검출 수단(16)은, 수전 회로(12)의 출력 전압(정류 회로(13a)의 입력 전압) V2를 검출한다.
제어 장치(17)는, 전압 검출 수단(16)에 의해 검출된 전압 V2의 정보에 근거하여, 정류 회로(13a)의 반도체 스위치(135a), (136a)의 온, 오프를 제어하는 구동 신호를 생성한다.
본 실시의 형태에 따른 수전 장치(10)는, 반도체 스위치(135a), (136a)의 온, 오프 상태에 따라서는, 수전 회로(12)의 출력이 개방 상태가 되어, 수전 회로(12)로부터 부하(15)에의 전력 공급이 차단된다. 상술한 바와 같이, 본 실시의 형태의 송전 회로(11)와 수전 회로(12)의 구성에서는, 수전 회로(12)의 출력이 전압원으로 동작하기 때문에, 수전 회로(12)의 출력이 개방 상태에 있어서, 교류 전원(5)로부터 본 임피던스가 매우 큰 값이 된다. 그 결과, 교류 전원(5)의 출력 전력은 감소한다.
이하, 반도체 스위치(135a), (136a)의 온, 오프 상태 및 회로 동작에 대해 설명한다.
도 3a, 3b는, 반도체 스위치(135a)가 오프, 반도체 스위치(136a)가 온일 때의 정상 상태에서의 수전 장치(10)의 회로 동작을 설명하기 위한 도면이다. 도면 중의 화살표는 전류 경로를 나타내고 있다.
도 3a는, 수전 회로(12)의 출력 전압 V2가 양인 경우의 회로 동작을 도시하고 있고, 수전 회로(12)로부터 부하에 전력이 보내지는 급전 기간의 동작을 나타내고 있다. 수전 회로(12)의 출력 전압 V2가 양인 경우, 다이오드(131), 다이오드(134), 및 반도체 스위치(136a)가 도통하고, 수전 회로(12)로부터 부하(15)에 급전된다. 이때, 정류 회로(13a)의 출력 전압은 입력 전압 V2와 동일해진다. LC 필터(14)의 DC 리액터(141)에는, 부하 전압 Vout와 정류 회로(13a)의 출력 전압의 전위차가 인가되고, 이 전위차와 DC 리액터(141)의 인덕턴스값에 따라 부하 전류가 증감한다.
도 3b는, 수전 회로(12)의 출력 전압 V2가 음인 경우의 회로 동작을 도시하고 있고, 수전 회로(12)로부터의 전력 공급이 차단되는 비급전 기간의 동작을 나타내고 있다. 수전 회로(12)의 출력 전압 V2가 음인 경우, 다이오드(133), 다이오드(134), 및 반도체 스위치(136a)가 도통하고, 수전 회로(12)로부터 부하(15)에의 급전이 정지한다. 이때, 정류 회로(13a)의 출력 전압은 0이 된다. 부하(15)에 공급되는 전류는 DC 리액터(141)에 저장된 에너지이며, 부하 전류는 부하 전압 Vout와 DC 리액터(141)의 인덕턴스값에 의해 정해지는 기울기로 감소한다.
도 4a, 4b는, 반도체 스위치(135a)가 온, 반도체 스위치(136a)가 오프일 때의 정상 상태에서의 수전 장치(10)의 회로 동작을 설명하기 위한 도면이다. 도면 중의 화살표는 전류 경로를 나타내고 있다.
도 4a는, 수전 회로(12)의 출력 전압 V2가 양인 경우의 회로 동작을 도시하고 있고, 수전 회로(12)로부터의 전력 공급이 차단되는 비급전 기간의 동작을 나타내고 있다. 수전 회로(12)의 출력 전압 V2가 양인 경우, 다이오드(131), 다이오드(132), 및 반도체 스위치(135a)가 도통하고, 수전 회로(12)로부터 부하(15)에의 급전이 정지한다. 이때, 정류 회로(13a)의 출력 전압은 0이 된다. 부하(15)에 공급되는 전류는 DC 리액터(141)에 저장된 에너지이며, 부하 전류는 부하 전압 Vout와 DC 리액터(141)의 인덕턴스값에 의해 정해지는 기울기로 감소한다.
도 4b는, 수전 회로(12)의 출력 전압 V2가 음인 경우의 회로 동작을 도시하고 있고, 수전 회로(12)로부터 부하에 전력이 보내지는 급전 기간의 동작을 나타내고 있다. 수전 회로(12)의 출력 전압 V2가 음인 경우, 다이오드(133), 다이오드(132), 및 반도체 스위치(135a)가 도통하고, 수전 회로(12)로부터 부하(15)에 급전된다. 따라서, 정류 회로(13a)의 출력 전압은 입력 전압 V2와 동일해진다. 이때, DC 리액터(141)에는, 부하 전압 Vout와 정류 회로(13a)의 출력 전압의 전위차가 인가되고, 상기 전위차와 DC 리액터(141)의 인덕턴스값에 따라 부하 전류가 증감한다.
반도체 스위치(135a), (136a)가 모두 온인 경우, 정류 회로(13a)는 풀 브릿지 다이오드 정류 회로로서 행동한다. 즉, 수전 회로(12)의 출력 전압 V2가 양인 경우에는 도 3a, 수전 회로(12)의 출력 전압 V2가 음인 경우에는 도 4b의 회로 동작이 되어, 수전 회로(12)의 출력 전압 V2의 극성에 의존하지 않고 수전 회로(12)로부터 부하(15)에 급전되기 때문에, 항상 급전 기간이 된다.
한편, 반도체 스위치(135a), (136a)가 모두 오프인 경우, 수전 회로(12)로부터 부하(15)에 급전되는 경로가 없어진다. 또, DC 리액터(141)에 저장된 에너지의 환류 경로도 없어지기 때문에, 반도체 스위치(135a) 또는 (136a)에 과전압이 발생한다. 과전압의 발생은 반도체 스위치의 파괴로 연결될 우려가 있기 때문에, 반도체 스위치(135a), (136a)가 모두 오프가 되지 않도록 구동 신호를 생성할 필요가 있다. 그 때문에, 반도체 스위치(135a), (136a)를 상보적으로 온과 오프의 전환을 행하는 경우에는, 양쪽 모두의 스위치가 모두 온이 되는 오버랩 타임을 마련하는 것이 바람직하다.
도 5a, 5b, 5c는, 실시의 형태 1에 따른 수전 장치(10)에 있어서의 전력 제어의 기본적인 제어 방법을 설명하기 위한 도면으로, 각 신호의 파형의 개략도이다. 각각 위로부터 순서대로, 수전 회로(12)의 출력 전압 V2, 정류 회로(13a)의 입력 전류, 반도체 스위치(135a), (136a)의 구동 신호의 개략의 파형을 나타내고 있다. 또한, 구동 신호는 파형이 1인 때는 온, 파형이 0인 때는 오프 상태를 나타낸다.
도 5a는, 수전 장치(10)로부터의 출력 전력이 최대가 될 때의 신호 파형을 나타내고 있다. 수전 회로(12)의 출력 전압 V2와 입력 전류는 각각 정현파와 구형파 형상으로 되어 있고, 2개의 반도체 스위치(135a), (136a)는 상시 온 상태이다. 즉, 도 5a는, 급전이 계속되고 있는 상태를 나타내고 있다.
