KR20220098809A - 로봇, 전자 장치 처리 시스템, 기판 이송 방법 - Google Patents

로봇, 전자 장치 처리 시스템, 기판 이송 방법 Download PDF

Info

Publication number
KR20220098809A
KR20220098809A KR1020227022151A KR20227022151A KR20220098809A KR 20220098809 A KR20220098809 A KR 20220098809A KR 1020227022151 A KR1020227022151 A KR 1020227022151A KR 20227022151 A KR20227022151 A KR 20227022151A KR 20220098809 A KR20220098809 A KR 20220098809A
Authority
KR
South Korea
Prior art keywords
forearm
upper arm
wrist member
axis
coupled
Prior art date
Application number
KR1020227022151A
Other languages
English (en)
Other versions
KR102465277B1 (ko
Inventor
마틴 호섹
크리스토퍼 호프마이스터
Original Assignee
퍼시몬 테크놀로지스 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/833,732 external-priority patent/US9149936B2/en
Application filed by 퍼시몬 테크놀로지스 코포레이션 filed Critical 퍼시몬 테크놀로지스 코포레이션
Priority to KR1020227038798A priority Critical patent/KR20220153121A/ko
Publication of KR20220098809A publication Critical patent/KR20220098809A/ko
Application granted granted Critical
Publication of KR102465277B1 publication Critical patent/KR102465277B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0014Gripping heads and other end effectors having fork, comb or plate shaped means for engaging the lower surface on a object to be transported
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/02Arms extensible
    • B25J18/04Arms extensible rotatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0084Programme-controlled manipulators comprising a plurality of manipulators
    • B25J9/0087Dual arms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manipulator (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

구동 장치; 상기 구동 장치에 연결된 제1 아암으로서, 상기 제1 아암은 상기 구동 장치에 직렬로 연결되는 제1 링크, 제2 링크 및 엔드이펙터를 포함하고, 상기 제1 링크와 상기 제2 링크는 상이한 유효 길이들을 가지는, 제1 아암; 및 상기 제1 아암이 신장 또는 수축되는 때에 상기 구동 장치에 대한 상기 엔드이펙터의 직선 움직임만이 실질적으로 제공되도록 상기 제2 링크에 대한 상기 엔드이펙터의 회전을 제한하기 위한 시스템;을 포함하는, 운반 장치.

Description

로봇, 전자 장치 처리 시스템, 기판 이송 방법 {A Robot, An electronic device processing system, and A method of transporting substrates}
개시되는 본 실시례는 상이한 링크 길이들을 가지는 아암을 구비한 로봇에 관한 것이며, 더 구체적으로는 각각 하나 이상의 기판들을 지지하는, 상이한 링크 길이의 하나 이상의 아암들을 구비한 로봇에 관한 것이다.
반도체, LED, 솔라(Solar), MEMS 또는 다른 장치들과 같은 용례들을 위한 진공, 대기, 및 제어된 환경 프로세싱(vacuum, atmospheric and controlled environment processing)은, 기판들 및 기판들에 결부된 캐리어들(carriers)을 저장 위치, 프로세싱 위치, 또는 다른 위치들로 그리고 그 위치들로부터 운반하도록 로봇 공학 및 다른 형태의 자동화를 활용한다. 기판들의 그러한 운반 기기(transport)는, 하나 이상의 기판들을 운반하는 단일 아암들 또는 각각이 하나 이상의 기판들을 운반하는 다수의 아암들로써 기판 군들, 개개의 기판들을 움직일 수 있다. 예를 들어 반도체 제조와 연관된 바와 같은 많은 제조는 궤적(footprint) 및 용적(volume)이 귀한 깨끗한 또는 진공의 환경에서 이루어진다. 게다가 자동화된 운반은 운반 시간의 최소화가 사이클 시간(cycle time)의 감소 및 처리량 증가(increased throughput) 및 연관된 장비의 활용으로 귀결되도록 실시된다. 따라서 주어진 범위의 운반 용례들에 대하여, 최소화된 운반 시간과 함께 최소의 궤적 및 작업 공간 용적을 요하는 기판 운반 자동화를 제공하는 것이 바람직하다.
다음 요약은 단지 예시적인 것으로 의도된다. 그 요약은 청구항들을 한정하는 것으로 의도되지 않았다.
예시적 실시례의 일 양상에 따르면, 운반 장치는, 구동 장치(drive); 상기 구동 장치에 연결된 제1 아암으로서, 상기 제1 아암은 상기 구동 장치에 직렬로 연결되는 제1 링크, 제2 링크 및 엔드이펙터(end effector)를 포함하고, 상기 제1 링크와 상기 제2 링크는 상이한 유효 길이들을 가지는, 제1 아암; 및 상기 제1 아암이 신장(extend) 또는 수축(retract)되는 때에 상기 구동 장치에 대한 상기 엔드이펙터의 직선 움직임만이 실질적으로 제공되도록 상기 제2 링크에 대한 상기 엔드이펙터의 회전을 제한하기 위한 시스템;을 구비한다.
예시적 실시례의 다른 일 양상에 따르면: 구동 장치에 의하여 아암의 제1 링크를 회전시킴; 상기 제1 링크가 회전하는 때에 상기 아암의 제2 링크가 상기 제1 링크 상에서 회전되게 상기 제2 링크를 회전시킴; 및 상기 제1 링크 및 상기 제2 링크는 상이한 유효 길이들을 가지고, 상기 아암이 신장 또는 수축되는 때 엔드이펙터가 상기 구동 장치에 대하여 실질적으로 직선 움직임만 할 수 있게 제한되게끔 상기 제2 링크 상에서 상기 엔드이펙터의 회전이 구속되도록 상기 제2 링크 상에서 상기 엔드이펙터를 회전시킴;을 포함하는 방법이 제안된다.
예시적 실시례의 다른 일 양상에 따르면, 구동 장치; 및 상기 구동 장치에 연결된 아암;이 구비되는 운반 장치로서, 상기 아암은, 제1 관절부에서 상기 구동 장치에 연결되는 제1 링크, 제2 관절부에서 상기 제1 링크에 연결되는 제2 링크, 및 제3 관절부에서 상기 제2 링크에 연결되는 엔드이펙터를 포함하고, 상기 제1 링크는 상기 제1 관절부와 상기 제2 관절부 사이의 제1 길이를 포함하며, 상기 제1 길이는 상기 제2 관절부와 상기 제3 관절부 사이의 상기 제2 링크의 제2 길이와 상이하고, 상기 제3 관절부에서 상기 엔드이펙터의 움직임은, 상기 아암의 신장 또는 수축 동안에 상기 구동 장치의 회전 중심에 대하여 실질적으로 반경방향 직선을 따르도록(track) 구속되는 운반 장치가 제공된다.
전술한 양상들 및 다른 특징들이 첨부된 도면들과 관련되어 아래 설명에서 해설되는바, 그 첨부된 도면들 중에서:
도 1a는 운반 장치의 평면도이며;
도 1b는 운반 장치의 측면도이며;
도 2a는 운반 장치의 평면 부분 개략도이며;
도 2b는 운반 장치의 측단면 부분 개략도이며;
도 3a는 운반 장치의 평면도이며;
도 3b는 운반 장치의 평면도이며;
도 3c는 운반 장치의 평면도이며;
도 4는 그래프 도면이며;
도 5a는 운반 장치의 평면도이며;
도 5b는 운반 장치의 측면도이며;
도 6a는 운반 장치의 평면 부분 개략도이며;
도 6b는 운반 장치의 측단면 부분 개략도이며;
도 7a는 운반 장치의 평면도이며;
도 7b는 운반 장치의 평면도이며;
도 7c는 운반 장치의 평면도이며;
도 8은 그래프 도면이며;
도 9는 운반 장치의 측단면 부분 개략도이며;
도 10a는 운반 장치의 평면도이며;
도 10b는 운반 장치의 측면도이며;
도 11a는 운반 장치의 평면도이며;
도 11b는 운반 장치의 측면도이며;
도 12는 운반 장치의 측단면 부분 개략도이며;
도 13은 운반 장치의 측단면 부분 개략도이며;
도 14a는 운반 장치의 평면도이며;
도 14b는 운반 장치의 평면도이며;
도 14c는 운반 장치의 평면도이며;
도 15a는 운반 장치의 평면도이며;
도 15b는 운반 장치의 측면도이며;
도 16a는 운반 장치의 평면도이며;
도 16b는 운반 장치의 측면도이며;
도 17a는 운반 장치의 평면도이며;
도 17b는 운반 장치의 측면도이며;
도 18은 운반 장치의 측단면 부분 개략도이며;
도 19는 운반 장치의 측단면 부분 개략도이며;
도 20a는 운반 장치의 평면도이며;
도 20b는 운반 장치의 평면도이며;
도 20c는 운반 장치의 평면도이며;
도 21a는 운반 장치의 평면도이며;
도 21b는 운반 장치의 측면도이며;
도 22a는 운반 장치의 평면도이며;
도 22b는 운반 장치의 측면도이며;
도 23은 운반 장치의 측단면 부분 개략도이며;
도 24a는 운반 장치의 평면도이며;
도 24b는 운반 장치의 평면도이며;
도 24c는 운반 장치의 평면도이며;
도 25a는 운반 장치의 평면도이며;
도 25b는 운반 장치의 측면도이며;
도 26a는 운반 장치의 평면도이며;
도 26b는 운반 장치의 평면도이며;
도 26c는 운반 장치의 평면도이며;
도 27a는 운반 장치의 평면도이며;
도 27b는 운반 장치의 측면도이며;
도 28a는 운반 장치의 평면도이며;
도 28b는 운반 장치의 측면도이며;
도 29a는 운반 장치의 평면도이며;
도 29b는 운반 장치의 평면도이며;
도 29c는 운반 장치의 평면도이며;
도 30a는 운반 장치의 평면도이며;
도 30b는 운반 장치의 측면도이며;
도 31a는 운반 장치의 평면도이며;
도 31b는 운반 장치의 측면도이며;
도 32a는 운반 장치의 평면도이며;
도 32b는 운반 장치의 평면도이며;
도 32c는 운반 장치의 평면도이며;
도 32d는 운반 장치의 평면도이며;
도 33a는 운반 장치의 평면도이며;
도 33b는 운반 장치의 측면도이며;
도 34a는 운반 장치의 평면도이며;
도 34b는 운반 장치의 평면도이며;
도 34c는 운반 장치의 평면도이며;
도 35a는 운반 장치의 평면도이며;
도 35b는 운반 장치의 측면도이며;
도 36은 운반 장치의 평면도이며;
도 37a는 운반 장치의 평면도이며;
도 37b는 운반 장치의 측면도이며;
도 38a는 운반 장치의 평면도이며;
도 38b는 운반 장치의 측면도이며;
도 39는 운반 장치의 평면도이며;
도 40a는 운반 장치의 평면도이며;
도 40b는 운반 장치의 측면도이며;
도 41은 운반 장치의 평면도이며;
도 42는 운반 장치의 평면도이며;
도 43a는 운반 장치의 평면도이며;
도 43b는 운반 장치의 측면도이며;
도 44는 운반 장치의 평면도이며;
도 45는 운반 장치의 평면도이며;
도 46a는 운반 장치의 평면도이며;
도 46b는 운반 장치의 측면도이며;
도 47a는 운반 장치의 평면도이며;
도 47b는 운반 장치의 측면도이며;
도 48은 운반 장치의 평면도이며;
도 49는 운반 장치의 평면도이며;
도 50a는 운반 장치의 평면도이며;
도 50b는 운반 장치의 측면도이며;
도 51은 운반 장치의 평면도이며;
도 52a는 운반 장치의 평면도이며;
도 52b는 운반 장치의 측면도이며;
도 53은 운반 장치의 평면도이며;
도 54a는 운반 장치의 평면도이며;
도 54b는 운반 장치의 측면도이며;
도 55a는 운반 장치의 평면도이며;
도 55b는 운반 장치의 평면도이며;
도 55c는 운반 장치의 평면도이며;
도 56a는 운반 장치의 평면도이며;
도 56b는 운반 장치의 측면도이며;
도 57a는 운반 장치의 평면도이며;
도 57b는 운반 장치의 평면도이며;
도 57c는 운반 장치의 평면도이며;
도 58a는 운반 장치의 평면도이며;
도 58b는 운반 장치의 측면도이며;
도 59a는 운반 장치의 평면도이며;
도 59b는 운반 장치의 평면도이며;
도 59c는 운반 장치의 평면도이며;
도 60a는 운반 장치의 평면도이며;
도 60b는 운반 장치의 측면도이며;
도 61a는 운반 장치의 평면도이며;
도 61b는 운반 장치의 평면도이며;
도 61c는 운반 장치의 평면도이며;
도 62는 운반 장치의 평면도이며;
도 63은 예시적인 풀리들(pulleys)을 도시하는 도면이며;
도 64는 운반 장치의 평면도이며;
도 65는 운반 장치의 복제도(copy view)이며;
도 66a는 예시적 기판 운반 로봇의 평면도이며;
도 66b는 예시적 기판 운반 로봇의 측면도이며;
도 67a-67c는 예시적 기판 운반 로봇의 평면도들이며;
도 68a-68b는 예시적 기판 운반 로봇의 평면도들이며;
도 69a는 예시적 기판 운반 로봇의 평면도이며;
도 69b는 예시적 기판 운반 로봇의 측면도이며;
도 70a는 예시적 기판 운반 로봇의 평면 개략도이며;
도 70b는 예시적 기판 운반 로봇의 단면 개략도이며;
도 71a는 예시적 기판 운반 로봇의 평면 개략도이며;
도 71b는 예시적 기판 운반 로봇의 단면 개략도이며;
도 72a-72c는 예시적 기판 운반 로봇의 평면도들이며;
도 73a-73c는 예시적 기판 운반 로봇의 평면도들이며;
도 74a는 예시적 기판 운반 로봇의 평면도이며;
도 74b는 예시적 기판 운반 로봇의 측면도이며;
도 75a는 예시적 기판 운반 로봇의 평면 개략도이며;
도 75b는 예시적 기판 운반 로봇의 단면 개략도이며;
도 76a는 예시적 기판 운반 로봇의 평면 개략도이며;
도 76b는 예시적 기판 운반 로봇의 단면 개략도이며;
도 77a-77c는 예시적 기판 운반 로봇의 평면도들이며;
도 78a-78c는 예시적 기판 운반 로봇의 평면도들이며;
도 79a는 예시적 기판 운반 로봇의 평면도이며;
도 79b는 예시적 기판 운반 로봇의 측면도이며;
도 80a는 예시적 기판 운반 로봇의 평면 개략도이며;
도 80b는 예시적 기판 운반 로봇의 단면 개략도이며;
도 81a-81c는 예시적 기판 운반 로봇의 평면도들이며;
도 82a-62c는 예시적 기판 운반 로봇의 평면도들이며;
도 83a는 예시적 기판 운반 로봇의 평면도이며;
도 83b는 예시적 기판 운반 로봇의 측면도이며;
도 84a는 예시적 기판 운반 로봇의 평면도이며;
도 84b는 예시적 기판 운반 로봇의 측면도이며;
도 85a-85c는 예시적 기판 운반 로봇의 평면도들이며;
도 86a-86c는 예시적 기판 운반 로봇의 평면도들이며;
도 87a는 예시적 기판 운반 로봇의 평면 개략도이며;
도 87b는 예시적 기판 운반 로봇의 단면 개략도이며;
도 88a는 예시적 기판 운반 로봇의 평면 개략도이며;
도 88b는 예시적 기판 운반 로봇의 단면 개략도이며;
도 89a는 예시적 기판 운반 로봇의 평면 개략도이며;
도 89b는 예시적 기판 운반 로봇의 단면 개략도이며;
도 90a는 예시적 기판 운반 장치의 평면도이며;
도 90b는 예시적 기판 운반 장치의 측면도이며;
도 91a는 예시적 기판 운반 장치의 평면도이며; 그리고
도 91b는 예시적 기판 운반 장치의 측면도이다.
아래에서 개시되는 실시례 외에도, 개시된 실시례들에는 다른 실시례들이 있을 수 있으며, 다양한 방식으로 실시 또는 수행될 수 있다. 따라서 그 개시된 실시례들은 그 용례에 있어서, 아래 설명에서 제시되거나 도면들에서 도시된 구성요소들의 배치 및 구성의 상세사항에 한정되지 않는다는 점이 이해될 것이다. 여기에서 일 실시례만이 설명되었다 해도 이 명세서의 청구항들은 그 실시례에 한정될 것은 아니다. 게다가 이 명세서의 청구항들은, 특정한 배제, 한정, 또는 권리불요구(disclaimer)를 명시하는 분명하고 확실한 증거가 없다면 한정적으로 읽힐 것이 아니다.