도 5b는, 도 5a보다 수전 장치(10)로부터의 출력 전력을 작게 설정했을 때의 신호 파형을 나타내고 있다. 반도체 스위치(135a), (136a)의 온과 오프의 전환은, 도 5b 중의 점선의 위치로 나타내는 바와 같이, 전압 검출 수단(16)에 의해 검출된 수전 회로(12)의 출력 전압 V2의 제로 크로스 또는 제로 크로스 근방에서 행한다. 즉, 상기한 급전 기간 PS와 비급전 기간 NPS의 변환은 수전 회로(12)의 출력 전압 V2의 제로 크로스 또는 제로 크로스 근방에서 행해진다. 또, 전력 제어에 대해서는 소정 기간 내에 있어서의 토털의 급전 기간과 토털의 비급전 기간의 시(時) 비율을 제어하는 것으로 행해진다. 소정 기간은 수전 회로(12)의 출력 전압 V2의 반주기의 정수배의 시간으로 미리 설정되고, 필요로 하는 전력에 따라 바꿀 수가 있다. 도 5b에서는, 반도체 스위치(135a), (136a)의 구동 신호의 반복 주기를 수전 회로(12)의 출력 전압 V2의 3주기와 같은 시간으로 하고, 수전 회로(12)의 출력 전압 V2의 2주기의 시간을 급전 기간 PS, 나머지의 1주기의 시간을 비급전 기간 NPS로 설정하고 있다. 도 5b에 있어서의 정류 회로(13a)의 출력 전압 평균값은, 도 5a에 있어서의 정류 회로(13a)의 출력 전압 평균값의 2/3이 된다. 따라서, 부하(15)가 저항 부하인 경우에는, 도 5b의 출력 전력은 도 5a에 나타난 신호 파형에서의 출력 전력의 4/9가 된다.
여기서 출력 전압 V2의 제로 크로스 또는 제로 크로스 근방이란, 전압 검출 수단(16)에 의해 검출된 수전 회로(12)의 출력 전압 V2의 최대값으로부터 충분히 작아진 전압값이 되는 시간을 나타내고, 대체로 출력 전압 V2의 절대값이 최대값에 대해서 20% 이하인 시간이다.
도 5c는, 도 5a 및 도 5b보다 수전 장치(10)로부터의 출력 전력을 작게 설정했을 때의 신호 파형을 나타내고 있다. 도 5c에서는, 반도체 스위치(135a), (136a)의 구동 신호의 반복 주기를 수전 회로(12)의 출력 전압 V2의 2주기와 같은 시간으로 하고, 수전 회로(12)의 출력 전압 V2의 1주기의 시간을 급전 기간 PS, 나머지의 1주기를 비급전 기간 NPS로 설정하고 있다. 도 5c에 있어서의 정류 회로(13a)의 출력 전압 평균값은, 도 5a에 있어서의 정류 회로(13a)의 출력 전압 평균값의 1/2이 된다. 따라서, 부하(15)가 저항 부하인 경우에는, 도 5c의 출력 전력은 도 5a에 나타난 신호 파형에서의 출력 전력의 1/4이 된다.
이상과 같이, 미리 설정된 소정 기간 내에 있어서의 급전 기간과 비급전 기간의 비율을 조정하는 것으로, 정류 회로(13a)의 출력 전압을 제어하고, 결과적으로 출력 전력을 제어할 수가 있다. 또, 모든 반도체 스위치의 온, 오프의 스위칭 동작을 수전 회로(12)의 출력 전압 V2의 제로 크로스 또는 제로 크로스 근방의 타이밍에서 행하는 것으로, 반도체 스위치의 전압과 전류의 곱으로 나타내지는 스위칭 손실을 작은 값으로 억제하는 것이 가능해진다.
또한, 도 5a, 5b, 5c에서는 반도체 스위치(135a), (136a)의 온과 오프의 전환이 상보적이 되도록 구동하는 예를 나타냈지만, 급전 기간에 있어서 2개의 반도체 스위치를 모두 온 상태로 해도 회로 동작은 마찬가지가 된다.
다음에, 다른 전력 제어에 의해 수전 장치(10)로부터 같은 출력 전력을 얻는 방법에 대해 설명한다.
도 6a, 6b, 6c는, 실시의 형태 1에 따른 수전 장치(10)의 다른 전력 제어에 의한 제어 방법을 설명하기 위한 도면이다. 도 6a, 6b, 6c는, 도 5a, 5b, 5c와 같이, 각각 위로부터 순서대로, 정류 회로(13a)의 입력 전압 V2, 정류 회로(13a)의 입력 전류, 반도체 스위치(135a), (136a)의 구동 신호의 개략의 파형을 나타내고 있다. 그리고, 도 6a, 6b, 6c에 나타난 3개의 예는, 모두 구동 신호의 반복 주기를 수전 회로(12)의 출력 전압 V2의 3주기와 같은 시간으로 하면, 수전 회로(12)의 출력 전압 V2의 3주기 중에서 1주기만큼 급전 기간을 마련하고 있고, 출력 전압의 평균값이 최대 상태(2개의 스위치가 상시 온 상태)의 1/3이 되도록 반도체 스위치(135a), (136a)의 구동 신호가 설정되어 있다.
도 6a의 신호 파형에 있어서, 도 5a, 5b, 5c의 예와 마찬가지로 수전 회로(12)의 출력 전압 V2의 주파수의 1주기를 1단위로 해서 급전 기간 PS를 설정한 경우의 것이다. 출력 전력의 평균값을 최대 상태의 M/N으로 설정하는 경우에는, 구동 신호의 반복 주기를 N(여기에서는 N=3), 급전 기간 PS를 M주기(여기에서는 M=1)로 하면, 급전 기간 PS가 M주기로 비급전 기간 NPS가 (N-M) 주기(여기에서는 N-M=2)로 반복되는 패턴이 된다.
도 6b의 신호 파형에 있어서는, 도 6a에 나타난 신호 파형과 달리, 수전 회로(12)의 출력 전압 V2의 주파수의 반주기를 1단위로 해서 급전 기간 PS를 설정하고, 또한 이 1단위의 급전 기간 PS를 간헐적으로 마련하고, 구동 신호의 반복 주기 내에 수전 회로(12)의 출력 전압 V2의 1주기와 같은 시간을 토털의 급전 기간으로 하고 있다.
도 6c의 신호 파형에서는, 수전 회로(12)의 출력 전압 V2의 극성에 따라 급전 기간과 비급전 기간을 설정하는 방법의 예를 나타내고 있다. 즉, 도 6c에 있어서, 수전 회로(12)의 출력 전압 V2의 최초의 2개의 양의 기간을 급전 기간 PS로 설정하고, 음의 기간을 항상 비급전 기간 NPS로 설정하고 있다. 그리고, 도 6b와 마찬가지로, 수전 회로(12)의 출력 전압 V2의 주파수의 반주기를 1단위로 해서 급전 기간 PS를 설정하고, 이 1단위의 급전 기간 PS를 간헐적으로 마련하여, 구동 신호의 반복 주기 내에 수전 회로(12)의 출력 전압 V2의 1주기와 같은 시간을 토털의 급전 기간으로 하고 있다.
도 6a, 6b, 6c는, 모두 출력 전압의 평균값이 최대 상태(2개의 스위치가 상시 온 상태)의 1/3이 되도록 하고 있지만, 반도체 스위치(135a), (136a)의 구동 신호로서는 다른 파형을 이용하여 이것을 실현하고 있다. 이 구동 신호의 파형의 차이에 의해 정류 회로의 출력 전류에 포함되는 리플 전류의 크기가 달라진다. 예를 들어, 도 6a의 구동 신호의 파형에서는 비급전 기간이 수전 회로(12)의 출력 전압 V2의 2주기의 시간이지만, 도 6b의 구동 신호의 파형에서는 구동 신호의 반복 주기 내에 비급전 기간은 2회가 있으며, 1회당의 비급전 기간은 수전 회로(12)의 출력 전압 V2의 1주기의 시간으로 되어 있다. 비급전 기간의 시간이 짧아지면 정류 회로(13a)의 입력 전류의 리플 전류가 작아지기 때문에, 도 6b가 도 6a의 구동 신호의 파형의 경우보다 리플 전류가 작아진다. 최종적으로 교류 성분인 리플 전류는 LC 필터(14)로 감쇠시킬 필요가 있기 때문에, 리플 전류가 작으면 LC 필터(14)를 소형화하는 것이 가능해진다.
마찬가지로, 도 6c의 구동 신호의 파형에서는 구동 신호의 반복 주기 내에 비급전 기간은 2회가 있으며, 어느 비급전 기간도 도 6a에 있어서의 비급전 기간의 시간보다 짧기 때문에, 도 6a의 구동 신호의 파형의 경우보다 리플 전류를 작게 하는 것이 가능하다.
도 5a, 5b, 5c, 및 도 6a, 6b, 6c에 나타난 구동 신호의 파형으로부터도 알 수 있는 바와 같이, 반도체 스위치(135a), (136a)의 구동 신호의 파형을 변경하는 것에 의해, 전력 제어를 행하는 것이 가능하고, 또 반도체 스위치(135a), (136a)의 온, 오프의 스위칭 동작을 수전 회로(12)의 출력 전압 V2의 제로 크로스 또는 제로 크로스 근방의 타이밍에 행하는 것으로, 스위칭 손실을 억제하는 것이 가능해진다.
이상과 같이 실시의 형태 1에 따른 와이어리스 급전 시스템의 수전 장치(10)에 의하면, 수전 장치(10)는 송전 회로(11)로부터의 전력을 수전하는 수전 회로(12), 수전 회로(12)의 출력 전압 V2를 검출하는 전압 검출 수단(16), 반도체 스위치(135a), (136a)를 갖고 수전 회로(12)에서 수전한 교류 전력을 직류 전력으로 변환하는 전력 변환기(13)(정류 회로(13a)), 전압 검출 수단(16)에서 검출된 수전 회로(12)의 출력 전압 V2에 근거하여 반도체 스위치(135a), (136a)를 제어하는 제어 장치를 적어도 구비하고, 반도체 스위치(135a), (136a)의 동작에 의해 수전 회로(12)의 도통 상태 및 차단 상태를 전환하도록 했으므로, 전압원으로 동작하는 공진기의 구성에 있어서, 수전 회로와 전력 변환기 사이에 단락이 아니라 개방에 의해 차단 상태를 형성할 수 있어, 과전류에 의한 전력 변환기를 구성하는 소자의 파괴 등의 우려가 없어진다.
또, 미리 설정된 소정 기간 내에 있어서, 전력 변환기(13)와 수전 회로(12)의 도통 상태인 급전 기간 및 전력 변환기(13)와 수전 회로(12)의 차단 상태인 비급전 기간의 비율을 조정하는 것으로, 전력 변환기(13)의 출력 전압을 제어하여, 결과적으로 출력 전력을 제어할 수가 있다. 또, 모든 반도체 스위치의 온, 오프의 스위칭 동작을 수전 회로(12)의 출력 전압 V2의 제로 크로스 또는 제로 크로스 근방의 타이밍에 행하는 것으로, 스위칭 손실을 억제할 수 있어, 고효율인 전력 제어가 가능해진다.
실시의 형태 2.
이하, 실시의 형태 2에 따른 와이어리스 급전 시스템의 수전 장치에 대해 설명한다. 본 실시의 형태 2에 따른 수전 장치도 실시의 형태 1의 도 1에 나타낸 와이어리스 급전 시스템에 적용되는 것이다.
도 7은, 본 실시의 형태 2에 따른 수전 장치의 구성을 나타내는 개략 회로도이다. 또한, 도 2와 동일 또는 상당 부분에 대해서는 동일 부호를 부여하고, 그 설명을 생략한다. 실시의 형태 2에서는 정류 회로(13b)에 있어서의 2개의 반도체 스위치(135b), (136b)의 배치가 실시의 형태 1과는 달리, 다이오드(133)와 다이오드(134)에 각각 직렬로 접속되어 있다. 또한, 도 7에 있어서 반도체 스위치(135b), (136b)의 배치는 일례이며, 다이오드(131)와 다이오드(132)에 직렬로 접속되어도 좋다. 즉, 정류 회로(13b)를 구성하는 좌우 2개의 레그 중 어느 하나의 레그 측의 다이오드에 직렬로 접속되면 좋다.
실시의 형태 1과의 동작의 차이는, 비급전 기간에 있어서 DC 리액터(141)에 축적된 에너지의 환류 경로가 반도체 스위치(135b), (136b) 상태에 영향을 받지 않는 점이다. 도 8은, 도 7의 구성에 있어서의 비급전 기간의 전류 경로 중 1개를 도시한 것이다. DC 리액터(141)에 축적된 에너지는 부하(15), 다이오드(132), 및 다이오드(131)를 경유하여 환류하는 것이 가능하고, 환류 경로에 반도체 스위치가 포함되어 있지 않다. 그러나, 실시의 형태 1에 있어서의 비급전 기간은 도 3b, 도 4a에 나타나지만, DC 리액터(141)의 에너지의 환류 경로에 반도체 스위치를 포함한다. DC 리액터(141)에 축적된 에너지의 환류 시에, 반도체 스위치가 손상 혹은 오동작한 경우에 환류 경로가 끊어지게 되어, DC 리액터(141)에 축적된 에너지에 의해 회로 중에 과전압이 발생하여, 장치 전체가 기능을 잃을 우려가 있다. 그러나, 본 실시의 형태 2의 구성에서는, DC 리액터(141)에 축적된 에너지의 환류 경로에 반도체 스위치가 없어, 반도체 스위치(135b), (136b) 상태에 영향을 받는 일은 없다.
도 9a, 9b, 9c는, 실시의 형태 2에 따른 수전 장치의 전력 제어의 제어 방법의 예를 설명하기 위한 도면으로, 수전 장치의 각 신호의 파형의 개략도이다. 각각 위로부터 순서대로, 수전 회로(12)의 출력 전압 V2, 정류 회로(13b)의 입력 전류, 반도체 스위치(135b), (136b)의 구동 신호의 개략의 파형을 나타내고 있다. 도 9a, 9b, 9c에 나타난 3개의 예는, 모두 수전 장치로부터의 출력 전압의 평균값이 최대 상태(2개의 스위치가 상시 온 상태)의 1/3이 되도록 반도체 스위치(135b), (136b)의 구동 신호가 설정되어 있다.
도 9a의 신호 파형에 있어서는, 수전 회로(12)의 출력 전압 V2의 1주기를 1단위로 해서 반도체 스위치를 구동하는 전력 제어 방법, 도 9b의 신호 파형에 있어서는, 수전 회로(12)의 출력 전압 V2의 반주기를 1단위로 해서 반도체 스위치를 구동하는 전력 제어 방법, 또, 도 9c의 신호 파형에 있어서는, 수전 회로(12)의 출력 전압 V2의 극성에 따라 급전 기간 PS와 비급전 기간 NPS를 설정하는 전력 제어 방법을 나타내는 것이다.