이제 도 1a 및 1b를 참조하면, 구동 장치(12) 및 아암(14)을 구비한 로봇(10)의 평면도 및 측면도가 각각 도시되어 있다. 아암(14)은 수축된 위치로 도시된다. 아암(14)은, 구동 장치(12)의 회전 중심축(18)을 중심으로 회전가능한 상부 아암 또는 제1 링크(16)를 구비한다. 아암(14)은 회전 엘보 축(22)을 중심으로 회전가능한 전측 아암 또는 제2 링크(20)를 더 구비한다. 아암(14)은 회전 손목 축(26)을 중심으로 회전가능한 엔드이펙터 또는 제3 링크(24)를 더 구비한다. 엔드이펙터(24)는 기판(28)을 지지한다. 설명될 바와 같이, 기판(28)이 (도 1a에 도시된 바와 같이) 일치할 수 있는 반경방향 경로(30), 또는 예컨대 경로(34, 36)인 경로를 따라, 혹은 구동 장치(12)의 회전 중심축(18)과 일치하는 선형 경로(32)에 평행하게 운반되도록, 아암(14)이 구동 장치(12)와 협동(cooperate)하도록 구성된다. 도시된 실시례에서 전측 아암 또는 제2 링크(20)의 관절-대-관절 길이(joint-to-joint length)는 상기 상부 아암 또는 제1 링크(16)의 관절-대-관절 길이보다 크다. 도시된 실시례에서 상기 엔드-이펙터 또는 제3 링크(24)의 측방향 오프셋(38)은 상기 전측 아암(20)의 관절-대-관절 길이와 상부 아암(14)의 관절-대-관절 길이의 차이에 해당된다. 아래에서 더 상세하게 설명될 바와 같이, 선형 경로에 대한 기판(28) 또는 엔드이펙터(24)의 회전 없이 상기 선형 경로를 따라 기판(28)이 움직여지도록, 상기 측방향 오프셋(38)이 아암(14)의 신장 및 수축 동안에 실질적으로 일정하게 유지된다. 이는, 전측 아암(20)에 대한 엔드이펙터(24)의 손목부(26)에서의 회전을 제어하는 추가적으로 제어되는 축(additional controlled axis)의 이용 없이, 설명될 바와 같이 아암(14) 내부의 구조로써 달성된다. 도 1a에 대하여 개시된 실시례의 일 양상에서, 상기 제3 링크 또는 엔드이펙터(24)의 질량 중심은 손목 중심선 또는 회전축(26)에 있을 수 있다. 대안으로서, 상기 제3 링크 또는 엔드이펙터(24)의 질량 중심은 상기 회전 중심축(18)으로부터 오프셋(38)된 경로(40)를 따라 위치할 수 있다. 다른 방식으로는 상기 아암의 신장 및 수축 동안에 오프셋되는 질량의 결과로서 가해질 모멘트로 인한 교란(disturbance)이자, 엔드이펙터(24)를 링크들(16, 18)에 대하여 구속하는 밴드들에 대한 교란이 이 방식으로 최소화될 수 있다. 여기에서 상기 질량 중심은 상기 기판과 함께 하거나 또는 함께 하지 않는 것으로 판별될 수 있거나 또는 그 사이에 있을 수 있다. 대안으로서, 상기 제3 링크 또는 엔드이펙터(24)의 질량 중심은 임의의 적합한 위치에 있을 수 있다. 도시된 실시례에서 기판 운반 장치(10)는 회전 중심축(18) 상에서 구동부(12)에 결합된 가동 아암 조립체(moveable arm assembly; 14)로써 기판(28)을 운반한다. 기판 지지체(substrate support; 24)는 회전 손목 축(26) 상에서 상기 아암 조립체(14)에 결합되는바, 여기에서 아암 조립체(14)는 도 3a 내지 c에 대하여 보여질 바와 같이 신장 및 수축 동안에 회전 중심축(18)을 중심으로 회전한다. 신장 및 수축 동안에 회전 손목 축(26)은 반경방향 경로, 예를 들어 경로(30, 34 또는 36)와 평행하고 혹은 오프셋(38)되는 손목 경로(wrist path; 40)를 따라 상기 회전 중심축(18)에 대하여 움직인다. 유사하게 기판 지지체(24)는 신장 및 수축 동안에 회전 없이 반경방향 경로(30)에 평행하게 움직인다. 개시된 실시례의 다른 양상들에서 더 상세하게 설명될 바에 따르면, 상기 엔드이펙터를 실질적으로 순수하게 반경방향 동작(motion)으로 움직이도록 구속하는 원리들 및 구조는 상기 전측 아암의 길이가 상기 상부 아암의 길이보다 짧은 경우에 적용될 수 있다. 게다가, 그런 특징들은 하나 초과의 기판이 상기 엔드이펙터에 의해 취급되는 경우에 적용될 수 있다. 게다가, 그런 특징들은 제2 아암이 하나 이상의 추가 기판들을 취급하는 상기 구동 장치와 연관되어 이용되는 경우에 적용될 수 있다. 이에 따라 그러한 모든 변형례들이 포섭될 수 있다.
또한 도 2a 및 2b를 참조하면, 도 1a 및 1b에 도시된 아암(14)의 개개의 링크들을 구동하는 데에 이용되는 내부 구성이 도시되는 각각 시스템(10)의 부분 개략 평면도 및 개략 측면도가 도시되어 있다. 구동 장치(12)에는 대응되는 제1 인코더(56) 및 제2 인코더(58)를 갖춘 제1 모터(52) 및 제2 모터(54)가 구비되는바, 그 제1 인코더(56) 및 제2 인코더(58)는 하우징(60)에 결합되고 각각 제1 샤프트(62) 및 제2 샤프트(64)를 구동한다. 여기에서 샤프트(62)는 풀리(pulley; 66)에 결합될 수 있고, 샤프트(64)는 상부 아암(64)에 결합될 수 있는바, 샤프트들(62, 64)은 동심(concentric)이거나 혹은 달리 배치된다. 대안적인 양상들(alternate aspects)에서, 임의의 적합한 구동 장치가 제공될 수 있다. 하우징(60)은 체임버(chamber; 68)와 소통될 수 있는바, 여기에서 벨로즈(bellows; 70), 체임버(68) 및 하우징(60)의 내부 부분은 진공 환경(72)을 대기 환경(74)으로부터 격리한다. 하우징(60)은 슬라이드들(76) 상에서 캐리지(carriage)로서 z 방향으로 슬라이딩할 수 있는바, 여기에서 리드 스크루(lead screw) 또는 다른 적합한 수직 또는 선형 z 구동 장치(vertical or linear Z drive; 78)가 거기에 결합된 하우징(60) 및 아암(14)을 선택적으로 z(80) 방향으로 움직이게 하도록 제공될 수 있다. 도시된 실시례에서 상부 아암(16)은 모터(54)에 의해 회전 중심축(18)을 중심으로 구동된다. 유사하게 전측 아암은, 예컨대 통상의 원형 풀리들 및 밴드들과 같은 풀리들(66, 82) 및 밴드들(bands; 84, 86)을 구비한 밴드 구동 장치를 통하여 모터(52)에 의해 구동된다. 대안적인 양상들에서 상부 아암(16)에 대하여 전측 아암(20)을 구동하도록 임의의 적합한 구조가 제공될 수 있다. 풀리들(66 및 82) 사이의 비율은 1:1, 2:1 또는 임의의 적합한 비율일 수 있다. 상기 엔드-이펙터를 갖춘 제3 링크(24)는 밴드 구동 장치에 의해 구속될 수 있는바, 그 밴드 구동 장치에는, 링크(16)에 기반을 둔(grounded with respect to) 풀리(88), 엔드이펙터 또는 제3 링크(24)에 기반을 둔 풀리(90), 및 밴드들(92, 94)로서 풀리(88) 및 풀리(90)를 구속하는 밴드들(92, 94)이 구비된다. 설명될 바와 같이, 신장 및 수축 동안에 아암(14)의 회전 없이 제3 링크(24)가 반경방향 경로를 따르도록 풀리들(88, 90) 사이의 비율은 일정하지 않을 수 있다. 이는 풀리들(88, 90)이 예컨대 2개의 비원형 풀리들과 같은 하나 이상의 비원형 풀리들일 수 있는 경우에, 또는 풀리들(88, 90) 중 하나는 원형이고 다른 것은 비원형일 수 있는 경우에 성취될 수 있다. 대안으로서, 설명된 바와 같이 제3 링크 또는 엔드이펙터(24)의 경로를 구속하도록 임의의 적합한 결합부(coupling) 또는 연동부(linkage)가 제공될 수 있다. 도시된 실시례에서, 상기 2개의 제1 링크들(16, 20)의 위치에 관계없이 상기 엔드-이펙터(24)가 반경방향(30)을 향하도록, 적어도 하나의 비원형 풀리가 상부 아암(16) 및 전측 아암(20)의 상이한 길이의 효과를 보상(compensate)한다. 그 실시례는 비원형인 풀리(90) 및 원형인 풀리(88)에 대하여 설명될 것이다. 대안으로서, 풀리(88)는 비원형이고 풀리(90)는 원형일 수 있다. 대안으로서, 풀리들(88 및 92)은 비원형이거나 또는 설명된 바와 같이 아암(14)의 링크들을 구속하도록 임의의 적합한 결합부가 제공될 수 있다. 예시로서, 비원형 풀리들 또는 스프로킷들(sprockets)은, 전체가 본 명세서에 참조 병합된 "Noncircular Drive(비원형 구동 장치)"라는 제목의 1989년 9월 12일자 등록된 미국 특허 제4,865,577호에서 설명된다. 대안으로서, 설명된 바와 같이 아암(14)의 링크들을 구속하도록 임의의 적합한 결합부가 제공될 수 있는바, 예를 들어 임의의 적합한 가변비 구동 장치(variable ratio drive) 또는 결합부, 연동 기어들(linkage gears) 또는 스프로킷들, 캠들, 또는 적합한 연동부 또는 다른 결합부와 함께 또는 단독으로 이용되는 다른 것들이 제공될 수 있다. 도시된 실시례에서 엘보 풀리(elbow pulley; 88)는 상부 아암(16)에 결합되고, 둥글거나(round) 원형인 것으로 도시되는바, 여기에서 손목부 또는 제3 링크(24)에 결합된 손목 풀리(90)는 비원형으로 도시된다. 그 손목 풀리 형상은 비원형이고, 반경방향 궤적(30)에 직교하는 선(96)을 중심으로 대칭성을 가질 수 있는바, 예를 들어 도 3b에 도시된 바와 같이 상기 전측 아암(20) 및 상부 아암(16)이 서로 나란하게 되어 손목 축(26)이 어깨 축(18)에 가장 가까이 되는 때에 그 반경방향 궤적(30) 또한, 상기 2개의 풀리들(88, 90) 사이의 선과 일치 또는 평행할 수 있다. 풀리(90)의 형상에 의해, 아암(14)이 신장 및 수축하여 풀리(90)의 대향면들 상에서 확립된 접촉점들(points of tangency; 98, 100)이 회전 손목 축(26)으로부터 변화되는 반경방향 거리들(102, 104)을 가지는 때에 밴드들(92, 94)이 팽팽하게(tight) 유지된다. 예를 들어 도 3b에 도시된 배향에서, 상기 풀리 상의 2개의 밴드들의 접촉점들(98, 100) 각각은 상기 회전 손목 축(26)으로부터 동일한 반경방향 거리(102, 104)에 있다. 이는 개별의 비율들이 도시된 도 4에 관하여 더 설명될 것이다. 아암(14)이 회전하기 위하여, 로봇의 구동 샤프트들(62, 64) 둘 모두는 상기 아암의 회전 방향으로 동일한 양만큼 움직일 필요가 있다. 상기 엔드-이펙터(24)가 직선 경로를 따라 반경방향으로 신장 및 수축하기 위하여, 상기 2개의 구동 샤프트들(62, 64)은, 예를 들어 이 섹션(section) 나중에 제시되는 예시적 역 운동학적 방정식들(inverse kinematic equations)에 따라 조정되는 방식(coordinated manner)으로 움직일 필요가 있다. 여기에서 기판 운반 장치(10)는 기판(28)을 운반하도록 적합화된다. 전측 아암(20)은 상부 아암(16)에 회전가능하게 결합되고, 중심축(18)으로부터 상부 아암 링크 길이만큼 오프셋된 엘보 축(22)을 중심으로 회전가능하다. 엔드이펙터(24)는 전측 아암(20)에 회전가능하게 결합되고, 상기 엘보 축(22)으로부터 전측 아암 링크 길이만큼 오프셋된 손목 축(26)을 중심으로 회전가능하다. 손목 풀리(90)는 상기 엔드이펙터(24)에 고정(fixed)되고 밴드(92, 94)로써 엘보 풀리(88)에 결합된다. 여기에서, 상기 전측 아암 링크 길이는 상기 상부 아암 링크 길이와 상이하고, 상기 엔드이펙터가 상기 엘보 풀리, 상기 손목 풀리 및 상기 밴드에 의하여 상기 상부 아암에 대하여 구속됨으로써, 기판은 상기 중심축(18)에 대한 선형 반경방향 경로(30)를 따라 움직인다. 여기에서 기판 지지체(24)는, 기판 지지체 결합부(92)로써 상기 상부 아암(16)에 결합되고 회전 엘보 축(22)을 중심으로 한 상기 전측 아암(20)과 상기 상부 아암(16) 사이의 상대적 움직임에 의하여 상기 회전 손목 축(26)을 중심으로 구동된다. 도 3a, 3b 및 3c에는 도 1 및 2의 로봇의 신장 동작(extension motion)이 도시된다. 도 3a에는 수축 위치(retracted position)에 있는 상기 아암(14)을 갖춘 로봇(10)의 평면도가 도시된다. 도 3b에는, 상기 상부 아암(16)의 상단부(top) 상에 정렬된 상기 전측 아암(20)과 함께 부분적으로 연장되는 아암(14)이 그려져 있는바, 이는 상기 엔드-이펙터의 측방향 오프셋(38)이 상기 전측 아암(20)의 관절-대-관절 길이와 상기 상부 아암(16)의 관절-대-관절 길이의 차이에 해당된다는 점을 도해한다. 도 3c에는 신장된 위치에서의 상기 아암(14)이 도시되나, 완전히 신장된 것은 아니다.
예시적인 직접 운동학적 특성들(direct kinematics)이 제공될 수 있다. 대안적 양상들에서, 대안적 구조에 해당되는 임의의 적합한 직접 운동학적 특성들이 제공될 수 있다. 다음의 예시적 방정식들은 모터들의 위치의 함수로서 상기 엔드-이펙터의 위치를 결정하는 데에 이용될 수 있다:
x2 = l1 cos θ1 + l2 cos θ2 (1.1)
y2 = l1 sin θ1 + l2 sin θ2 (1.2)
R2 = sqrt(x2 2+y2 2) (1.3)
T2 = atan2(y2,x2) (1.4)
α3 = asin(d3/R2), 여기에서 d3 = l2-l1 (1.5)
α12 = θ1- θ2 (1.6)
α12<π라면: R = sqrt(R2 2-d3 2)+l3, T = T23, 아니라면 R = -sqrt(R2 2-d3 2)+l3, T = T23+π (1.7)
예시적인 역 운동학적 특성들(inverse kinematics)이 제공될 수 있다. 대안적 양상들에서, 대안적 구조에 해당되는 임의의 적합한 역 운동학적 특성들이 제공될 수 있다. 다음의 예시적 방정식들은 상기 엔드-이펙터의 고유 위치(specified position)를 달성하는 상기 모터들의 위치를 결정하는 데에 활용될 수 있다:
x3 = R cos T (1.8)
y3 = R sin T (1.9)
x2 = x3-l3 cos T+d3 sin T (1.10)
y2 = y3-l3 sin T-d3 cos T (1.11)
R2 = sqrt(x2 2+y2 2) (1.12)
T2 = atan2(y2,x2) (1.13)
α1 = acos((R2 2+l1 2-l2 2)/(2 R2 l1)) (1.14)
α2 = acos((R2 2-l1 2+l2 2)/(2 R2 l2)) (1.15)
R>l3라면, θ1 = T2+ α1, θ2 = T2- α2, 아니라면: θ1 = T2- α1, θ2 = T2+ α2 (1.16)
상기 운동학적 방정식들에서 다음의 표기(nomenclature)가 이용될 수 있다:
d3 = 엔드-이펙터의 측방향 오프셋 (m)
l1 = 제1 링크의 관절-대-관절 길이 (m)
l2 = 제2 링크의 관절-대-관절 길이 (m)
l3 = 손목 관절부로부터 엔드-이펙터 상의 기준점까지 측정된, 엔드-이펙터를 갖춘 제3 링크의 길이 (m)
R = 엔드-이펙터의 반경방향 위치 (m)
R2 = 손목 관절부의 반경방향 좌표 (m)
T = 엔드-이펙터의 각위치 (rad)
T2 = 손목 관절부의 각좌표 (rad)
x2 = 손목 관절부의 x-좌표 (m)
x3 = 엔드-이펙터의 x-좌표 (m)
y2 = 손목 관절부의 y-좌표 (m)
y3 = 엔드-이펙터의 y-좌표 (m)
θ1 = 제1 링크에 결합된 구동 샤프트의 각위치 (rad)
θ2 = 제2 링크에 결합된 구동 샤프트의 각위치 (rad).
위 예시적 운동학적 방정식들은, 상기 아암(14)의 2개의 제1 링크들(16, 20)의 위치에 관계없이 상기 엔드-이펙터(24)가 반경방향(30)을 향하도록 상기 제3 링크(24)의 배향을 구속하는 적합한 구동 장치, 예를 들어 밴드 구동 장치를 설계하는 데에 이용될 수 있다. 도 4를 참조하면 상기 밴드 구동 장치의 전달비(transmission ratio; r31)(122)의 그래프(plot; 120)가 도시되어 있는바, 상기 밴드 구동 장치는, 상기 로봇의 중심으로부터 상기 엔드-이펙터의 근저(root)까지 측정된 상기 아암의 정규화된 신장(normalized extension), 즉 (R-l3)/l1의 함수로서 상기 제3 링크의 배향을 구속한다. 그 전달비(r31)는 상기 제3 링크에 부착된 풀리의 각속도(ω32)의 상기 제1 링크에 부착된 풀리의 각속도(ω12)에 대한 비율로서 정의되는바, 그 각속도들 둘 모두는 상기 제2 링크에 상대적으로 정의된다. 상기 도면은 (0.1의 증분을 가지고 0.5부터 1.0까지의, 그리고 0.2의 증분을 가지고 1.0으로부터 2.0까지의) 상이한 l2/l1에 대한 전달비(r31)를 그래프로 도시한다. 도 4에 따른 전달비(r31)를 달성하도록 하는 비원형 풀리(들)의 프로파일(profile)이 계산될 수 있는바, 예를 들어 도 2a, 54a 및 54b에 그려진 프로파일이다.