도 9a, 9b, 9c로부터 알 수 있는 바와 같이, 실시의 형태 2에 있어서는, 2개의 반도체 스위치(135b), (136b)를 온으로 하면 급전 기간 PS가 되고, 2개의 반도체 스위치(135b), (136b)를 오프로 하면 비급전 기간 NPS로 할 수 있다. 그 때문에, 2개의 반도체 스위치(135b), (136b)를 공통의 구동 신호로 동작시키는 것이 가능하다.
도 9b의 신호 파형에 있어서는, 수전 회로(12)의 출력 전압 V2의 반주기를 급전 기간 PS의 1단위로 하고 있고, 구동 신호의 반복 주기는 수전 회로(12)의 출력 전압 V2의 1.5 주기의 시간이 되어, 도 9a 및 도 9c의 절반의 시간이 된다.
또한, 급전 기간 PS에 있어서는 2개의 반도체 스위치 중 한쪽만이 전류 경로가 되기 때문에, 다른 쪽의 반도체 스위치의 상태는 온과 오프 중 어느 쪽이어도 좋다. 예를 들면, 도 7에 있어서, 반도체 스위치(135b), (136b)의 양쪽 모두가 온 상태여도, 수전 회로(12)의 출력 전압 V2가 양인 경우에는, 반도체 스위치(136b) 측이 전류 경로가 되고, 한편 수전 회로(12)의 출력 전압 V2가 음인 경우에는, 반도체 스위치(135b) 측이 전류 경로가 된다. 그 때문에, 도 9a, 9b, 9c의 반도체 스위치(135b), (136b)의 구동 신호에 있어서, 각각 온으로 나타나고 있는(신호가 1) 시간으로, 사선으로 나타난 시간은 온이어도 오프여도 좋은 기간이다.
또, 도 9c에서는 반도체 스위치(135b)의 구동 신호를 온과 오프로 전환하고 있지만, 상시 오프 상태에서도 회로 동작은 동일하게 된다.
이상과 같이, 실시의 형태 2의 수전 장치는 실시의 형태 1과 같은 효과를 나타낸다. 또한, 실시의 형태 2에 의하면, 전력 변환기(13)인 정류 회로(13b)를 구성하는 좌우 2개의 레그 중 어느 하나의 레그 측의 다이오드에 반도체 스위치(135b), (136b)를 각각 직렬로 접속했으므로, 2개의 반도체 스위치(135b), (136b)를 동시에 오프 상태로 해서 비급전 기간을 마련하는 것이 가능해진다. 이것에 의해, 비급전 기간에 DC 리액터(141)에 축적된 에너지의 환류 경로 중에 반도체 스위치의 상태에 기인하는 과대 전압의 발생을 억제할 수 있다. 또, 2개의 반도체 스위치(135b), (136b)를 1개의 구동 신호로 제어하는 것이 가능하기 때문에, 실시의 형태 1과 비교하여 제어 장치를 간소화할 수 있는 효과가 있다.
실시의 형태 3.
이하, 실시의 형태 3에 따른 와이어리스 급전 시스템의 수전 장치에 대해 설명한다. 본 실시의 형태 3에 따른 수전 장치도 실시의 형태 1의 도 1에서 나타낸 와이어리스 급전 시스템에 적용되는 것이다.
도 10은, 본 실시의 형태 3에 따른 수전 장치의 구성을 나타내는 개략 회로도이다. 또한, 도 7과 동일 또는 상당 부분에 대해서는 동일 부호를 부여하고, 그 설명을 생략한다. 실시의 형태 3에 따른 수전 장치에서는, DC 리액터(141)에 흐르는 전류 ILdc를 검출하는 전류 검출 수단(18)과 부하(15)의 전압 Vout를 검출하는 전압 검출 수단(19)을 더 구비한다. 전류 검출 수단(18)과 전압 검출 수단(19)에 의해 검출된 전류 및 전압 정보는 제어 장치(17)에 입력된다. 실시의 형태 1 및 2에 있어서, 제어 장치(17)는, 수전 장치로부터의 출력이 미리 설정된 소정의 출력 전력이 되도록, 출력 전력 지령값 Pout*를 설정하고, 반도체 스위치의 구동 신호를 생성하는 것으로 반도체 스위치를 제어하여, 전력 제어를 행하는 예였다. 본 실시의 형태 3에서는, 제어 장치(17)는, 출력 전력 지령값 Pout*를 전압 검출 수단(19)에 의해 검출된 부하 전압 Vout로 나누어, DC 리액터(141)의 전류 지령값 ILdc*를 산출하고, 전류 검출 수단(18)에 의해 검출된 DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc*가 되도록 반도체 스위치의 제어를 행하는 전류 제어를 이용하여 출력 전력을 제어한다.
이하에, 반도체 스위치(135b), (136b)에 의해 DC 리액터(141)의 전류를 제어하는 것으로, 출력 전력 제어를 행하는 방법에 대해 설명한다.
도 11a, 11b, 11c, 11d는, 실시의 형태 3에 따른 수전 장치에 있어서의 각 신호의 파형의 개략도로, 리액터 전류 제어에 이용하는 구동 신호 패턴을 설명하기 위한 도면이다. 본 실시의 형태에서는, 정류 회로(13b)의 출력 전압 평균값의 최대 전압에 대해, 이하의 4개의 전압이 되도록 반도체 스위치(135b), (136b)를 제어하는 구동 신호 패턴에, 비급전 상태로 하는 구동 신호 패턴을 더하여 5개의 구동 신호 패턴을 설정하고 있다.
구동 신호 패턴 I:출력 전압 평균값이 최대 전압이 되는 패턴,
구동 신호 패턴 II:출력 전압 평균값이 최대 전압의 3/4이 되는 패턴,
구동 신호 패턴 III:출력 전압 평균값이 최대 전압의 1/2이 되는 패턴,
구동 신호 패턴 IV:출력 전압 평균값이 최대 전압의 1/4이 되는 패턴,
구동 신호 패턴 V:비급전 상태로 하는 패턴.
제어 장치(17)는, 이들 구동 신호 패턴을 유지하고, 실행한다.
도 11a는, 구동 신호 패턴 I을 나타내는 도면으로, 급전 상태가 계속되고 있는 것을 나타내고 있다. 도 11b는, 구동 신호 패턴 II를 나타내는 도면으로, 수전 회로(12)의 출력 전압 V2의 2주기분에 주목하면, 1.5 주기의 기간이 급전 기간 PS, 반주기의 기간이 비급전 기간 NPS이며, 정류 회로(13b)의 출력 전압 평균값이 최대 전압의 3/4이 되는 패턴이다. 도 11c는, 구동 신호 패턴 III을 나타내는 도면으로, 수전 회로(12)의 출력 전압 V2의 2주기분에 주목하면, 반주기분의 급전 기간 PS와 반주기분의 비급전 기간 NPS가 반복되고 있고, 정류 회로(13b)의 출력 전압 평균값이 최대 전압의 1/2이 되는 패턴이다. 도 11d는, 구동 신호 패턴 IV를 나타내는 도면으로, 수전 회로(12)의 출력 전압 V2의 2주기분에 주목하면, 반주기의 기간이 급전 기간 PS, 1.5 주기의 기간이 비급전 기간 NPS이며, 정류 회로(13b)의 출력 전압 평균값이 최대 전압의 1/4이 되는 패턴이다. 구동 신호 패턴 V는 도시하고 있지 않지만, 반도체 스위치(135b), (136b)의 양쪽 모두가 오프(구동 신호가 0)의, 비급전 상태이다.