개시된 실시례에서, 상기 엔드이펙터의 동작을 구속하는 하나 이상의 비원형 풀리(들) 또는 다른 적합한 장치의 이용으로써, 동일한 격납 용적(same containment volume)을 가지고도 동일-링크 아암(equal-link arm)에 비하여 더 긴 도달거리(reach)가 얻어질 수 있다. 대안적 양상들에서 상기 제1 링크는, 모터에 의하여 직접적으로 또는 임의의 종류의 결합 또는 전달(coupling or transmission) 구성을 통하여 구동될 수 있다. 여기에서, 임의의 적합한 전달비가 이용될 수 있다. 대안으로서, 상기 제2 링크를 작동(actuate)시키는 상기 밴드 구동 장치는 균등한 기능성을 갖춘 임의의 다른 구성, 예컨대 벨트 구동 장치, 케이블 구동 장치, 기어 구동 장치, 연동-기반 메커니즘(linkage-based mechanism) 또는 상기한 것의 임의의 조합에 의해 대체될 수 있다. 유사하게, 상기 제3 링크를 구속하는 상기 밴드 구동 장치는 임의의 다른 적합한 구성, 예컨대 벨트 구동 장치, 케이블 구동 장치, 비원형 기어들, 연동-기반 메커니즘 또는 상기한 것의 임의의 조합에 의해 대체될 수 있다. 그러나 여기에서 상기 엔드-이펙터는 반경방향을 향할 필요가 없다. 예를 들어, 상기 엔드이펙터는 상기 제3 링크에 대하여 임의의 적합한 오프셋을 가진 채 위치되고 임의의 적합한 방향을 향할 수 있다. 게다가, 대안적 양상들에서 상기 제3 링크는 하나 초과의 엔드-이펙터 또는 기판을 보유(carry)할 수 있다. 임의의 적합한 개수의 엔드-이펙터들 및/또는 재료 홀더들(material holders)이 상기 제3 링크에 의해 보유될 수 있다. 게다가 대안적 양상들에서, 상기 전측 아암의 관절-대-관절 길이는 상기 상부 아암의 관절-대-관절 길이보다 작을 수 있는바, 예를 들어 도 4에서 l2/l1 < 1로 표현되는 것으로 보여지는 바와 같고, 도 25 내지 34 및 43 내지 53에 관하여 보여지고 설명되는 바와 같다.
이제 5a 및 5b를 참조하면, 로봇(10)의 몇몇 특징들을 포함하는 로봇(150)의 평면도 및 측면도가 각각 도시되어 있다. 로봇(150)은, 수축된 위치로 도시된 아암(152)을 갖춘 구동 장치(12)를 구비하는 것으로 보여진다. 아암(152)은 여기에서 설명되는 것을 제외하고는 아암(14)의 특징과 유사한 특징들을 가진다. 예시로서, 전측 아암 또는 제2 링크(158)의 관절-대-관절 길이는 상부 아암 또는 제1 링크(154)의 관절-대-관절 길이보다 크다. 유사하게, 엔드-이펙터 또는 제3 링크(162)의 측방향 오프셋(168)은 상기 전측 아암(158)의 관절-대-관절 길이와 상기 상부 아암(154)의 관절-대-관절 길이의 차이에 해당된다. 또한 도 6a 및 6b를 참조하면, 상기 아암의 개개의 링크들을 구동하는 데에 이용되는 내부 구성(internal arrangements)을 갖춘 구동 장치(150)가 도시되어 있다. 도시된 실시례에서, 상부 아암(154)은 도 1 및 2의 아암(14)에 대하여 설명된 바와 같이 샤프트(64)를 통하여 하나의 모터에 의해 구동된다. 유사하게, 엔드이펙터 또는 제3 링크(162)는 비원형 풀리 구성에 의하여 상부 아암(154)에 대해 구속되는바, 도 1 및 2의 아암(14)에 대하여 설명된 바와 같다. 아암(152)과 아암(14) 사이의 예시적 차이가 보여지는바, 여기에서 전측 아암(158)은 적어도 하나의 비원형 풀리를 갖춘 밴드 구성(band arrangement)을 통하여 샤프트(62) 및 구동 장치(12)의 다른 모터에 결합된다. 여기에서, 그 결합 또는 밴드 구성은 본 명세서에 설명되거나 도 1 및 2의 풀리 구동 장치(88, 90)에 대하여 설명된 바와 같은 특징들을 가질 수 있다. 상기 결합 또는 밴드 구성은, 구동 장치(12)의 샤프트(62)에 결합된 비원형 풀리(202)를 가지고, 샤프트(62)를 갖는 축(18)을 중심으로 회전가능하다. 아암(152)의 밴드 구성은, 상부 아암 링크(158)에 결합되고 엘보 축(156)을 중심으로 회전가능한 원형 풀리(204)를 더 구비한다. 원형 풀리(204)는 밴드들(206, 208)을 통하여 비원형 풀리(202)에 결합되는바, 여기에서 밴드들(206, 208)은 비원형 풀리(202)의 프로파일 덕분에 팽팽하게 유지될 수 있다. 대안적 양상들에서 풀리들 또는 다른 적합한 전달부(transmission)의 임의의 조합이 제공될 수 있다. 풀리들(202 및 204) 및 밴드들(206, 208)이 협동함으로써, 풀리(202)에 상대적인 상부 아암(154)의 회전은(예를 들어 상부 아암(154)이 회전하는 동안에 풀리(202)는 정지 상태로 유지됨) 손목 관절부(160)가 상기 엔드-이펙터의 원하는 반경방향 경로(180)에 평행하고 상기 경로(180)로부터 오프셋되는(168) 직선을 따라 신장 및 수축하게 한다. 여기에서, 상기 엔드-이펙터를 갖춘 제3 링크(162)는, 예를 들어 적어도 하나의 비원형 풀리를 가진 아암(14)에 대하여 설명된 바와 같이 밴드 구동 장치에 의해 구속됨으로써, 상기 엔드-이펙터는 2개의 제1 링크들(154, 158)의 위치들에 관계없이 반경방향(18)을 향한다. 여기에서, 설명된 바와 같이 아암(14)의 링크들을 구속하도록 임의의 적합한 결합부가 제공될 수 있는바, 예를 들어 임의의 적합한 가변비 구동 장치 또는 결합부, 연동 기어들 또는 스프로킷들, 캠들, 또는 적합한 연동부 또는 다른 결합부와 함께 또는 단독으로 이용되는 다른 것들이 제공될 수 있다. 도시된 실시례에서 엘보 풀리(204)는 전측 아암(158)에 결합되고 둥글거나 원형인 것으로 도시되는바, 여기에서 샤프트(62)에 결합된 어깨 풀리(202)는 비원형으로 도시된다. 그 샤프트 풀리 형상은 비원형이고, 반경방향 궤적(180)에 직교하는 선(218)을 중심으로 대칭성을 가질 수 있는바, 예를 들어 도 7b에 도시된 바와 같이 상기 전측 아암(158) 및 상부 아암(154)이 서로 나란하게 되어 손목 축(160)이 어깨 축(18)에 가장 가까이 되는 때에 그 반경방향 궤적(180) 또한, 상기 2개의 풀리들(202, 204) 사이의 선과 일치 또는 평행할 수 있다. 풀리(202)의 형상에 의해, 아암(152)이 신장 및 수축하여 풀리(202)의 대향면들 상에서 확립된 접촉점들(210, 212)이 어깨 회전축(18)으로부터 변화되는 반경방향 거리들(214, 216)을 가지는 때에 밴드들(206, 208)이 팽팽하게(tight) 유지된다. 예를 들어 도 7b에 도시된 배향에서, 상기 풀리 상의 2개의 밴드들의 접촉점들(210, 212) 각각은 상기 어깨 회전축(18)으로부터 동일한 반경방향 거리(210, 212)에 있다. 이는 개별의 비율들이 도시된 도 8에 관하여 더 설명될 것이다. 아암(152)이 회전하기 위하여, 상기 로봇의 구동 샤프트들(62, 64) 둘 모두는 상기 아암의 회전 방향으로 동일한 양만큼 움직일 필요가 있다. 상기 엔드-이펙터(162)가 직선 경로를 따라 반경방향으로 신장 및 수축하기 위하여, 상기 2개의 구동 샤프트들(62, 64)은, 예를 들어 이 섹션 나중에 제시되는 예시적 역 운동학적 방정식들에 따라 조정되는 방식으로 움직일 필요가 있는바, 예를 들어 상기 상부 아암에 결합된 구동 샤프트는 다른 모터가 정지 상태로 유지되는 동안에, 아래에 제시되는 역 운동학적 방정식들에 따라 움직일 필요가 있다. 도 7a, 7b 및 7c에는 도 5 및 6의 로봇(150)의 신장 동작이 도시된다. 도 7a에는 수축 위치에 있는 상기 아암(152)을 갖춘 상기 로봇의 평면도가 도시된다. 도 7b에는, 상기 상부 아암의 상단부 상에 정렬된 상기 전측 아암과 함께 부분적으로 연장되는 아암이 그려져 있는바, 이는 상기 엔드-이펙터(162)의 측방향 오프셋(168)이 상기 전측 아암(158)의 관절-대-관절 길이와 상기 상부 아암(154)의 관절-대-관절 길이의 차이에 해당된다는 점을 도해한다. 도 7c에는, 완전히 신장된 것은 아니지만 신장된 위치에서의 상기 아암이 도시된다.
예시적인 직접 운동학적 특성들이 제공될 수 있다. 대안적 양상들에서, 대안적 구조에 해당되는 임의의 적합한 직접 운동학적 특성들이 제공될 수 있다. 다음의 예시적 방정식들은 모터들의 위치의 함수로서 상기 엔드-이펙터의 위치를 결정하는 데에 이용될 수 있다:
d1 = l1 sin(θ1 - θ2) (2.1)
1 - θ2)<π/2라면: θ2l = θ2 - l2 asin((d1 + d3)/l2), 아니라면 θ2l = θ2 + l2 asin((d1 + d3)/l2)+ π (2.2)
x2 = l1 cos θ1 + l2 cos θ2l (2.3)
y2 = l1 sin θ1 +l2 sin θ2l (2.4)
R2 = sqrt(x2 2+y2 2) (2.5)
T2 = atan2(y2,x2) (2.6)
1 - θ2)<π/2라면: R = sqrt(R2 2-d3 2)+l3, T = θ2, 아니라면 R = -sqrt(R2 2-d3 2)+l3, T = θ2 (2.7)
예시적인 역 운동학적 특성들이 제공될 수 있다. 대안적 양상들에서, 대안적 구조에 해당되는 임의의 적합한 역 운동학적 특성들이 제공될 수 있다. 다음의 예시적 방정식들은 상기 엔드-이펙터의 고유 위치를 달성하는 상기 모터들의 위치를 결정하는 데에 활용될 수 있다:
x3 = R cos T (2.8)
y3 = R sin T (2.9)
x2 = x3-l3 cos T+d3 sin T (2.10)
y2 = y3-l3 sin T-d3 cos T (2.11)
R2 = sqrt(x2 2+y2 2) (2.12)
T2 = atan2(y2,x2) (2.13)
α1 = acos((R2 2+l1 2-l2 2)/(2 R2 l1)) (2.14)
R>l3라면: θ1 = T2+ α 1, θ2 = T, 아니라면: θ1 = T2- θ1, θ2 = T (2.15)
상기 운동학적 방정식들에서 다음의 표기가 이용될 수 있다:
d3 = 엔드-이펙터의 측방향 오프셋 (m)
l1 = 제1 링크의 관절-대-관절 길이 (m)
l2 = 제2 링크의 관절-대-관절 길이 (m)
l3 = 손목 관절부로부터 엔드-이펙터 상의 기준점까지 측정된, 엔드-이펙터를 갖춘 제3 링크의 길이 (m)
R = 엔드-이펙터의 반경방향 위치 (m)
R2 = 손목 관절부의 반경방향 좌표 (m)
T = 엔드-이펙터의 각위치 (rad)
T2 = 손목 관절부의 각좌표 (rad)
x2 = 손목 관절부의 x-좌표 (m)
x3 = 엔드-이펙터의 x-좌표 (m)
y2 = 손목 관절부의 y-좌표 (m)
y3 = 엔드-이펙터의 y-좌표 (m)
θ1 = 제1 링크에 결합된 구동 샤프트의 각위치 (rad)
θ2 = 제2 링크에 결합된 구동 샤프트의 각위치 (rad).
위 예시적 운동학적 방정식들은, 상기 상부 아암(154)의 회전에 의해 상기 손목 관절부(160)가 상기 엔드-이펙터(162)의 원하는 반경방향 경로(180)에 평행한 직선을 따라 신장 및 수축함이 야기되도록, 상기 제2 링크(158)를 제어하는 밴드 구동 장치를 설계하는 데에 이용될 수 있다.
이제 도 8을 참조하면, 상기 밴드 구동 장치의 전달비(transmission ratio; r20)(272)를 보여주는 그래프(270)가 도시되어 있는바, 상기 밴드 구동 장치는, 상기 로봇의 중심으로부터 상기 엔드-이펙터의 근저까지 측정된 상기 아암의 정규화된 신장(normalized extension), 즉 (R-l3)/l1의 함수로서 상기 제2 링크를 구동한다. 그 전달비(r20)는 상기 제2 링크에 부착된 풀리의 각속도(ω21)의 제2 모터에 부착된 풀리의 각속도(ω01)에 대한 비율로서 정의되는바, 그 각속도들 둘 모두는 상기 제1 링크에 상대적으로 정의된다. 상기 도면에는 상이한 l2/l1에 대한 전달비(r20)가 그래프로 도시된다.
상기 제2 링크를 구동하는 밴드 구동 장치에 대한 비원형 풀리(들)의 프로파일은 도 8에 따라 전달비(r20)(272)를 달성하도록 계산된다. 예시 풀리 프로파일은 도 6a에 그려지며, 도 55a 및 55b에 대하여 설명될 바와 같다.
상기 제3 링크(168)의 배향을 구속하는 밴드 구동 장치의 전달비(r31)는 도 1 및 2의 실시례에 대하여 도 4에 도시된 바와 같을 수 있다. 그 전달비(r31)는 상기 제3 링크에 부착된 풀리의 각속도(ω32)의, 상기 제1 링크에 부착된 풀리의 각속도(ω12)에 대한 비율로서 정의되는바, 그 각속도들 둘 모두는 상기 제2 링크에 상대적으로 정의된다. 상기 도면은 (0.1의 증분을 가지고 0.5부터 1.0까지의, 그리고 0.2의 증분을 가지고 1.0으로부터 2.0까지의) 상이한 l2/l1에 대한 전달비(r31)를 그래프로 도시한다. 도 4에 따른 전달비(r31)를 달성하도록 상기 제3 링크(162)를 구속하는 상기 밴드 구동 장치에 대한 상기 비원형 풀리(들)의 프로파일이 계산될 수 있다. 예시 풀리 프로파일이 도 6a에 그려져 있다.
그 도시된 실시례에서, 설명된 바와 같이 상기 엔드이펙터를 구속하는 비원형 풀리들 또는 다른 적합한 메커니즘의 이용으로, 동일한 격납 용적(same containment volume)을 가지는 동일-링크 아암(equal-link arm)에 비하여 더 긴 도달거리(reach)가 얻어질 수 있다. 도 1 및 2에 개시된 실시례에 비교하면, 비원형 풀리들을 가지는 하나 이상의 밴드 구동 장치가 어깨 축(18)에 있는 통상의 구동 장치를 대신할 수 있다. 대안적 양상들에서 상기 제1 링크는, 모터에 의하여 직접적으로 또는 임의의 종류의 결합 또는 전달(coupling or transmission) 구성을 통하여 구동될 수 있는바, 예를 들어 임의의 적합한 전달비가 이용될 수 있다. 대안으로서, 상기 제2 링크를 작동시키고 상기 제3 링크를 구속하는 밴드 구동 장치들은 균등한 기능성을 갖춘 임의의 다른 구성, 예컨대 벨트 구동 장치, 케이블 구동 장치, 비원형 기어들, 연동-기반 메커니즘 또는 상기한 것의 임의의 조합에 의해 대체될 수 있다. 또한 상기 제3 링크는, 상기 제3 링크를 상기 제2 모터에 의해 구동되는 풀리에 동기화(synchronize)시키는 통상의 2단 밴드 구성(two stage band arrangement)을 통하여, 상기 엔드-이펙터를 반경방향으로 유지하도록 구속될 수 있는바, 도 9에 도시된 바와 같다. 대안으로서, 상기 2단 밴드 구성은 예컨대 벨트 구동 장치, 케이블 구동 장치, 기어 구동 장치, 연동-기반 메커니즘 또는 상기한 것의 임의의 조합과 같은 임의의 다른 적합한 구성에 의해 대체될 수 있다. 그러나, 덧붙여, 상기 엔드-이펙터는 반경방향을 향할 필요는 없을 수 있다. 예를 들어, 상기 엔드이펙터는 상기 제3 링크에 대하여 임의의 적합한 오프셋을 가진 채 위치되고 임의의 적합한 방향을 향할 수 있다. 대안적 양상들에서 상기 제3 링크는 하나 초과의 엔드-이펙터 또는 기판을 보유(carry)할 수 있다. 여기에서 임의의 적합한 개수의 엔드-이펙터들 및/또는 재료 홀더들(material holders)이 상기 제3 링크에 의해 보유될 수 있다. 게다가 상기 전측 아암의 관절-대-관절 길이는 상기 상부 아암의 관절-대-관절 길이보다 작을 수 있는바, 예를 들어 도 8에서 l2/l1 < 1로 표현되는 바와 같다.