다음에, 5개의 구동 신호 패턴을 이용하여 DC 리액터(141)의 전류를 제어하는 것으로, 출력 전력 제어를 행하는 방법에 대해, 도 12a 내지 도 12e의 흐름도에 따라 설명한다.
도 12a에 있어서, 우선 스텝 S101의 초기 상태는 비급전 상태이며, 구동 신호 패턴 V가 실행되고 있는 것에 상당한다. 급전 개시하면, 제어 장치(17)에서는, 설정된 출력 전력 지령값 Pout*를 전압 검출 수단(19)에 의해 검출된 부하 전압 Vout로 나누어, DC 리액터(141)의 전류 지령값 ILdc*가 산출된다. 또, 전류 검출 수단(18)에 의해 검출된 DC 리액터(141)의 전류 ILdc가 제어 장치(17)에 입력된다.
급전 개시의 스텝 S102에서, 구동 신호 패턴 IV가 실행되면, DC 리액터(141)의 전류 ILdc는 증가한다. 스텝 S103에서, 검출된 DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc* 이상이 되었는지 판정하고, 전류 지령값 ILdc* 이상이 된 경우(YES)에는 도 12b의 흐름도에 나타나는 스텝 S201으로 진행한다. 스텝 S103에서, 검출된 DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc*에 이르지 않은 경우(NO)에는, 스텝 S104에 있어서, 구동 신호 패턴 III이 실행된다.
스텝 S104에서, 구동 신호 패턴 III이 실행되면, DC 리액터(141)의 전류 ILdc는 더 증가한다. 스텝 S105에서, 검출된 DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc* 이상이 되었는지 판정하고, 전류 지령값 ILdc* 이상이 된 경우(YES)에는 도 12c의 흐름도에 나타나는 스텝 S301으로 진행한다. 스텝 S105에서, 검출된 DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc*에 이르지 않은 경우(NO)에는, 스텝 S106에 있어서, 구동 신호 패턴 II가 실행된다.
스텝 S106에서, 구동 신호 패턴 II가 실행되면, DC 리액터(141)의 전류 ILdc는 더 증가한다. 스텝 S107에서, 검출된 DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc* 이상이 되었는지 판정하고, 전류 지령값 ILdc* 이상이 된 경우(YES)에는 도 12d의 흐름도에 나타나는 스텝 S401으로 진행한다. 스텝 S107에서, 검출된 DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc*에 이르지 않은 경우(NO)에는, 스텝 S108에 있어서, 구동 신호 패턴 I이 실행된다.
스텝 S108에서, 구동 신호 패턴 I이 실행되면, DC 리액터(141)의 전류 ILdc는 더 증가한다. 스텝 S109에서, 검출된 DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc* 이상이 되었는지 판정하고, 전류 지령값 ILdc* 이상이 된 경우(YES)에는 도 12e의 흐름도에 나타나는 스텝 S501으로 진행된다. 스텝 S109에서, 검출된 DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc*에 이르지 않은 경우(NO)에는, 전류 지령값 ILdc*의 설정에 문제가 있는 등 염려가 되기 때문에, 스텝 S110에 있어서, 제어 불가로서 급전을 정지한다.
또한, 스텝 S103, S105, S107, S109에 있어서, 검출된 DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc*에 이르지 않았는지, 혹은 전류 지령값 ILdc* 이상이 되었는지의 판정은 다음과 같이 행한다. 예를 들면, 검출된 DC 리액터(141)의 전류 ILdc가 일정 기간 변동되지 않고, 전류 지령값 ILdc*에 이르지 않은 경우에는, 전류 지령값 ILdc*에 이르지 않았다고 판정한다. 혹은, 구동 신호의 반복 주기의 3배의 시간이 경과해도 전류 지령값 ILdc*에 이르지 않은 경우에는, 전류 지령값 ILdc*에 이르지 않았다고 판정한다. 여기서 경과 시간의 설정은 임의로 행할 수 있다. 이와 같이, 검출된 DC 리액터(141)의 전류 ILdc의 포화 상황 혹은 추이로 판정을 행한다.
스텝 S103에서, 검출된 DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc* 이상이 된 경우, 도 12b의 스텝 S201으로 진행하고, 구동 신호 패턴 V가 실행된다. 즉, 비급전 상태로 한다. 그러면, DC 리액터(141)의 전류 ILdc는 감소하므로, 스텝 S202으로 진행하고, DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc* 이상인지 판정한다. DC 리액터(141)의 전류 ILdc의 전류 지령값 ILdc* 이상이 계속되고 있으면(YES), 스텝 S201의 비급전 상태가 계속된다. 스텝 S202에서, DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc*를 하회한 경우, 스텝 S203에서 구동 신호 패턴 IV가 실행되고, DC 리액터(141)의 전류 ILdc는 증가한다.
이후, 급전 정지의 지령이 있을 때까지, 구동 신호 패턴 V와 구동 신호 패턴 IV가 실행되고, DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc*에 가까워지도록 제어된다.
마찬가지로, 스텝 S105에서, 검출된 DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc* 이상이 된 경우, 도 12c의 스텝 S301으로 진행하고, 구동 신호 패턴 IV가 실행된다. 그러면, DC 리액터(141)의 전류 ILdc는 감소하므로, 스텝 S302로 진행하고, DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc* 이상인지 판정한다. DC 리액터(141)의 전류 ILdc의 전류 지령값 ILdc* 이상이 계속되고 있으면(YES), 스텝 S301의 구동 신호 패턴 IV의 실행이 계속된다. 스텝 S302에서, DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc*를 하회한 경우, 스텝 S303에서 구동 신호 패턴 III이 실행되고, DC 리액터(141)의 전류 ILdc는 증가한다.
이후, 급전 정지의 지령이 있을 때까지, 구동 신호 패턴 IV와 구동 신호 패턴 III이 실행되고, DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc*에 가까워지도록 제어된다.
마찬가지로, 스텝 S107에서, 검출된 DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc* 이상이 된 경우, 도 12d의 스텝 S401로 진행하고, 구동 신호 패턴 III이 실행된다. 그러면, DC 리액터(141)의 전류 ILdc는 감소하므로, 스텝 S402로 진행하고, DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc* 이상인지 판정한다. DC 리액터(141)의 전류 ILdc의 전류 지령값 ILdc* 이상이 계속되고 있으면(YES), 스텝 S401의 구동 신호 패턴 III의 실행이 계속된다. 스텝 S402에서, DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc*를 하회한 경우, 스텝 S403에서 구동 신호 패턴 II가 실행되고, DC 리액터(141)의 전류 ILdc는 증가한다.
이후, 급전 정지의 지령이 있을 때까지, 구동 신호 패턴 III과 구동 신호 패턴 II가 실행되고, DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc*에 가까워지도록 제어된다.
마찬가지로, 스텝 S109에서, 검출된 DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc* 이상이 된 경우, 도 12e의 스텝 S501로 진행하고, 구동 신호 패턴 II가 실행된다. 그러면, DC 리액터(141)의 전류 ILdc는 감소하므로, 스텝 S502으로 진행하고, DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc* 이상인지 판정한다. DC 리액터(141)의 전류 ILdc의 전류 지령값 ILdc* 이상이 계속되고 있으면(YES), 스텝 S501의 구동 신호 패턴 II의 실행이 계속된다. 스텝 S502에서, DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc*를 하회한 경우, 스텝 S503에서 구동 신호 패턴 I이 실행되고, DC 리액터(141)의 전류 ILdc는 증가한다.
이후, 급전 정지의 지령이 있을 때까지, 구동 신호 패턴 II와 구동 신호 패턴 I이 실행되고, DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc*에 가까워지도록 제어된다.