이제 도 9를 참조하면, 대안적 로봇(300)이 도시되어 있는바, 여기에서 제3 링크는, 상기 제3 링크를 제2 모터에 의해 구동되는 풀리에 동기화시키는 통상의 2단 밴드 구성을 통하여 엔드-이펙터를 반경방향으로 유지하도록 구속될 수 있다. 로봇(300)은 구동 장치(12) 및 아암(302)을 구비한 것으로 도시된다. 아암(302)은, 샤프트(64)에 결합되며 중심 또는 어깨 축(18)을 중심으로 회전가능한 상부 아암 또는 제1 링크(304)를 구비할 수 있다. 아암(302)에는 엘보 축(306)에서 상부 아암(304)에 회전가능하게 결합되는 전측 아암 또는 제2 링크(308)가 구비된다. 링크들(304, 308)은 앞서 설명된 바와 같이 상이한 길이들을 가질 수 있다. 제3 링크 또는 엔드이펙터(312)는 손목 축(310)에서 상기 제2 링크 또는 전측 아암(308)에 회전가능하게 결합되는바, 여기에서 엔드이펙터(312)는 앞서 설명된 바와 같은 상이한 링크 길이들을 가지는 링크들(304, 308)로써 기판(28)을 반경방향 경로를 따라 회전 없이 운반할 수 있다. 도시된 실시례에서 샤프트(62)는 2개의 풀리들(314, 316)에 결합되는바, 여기에서 풀리(314)는 원형일 수 있으며 풀리(316)는 비원형일 수 있다. 여기에서, 원형 풀리(314)는, 상기 제3 링크(312)를 샤프트(314)에 의해 구동되는 풀리에 동기화시키는 통상의 2단(318, 320) 원형 밴드 구성을 통하여 상기 엔드-이펙터(312)를 반경방향으로 유지하도록 상기 제3 링크(312)를 구속한다. 2단 구성(318, 320)은, 밴드들(322)에 의해 엘보 풀리(324)에 결합되는 풀리(314)를 구비하고, 상기 엘보 풀리(324)는 엘보 풀리(326)에 연결되는바, 엘보 풀리(326)는 밴드들(330)을 통하여 손목 풀리(328)에 결합된다. 전측 아암(308)은, 원형이고 밴드들(334)을 통하여 어깨 풀리(316)에 결합될 수 있는 엘보 풀리(332)를 더 구비할 수 있는바, 여기에서 어깨 풀리는 비원형이고 풀리(314) 및 샤프트(62)에 결합될 수 있다.
개시된 실시례는, 추가적인 축을 가진 로봇 구동 장치들을 구비한 로봇들에 대하여 더 구체화(embodied)될 수 있는바, 여기에서 상기 로봇 구동 장치에 결합된 아암들은, 하나 이상의 기판들을 보유할 수 있는 독립적으로 작동가능한 추가 엔드이펙터들을 가질 수 있다. 예시로서, 2개의 독립적으로 작동가능한 아암 연동부들 (arms linkages) 또는 "이중 아암(dual arm)" 구성들을 갖춘 아암들이 제공될 수 있는바, 여기에서 독립적으로 작동가능한 아암 각각은 하나, 둘, 또는 임의의 적합한 개수의 기판들을 지지하도록 적합화된 엔드이펙터를 구비할 수 있다. 여기에서, 그리고 아래에서 설명될 바와 같이, 독립적으로 작동가능한 아암 각각은 상이한 링크 길이를 가지는 제1 링크 및 제2 링크를 구비할 수 있는바, 여기에서 상기 엔드이펙터 및 상기 링크들에 결합된 지지되는 기판은 위에서 설명된 바와 같이 작동되고 이동(track)한다. 여기에서, 기판 운반 장치는 제1 기판 및 제2 기판을 운반할 수 있으며, 공통 회전축 상에서 구동부에 결합되는 제1 독립 가동(independently moveable) 아암 조립체 및 제2 독립 가동 아암 조립체를 구비한다. 제1 기판 지지체 및 제2 기판 지지체는 제1 회전 손목 축 및 제2 회전 손목 축 상에서 상기 제1 아암 조립체 및 상기 제2 아암 조립체에 각각 결합된다. 신장 및 수축 동안에 상기 제1 아암 조립체 및 상기 제2 아암 조립체 중 하나 또는 둘 모두는 공통 회전축을 중심으로 회전한다. 신장 및 수축 동안에 상기 제1 회전 손목 축 및 제2 회전 손목 축은, 상기 공통 회전축에 대하여 반경방향 경로로부터 오프셋되고 상기 반경방향 경로에 평행한 제1 손목 경로 및 제2 손목 경로를 따라 움직인다. 신장 및 수축 동안에 상기 제1 기판 지지체 및 제2 기판 지지체는 회전 없이 상기 반경방향 경로에 평행하게 움직인다. 개시된 실시례에 관하여 다수의 독립적으로 작동가능한 아암들이 구비되는 변형례들이 아래에 제공되는바, 대안적 양상들에서 임의의 적합한 특징들의 조합이 제공될 수 있다.
이제 도 10a 및 10b를 참조하면, 이중 아암 구성을 갖춘 로봇(350)의 평면도 및 측면도가 각각 도시되어 있다. 로봇(350)에는, 공통 상부 아암(354)을 가지는 아암(352), 및 독립적으로 작동가능한 전측 아암들(356, 358)이 구비되는바, 그 전측 아암들(356, 358) 각각은 개별적으로 엔드이펙터들(360, 362)을 구비한다. 도시된 실시례에서 두 연동부들 모두가 수축된 위치로 도시되어 있다. 상기 엔드-이펙터들의 측방향 오프셋(366)은, 상기 전측 아암(354)의 관절-대-관절 길이와 상부 아암들(356, 358)의 관절-대-관절 길이의 차이에 해당된다. 도시된 실시례에서 상기 상부 아암들은 동일한 길이를 가질 수 있으며 상기 전측 아암보다 길다. 게다가 엔드이펙터들(360, 362)은 전측 아암들(356, 358) 위에 위치된다. 이제 도 11a 및 11b를 참조하면, 대안적 구성으로 된 아암을 갖춘 로봇(375)의 평면도 및 측면도가 각각 도시된다. 도시된 실시례에서 아암(377)은 도 10a 및 10b에 대하여 설명된 바와 같은 특징들을 가질 수 있는바, 두 연동부들 모두는 수축된 위치들로 도시되어 있다. 이 구성에서 상부 연동부의 엔드-이펙터(382)와 상기 제3 링크는 상기 전측 아암(380) 하면에 매달려서, 2개의 엔드-이펙터들(382, 384) 사이의 수직 이격(vertical spacing)이 감소된다. 여기에서, 도 10a 및 10b의 구성의 상단(top) 엔드-이펙터(360)를 점강(step down; 368)시킴으로써 유사한 효과가 달성될 수 있다. 또한 도 12 및 13을 참조하면 도 10 및 11의 아암들의 개개의 링크들을 각각 구동하는 데에 이용되는 로봇들(350, 375)의 내부 구성들이 각각 도시되어 있다. 도시된 실시례에서 구동 장치(390)는 제1 구동 모터(392), 제2 구동 모터(394) 및 제3 구동 모터(396)를 구비할 수 있는바, 상기 제1 구동 모터, 제2 구동 모터, 제3 구동 모터는 각각 동심의 샤프트들(398, 400, 402)을 구동하는 회전자 고정자 구성(rotor stator arrangements)일 수 있으며, 각각 위치 인코더들(position encoders; 404, 406, 408)을 구비한다. Z 구동 장치(410)는 수직 방향으로 상기 모터들을 구동할 수 있는바, 여기에서 상기 모터들은 하우징(412) 내에 부분적으로 또는 완전히 담길 수 있으며, 벨로즈(414)가 하우징(412)의 내부 용적을 체임버(416)에 밀봉하고, 체임버(416)의 내부 용적 및 내부는 진공 혹은 달리 격리된 환경과 같은 격리 환경(isolated environment) 내에서 작동할 수 있다. 도시된 실시례에서, 상기 공통 상부 아암(354)은 하나의 모터(396)에 의해 구동된다. 상기 2개의 전측 아암들(356, 358) 각각은, 상부 아암(354)의 엘보(elbow)에서 공통축(420) 상에서 피봇되며, 통상의 풀리들을 가질 수 있는 밴드 구동 장치들(422, 424) 각각을 통하여 모터들(394, 396) 각각에 의하여 독립적으로 구동된다. 상기 엔드-이펙터들(360, 362)을 갖춘 상기 제3 링크들은 적어도 하나의 비원형 풀리가 각각 갖춰지는 각각 밴드 구동 장치들(426, 428)에 의하여 구속되는바, 이는 상기 상부 아암들 및 전측 아암들의 상이한 길이들의 효과를 보상한다. 여기에서 상기 연동부들 각각의 밴드 구동 장치들은 도 1 및 2에 대하여 설명된 방법론을 이용하여 설계될 수 있으며, 여기에서 도 1 및 2에 대하여 제시된 운동학적 방정식들도 상기 이중 아암의 2개의 연동부들 각각에 대하여 이용될 수 있다. 상기 아암이 회전하기 위하여 상기 로봇의 모든 3개의 구동 샤프트들(398, 400, 402)이 상기 아암의 회전 방향으로 동일한 양만큼 움직일 필요가 있다. 상기 엔드-이펙터들 중 하나가 직선 경로를 따라 반경방향으로 신장 및 수축하기 위하여, 활성(active) 엔드이펙터에 결부된 전측 아암에 결합된 구동 샤프트, 및 상기 공통 상부 아암의 구동 샤프트는 도 1 및 2에 대한 역 운동학적 방정식들에 따라 조정되는 방식으로 움직일 필요가 있다. 이와 동시에, 다른 전측 아암에 결합된 구동 샤프트는, 비활성(inactive) 엔드-이펙터가 수축된 채로 유지되도록 상기 공통 상부 아암의 구동 샤프트에 맞춰서(in synch with) 회전할 필요가 있다. 또한 도 14a, 14b 및 14c를 참조하면, 상부 연동부 및 하부 연동부가 신장됨에 따른 도 11a 및 11b의 아암이 도시되어 있다. 여기에서 활성 연동부(358, 362)가 신장되는 동안에 비활성 연동부(356, 360)는 회전한다. 예시로서, 상기 하부 연동부(356, 360)가 신장됨에 따라 상기 상부 연동부(358, 362)가 회전하고 상기 상부 연동부(358, 362)가 신장됨에 따라 상기 하부 연동부(356, 360)가 회전한다. 도 10 및 11의 개시된 실시례에서, 준비(set up) 및 제어가 단순화될 수 있는바, 여기에서 동적 밀봉(dynamic seals)이 없는 동심축 구동 장치 상에서 상기 아암 구성이 이용될 수 있는 동시에, 동일한 격납 용적을 가지는 동일-링크 길이 아암들에 비하여 더 긴 도달거리가 제공된다. 여기에서, 상기 엔드-이펙터들 중 임의의 것을 지지하는 데에 브릿지(bridge)가 이용되지 않는다. 도시된 실시례에서 활성 아암이 신장되는 동안에 비활성 아암은 회전한다. 손목 관절부들 중 하나는 (동일-링크 구성(equal-link arrangement)에서보다 웨이퍼(wafer)에 더 가까이) 하부 엔드-이펙터 위에서 통행(travel)한다.
이제 도 15a 및 15b를 참조하면, 이중 아암 구성을 갖춘 로봇(450)의 평면도 및 측면도가 각각 도시되어 있다. 로봇(450)에는, 공통 상부 아암(454)을 구비한 아암(452), 및 독립적으로 작동가능한 전측 아암들(456, 458)이 구비되는바, 상기 독립적으로 작동가능한 전측 아암들(456, 458) 각각은 엔드이펙터들(460, 462)을 구비한다. 도시된 실시례에서, 두 연동부들 모두는 수축된 위치로 도시된다. 상기 엔드-이펙터들의 측방향 오프셋(466)은 상기 전측 아암(454)의 관절-대-관절 길이와 상부 아암들(456, 458)의 관절-대-관절 길이의 차이에 해당한다. 도시된 실시례에서, 상기 상부 아암들은 동일한 길이를 가지고 상기 전측 아암보다 길 수 있다. 게다가 엔드이펙터들(460, 462)은 전측 아암들(456, 458) 위에 위치된다. 또 도 16a 및 16b를 참조하면, 대안적 구성으로 된 아암을 갖춘 로봇(475)의 평면도 및 측면도가 도시된다. 역시, 두 연동부들 모두 수축된 위치로 도시된다. 이 구성에서 좌측 연동부의 엔드-이펙터(482) 및 제3 링크는 상기 전측 아암(480) 하면에 매달려 2개의 엔드-이펙터들(482, 484) 사이의 수직 이격을 감소시킨다. 도 15a 및 15b의 구성의 상단 엔드-이펙터를 점강(468)시킴으로써 유사한 효과가 달성될 수 있다. 대안으로서, 브릿지(bridge)가 상기 엔드-이펙터들 중 하나를 지지하는 데에 이용될 수 있다. 결합된 상부 아암 링크(454)는 도 15 및 16에 그려진 바와 같이 일단편(single piece)일 수 있으며, 또는 상기 결합된 상부 아암 링크(454)는 도 17a 및 17b의 예시에 도시된 바와 같이 2개 이상의 부위들(sections)(470, 472)에 의해 형성될 수 있다. 여기에서 2-부위 설계가 재료를 덜 이용하는 더 가벼운 재료로서 제공될 수 있는바, 좌측 부위(472) 및 우측 부위(470)는 동일한 구성요소들일 수 있다. 여기에서, 2 단편(two piece) 설계에는 상기 좌측 부위와 상기 우측 부위 사이에 각도 오프셋(angular offset)의 조절(adjustment)에 대한 제공이 있을 수 있는바, 이는 상이한 수축 위치들이 지지될 필요가 있는 때에 편리(convenient)할 수 있다. 또한 도 18 및 19를 참조하면, 각각 도 15 및 16의 아암의 개개의 링크들을 구동하는 데에 이용되는 내부 구성들이 도시된다. 결합된 상부 아암(554)은 샤프트(402)로써 하나의 모터에 의해 구동되는 것으로 도시된다. 상기 2개의 전측 아암들(456, 458) 각각은, 샤프트들(400, 398)에 의하여, 통상의 풀리들을 가지는 밴드 구동 장치들(490, 492)을 통하여 개별적으로, 하나의 모터에 의해 각각 독립적으로 구동된다. 여기에서, 링크들(456, 458)은 각각 별개의 축(494, 496) 상에서 회전한다. 상기 엔드-이펙터들(460, 462)을 갖춘 제3 링크들은, 각각 적어도 하나의 비원형 풀리를 갖춘 밴드 구동 장치들(498, 500)에 의해 각각 구속되는바, 이는 상기 상부 아암들과 전측 아암들의 상이한 길이들의 효과를 보상한다. 여기에서, 상기 연동부들(456, 460 및 458, 462) 각각의 밴드 구동 장치들(498, 500)은 도 1 및 2에 대하여 설명된 방법론을 이용하여 설계된다. 여기에서, 도 1 및 2에 대하여 제시된 운동학적 방정식들은 상기 이중 아암의 2개의 연동부들(456, 460 및 458, 462) 각각에 대하여도 이용될 수 있다. 상기 아암(452)이 회전하기 위하여, 상기 로봇의 3개 구동 샤프트들(398, 400, 402) 모두가 상기 아암의 회전 방향으로 동일한 양만큼 움직일 필요가 있다. 상기 엔드-이펙터들 중 하나가 직선 경로를 따라 반경방향으로 신장 및 수축하도록, 상기 공통 상부 아암의 구동 샤프트, 및 활성 엔드이펙터에 결부된 전측 아암에 결합된 구동 샤프트는 도 1 및 2에 대하여 제시된 역 운동학적 방정식들에 따라 조정되는 방식으로 움직일 필요가 있다. 동시에, 다른 전측 아암에 결합된 구동 샤프트는, 비활성 엔드-이펙터가 수축된 채로 유지되도록 상기 공통 상부 아암의 구동 샤프트에 맞춰서 회전할 필요가 있다. 또한 도 20a, 20b 및 20c를 참조하면, 상기 좌측 연동부(458, 462) 및 우측 연동부(456, 460)가 신장됨에 따른 도 16a 및 16b의 아암이 도시되어 있다. 활성 연동부(458, 462)가 신장되는 동안에 비활성 연동부(456, 460)는 회전함이 주목된다. 여기에서, 상기 좌측 연동부(458, 462)가 신장됨에 따라 상기 우측 연동부(456, 460)는 회전하고, 상기 우측 연동부(456, 460)가 신장됨에 따라 상기 좌측 연동부(458, 462)가 회전한다. 도시된 실시례는, 준비 및 제어하기 쉬운 단단한 링크 설계(solid link design)의 이점, 및 예를 들어 동적 밀봉이 없는 동심축 구동 장치의 이점을 가져다 주는 동시에 동일한 격납 용적을 가지는 동일-링크 길이 아암들에 비하여 더 긴 도달거리가 제공된다. 여기에서, 상기 엔드-이펙터들 중 임의의 것을 지지하는 데에 브릿지가 이용되지 않는다. 여기에서, 활성 아암이 신장되는 동안에 비활성 아암은 회전한다. 손목 관절부들 중 하나는, 동일-링크 구성에서보다 웨이퍼에 더 가까이, 하부 엔드-이펙터 위를 통행한다. 이는 상단 엔드-이펙터를 지지하도록 브릿지(미도시)를 이용함으로써 회피될 수 있다. 이 경우에 상기 브릿지의 지지되지 않는 길이(unsupported length)는 동일-링크 아암 설계에 비하여 더 길 수 있다. 게다가, 그 수축 각도(retract angle)는, 예를 들어 도 10 및 11에 도시된 바와 같은 공통 엘보 관절부 및 예를 들어 도 21 및 22에 도시된 바와 같은 독립 이중 아암을 갖춘 구성에 비하여, 변화시키기 더 어려울 수 있다.
이제 도 21a 및 21b를 참조하면, 독립 이중 아암들(522, 524)을 갖춘 로봇(520)의 평면도 및 측면도가 각각 도시되어 있다. 도시된 실시례에서, 두 연동부들(522, 524) 모두는 수축된 위치로 도시된다. 아암(522)은 독립적으로 작동가능한 상부 아암(526), 전측 아암(528), 및 엔드이펙터(530)를 갖춘 제3 링크를 구비한다. 아암(524)은 독립적으로 작동가능한 상부 아암(532), 전측 아암(534), 및 엔드이펙터(536)를 갖춘 제3 링크를 구비한다. 도시된 실시례에서, 전측 아암들(528, 534)은 상부 아암들(526, 532)보다 긴 것으로 도시되는바, 여기에서 엔드이펙터들(530, 536)은 각각 전측 아암들(528, 534) 위에 위치된다. 또한 도 22a 및 22b를 참조하면, 대안적 구성으로 된 아암을 갖추고 수축된 위치로 도시된 두 연동부들을 갖춘 로봇(520)의 특징과 유사한 특징들을 가지는 로봇(550)의 평면도 및 측면도가 도시되어 있다. 이 구성에서 좌측 연동부의 엔드-이펙터(552) 및 상기 제3 링크는 상기 전측 아암(554) 하면에 매달려 상기 2개의 엔드이펙터들 사이의 수직 이격을 감소시킨다. 도 21의 구성의 상단 엔드-이펙터를 점강시킴으로써 유사한 효과가 달성될 수 있다. 대안으로서, 브릿지가 상기 엔드-이펙터들 중 하나를 지지하는 데에 이용될 수 있다. 도 21 및 22에서 우측 상부 아암(532)이 좌측 상부 아암(526) 아래에 배치된다. 대안으로서, 예를 들어 상기 좌측 상부 아암이 상기 우측 상부 아암 위에 배치될 수 있는바, 여기에서 하나의 연동부는 다른 연동부 내에 넣어질(nested) 수 있다. 또한 도 23을 참조하면, 도 21a 및 21b의 아암의 개개의 링크들을 구동하는 데에 이용되는 내부 구성들이 도시되어 있다. 여기에서 도해의 명료함(graphical clarity)을 위해 구성요소들의 중첩(overlap)을 피하도록 상기 링크들의 고도(elevations)가 조절되었다. 상기 2개의 상부 아암들(526, 532) 각각은 하나의 모터에 의해, 개별적으로 각각의 샤프트들(398, 402)을 통하여 독립적으로 구동된다. 상기 전측 아암들(528, 534)은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구성들(570, 572)에 의해 샤프트(400)를 통하여 제3 모터에 결합된다. 상기 엔드-이펙터들을 갖춘 제3 링크들(530, 536)은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구동 장치들(574, 576)에 의해 구속된다. 상기 밴드 구동 장치들은, 상기 상부 아암들(526, 532) 중 하나의 회전이 각각 대응되는 연동부(528, 530 및 534, 536)로 하여금 직선을 따라 신장 및 수축되게 하는 동안에 다른 연동부들은 정지 상태로 유지되게끔 설계된다. 상기 연동부들 각각에 있어서의 밴드 구동 장치들은 도 5 및 6에 대하여 설명된 방법론을 이용하여 설계될 수 있는바, 여기에서 도 5 및 6에 대하여 제시된 운동학적 방정식들은 상기 이중 아암의 2개의 연동부들 각각에 대하여도 이용될 수 있다. 상기 아암이 회전하기 위하여, 상기 로봇의 3개 구동 샤프트들(398, 400, 402) 모두가 상기 아암의 회전 방향으로 동일한 양만큼 움직일 필요가 있다. 상기 엔드-이펙터들 중 하나가 직선 경로를 따라 반경방향으로 신장 및 수축하도록, 활성 엔드이펙터에 결부된 상부 아암의 구동 샤프트는 도 5 및 6에 대한 역 운동학적 방정식들에 따라 회전될 필요가 있고, 다른 2개의 구동 샤프트들은 정지 상태로 유지될 필요가 있다. 또한 도 24a, 24b 및 24c를 참조하면, 상기 좌측 연동부(522) 및 우측 연동부(524)가 신장됨에 따른 도 22의 아암이 도시되어 있다. 활성 연동부(522)가 신장되는 동안에 비활성 연동부(524)는 정지 상태로 유지되는 점이 주목된다. 즉, 상기 우측 연동부(524)가 신장되는 동안에 상기 좌측 연동부(522)는 움직이지 않고, 상기 좌측 연동부(522)가 신장되는 동안에 상기 우측 연동부(524)는 움직이지 않는다. 도시된 실시례에는 동일한 격납 용적을 가지는 동일-링크 아암 설계에 비하여 더 긴 도달거리가 제공된다. 여기에서, 상기 엔드-이펙터들 중 임의의 것을 지지하는 데에 브릿지가 이용되지 않으며, 그리고 활성 연동부가 부하 없이(with no load) 더 빠르게 신장 또는 수축할 수 있음에 따라 상기 활성 연동부가 신장되어 잠재적으로 더 높은 처리량(throughput)으로 이어지는 동안에 상기 비활성 연동부는 정지 상태로 유지된다. 도시된 실시례는 통상의 풀리들 대신에 비원형 풀리들을 갖춘 밴드 구동 장치들을 2개 더 갖춘 것으로 도 15 및 16에 도시되는 것보다 더 복잡할 수 있다. 손목 관절부들 중 하나는 도 24에 도시된 바와 같이 하부 엔드-이펙터 아래를 통행한다. 이는 상단 엔드-이펙터를 지지하는 데에 브릿지(미도시)를 이용함으로써 회피될 수 있다. 이 경우에 상기 브릿지의 지지되지 않는 길이는 동일-링크 아암 설계에 비하여 더 길다.
이제 도 25a 및 25b를 참조하면, 아암(602)을 갖춘 로봇(600)의 평면도 및 측면도가 각각 도시되어 있다. 도시된 실시례에서, 두 연동부들 모두는 수축된 위치로 도시된다. 엔드-이펙터들의 측방향 오프셋(604)은 상부 아암(606)의 관절-대-관절 길이와 전측 아암들(608, 612)의 관절-대-관절 길이의 차이에 해당하는바, 이 실시례에서 전측 아암들(608, 612)은 공통 상부 아암(606)보다 짧다. 상기 아암의 개개의 링크들을 구동하는 데에 이용되는 내부 구성들은 도 10 내지 13과 유사할 수 있는바 예를 들어 도 13에서와 같을 수 있으나, 이 경우에 상기 전측 아암들은 상기 공통 상부 아암보다 짧다. 여기에서, 상기 공통 상부 아암은 하나의 모터에 의해 구동된다. 상기 2개의 전측 아암들 각각은 통상의 풀리들을 갖춘 밴드 구동 장치를 통하여 하나의 모터에 의하여 독립적으로 구동된다. 상기 엔드-이펙터들을 갖춘 제3 링크들(614, 616)은 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구동 장치들에 의해 구속되는바, 이는 상기 상부 아암들 및 전측 아암들의 상이한 길이들의 효과를 보상한다. 상기 연동부들 각각에서의 밴드 구동 장치들은 도 1 및 2에 대하여 설명된 방법론을 이용하여 설계될 수 있다. 도 1 및 2에 대하여 제시된 운동학적 방정식들은 이중 아암의 2개의 연동부들 각각에 대하여도 이용될 수 있다. 또한 도 26a, 26b 및 26c를 참조하면, 상부 연동부(612, 616)가 신장됨에 따른 도 25a 및 25b의 아암이 도시되어 있다. 상기 엔드-이펙터의 측방향 오프셋(604)은 상기 상부 아암의 관절-대-관절 길이와 상기 전측 아암의 관절-대-관절 길이의 차이에 해당하고, 손목 관절부는 웨이퍼의 중심의 궤적에 대하여 이 차이만큼 오프셋된 직선을 따라 통행한다. 활성 연동부(612, 616)가 신장되는 동안에 비활성 연동부(608, 614)는 회전한다는 점이 주목된다. 예를 들어 하부 연동부가 신장됨에 따라 상기 상부 연동부가 회전하고, 상기 상부 연동부가 신장됨에 따라 상기 하부 연동부가 회전한다. 여기에서, 도 26a에는 수축된 위치로 된 두 연동부들 모두를 갖춘 아암이 그려진다. 도 26b에는, 상기 상부 연동부(612, 616)의 손목 관절부가 상기 하부 연동부에 의해 보유되는 웨이퍼에 가장 가까운 위치에서 부분적으로 신장된 상기 상부 연동부가 도시된다. 상기 상부 연동부의 손목 관절부가 상기 웨이퍼 위(over)를 통행하지 않는다는 점이 관찰된다(그러나 상기 상부 연동부의 손목 관절부는 상기 웨이퍼 위(above)의 평면 내에서 움직인다). 도 26c에는 상기 상부 연동부(612, 616)의 추가 신장이 그려진다. 도시된 실시례는, 준비 및 제어의 편의성을 제공할 수 있으며, 동적 밀봉이 없는 동심축 또는 3축 구동 장치(coaxial or tri axial drive) 또는 다른 적합한 구동 장치 상에서 이용될 수 있다. 여기에서, 상기 엔드-이펙터들 중 임의의 것을 지지하는 데에 브릿지가 이용되지 않는다. 상기 상부 연동부의 손목 관절부는 하부 엔드-이펙터 상의 웨이퍼 위를 통행하지 않는바, 이는 동일-링크 설계에 대한 경우이다(그러나 상기 상부 연동부의 손목 관절부는 상기 하부 엔드-이펙터 상의 웨이퍼 위의 평면 내에서 움직인다). 여기에서 활성 아암이 신장되는 동안에 비활성 아암은 회전한다. 더 큰 선회 반경(swing radius) 또는 더 짧은 도달거리로 병진(translate)할 수 있는 엘보 관절부는 더 복잡할 수 있다. 여기에서, 상기 아암은 중첩된(overlapping) 전측 아암들(608, 612)로 인하여 도 30 및 31, 및 도 33에 도시된 것보다 더 길(taller) 수 있다.
이제 도 27a 및 27b를 참조하면, 아암(632)을 갖춘 로봇(630)의 평면도 및 측면도가 각각 도시되어 있다. 전측 아암들(636, 640)이 상부 아암(636)보다 더 짧은 길이를 가진 것으로 도시된 것을 제외하고는, 아암(630)은 도 15-19에 대하여 개시된 것과 유사한 특징들을 가질 수 있다. 두 연동부들은 수축된 위치로 도시되어 있다. 엔드-이펙터들(642, 646)의 측방향 오프셋(634)은 상기 상부 아암(636)의 관절-대-관절 길이와 전측 아암들(638, 640)의 관절-대-관절 길이의 차이에 해당한다. 결합된 상부 아암 링크(636)는 도 27a 및 27b에 그려진 바와 같이 단일 단편(single piece)일 수 있거나, 또는 결합된 상부 아암 링크(636)는 도 28a 및 28b의 예시에서 도시된 바와 같이 2개 이상의 부위들(636’, 636’’)에 의해 형성될 수 있다. 2-부위 설계(two-section design)는 더 적은 재료로써 더 가벼울 수 있는바, 여기에서 좌측 부위(636’) 및 우측 부위(636’’)는 동일한 구성요소들일 수 있다. 예를 들어 상이한 수축된 위치들이 지지될 필요가 있는 경우에는, 좌측 부위(636’)와 우측 부위(636’’) 사이의 각도 오프셋의 조절을 가능하게 함이 제공될 수 있다. 상기 아암(632)의 개개의 링크들을 구동하는 데에 이용되는 내부 구성들은 도 15 내지 19에 도시된 바와 유사할 수 있는바, 예를 들어 도 19에 도시된 바와 같을 수 있다. 공통 상부 아암(636)은 하나의 모터에 의해 구동된다. 상기 2개의 전측 아암들(638, 640) 각각은 통상의 풀리들을 갖춘 밴드 구동 장치를 통하여 하나의 모터에 의해 독립적으로 구동된다. 상기 엔드-이펙터들(642, 646)을 갖춘 제3 링크들은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구동 장치들에 의해 구속될 수 있는바, 이는 상기 상부 아암(636) 및 전측 아암들(638, 640)의 상이한 길이들의 효과를 보상한다. 상기 연동부들 각각에서의 밴드 구동 장치들은 도 1 및 2에 대하여 설명된 방법론을 이용하여 설계될 수 있다. 도 1 및 2에 대하여 제시된 운동학적 방정식들은 이중 아암의 2개의 연동부들 각각에 대하여도 이용될 수 있다. 또한 도 29a, 29b 및 29c를 참조하면, 우측, 상부 연동부(640, 646)가 신장됨에 따른 도 27a 및 27b의 아암이 도시되어 있다. 상기 엔드-이펙터의 측방향 오프셋(634)은 상기 상부 아암의 관절-대-관절 길이와 상기 전측 아암의 관절-대-관절 길이의 차이에 해당하고, 손목 관절부는 웨이퍼의 중심의 궤적에 대하여 이 차이만큼 오프셋된 직선을 따라 통행한다. 여기에서, 활성 연동부(640, 646)가 신장되는 동안에 비활성 연동부(638, 642)는 회전한다. 예를 들어 하부 연동부가 신장됨에 따라 상기 상부 연동부는 회전하고, 상기 상부 연동부가 신장됨에 따라 상기 하부 연동부가 회전한다. 도 29a, 29b 및 29c에는 수축된 위치로 된 두 연동부들 모두를 갖춘 아암이 그려진다. 도 29b에는, 우측 상부 연동부(640, 646)의 손목 관절부가 좌측 하부 연동부(638, 642)에 의해 보유되는 웨이퍼에 가장 가까운 위치에서 부분적으로 신장된 상기 우측 상부 연동부(640, 646)가 도시된다. 여기에서 상기 우측 상부 연동부(640, 646)의 손목 관절부는, 상기 웨이퍼 위를 통행하지 않지만 상기 웨이퍼 위의 평면 내에서 움직인다. 도 29c에는 상기 우측 상부 연동부(640, 646)의 추가 신장이 그려진다. 도시된 실시례는, 단단한 링크 설계, 준비 및 제어의 편의성, 및 예를 들어 동적 밀봉이 없는 동심축 구동 장치의 이점들을 가져다 준다. 상기 엔드-이펙터들 중 임의의 것을 지지하는 데에 브릿지가 이용되지 않는다. 상기 상부 연동부의 손목 관절부는 하부 엔드-이펙터 상의 웨이퍼 위를 통행하지 않는바, 이는 동일-링크 설계에 대한 경우이나, 상기 상부 연동부의 손목 관절부는 상기 하부 엔드-이펙터 상의 웨이퍼 위의 평면 내에서 움직인다. 활성 아암(640, 646)이 신장되는 동안에 비활성 아암(638, 642)은 회전한다. 그 수축 각도는, 예를 들어 도 25a 및 25b에 도시된 바와 같은 공통 엘보 관절부 및 예를 들어 도 33a 및 33b에 도시된 바와 같은 독립 이중 아암을 갖춘 구성에 비하여, 변화시키기 더 어려울 수 있다. 게다가 전측 아암(640)이 전측 아암(638)보다 높은 고도에 있는 것으로 도시됨에 따라, 상기 아암은 도 30 및 31, 및 도 33a 및 33b에서보다 더 긴(taller) 것으로 도시된다.