이상과 같이, 정류 회로(13b)의 출력 전압 평균값을 단계적으로 올려 가, 전류 지령값 ILdc*으로 제어 가능한 2개의 구동 신호 패턴을 선택하는 것으로, 부하 전압 Vout에 가까운 전압으로 전류 제어를 행할 수 있다.
또한, 상술했지만, 스텝 S109에 있어서, 구동 신호 패턴 I을 실행해도 DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc* 이상이 되지 않는 경우, 스텝 S110에 있어서, 제어 불가로서 급전을 정지했지만, 전류 지령값 ILdc*의 설정에 문제 등이 있는 외, 원리적으로 전류 제어를 할 수 없는 상태일 가능성도 있다. 그 때문에, 시험 조건 혹은 회로 정수의 변경이 필요하다.
또, 본 전류 제어를 적용하는 것으로 DC 리액터(141)에의 인가 전압 및 인가 전압의 변동량을 최소한으로 할 수 있어, 정류 회로(13b)의 출력 전류 리플을 저감하는 것이 가능해진다. 또, 전류 리플을 일정 값으로 하는 경우, 최대 전압이 되는 구동 신호 패턴 I과 비급전 상태의 구동 신호 패턴 V만으로 수전 장치를 동작시키는 것보다도, 본 실시의 형태 3에 따른 전류 제어법을 적용하는 쪽이 DC 리액터(141)에 필요하게 되는 인덕턴스값을 작게 설계할 수 있기 때문에 소형화하는 것이 가능해진다.
이상으로 나타낸 구동 신호 패턴 및 제어 방법은 실시의 형태 3의 일례이며, 예를 들면, 구동 신호 패턴의 수를 5개보다 많이 또는 줄여 실시하거나 구동 방법의 종류를 다른 것으로 변경하거나 하는 것도 가능하다. 제어 장치(17)는 적어도 3개의 구동 신호 패턴을 갖고, 전류 검출 수단(18)에서 검출된 전류 ILdc에 근거하여, 복수의 구동 신호 패턴 중에서 급전 기간과 비급전 기간의 비율이 가까운 2개의 구동 신호 패턴을 이용하여, 단계적으로 미리 설정된 출력 전력 지령값 Pout*가 되도록, 반도체 스위치를 제어하면 좋다.
이상과 같이 실시의 형태 3에 따른 수전 장치에 의하면, 실시의 형태 2와 같은 효과를 나타낸다. 또한, DC 리액터(141)에 흐르는 전류 ILdc를 검출하는 전류 검출 수단(18)과 부하(15)의 전압 Vout를 검출하는 전압 검출 수단(19)을 구비하고, 전류 검출 수단(18)에 의해 검출된 DC 리액터(141)의 전류 ILdc가 전류 지령값 ILdc*가 되도록 반도체 스위치의 제어를 행하는 전류 제어를 이용하여 출력 전력을 제어하도록 했으므로, 정류 회로(13b)의 출력 전압 평균값을 단계적으로 올려 가, 부하 전압 Vout에 가까운 전압으로 전류 제어를 행하는 것으로 DC 리액터(141)에의 인가 전압 및 인가 전압의 변동량을 억제할 수 있어, 정류 회로(13b)의 출력 전류 리플을 저감하는 것이 가능해진다.
또한, 상기 실시의 형태 3에서는, 실시의 형태 2의 도 7에 DC 리액터(141)에 흐르는 전류 ILdc를 검출하는 전류 검출 수단(18)과 부하(15)의 전압 Vout를 검출하는 전압 검출 수단(19)을 구비한 예를 나타냈지만, 실시의 형태 1의 도 2에 있어서, DC 리액터(141)에 흐르는 전류 ILdc를 검출하는 전류 검출 수단(18)과 부하(15)의 전압 Vout를 검출하는 전압 검출 수단(19)을 구비해도 좋다. 실시의 형태 1에 있어서도, 정류 회로(13a)의 출력 전압 평균값을 단계적으로 올려 가는, 구동 신호 패턴을 작성하는 것은 가능하고, 정류 회로(13a)의 출력 전압 평균값을 단계적으로 올려 가, 부하 전압 Vout에 가까운 전압으로 전류 제어를 행하는 것으로 DC 리액터(141)에의 인가 전압 및 인가 전압의 변동량을 억제할 수 있어, 정류 회로(13a)의 출력 전류 리플을 저감하는 것이 가능해진다.
실시의 형태 4.
이하, 실시의 형태 4에 따른 와이어리스 급전 시스템의 수전 장치에 대해 설명한다. 본 실시의 형태 4에 따른 수전 장치도 실시의 형태 1의 도 1에 나타낸 와이어리스 급전 시스템에 적용되는 것이다.
도 13은, 본 실시의 형태 4에 따른 수전 장치의 구성을 나타내는 개략 회로도이다. 또한, 도 1, 7, 10과 동일 또는 상당 부분에 대해서는 동일 부호를 부여하고, 그 설명을 생략한다. 실시의 형태 4에 따른 수전 장치에서는, 수전 회로(12)와 정류 회로(13c) 사이에 쌍방향 스위치(20)가 접속되어 있다. 또, 전력 변환기인 정류 회로(13c)가 4개의 다이오드만으로 구성된다.
본 실시의 형태 4에 따른 수전 장치는, 쌍방향 스위치(20)로 출력 전력 제어를 행하는 것이며, 쌍방향 스위치(20)가 온일 때는 급전 기간, 쌍방향 스위치(20)가 오프일 때는 비급전 기간이 된다. 전압원으로 동작하는 와이어리스 급전 시스템의 공진기의 구성에 있어서, 쌍방향 스위치(20)가 오프일 때는, 수전 회로와 전력 변환기 사이가 단락이 아니라 개방이 되어 차단되므로, 과전류에 의한 전력 변환기를 구성하는 소자, 즉 다이오드 등의 파괴 등의 우려가 없어진다. 쌍방향 스위치(20)의 온과 오프의 전환의 타이밍은, 정류 회로(13c)의 입력 전압 V2의 제로 크로스 혹은 제로 크로스 근방의 시간에 행한다. 이것에 의해, 상술한 실시의 형태 1 내지 3과 같이, 쌍방향 스위치(20)의 스위칭 손실을 억제하는 것이 가능해진다.
또, 출력 전력은, 쌍방향 스위치가 온의 시간으로 제어 가능하고, 또한 정류 회로(13c)의 입력 전압 V2의 극성에 관계없이 제어 가능하다. 그 때문에, 제어 장치의 프로그램의 간소화가 가능해 제어 장치의 연산 부하를 저감할 수 있는 효과를 나타낸다. 또한, 정류 회로(13c)가 풀 브릿지 다이오드 정류 회로로 되기 때문에, 모듈화된 부품이 적용 가능해져, 회로 실장을 간소화할 수 있는 효과도 얻어진다.
도 14a, 14b, 14c는, 실시의 형태 4에 따른 수전 장치의 전력 제어에 의한 제어 방법을 설명하기 위한 도면이다. 도 14a, 14b, 14c는, 각각 위로부터 순서대로, 정류 회로(13c)의 입력 전압 V2, 정류 회로(13c)의 입력 전류, 쌍방향 스위치(20)의 구동 신호의 개략의 파형을 나타내고 있다. 그리고, 도 14a와 도 14c는, 구동 신호의 반복 주기를 수전 회로(12)의 출력 전압 V2의 3주기와 같은 시간으로 하면, 수전 회로(12)의 출력 전압 V2의 3주기 중에서 1주기만큼 급전 기간을 마련하고, 출력 전압의 평균값이 최대 상태(쌍방향 스위치가 상시 온 상태)의 1/3이 되도록 쌍방향 스위치(20)의 구동 신호가 설정되어 있다. 도 14a와 도 14c는, 각각 실시의 형태 1의 도 6a와 도 6c의 출력 전력 제어에 상당한다. 이와 같이, 쌍방향 스위치(20)를 이용한 실시의 형태 4에 있어서도 실시의 형태 1과 같은 출력 전력 제어가 가능하다.