이제 도 30a 및 30b를 참조하면, 아암(662)을 갖춘 로봇(660)의 평면도 및 측면도가 각각 도시되어 있다. 아암(662)은 도 27 내지 29에 관하여 설명된 바와 같은 특징들을 가질 수 있으나, 아암(662)에는 브릿지가 채용되며, 2개의 전측 아암들은 설명될 바와 같이 동일한 고도에 있다. 두 연동부들 모두는 수축된 위치로 도시되어 있다. 엔드-이펙터들의 측방향 오프셋(664)은 상부 아암(66)의 관절-대-관절 길이와 전측 아암들(668, 670)의 관절-대-관절 길이의 차이에 해당한다. 결합된 상부 아암 링크(666)는 도 30a 및 30b에 그려진 바와 같이 단일 단편일 수 있거나, 또는 결합된 상부 아암 링크(666)는 도 31a 및 31b의 예시에서 도시된 바와 같이 2개 이상의 부위들(666’, 666’’)에 의해 형성될 수 있다. 상기 아암의 개개의 링크들을 구동하는 데에 이용되는 내부 구성들은 도 15 내지 19에 대하여 도시된 바와 동일할 수 있지만, 여기에서 상기 전측 아암들(668, 670)은 상기 상부 아암(666)보다 짧다. 공통 상부 아암(666)은 하나의 모터에 의해 구동된다. 상기 2개의 전측 아암들(668, 670) 각각은 통상의 풀리들을 갖춘 밴드 구동 장치를 통하여 하나의 모터에 의해 독립적으로 구동된다. 상기 엔드-이펙터들(672, 674)을 갖춘 제3 링크들은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구동 장치들에 의해 구속될 수 있는바, 이는 상기 상부 아암들 및 전측 아암들의 상이한 길이들의 효과를 보상한다. 상기 연동부들 각각에서의 밴드 구동 장치들은 도 1 및 2에 대하여 설명된 방법론을 이용하여 설계될 수 있다. 도 1 및 2에 대하여 제시된 운동학적 방정식들은 이중 아암의 2개의 연동부들 각각에 대하여도 이용될 수 있다. 제3 링크 및 엔드이펙터(674)에는 브릿지(680)가 구비되는바, 상기 브릿지(680)는 상부 엔드이펙터 부분(682), 링크(670)와 링크(674) 사이에서 손목 축으로부터 오프셋된 측면 오프셋 지지 부분(side offset support portion; 684)을 구비하고, 상기 손목 축을 상기 오프셋 지지 부분(684)에 결합시키는 하부 지지 부분(686)을 더 구비한다. 브릿지(680)는, 도 32에 대하여 아래에서 보여질 수 있는 바와 같이 (웨이퍼를 포함할 수 있는) 상기 브릿지(680)와 제3 링크 및 엔드이펙터(672)의 끼워진 부분들(interleaved portions)을 위한 간격(clearance)이 제공되면서도, 전측 아암들(668 및 670)이 동일한 높이(level)에서 패키지화(packaged)될 수 있게 한다. 브릿지(680)는, 예를 들어, 운반 중에 2개의 손목 관절부들에 결부된 임의의 움직이는 부분들이 웨이퍼 표면 아래에 있게 되는 구성을 더 제공한다. 또한 도 32a, 32b, 32c 및 32d를 참조하면, 우측 연동부(670, 674)가 신장됨에 따른, 도 30a 및 30b의 로봇 아암의 평면도가 도시되어 있다. 상기 엔드-이펙터의 측방향 오프셋(664)은 상기 상부 아암(666)의 관절-대-관절 길이와 상기 전측 아암(670)의 관절-대-관절 길이의 차이에 해당하고, 상기 손목 관절부(690)는 웨이퍼(692)의 중심의 궤적에 대하여 이 차이만큼 오프셋된 직선을 따라 통행한다. 활성 연동부(670, 674)가 신장되는 동안에 비활성 연동부(668, 672)는 회전한다는 점이 주목된다. 예를 들어 하부 연동부가 신장됨에 따라 상부 연동부가 회전하고, 상기 상부 연동부가 신장됨에 따라 상기 하부 연동부가 회전한다. 도 32a, 32b, 32c 및 32d 중에서, 도 32a에는 수축된 위치로 된 두 연동부들 모두를 갖춘 아암이 그려진다. 도 32b에는, 상기 우측 연동부(670, 674)의 브릿지(680)와 좌측 연동부(668, 672)의 엔드-이펙터(672) 사이의 최악 경우의 간격(worst-case clearance)에 해당하는(또는 그 최악 경우의 간격에 인접한) 위치에서 부분적으로 신장된 상기 우측 연동부(670, 674)가 도시된다. 도 32c에는 상기 전측 아암(670)이 상기 상부 아암(666)과 정렬되는 때의 위치에서 부분적으로 신장된 상기 우측 연동부(670, 674)가 도시된다. 상기 엔드-이펙터의 측방향 오프셋은 상기 상부 아암의 관절-대-관절 길이와 상기 전측 아암의 관절-대-관절 길이의 차이에 해당한다. 상기 손목 관절부(690) 축은 상기 웨이퍼(692)의 중심의 궤적에 대하여 이 차이만큼 오프셋된 직선을 따라 통행한다. 도 32d에는 우측 상부 연동부(670, 674)의 추가 신장이 그려진다. 도시된 실시례는, 나란한 이중 스카라 구성(side-by-side dual scara arrangement), 예를 들어 작은 용적을 가진 얕은 체임버(shallow chamber)로 귀결되는 슬림한 프로파일(slim profile), 단단한 링크 설계, 및 동심축 구동 장치의 이점들을 결합한다. 상기 우측 연동부(670, 674) 상의 브릿지(680)는 선행 기술의 동심축 이중 스카라 아암(coaxial dual scara arm)에서보다 훨씬 더 낮으며, 수직 부재(vertical member; 684)와 손목부(690) 사이의, 상기 브릿지(680)의 지지되지 않는 길이는 선행 기술의 동심축 이중 스카라 아암에서보다 더 짧고, 관절부들 모두는 상기 엔드-이펙터들 아래에 있다. 여기에서, 활성 아암(670, 674)이 신장되는 동안에 비활성 아암(668, 672)은 회전한다. 아래에서 설명될 바와 같이, 개시된 실시례의 다른 양상들에서는, 이러한 거동을 보이지 않는 아암으로서, 여기에 개시된 통상의 풀리들 대신에 비원형 풀리들이 있는 다양한 밴드 구동 장치들이 갖춰진 아암이 제공될 수 있다. 대안으로서, 위의 도 25a 및 25b, 및 도 27 및 28에 대하여 설명된 구성들과 유사한 구성을 활용함으로써, 상단 엔드-이펙터를 지지하는 브릿지는 제거될 수 있다.
이제 도 33a 및 33b를 참조하면, 아암(702)을 갖춘 로봇(700)의 평면도 및 측면도가 각각 도시되어 있다. 아암(702)은 도 21 내지 23에 도시된 아암의 특징과 유시한 특징들을 가지고 있으나, 전측 아암들의 길이는 상부 아암들의 길이보다 짧고, 예시로서 브릿지(680)에 대하여 설명된 바와 같은 브릿지가 채용되어 있으며, 상기 전측 아암들은 동일한 고도에 배치된다. 두 연동부들 모두는 수축된 위치로 도시되어 있다. 도 33a 및 33b에서 우측 상부 아암(708)은 좌측 상부 아암(706) 위에 배치된다. 대안으로서, 상기 좌측 상부 아암(706)은 상기 우측 상부 아암(708) 위에 배치될 수 있다. 유사하게, 우측 연동부(712, 716)의 엔드-이펙터(716) 및 제3 링크는, 좌측 연동부(710, 714)의 엔드-이펙터(714) 및 제3 링크 위로 연장(extend over)되는 브릿지를 특징으로 가진다. 대안으로서, 상기 좌측 연동부(710, 714)의 엔드-이펙터(714) 및 제3 링크는, 상기 우측 연동부(712, 716)의 엔드-이펙터(716) 및 제3 링크 위로 연장될 수 있는 브릿지를 특징으로 가질 수 있다. 상기 아암의 개개의 링크들을 구동하는 데에 이용되는 내부 구성들은 도 21 내지 23에 도시된 실시례와 유사할 수 있다. 상기 2개의 상부 아암들(706, 708) 각각은 하나의 모터에 의해 독립적으로 구동된다. 상기 전측 아암들(710, 712)은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구성들을 통하여 제3 모터에 결합된다. 상기 엔드-이펙터들을 갖춘 제3 링크들(714, 716)은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구동 장치들에 의해 구속된다. 상기 밴드 구동 장치들은, 상기 상부 아암들(706, 708) 중 하나의 회전이, 대응되는 연동부로 하여금 직선을 따라 신장 및 수축되게 하는 동안에 다른 연동부들은 정지 상태로 유지되게끔 설계된다. 상기 연동부들 각각에 있어서의 밴드 구동 장치들은 도 5 및 6에 도시된 실시례에 대하여 설명된 방법론을 이용하여 설계될 수 있다. 도 5 및 6에 도시된 실시례에 대하여 제시된 운동학적 방정식들은 이중 아암의 2개의 연동부들 각각에 대하여도 이용될 수 있다. 또한 도 34a, 34b 및 34c를 참조하면, 상기 우측 연동부(708, 712, 716)가 신장됨에 따른 도 33a 및 33b의 아암이 도시되어 있다. 여기에서, 활성 연동부(712, 716)가 신장되는 동안에 비활성 연동부(706, 710, 714)는 정지 상태로 유지된다. 즉, 상기 우측 연동부가 신장되는 동안에 상기 좌측 연동부는 움직이지 않고, 상기 좌측 연동부가 신장되는 동안에 상기 우측 연동부는 움직이지 않는다. 도시된 실시례는, 나란한 이중 스카라 구성, 예를 들어 작은 용적을 가진 얕은 체임버로 귀결되는 슬림한 프로파일, 및 동심축 구동 장치의 이점들을 결합한다. 상기 우측 연동부 상의 브릿지는 현존하는 동심축 이중 스카라 아암에서보다 훨씬 더 낮으며, 상기 브릿지의 지지되지 않는 길이는 현존하는 동심축 이중 스카라 아암에서보다 더 짧고, 관절부들 모두는 상기 엔드-이펙터들 아래에 있다. 활성 연동부가 부하 없이 더 빠르게 신장 또는 수축할 수 있음에 따라 상기 활성 연동부가 신장되어 잠재적으로 더 높은 처리량으로 이어지는 동안에 상기 비활성 연동부는 정지 상태로 유지된다. 대안으로서, 위의 도 25, 27 및 28에 대하여 설명된 구성들과 유사한 구성을 활용함으로써, 상단 엔드-이펙터를 지지하는 브릿지는 제거될 수 있다.
이제 도 35a 및 35b를 참조하면, 수축된 위치로 도시된 두 연동부들 모두를 가진 아암(732)을 갖춘 로봇(730)의 평면도 및 측면도가 각각 도시되어 있다. 각각의 연동부에는 이중-홀더 엔드-이펙터(740, 742)가 구비되는바, 그 이중-홀더 엔드이펙터 각각은 서로로부터 오프셋된 2개의 기판들을 지지하여, 총 4개의 기판들이 지지가능하다. 상기 아암(732)의 개개의 링크들을 구동하는 데에 이용되는 내부 구성들은 도 10 및 11, 예를 들어 도 13과 동일할 수 있다. 공통 상부 아암(734)은 하나의 모터에 의해 구동된다. 2개의 전측 아암들(73736, 738) 각각은, 통상의 풀리들을 갖춘 밴드 구동 장치를 통하여 하나의 모터에 의해 독립적으로 구동된다. 상기 엔드-이펙터들(740, 742)을 갖춘 제3 링크들은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구동 장치들에 의해 구속되는바, 이는 상기 상부 아암들 및 전측 아암들의 상이한 길이들의 효과를 보상한다. 도시된 실시례는 상기 상부 아암보다 긴 전측 아암들을 구비한다. 대안으로서, 전측 아암들은 더 짧을 수 있다. 상기 연동부들 각각에 있어서의 밴드 구동 장치들은 도 1 및 2에 대하여 설명된 방법론을 이용하여 설계된다. 도 1 및 2에 대하여 제시된 운동학적 방정식들은 이중 아암의 2개의 연동부들 각각에 대하여도 이용될 수 있다. 또한 도 36을 참조하면, 하나의 연동부(738, 742)가 신장됨에 따른 도 35a 및 35b의 아암이 도시되어 있다. 활성 연동부(738, 742)가 신장되는 동안에 비활성 연동부(736, 740)는 회전한다는 점이 주목된다. 예를 들어 하부 연동부가 신장됨에 따라 상부 연동부가 회전하고, 상기 상부 연동부가 신장됨에 따라 상기 하부 연동부가 회전한다. 도 37 및 38에 비하여, 대향되는 엘보와의 간섭(interference)을 회피하도록 엔드-이펙터의 형상이 정해질(shaped) 필요는 없다.
이제 도 37a 및 37b를 참조하면, 아암(750)을 갖춘 로봇의 평면도 및 측면도가 각각 도시되어 있다. 두 연동부들 모두는 수축된 위치로 도시되어 있는바, 각각의 연동부에는 이중-홀더 엔드이펙터(758, 760)가 구비된다. 결합된 상부 아암 링크(752)는 도 37a 및 37b에 그려진 바와 같이 단일 단편일 수 있거나, 또는 결합된 상부 아암 링크(752)는 도 38a 및 38b의 예시에서 도시된 바와 같이 2개 이상의 부위들(752’, 752’’)에 의해 형성될 수 있다. 상기 아암의 개개의 링크들을 구동하는 데에 이용되는 내부 구성들은 도 15 내지 19와 동일할 수 있는바, 예를 들어 도 19와 동일할 수 있다. 상기 결합된 상부 아암들(752)은 하나의 모터에 의해 구동된다. 2개의 전측 아암들(754, 756) 각각은 통상의 풀리들을 갖춘 밴드 구동 장치를 통하여 하나의 모터에 의해 독립적으로 구동된다. 상기 엔드-이펙터들을 갖춘 제3 링크들(758, 760)은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구동 장치들에 의해 구속될 수 있는바, 이는 상기 상부 아암들 및 전측 아암들의 상이한 길이들의 효과를 보상한다. 도시된 실시례에는 상기 상부 아암보다 긴 전측 아암들이 구비된다. 대안으로서, 상기 전측 아암들은 더 짧을 수 있다. 상기 연동부들 각각에서의 밴드 구동 장치들은 도 1 및 2에 대하여 설명된 방법론을 이용하여 설계된다. 도 1 및 2에 대하여 제시된 운동학적 방정식들은 이중 아암의 2개의 연동부들 각각에 대하여도 이용될 수 있다. 상기 아암이 회전하기 위하여, 상기 로봇의 3개 구동 샤프트들 모두가 상기 아암의 회전 방향으로 동일한 양만큼 움직일 필요가 있다. 엔드-이펙터 조립체들 중 하나가 직선 경로를 따라 반경방향으로 신장 및 수축하도록, 공통 상부 아암의 구동 샤프트, 및 활성 연동부에 결부된 전측 아암에 결합된 구동 샤프트는 도 1 및 2에 대한 역 운동학적 방정식들에 따라 조정되는 방식으로 움직일 필요가 있다. 동시에, 다른 전측 아암에 결합된 구동 샤프트는, 비활성 연동부가 수축된 채로 유지되도록 상기 공통 상부 아암의 구동 샤프트에 맞춰서 회전할 필요가 있다. 또한 도 39를 참조하면, 하나의 연동부(756, 760)가 신장됨에 따른 도 37a 및 37b의 아암이 도시되어 있다. 여기에서, 상기 활성 연동부가 신장되는 동안에 상기 비활성 연동부(754, 758)는 회전한다. 예를 들어, 좌측 연동부가 신장됨에 따라 우측 연동부는 회전하고, 상기 우측 연동부가 신장됨에 따라 상기 좌측 연동부가 회전한다. 도시된 실시례에는 브릿지가 구비되지 않는다. 상부 손목부는 하부 엔드-이펙터 상의 웨이퍼들 중 하나 위를 통행한다. 여기에서, 상기 아암 및 엔드-이펙터들은 상부 엘보(top elbow)가 상기 하부 엔드-이펙터에 닿지 않고 지나가도록(clear) 설계될 필요가 있다.
이제 도 40a 및 40b를 참조하면, 아암(752)을 갖춘 로봇(750)의 평면도 및 측면도가 각각 도시되어 있다. 두 연동부들 모두는 수축된 위치로 도시되어 있는바, 각각의 연동부에는 이중-홀더 엔드이펙터(792, 794)가 구비된다. 상기 아암의 개개의 링크들을 구동하는 데에 이용되는 내부 구성들은 도 21 내지 23과 동일할 수 있다. 2개의 상부 아암들(784, 786)은 하나의 모터에 의해 독립적으로 구동된다. 전측 아암들(788, 790)은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구성들을 통하여 제3 모터에 결합된다. 상기 엔드-이펙터들(792, 794)을 갖춘 제3 링크들은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구동 장치들에 의해 구속된다. 상기 밴드 구동 장치들은, 상기 상부 아암들 중 하나의 회전이, 대응되는 연동부로 하여금 직선을 따라 신장 및 수축되게 하는 동안에 다른 연동부들은 정지 상태로 유지되게끔 설계된다. 도시된 실시례에는 상기 상부 아암보다 긴 전측 아암들이 구비된다. 대안으로서, 상기 전측 아암들은 더 짧을 수 있다. 상기 연동부들 각각에서의 밴드 구동 장치들은 도 5 및 6에 대하여 설명된 방법론을 이용하여 설계된다. 도 5 및 6에 대하여 제시된 운동학적 방정식들은 이중 아암의 2개의 연동부들 각각에 대하여도 이용될 수 있다. 상기 아암이 회전하기 위하여, 상기 로봇의 3개 구동 샤프트들 모두가 상기 아암의 회전 방향으로 동일한 양만큼 움직일 필요가 있다. 엔드-이펙터 조립체들 중 하나가 직선 경로를 따라 반경방향으로 신장 및 수축하도록, 활성 연동부에 결부된 상부 아암의 구동 샤프트는 도 5 및 6에 대한 역 운동학적 방정식들에 따라 회전될 필요가 있고, 다른 2개의 구동 샤프트들은 정지 상태로 유지될 필요가 있다. 또한 도 41을 참조하면, 하나의 연동부(784, 788, 794)가 신장됨에 따른 도 40a 및 40b의 아암이 도시되어 있다. 상기 활성 연동부(794, 788, 794)가 신장되는 동안에 비활성 연동부(786, 790, 792)는 정지 상태로 유지될 수 있다는 점이 주목된다. 즉, 우측 연동부가 신장되는 동안에 좌측 연동부는 움직이지 않고, 상기 좌측 연동부가 신장되는 동안에 상기 우측 연동부는 움직이지 않는다. 대안으로서, 예를 들어 도 42에 도시된 바와 같이 상기 좌측 연동부 및 상기 우측 연동부는 동시에 독립적으로 반경방향으로 움직여질 수 있는바, 여기에서 상기 우측 연동부는 도 41에 비하여 독립적으로 약간(slightly independently) 신장된다. 상부 연동부의 엘보의 동작은 하부 엔드-이펙터 상의 웨이퍼와의 잠재적 간섭으로 인하여 제한될 수 있는바, 이는 도 41에 도해된 바와 같이 상기 로봇의 도달거리를 제한할 수 있다. 이러한 제한은 하부 연동부를 약간 신장시킴으로써 추가적 간격을 제공하고 도 42에 도시된 바와 같은 완전한 도달거리(full reach)를 성취함으로써 완화될 수 있다. 도시된 실시례에는 브릿지가 구비되지 않는다. 상기 상부 연동부의 손목부는 상기 하부 엔드-이펙터 상의 웨이퍼 위를 통행할 수 있다.
이제 도 43a 및 43b를 참조하면, 아암(812)을 갖춘 로봇(810)의 평면도 및 측면도가 각각 도시되어 있다. 두 연동부들 모두는 수축된 위치로 도시되어 있는바, 각각의 연동부에는 이중-홀더 엔드이펙터(820, 822)가 구비된다. 상기 아암의 개개의 링크들을 구동하는 데에 이용되는 내부 구성들은 도 10 내지 13과 동일할 수 있다. 공통 상부 아암(814)은 하나의 모터에 의해 독립적으로 구동된다. 2개의 전측 아암들(816, 818) 각각은 통상의 풀리들을 갖춘 밴드 구동 장치를 통하여 하나의 모터에 의해 독립적으로 구동된다. 상기 엔드-이펙터들(820, 822)을 갖춘 제3 링크들은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구동 장치들에 의해 구속되는바, 이는 상부 아암들 및 전측 아암들의 상이한 길이들의 효과를 보상한다. 도시된 실시례에서 상기 전측 아암들은 상기 상부 아암보다 짧다; 대안으로서 상기 전측 아암이 더 길 수 있다. 상기 연동부들 각각에서의 밴드 구동 장치들은 도 1 및 2에 대하여 설명된 방법론을 이용하여 설계된다. 도 1 및 2에 대하여 제시된 운동학적 방정식들은 이중 아암의 2개의 연동부들 각각에 대하여도 이용될 수 있다. 또한 도 44 및 45를 참조하면, 상부 연동부(818, 822)가 신장됨에 따른 도 43a 및 43b의 아암이 도시되어 있다. 활성 연동부(818, 822)가 신장되는 동안에 비활성 연동부(816, 820)는 회전한다는 점이 주목된다. 예를 들어, 하부 연동부가 신장됨에 따라 상부 연동부는 회전하고, 상기 상부 연동부가 신장됨에 따라 상기 하부 연동부가 회전한다. 도 44 및 45에는, 상기 상부 연동부(818, 822)의 손목 관절부(824)가 상기 아암의 하부 연동부(816, 820)에 의해 보유되는 웨이퍼들(826) 위를 통행하지 않는다는 점이 도해된다. 도시된 실시례에는 브릿지가 구비되지 않는다. 도 46 및 47에 비하여, 대향되는 엘보와의 간섭을 회피하도록 상기 엔드-이펙터의 형상이 정해질(shaped) 필요는 없다.
이제 도 46a 및 46b를 참조하면, 아암(842)을 갖춘 로봇(840)의 평면도 및 측면도가 각각 도시되어 있다. 두 연동부들 모두는 수축된 위치로 도시되어 있는바, 각각의 연동부에는 이중-홀더 엔드이펙터(850, 852)가 구비된다. 결합된 상부 아암 링크(844)는 도 46a 및 46b에 그려진 바와 같이 단일 단편일 수 있거나, 또는 결합된 상부 아암 링크(844)는 도 47a 및 47b의 예시에 도시된 바와 같이 2개 이상의 부위들(844’, 844’’)에 의해 형성될 수 있다. 상기 아암의 개개의 링크들을 구동하는 데에 이용되는 내부 구성들은 도 15 내지 19와 동일할 수 있는바, 예를 들어 도 19와 동일할 수 있다. 상기 결합된 상부 아암들(844)은 하나의 모터에 의해 구동된다. 2개의 전측 아암들(846, 848) 각각은 통상의 풀리들을 갖춘 밴드 구동 장치를 통하여 하나의 모터에 의해 독립적으로 구동된다. 상기 엔드-이펙터들(850, 852)을 갖춘 제3 링크들은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구동 장치들에 의해 구속될 수 있는바, 이는 상기 상부 아암들 및 전측 아암들의 상이한 길이들의 효과를 보상한다. 도시된 실시례에서 상기 전측 아암들은 상기 상부 아암보다 짧다; 대안으로서 상기 전측 아암이 더 길 수 있다. 상기 연동부들 각각에서의 밴드 구동 장치들은 도 1 및 2에 대하여 설명된 방법론을 이용하여 설계된다. 도 1 및 2에 대하여 제시된 운동학적 방정식들은 이중 아암의 2개의 연동부들 각각에 대하여도 이용될 수 있다. 상기 아암이 회전하기 위하여, 상기 로봇의 3개 구동 샤프트들 모두가 상기 아암의 회전 방향으로 동일한 양만큼 움직일 필요가 있다. 엔드-이펙터 조립체들 중 하나가 직선 경로를 따라 반경방향으로 신장 및 수축하도록, 공통 상부 아암(844)의 구동 샤프트, 및 활성 연동부에 결부된 전측 아암에 결합된 구동 샤프트는 도 1 및 2에 대한 역 운동학적 방정식들에 따라 조정되는 방식으로 움직일 필요가 있다. 동시에, 다른 전측 아암에 결합된 구동 샤프트는, 비활성 연동부가 수축된 채로 유지되도록 상기 공통 상부 아암의 구동 샤프트에 맞춰서 회전할 필요가 있다. 또한 도 48 및 49를 참조하면, 상부 연동부(848, 852)가 신장됨에 따른 도 46a 및 46b의 아암이 도시되어 있다. 여기에서, 상기 활성 연동부(848, 852)가 신장되는 동안에 상기 비활성 연동부(846, 850)는 회전한다. 예를 들어, 하부 연동부가 신장됨에 따라 상부 연동부가 회전하고, 상기 상부 연동부가 신장됨에 따라 상기 하부 연동부가 회전한다. 도 48 및 49에는, 상기 상부 연동부의 손목 관절부(854)가 상기 아암의 하부 연동부에 의해 보유되는 웨이퍼들(856) 위를 통행하지 않는다는 점이 도해된다. 도시된 실시례에는 브릿지가 구비되지 않고, 상기 상부 연동부의 손목 관절부는 상기 하부 연동부에 의해 보유되는 웨이퍼 위를 통행하지 않는다. 여기에서, 비활성 아암은 덜 회전하여 활성 아암이 부하 없이 신장 또는 수축하는 때에 더 빠른 동작 속력을 가능하게 한다.
이제 도 50a 및 50b를 참조하면, 아암(872)을 갖춘 로봇(870)의 평면도 및 측면도가 도시되어 있다. 두 연동부들 모두는 수축된 위치로 도시되어 있는바, 각각의 연동부에는 이중-홀더 엔드이펙터(880, 882)가 구비된다. 결합된 상부 아암 링크(974)는 도 50a 및 50b에 그려진 바와 같이 단일 단편일 수 있거나, 또는 결합된 상부 아암 링크(974)는 도 47a 및 47b의 예시에 도시된 바와 같이 2개 이상의 부위들에 의해 형성될 수 있다. 상기 아암의 개개의 링크들을 구동하는 데에 이용되는 내부 구성들은 도 15 내지 19와 동일할 수 있는바, 예를 들어 도 18과 동일할 수 있다. 상기 결합된 상부 아암들(874)은 하나의 모터에 의해 구동된다. 2개의 전측 아암들(876, 878) 각각은 통상의 풀리들을 갖춘 밴드 구동 장치를 통하여 하나의 모터에 의해 독립적으로 구동된다. 상기 엔드-이펙터들을 갖춘 제3 링크들은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구동 장치들에 의해 구속될 수 있는바, 이는 상기 상부 아암들 및 전측 아암들의 상이한 길이들의 효과를 보상한다. 도시된 실시례에서 상기 전측 아암들은 상기 상부 아암보다 짧다; 대안으로서 상기 전측 아암이 더 길 수 있다. 상기 연동부들 각각에서의 밴드 구동 장치들은 도 1 및 2에 대하여 설명된 방법론을 이용하여 설계될 수 있다. 도 1 및 2에 대하여 제시된 운동학적 방정식들은 이중 아암의 2개의 연동부들 각각에 대하여도 이용될 수 있다. 상기 아암이 회전하도록, 상기 로봇의 3개 구동 샤프트들 모두가 상기 아암의 회전 방향으로 동일한 양만큼 움직일 필요가 있다. 엔드-이펙터 조립체들 중 하나가 직선 경로를 따라 반경방향으로 신장 및 수축하도록, 공통 상부 아암(874)의 구동 샤프트, 및 활성 연동부에 결부된 전측 아암에 결합된 구동 샤프트는 도 1 및 2에 대한 역 운동학적 방정식들에 따라 조정되는 방식으로 움직일 필요가 있다. 동시에, 다른 전측 아암에 결합된 구동 샤프트는, 비활성 연동부가 수축된 채로 유지되도록 상기 공통 상부 아암(874)의 구동 샤프트에 맞춰서 회전할 필요가 있다. 또한 도 51을 참조하면, 하나의 연동부(878, 882)가 신장된 도 50a 및 50b의 아암이 도시되어 있다. 여기에서, 상기 활성 연동부(878, 882)가 신장되는 동안에 상기 비활성 연동부(876, 880)는 회전한다. 예를 들어, 하부 연동부가 신장됨에 따라 상부 연동부가 회전하고, 상기 상부 연동부가 신장됨에 따라 상기 하부 연동부가 회전한다. 도시된 실시례에는, 더 짧은, 짧은 밴드들을 갖춰 더 뻣뻣할(stiffer) 수 있는 짧은 전측 아암 링크들이 구비되며, 상기 전측 아암들은 나란히(side-by-side) 배치되어 얕은 체임버를 용이(facilitate)하게 한다. 여기에서, 그 짧은 링크들은, 더 긴 상부 아암들에 의하여 다뤄질 수 있는 도 46 및 47에 비하여 비활성 아암의 더 많은 회전을 야기할 수 있다. 브릿지(884)가 제공되는바, 여기에서 상기 아암 및 엔드-이펙터들은 상기 브릿지(884)가 신장 움직임 동안에 비활성 엔드-이펙터(880)에 닿지 않고 지나가도록 설계될 수 있다. 여기에서 상기 엔드-이펙터의 기저부(base)는 도시된 바와 같은 각진 형상(angled shape; 886)을 특징으로 가진다.
이제 도 52a 및 52b를 참조하면, 아암(902)을 갖춘 로봇(900)의 평면도 및 측면도가 각각 도시되어 있다. 두 연동부들 모두는 수축된 위치로 도시되어 있는바, 각각의 연동부에는 이중-홀더 엔드이펙터가 구비된다. 상기 아암의 개개의 링크들을 구동하는 데에 이용되는 내부 구성들은 도 21 내지 23과 동일할 수 있다. 상기 2개의 상부 아암들(904, 906) 각각은 하나의 모터에 의해 독립적으로 구동된다. 전측 아암들(908, 910)은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구성들을 통하여 제3 모터에 결합된다. 상기 엔드-이펙터들(912, 914)을 갖춘 제3 링크들은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구동 장치들에 의해 구속된다. 상기 밴드 구동 장치들은, 상기 상부 아암들(904, 906) 중 하나의 회전이, 대응되는 연동부로 하여금 직선을 따라 신장 및 수축되게 하는 동안에 다른 연동부는 정지 상태로 유지되게끔 설계된다. 도시된 실시례에서 상기 전측 아암들은 상기 상부 아암보다 짧다; 대안으로서 상기 전측 아암이 더 길 수 있다. 상기 연동부들 각각에서의 밴드 구동 장치들은 도 5 내지 6에 대하여 설명된 방법론을 이용하여 설계된다. 도 5 내지 6에 대하여 제시된 운동학적 방정식들은 이중 아암의 2개의 연동부들 각각에 대하여도 이용될 수 있다. 상기 아암이 회전하도록, 상기 로봇의 3개 구동 샤프트들 모두가 상기 아암의 회전 방향으로 동일한 양만큼 움직일 필요가 있다. 엔드-이펙터 조립체들 중 하나가 직선 경로를 따라 반경방향으로 신장 및 수축하도록, 활성 연동부에 결부된 상부 아암의 구동 샤프트는 도 5 내지 6에 대한 역 운동학적 방정식들에 따라 회전될 필요가 있고, 다른 2개의 구동 샤프트들은 정지 상태로 유지될 필요가 있다. 또한 도 53을 참조하면, 하나의 연동부(906, 910, 914)가 신장된 도 52a 및 52b의 아암이 도시되어 있다. 브릿지(916)를 가지고 상기 활성 연동부(906, 910, 914)가 신장되는 동안에 비활성 연동부(904, 908, 912)는 정지 상태로 유지된다는 점이 주목된다. 즉, 좌측 연동부 및 우측 연동부가 독립적으로 반경방향으로 움직여질 수 있을지라도, 우측 연동부가 신장되는 동안에 좌측 연동부가 움직일 필요는 없으며, 상기 좌측 연동부가 신장되는 동안에 상기 우측 연동부가 움직일 필요는 없다. 도시된 실시례에는, 짧은 밴드들을 갖춰 더 뻣뻣할(stiffer) 수 있는 짧은 링크들, 및 얕은 체임버를 용이하게 하는 나란한(side-by-side) 전측 아암들이 구비된다. 대안으로서, 상기 전측 아암들은 브릿지를 갖춘 구성에서의 상부 아암들보다 길 수 있다.
이제 도 54 내지 55를 참조하면, 대향되는 엔드이펙터들(938, 940)을 갖춘 결합된 이중 아암(930)이 도시되어 있다. 도 54a 및 54b에는 상기 아암을 갖춘 로봇의 평면도 및 측면도가 각각 도시된다. 두 연동부들 모두는 수축된 위치로 도시되어 있는바, 여기에서 상기 엔드-이펙터들의 측방향 오프셋은 상부 아암(932)의 관절-대-관절 길이와 전측 아암들(934, 936)의 관절-대-관절 길이의 차이에 해당한다. 결합된 상부 아암 링크(932)는 도 54에 그려진 바와 같이 단일 단편일 수 있거나, 또는 결합된 상부 아암 링크(932)는 2개 이상의 부위들에 의해 형성될 수 있다. 예시로서, 2-부위 설계는 재료가 덜 쓰여 더 가벼울 수 있으며, 좌측 부위 및 우측 부위는 동일한 구성요소들일 수 있다. 상기 아암의 개개의 링크들을 구동하는 데에 이용되는 내부 구성들은 도 18 및 19에 관하여 도시된 바에 기초하거나, 혹은 달리 기초할 수 있다. 공통 상부 아암(932)은 하나의 모터에 의해 구동된다. 상기 2개의 전측 아암들(934, 936) 각각은 통상의 풀리들을 갖춘 밴드 구동 장치를 통하여 하나의 모터에 의해 독립적으로 구동된다. 상기 엔드-이펙터들(938, 940)을 갖춘 제3 링크들은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구동 장치들에 의해 구속될 수 있는바, 이는 상부 아암들(934, 936) 및 전측 아암(932)의 상이한 길이들의 효과를 보상한다. 상기 연동부들 각각에서의 밴드 구동 장치들은 도 1 또는 기타에 대하여 설명된 방법론을 이용하여 설계된다. 도 1에 대하여 제시된 운동학적 방정식들은 이중 아암의 2개의 연동부들 각각에 대하여도 이용될 수 있다. 도 55a 내지 55c에는 제1 연동부(934, 938) 및 제2 연동부(936, 940)가 수축된 위치로부터 신장됨에 따른 도 54의 아암이 도시된다. 상기 엔드-이펙터의 측방향 오프셋은 상기 상부 아암(934, 936)의 관절-대-관절 길이와 상기 전측 아암(932)의 관절-대-관절 길이의 차이에 해당하고, 상기 손목 관절부(942, 944)는 웨이퍼의 중심의 궤적에 대하여 이 차이만큼 오프셋된 직선을 따라 통행한다. 활성 연동부가 신장되는 동안에 비활성 연동부는 회전한다는 점이 주목된다. 예를 들어, 상기 제1 연동부가 신장됨에 따라 상기 제2 연동부는 회전하고, 상기 제2 연동부가 신장됨에 따라 상기 제1 연동부가 회전한다. 도 55a에는 수축된 위치에 있는 두 연동부들 모두를 갖춘 아암이 그려져 있다. 도 55b에는 신장된 상기 제1 연동부(934, 938)가 도시된다. 도 55c에는 신장된 상기 제2 연동부(936, 940)가 그려진다. 도시된 상기 아암은, 상기 전측 아암들이 동일 평면 내에서 통행하고 상기 엔드-이펙터들이 동일 평면 내에서 통행함에 따라 낮은 프로파일(low profile)을 가지는바, 작은 용적을 가진 얕은 진공 체임버(shallow vacuum chamber)가 가능하게 된다. 하나의 연동부의 손목부의 수축된 위치가 다른 연동부의 손목부에 의해 구속되므로, 상기 아암의 격납 반경(containment radius)은 클 수 있어, 많은 수의 프로세스 모듈들을 가지는 용례에 특히 적합한 아암이 만들어지는바, 여기에서 그 체임버의 직경은 슬롯 밸브들(slot valves)의 크기에 의해 좌우(dictated)된다. 상기 아암의 낮은 프로파일로 인하여 상기 아암은 대향되는 엔드-이펙터들을 갖춘 프로그레그형(frogleg-type) 아암을 대체할 수 있다. 도시된 실시례에서 상기 전측 아암들은 상기 상부 아암보다 짧다; 대안으로서 상기 전측 아암이 더 길 수 있는바, 예를 들어 여기에서 상기 전측 아암들은 상이한 고도에 있고 중첩(overlap)된다.