또, 도 14b는, 수전 회로(12)의 출력 전압 V2의 반주기를 급전 기간 PS의 1단위로 하고 있고, 구동 신호의 반복 주기는 수전 회로(12)의 출력 전압 V2의 1.5 주기의 시간으로 한 예로, 출력 전압의 평균값이 최대 상태(쌍방향 스위치가 상시 온 상태)의 1/3이 되도록 쌍방향 스위치(20)의 구동 신호가 설정되어 있다. 도 14b는, 실시의 형태 2의 도 9b의 출력 전력 제어에 상당한다. 이와 같이, 쌍방향 스위치(20)를 이용한 실시의 형태 4에 있어서도 실시의 형태 1과 같은 출력 전력 제어가 가능하다.
또한, 도 13에 있어서, 전류 또는 전압을 검출하는 수단으로서, 수전 회로(12)의 출력 전압 V2를 검출하는 전압 검출 수단(16)만 구비한 구성을 나타내고 있지만, 부하(15)의 전압 검출 수단 및 LC 필터(14)에 포함되는 DC 리액터(141)의 전류 검출 수단을 추가하는 것으로, 실시의 형태 3에서 나타낸 리액터 전류 제어에 의한 전력 제어를 실시하는 것도 가능하다.
이상과 같이, 본 실시의 형태 4의 수전 장치에 의하면, 수전 회로(12)와 전력 변환기인 정류 회로(13c) 사이에 쌍방향 스위치(20)를 마련하여, 급전 기간, 비급전 기간을 전환하도록 했으므로, 실시의 형태 1 내지 3의 효과를 나타낼 뿐만 아니라, 장치 구성을 간소화 가능하여 소형화 및 저비용화의 효과도 얻어진다.
또한, 제어 장치(17)는, 하드웨어의 일례를 도 15에 나타내는 바와 같이, 프로세서(170)와 기억 장치(171)로 구성된다. 기억 장치는 도시하고 있지 않지만, 랜덤 액세스 메모리 등의 휘발성 기억 장치와, 플래쉬 메모리 등의 불휘발성의 보조 기억 장치를 구비한다. 또, 플래쉬 메모리 대신에 하드 디스크의 보조 기억 장치를 구비해도 좋다. 프로세서(170)는, 기억 장치(171)로부터 입력된 프로그램을 실행한다. 이 경우, 보조 기억 장치로부터 휘발성 기억 장치를 통하여 프로세서(170)에 프로그램이 입력된다. 또, 프로세서(170)는, 연산 결과 등의 데이터를 기억 장치(171)의 휘발성 기억 장치에 출력해도 좋고, 휘발성 기억 장치를 통하여 보조 기억 장치에 데이터를 보존해도 좋다.
본 개시는, 여러 가지 예시적인 실시의 형태 및 실시예가 기재되어 있지만, 1개, 또는 복수의 실시의 형태에 기재된 여러 가지 특징, 태양, 및 기능은 특정의 실시의 형태의 적용에 한정되는 것이 아니라, 단독으로, 또는 여러 가지 조합으로 실시의 형태에 적용 가능하다.
따라서, 예시되어 있지 않은 무수한 변형예가, 본원 명세서에 개시되는 기술의 범위 내에 있어서 상정된다. 예를 들면, 적어도 1개의 구성 요소를 변형하는 경우, 추가하는 경우 또는 생략하는 경우, 또한, 적어도 1개의 구성 요소를 추출하고, 다른 실시의 형태의 구성 요소와 조합하는 경우가 포함되는 것으로 한다.
1:와이어리스 급전 시스템, 5:교류 전원, 11:송전 회로, 12:수전 회로, 13:전력 변환기, 13a, 13b, 13c:정류 회로, 14:LC 필터, 15:부하, 16:전압 검출 수단, 17:제어 장치, 19:전압 검출 수단, 111:송전 코일, 112:송전 측 콘덴서, 121:수전 코일, 122:수전 측 콘덴서, 131, 132, 133, 134:다이오드, 135a, 135b, 136a, 136b:반도체 스위치, 141:DC 리액터, 142:DC 콘덴서, 170:프로세서, 171:기억 장치.

Claims (14)

  1. 와이어리스 급전 시스템의 수전 장치로서,
    수전 코일을 갖고, 송전 회로로부터 보내지는 교류 전력을 수전하는 수전 회로와,
    상기 수전 회로가 수전한 교류 전력을 직류 전력으로 변환하는 전력 변환기와,
    상기 수전 회로의 출력 전압을 검출하는 전압 검출 수단과,
    상기 수전 회로와 상기 전력 변환기 사이의 회로의 도통과 개방을 전환하는 적어도 1개의 스위치와,
    상기 전압 검출 수단에 의해 검출된 전압에 근거하여, 상기 스위치를 제어하는 제어 장치를 구비한 수전 장치.
  2. 제 1 항에 있어서,
    상기 스위치의 온과 오프를 전환하는 시간을, 상기 전압 검출 수단에 의해 검출된 전압의 절대값이 최대값에 대해서 20% 이하인 시간으로 하는 수전 장치.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 스위치는, 상기 전력 변환기가 구비하는 반도체 스위치이며, 상기 제어 장치에 의해 상기 반도체 스위치의 온과 오프를 제어하는 것으로, 상기 수전 회로와 상기 전력 변환기가 도통하는 급전 기간 및 상기 수전 회로와 상기 전력 변환기 사이가 개방되는 비급전 기간을 전환하여 출력하는 전력의 제어를 행하는 수전 장치.
  4. 제 3 항에 있어서,
    상기 제어 장치는, 상기 반도체 스위치의 온과 오프를 전환하는 반복 주기당의 상기 급전 기간과 상기 비급전 기간의 비율에 의해, 상기 출력하는 전력의 제어를 행하는 수전 장치.
  5. 제 4 항에 있어서,
    상기 전력 변환기는 4개의 다이오드를 갖는 풀 브릿지 회로이며, 상기 풀 브릿지 회로를 구성하는 상하 암 중 어느 하나의 암 측의 상기 다이오드에, 상기 반도체 스위치가 각각 직렬로 접속된 수전 장치.
  6. 제 4 항에 있어서,
    상기 전력 변환기는 4개의 다이오드를 갖는 풀 브릿지 회로이며, 상기 풀 브릿지 회로를 구성하는 2개의 레그 중 어느 하나의 레그 측의 상기 다이오드에, 상기 반도체 스위치가 각각 직렬로 접속된 수전 장치.
  7. 제 4 항 내지 제 6 항 중 어느 한 항에 있어서,
    상기 제어 장치는, 상기 반도체 스위치의 온과 오프의 제어를 상기 전압 검출 수단에 의해 검출된 전압의 반주기 단위로서 행하는 수전 장치.