이제 도 56 내지 57을 참조하면, 대향되는 엔드이펙터들(970, 972)을 갖춘 독립된 이중 아암(960)이 도시되어 있다. 도 56a 및 56b에는 상기 아암이 갖춰진 로봇의 평면도 및 측면도가 도시된다. 두 연동부들 모두는 수축된 위치로 도시되었다. 도 56에서 제1 연동부의 상부 아암(962)은 제2 연동부의 상부 아암(964) 위에 배치된다. 대안으로서, 상기 제2 연동부의 상부 아암은 상기 제1 연동부의 상부 아암 위에 배치될 수 있다. 상기 아암의 개개의 링크들을 구동하는 데에 이용되는 내부 구성들은 도 23에 기초하거나, 혹은 달리 기초할 수 있다. 여기에서 상기 2개의 상부 아암들(962, 964) 각각은 하나의 모터에 의해 독립적으로 구동될 수 있다. 전측 아암들(966, 968)은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구성들을 통하여 제3 모터에 결합된다. 상기 엔드-이펙터들(970, 972)을 갖춘 제3 링크들은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구동 장치들에 의해 구속된다. 상기 밴드 구동 장치들은, 상기 상부 아암들 중 하나의 회전이, 대응되는 연동부로 하여금 직선을 따라 신장 및 수축되게 하는 동안에 다른 연동부는 정지 상태로 유지되게끔 설계된다. 상기 연동부들 각각에서의 밴드 구동 장치들은 도 5에 대하여 설명된 방법론을 이용하여 설계된다. 도 5에 대하여 제시된 운동학적 방정식들은 이중 아암의 2개의 연동부들 각각에 대하여도 이용될 수 있다. 도 57a 내지 57c에는 제1 연동부(962, 966, 970) 및 제2 연동부(964, 968, 972)가 수축된 위치로부터 신장됨에 따른 도 56의 아암이 도시된다. 여기에서 활성 연동부가 신장되는 동안에 비활성 연동부는 (그래야 할 필요는 없지만) 정지 상태로 유지된다는 점이 주목된다. 즉, 상기 제1 연동부가 신장되는 동안에 상기 제2 연동부는 움직이지 않고, 상기 제2 연동부가 신장되는 동안에 상기 제1 연동부는 움직이지 않는다. 상기 아암은, 상기 전측 아암들이 동일 평면 내에서 통행하고 상기 엔드-이펙터들이 동일 평면 내에서 통행함에 따라 낮은 프로파일(low profile)을 가지는바, 작은 용적을 가진 얕은 진공 체임버가 가능하게 된다. 하나의 연동부의 손목부의 수축된 위치가 다른 연동부의 손목부에 의해 구속되므로, 상기 아암의 격납 반경은 클 수 있어, 많은 수의 프로세스 모듈들을 가지는 용례에 특히 적합한 아암이 만들어지는바, 여기에서 그 체임버의 직경은 슬롯 밸브들의 크기에 의해 좌우(dictated)된다. 상기 아암의 낮은 프로파일로 인하여 상기 아암은 대향되는 엔드-이펙터들을 갖춘 프로그레그형(frogleg-type) 아암을 대체할 수 있다. 도시된 실시례에서 상기 전측 아암들은 상기 상부 아암보다 짧다; 대안으로서 상기 전측 아암이 더 길 수 있는바, 예를 들어 여기에서 상기 전측 아암들은 상이한 고도에 있고 중첩(overlap)된다.
이제 도 58을 참조하면, 각지게 오프셋된(angularly offset) 엔드이펙터들(998, 1000)을 갖춘 결합된 이중 아암(990)이 도시되어 있다. 도 58a 및 58b에는 상기 아암을 갖춘 로봇의 평면도 및 측면도가 도시된다. 두 연동부들 모두는 수축된 위치로 도시되어 있다. 상기 엔드-이펙터들의 측방향 오프셋(1002, 1004)은 상부 아암(994, 996)의 관절-대-관절 길이와 전측 아암(992)의 관절-대-관절 길이의 차이에 해당한다. 결합된 상부 아암 링크(992)는 도 59에 그려진 바와 같이 단일 단편일 수 있거나, 또는 결합된 상부 아암 링크(992)는 2개 이상의 부위들에 의해 형성될 수 있다. 상기 아암의 개개의 링크들을 구동하는 데에 이용되는 내부 구성들은 도 18 및 19에 기초하거나, 혹은 달리 기초한다. 여기에서 공통 상부 아암(992)은 하나의 모터에 의해 구동될 수 있다. 상기 2개의 전측 아암들(994, 996) 각각은 통상의 풀리들을 갖춘 밴드 구동 장치를 통하여 하나의 모터에 의해 독립적으로 구동될 수 있다. 상기 엔드-이펙터들(998, 1000)을 갖춘 제3 링크들은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구동 장치들에 의해 구속되는바, 이는 상부 아암들 및 전측 아암들의 상이한 길이들의 효과를 보상한다. 상기 연동부들 각각에서의 밴드 구동 장치들은 도 1 또는 기타에 대하여 설명된 방법론을 이용하여 설계된다. 도 1에 대하여 제시된 운동학적 방정식들은 이중 아암의 2개의 연동부들 각각에 대하여도 이용될 수 있다. 또한 59a 내지 c를 참조하면, 좌측 연동부(994, 998) 및 우측 연동부(996, 1000)가 신장됨에 따른 도 58의 아암이 도시되어 있다. 상기 엔드-이펙터의 측방향 오프셋(1002, 1004)은 상기 상부 아암의 관절-대-관절 길이와 상기 전측 아암의 관절-대-관절 길이의 차이에 해당하고, 손목 관절부는 웨이퍼의 중심의 궤적에 대하여 이 차이만큼 오프셋된 직선을 따라 통행한다. 여기에서, 활성 연동부가 신장되는 동안에 비활성 연동부는 회전한다. 예를 들어, 상기 좌측 연동부가 신장됨에 따라 상기 우측 연동부는 회전하고, 상기 우측 연동부가 신장됨에 따라 상기 좌측 연동부가 회전한다. 도 59a에는 수축된 위치에 있는 두 연동부들 모두를 갖춘 아암이 그려져 있다. 도 59b에는 신장된 상기 좌측 연동부(994, 998)가 도시된다. 도 59c에는 신장된 상기 우측 연동부(996, 1000)가 그려진다. 여기에서 활성 아암이 신장되는 동안에 비활성 아암은 회전한다. 도시된 실시례에서 상기 전측 아암들은 상기 상부 아암보다 짧다; 대안으로서 상기 전측 아암이 더 길 수 있는바, 예를 들어 여기에서 상기 전측 아암들은 상이한 고도에 있고 중첩(overlap)된다. 도시된 실시례에서 상기 엔드이펙터들은 90도 떨어져 있을 수 있다; 대안으로서 임의의 분리각(separation angle)이 제공될 수 있다.
이제 도 60을 참조하면, 각지게 오프셋된 엔드이펙터들(1040, 1042)을 갖춘 독립된 이중 아암(1030)이 도시되어 있다. 도 60a 및 60b에는 상기 아암을 갖춘 로봇의 평면도 및 측면도가 도시된다. 두 연동부들 모두는 수축된 위치로 도시되어 있다. 도 60에서 우측 상부 아암(1034)은 좌측 상부 아암(1032) 아래에 배치된다. 대안으로서, 좌측 상부 아암이 상기 우측 상부 아암 아래에 배치될 수 있다. 상기 아암의 개개의 링크들을 구동하는 데에 이용되는 내부 구성들은 도 23에 기초할 수 있다. 상기 2개의 상부 아암들(1032, 1034) 각각은 하나의 모터에 의해 독립적으로 구동될 수 있다. 전측 아암들은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구성들을 통하여 제3 모터에 결합된다. 상기 엔드-이펙터들(1040, 1042)을 갖춘 제3 링크들은, 적어도 하나의 비원형 풀리가 각각 갖춰진 밴드 구동 장치들에 의해 구속된다. 상기 밴드 구동 장치들은, 상기 상부 아암들(1032, 1034) 중 하나의 회전이, 대응되는 연동부로 하여금 직선을 따라 신장 및 수축되게 하는 동안에 다른 연동부는 정지 상태로 유지되게끔 설계된다. 상기 연동부들 각각에서의 밴드 구동 장치들은 도 5 또는 기타에 대하여 설명된 방법론을 이용하여 설계된다. 도 5에 대하여 제시된 운동학적 방정식들은 이중 아암의 2개의 연동부들 각각에 대하여도 이용될 수 있다. 도 61a 내지 61c에는, 좌측 연동부(1032, 1036, 1040), 그리고 우측 연동부(1034, 1038, 1042)가 신장됨에 따른 도 60의 아암이 도시된다. 여기에서 활성 연동부가 신장되는 동안에 비활성 연동부는 (그래야 할 필요는 없지만) 정지 상태로 유지된다. 즉, 상기 우측 연동부가 신장되는 동안에 상기 좌측 연동부는 움직이지 않고, 상기 좌측 연동부가 신장되는 동안에 상기 우측 연동부는 움직이지 않는다. 여기에서, 활성 연동부가 신장되는 동안에 비활성 연동부는 정지 상태로 유지된다. 도시된 실시례에서 상기 전측 아암들은 상기 상부 아암보다 짧다; 대안으로서 상기 전측 아암이 더 길 수 있는바, 예를 들어 여기에서 상기 전측 아암들은 상이한 고도에 있고 중첩(overlap)된다. 도시된 실시례에서 상기 엔드이펙터들은 90도 떨어져 있을 수 있다; 대안으로서 임의의 분리각(separation angle)이 제공될 수 있다.
도 62 또는 기타에 관한 예시로서, 각각 제3-링크 조립체로 불릴 수 있는 제3 링크 및 엔드-이펙터(1060, 1062)는, 상기 아암의 대응되는 연동부가 신장 및 수축하는 때에, 질량 중심(1064, 1066)이 각각 손목 관절부(1068, 1070)의 직선 궤적 상에 있거나 인접하도록 설계될 수 있다. 이는 상기 제3-링크 조립체의 질량 중심에 작용하는 관성력 및 상기 손목 관절부에서의 반작용력으로 인한 모멘트(moment)를 감소시킴으로써, 상기 제3-링크 조립체를 구속하는 밴드 구성 상의 부하는 감소된다. 여기에서, 유효하중(payload)이 존재하는 때에는 상기 제3-링크 조립체의 질량 중심이 상기 손목 관절부 궤적의 일측에 있고 유효하중이 존재하지 않는 때에는 그 질량 중심이 그 궤적의 타측에 있도록 상기 제3-링크 조립체가 더 설계될 수 있다. 대안으로서, 최상의 직선 추적 성능(best straight-line tracking performance)이 전형적으로 유효하중이 있는 채로 요구됨에 따라, 유효하중이 존재하는 때에는 상기 제3-링크 조립체의 질량 중심이 실질적으로 상기 손목 관절부 궤적 상에 있도록 상기 제3-링크 조립체가 설계될 수 있는바, 도 62에 도해된 바와 같다. 도 62에서, 1L은 좌측 연동부의 손목 관절부의 중심의 직선 궤적이며, 2L는 상기 좌측 연동부의 손목 관절부의 중심(1070)이며, 3L은 상기 좌측 연동부의 제3-링크 조립체의 질량 중심(1066)이며, 4L은 상기 좌측 연동부가 신장 움직임의 시작시에 가속되는 때에 (또는 수축 움직임의 종료시에 감속되는 때에) 상기 좌측 연동부의 제3-링크 조립체 상에 작용하는 힘이고, 5L은 상기 좌측 연동부가 신장 움직임의 시작시에 가속되는 때에 (또는 수축 움직임의 종료시에 감속되는 때에) 상기 좌측 연동부의 제3-링크 조립체의 질량 중심에 작용하는 관성력이다. 유사하게 1R은 우측 연동부의 손목 관절부의 중심의 직선 궤적이며, 2R는 상기 우측 연동부의 손목 관절부의 중심(1068)이며, 3R은 상기 우측 연동부의 제3-링크 조립체의 질량 중심(1064)이며, 4R은 상기 우측 연동부가 신장 움직임의 종료시에 감속되는 때에 (또는 수축 움직임의 시작시에 가속되는 때에) 상기 우측 연동부의 제3-링크 조립체 상에 작용하는 힘이고, 5R은 상기 우측 연동부가 신장 움직임의 종료시에 감속되는 때에 (또는 수축 움직임의 시작시에 가속되는 때에) 상기 우측 연동부의 제3-링크 조립체의 질량 중심에 작용하는 관성력이다. 도시된 실시례에서 이중 웨이퍼 엔드이펙터들이 제공된다. 대안적 양상들에서 임의의 적합한 엔드이펙터 및 아암, 또는 링크 구조(link geometry)가 제공될 수 있다.
대안적 양상들로는, 실시례의 양상들 중 임의의 양상에서의 상부 아암들은, 모터에 의하여 직접적으로 또는 임의의 종류의 결합 또는 전달 구성(coupling or transmission arrangement)을 통하여 구동될 수 있다. 임의의 전달비가 이용될 수 있다. 대안으로서, 상기 제2 링크를 작동시키고 상기 제3 링크를 구속하는 밴드 구동 장치들은 균등한 기능성을 갖춘 임의의 다른 구성, 예컨대 벨트 구동 장치, 케이블 구동 장치, 원형 기어 및 비원형 기어, 연동-기반 메커니즘들 또는 상기한 것의 임의의 조합에 의해 대체될 수 있다. 대안으로서, 예를 들어 실시례의 이중 아암 양상 및 사중(quad) 아암 양상에서 각각의 연동부의 제3 링크는, 도 9의 단일 아암 개념에서와 유사하게, 상기 제2 모터에 의해 구동되는 풀리에 상기 제3 링크를 동기화(synchronize)시키는 통상의 2단 밴드 구성을 통하여 상기 엔드-이펙터를 반경방향으로 유지하도록 구속될 수 있다. 대안으로서, 상기 2단 밴드 구성은 예컨대 벨트 구동 장치, 케이블 구동 장치, 기어 구동 장치, 연동-기반 메커니즘 또는 상기한 것의 임의의 조합과 같은 임의의 다른 적합한 구성에 의해 대체될 수 있다. 대안으로서, 상기 실시례의 이중 아암 양상 및 사중 아암 양상에서 상기 상부 아암들은 동축의 방식(coaxial manner)으로 구성되지 않을 수 있다. 그 상부 아암들은 별개의 어깨 관절부들을 구비할 수 있다. 상기 이중 아암 및 사중 아암의 2개의 연동부들에는 동일한 길이의 상부 아암들과 동일한 길이의 전측 아암들이 구비될 필요는 없다. 하나의 연동부의 상부 아암의 길이는 다른 연동부의 상부 아암의 길이와 상이할 수 있고, 하나의 연동부의 전측 아암의 길이는 다른 연동부의 전측 아암의 길이와 상이할 수 있다. 상기 전측 아암-대-상부 아암의 비율은 2개의 연동부들에 있어서 상이할 수도 있다. 좌측 연동부 및 우측 연동부의 링크들이 상이한 고도를 가지는 상기 실시례의 이중 아암 양상 및 사중 아암 양상에서 상기 좌측 연동부 및 상기 우측 연동부는 서로 바뀔(interchange) 수 있다. 상기 이중 아암 및 사중 아암의 2개의 연동부들은 동일한 방향을 따라 신장될 필요는 없다. 상기 아암들은 각각의 연동부가 상이한 방향으로 신장되도록 구성될 수 있다. 상기 실시례의 양상들 중 임의의 양상에서 상기 2개의 연동부들은 3개보다 적거나 많은 링크들로 구성될 수 있다(제1 링크 = 상부 아암, 제2 링크 = 전측 아암, 제3 링크 = 엔드-이펙터를 갖춘 링크). 상기 실시례의 이중 아암 양상 및 사중 아암 양상에서 각각의 연동부는 상이한 개수의 링크들을 구비할 수 있다. 상기 실시례의 단일 아암 양상들에서 제3 링크는 하나 초과의 엔드-이펙터를 보유할 수 있다. 임의의 적합한 개수의 엔드-이펙터들 및/또는 재료 홀더들이 상기 제3 링크에 의해 보유될 수 있다. 유사하게, 상기 실시례의 이중 아암 양상들에서 각각의 연동부는 임의의 적합한 개수의 엔드-이펙터들을 보유할 수 있다. 어느 경우든, 상기 엔드-이펙터들은 동일한 평면 내에 위치되거나, 서로의 위에 적층되거나, 그 둘의 조합으로 배치되거나, 또는 임의의 다른 적합한 방식으로 배치될 수 있다. 게다가 이중 아암 구성들에 있어서 각각의 아암은 독립적으로 작동가능할 수 있으며, 예를 들어 회전, 신장 및/또는 z(수직)에 있어서 독립적으로 작동가능할 수 있는바, 예를 들어 2012년 11월 6일자 출원일을 가지는 "Robot System with Independent Arms(독립 아암들을 갖춘 로봇 시스템)"이라는 제목의 출원중인 미국 특허출원 제13/670,004호에 관하여 설명되는 바와 같으며, 그 미국 특허출원은 전체가 본 명세서에 참조 병합된