  8. 제 4 항 내지 제 7 항 중 어느 한 항에 있어서,
    리액터를 갖고, 상기 전력 변환기에 접속된 LC 필터와,
    상기 리액터에 흐르는 전류를 검출하는 전류 검출 수단을 더 마련하고,
    상기 제어 장치는 상기 검출된 전류에 근거하여, 미리 설정된 출력 전력 지령값이 되도록, 상기 반도체 스위치를 제어하는 수전 장치.
  9. 제 8 항에 있어서,
    상기 제어 장치는, 상기 반도체 스위치의 온과 오프를 전환하는 반복 주기당의 상기 급전 기간의 비율이 다른, 상기 반도체 스위치를 제어하는 구동 신호 패턴을 적어도 3개 이상 갖고,
    상기 전류 검출 수단에서 검출된 전류값에 근거하여, 상기 복수의 구동 신호 패턴 중에서 상기 급전 기간과 상기 비급전 기간의 비율이 가까운 2개의 상기 구동 신호 패턴을 이용하여, 단계적으로 미리 설정된 상기 출력 전력 지령값이 되도록, 상기 반도체 스위치를 제어하는 수전 장치.
  10. 제 1 항 또는 제 2 항에 있어서,
    상기 스위치는, 상기 수전 회로와 상기 전력 변환기 사이에 마련된 쌍방향 스위치이며, 상기 제어 장치에 의해 상기 쌍방향 스위치의 온과 오프를 제어하는 것으로, 상기 수전 회로와 상기 전력 변환기가 도통하는 급전 기간 및 상기 수전 회로와 상기 전력 변환기 사이가 개방되는 비급전 기간을 전환하여 출력하는 전력의 제어를 행하는 수전 장치.
  11. 제 10 항에 있어서,
    상기 제어 장치는, 상기 쌍방향 스위치의 온과 오프를 전환하는 반복 주기당의 상기 급전 기간과 상기 비급전 기간의 비율에 의해, 출력하는 전력의 제어를 행하는 수전 장치.
  12. 제 11 항에 있어서,
    리액터를 갖고, 상기 전력 변환기에 접속된 LC 필터와,
    상기 리액터에 흐르는 전류를 검출하는 전류 검출 수단을 더 마련하고,
    상기 제어 장치는 상기 검출된 전류에 근거하여, 미리 설정된 출력 전력 지령값이 되도록, 상기 쌍방향 스위치를 제어하는 수전 장치.
  13. 제 12 항에 있어서,
    상기 제어 장치는, 상기 쌍방향 스위치의 온과 오프를 전환하는 반복 주기당의 상기 급전 기간의 비율이 다른, 상기 쌍방향 스위치를 제어하는 구동 신호 패턴을 적어도 3개 이상 갖고,
    상기 전류 검출 수단에서 검출된 전류값에 근거하여, 상기 복수의 구동 신호 패턴 중에서 상기 급전 기간과 상기 비급전 기간의 비율이 가까운 2개의 상기 구동 신호 패턴을 이용하여, 단계적으로 미리 설정된 상기 출력 전력 지령값이 되도록, 상기 쌍방향 스위치를 제어하는 수전 장치.
  14. 전력원에 접속되고, 송전 코일을 갖는 송전 회로와,
    청구항 1 내지 청구항 13 중 어느 한 항에 기재된 수전 장치를 구비하고,
    상기 송전 회로로부터 비접촉으로 상기 수전 장치에 전력이 보내지는 와이어리스 급전 시스템.
KR1020227020060A 2019-12-26 2019-12-26 수전 장치 및 와이어리스 급전 시스템 KR20220100665A (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/051150 WO2021130965A1 (ja) 2019-12-26 2019-12-26 受電装置及びワイヤレス給電システム

Publications (1)

Publication Number Publication Date
KR20220100665A true KR20220100665A (ko) 2022-07-15

Family

ID=74879223

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227020060A KR20220100665A (ko) 2019-12-26 2019-12-26 수전 장치 및 와이어리스 급전 시스템

Country Status (6)

Country Link
US (1) US20220376553A1 (ko)
JP (1) JP6847316B1 (ko)
KR (1) KR20220100665A (ko)
CN (1) CN114846734A (ko)
DE (1) DE112019008002T5 (ko)
WO (1) WO2021130965A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017093094A (ja) 2015-11-06 2017-05-25 国立大学法人 東京大学 受電装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5348081B2 (ja) * 2010-07-07 2013-11-20 村田機械株式会社 非接触受電装置
JP5793972B2 (ja) * 2011-06-06 2015-10-14 富士電機株式会社 給電装置の制御方法
JP5868304B2 (ja) * 2012-10-18 2016-02-24 株式会社アドバンテスト ワイヤレス受電装置およびそれに利用可能なインピーダンス制御回路、インピーダンス制御方法
JP5998905B2 (ja) * 2012-12-14 2016-09-28 Tdk株式会社 ワイヤレス受電装置およびそれを用いたワイヤレス電力伝送装置
DE102013217816A1 (de) * 2013-09-06 2015-03-12 Robert Bosch Gmbh Vorrichtung zur induktiven Energieübertragung und Verfahren zum Betreiben einer Vorrichtung zur induktiven Energieübertragung
JP6224041B2 (ja) 2015-08-31 2017-11-01 矢崎総業株式会社 コネクタの防水構造
JP6677306B2 (ja) * 2016-08-23 2020-04-08 株式会社村田製作所 受電装置およびワイヤレス給電システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017093094A (ja) 2015-11-06 2017-05-25 国立大学法人 東京大学 受電装置

Also Published As

Publication number Publication date
WO2021130965A1 (ja) 2021-07-01
DE112019008002T5 (de) 2022-11-24
JPWO2021130965A1 (ja) 2021-12-23
US20220376553A1 (en) 2022-11-24
JP6847316B1 (ja) 2021-03-24
CN114846734A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
US10749350B2 (en) System and method for wireless power transfer using a power converter with a bypass mode
KR102181971B1 (ko) 양방향 dc/dc 컨버터
EP2720365B1 (en) Bi-directional DC/DC converter
CN101414764B (zh) 驱动器电路、控制电源的方法、电源及电源控制器电路
US9024613B2 (en) Switching power supply apparatus and semiconductor device
CN101632216B (zh) 功率变换器中的箝位二极管复位和开关式电源中的断电检测
US9391532B2 (en) System and method for a switched-mode power converter
US9041372B2 (en) Wide output voltage range switching power converter
US9444246B2 (en) Power converter with switching element
KR20190098230A (ko) Llc 공진 컨버터
US10038388B2 (en) Converter having a low conduction loss and driving method thereof
WO2014011259A1 (en) Circuit and method for providing hold-up time in a dc-dc converter
AU2016277074B2 (en) Dual bridge DC/DC power converter
JP7139857B2 (ja) ワイヤレス受電装置及びこれを用いたワイヤレス電力伝送システム
US8817490B2 (en) DC-DC converter
KR101339180B1 (ko) 교류 쵸퍼를 구비한 직렬전압보상 기반 자동전압조절기
EP2892135B1 (en) Power Supply and energy efficient Gate Driver
US9362836B2 (en) Circuit for driving synchronous rectifier and power supply apparatus including the same
KR20220100665A (ko) 수전 장치 및 와이어리스 급전 시스템
US11764689B2 (en) Flyback power-converting device with zero-voltage switching and method for flyback converting power with zero-voltage switching
US20200144911A1 (en) Charge pump-based wireless power receiver
GB2524065A (en) Converter
WO2014067522A1 (en) Power factor correction circuit
US10666156B2 (en) Method to dynamically configure and control a power converter for wide input range operation
KR20200097722A (ko) 절연형 스위칭 전원 공급 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal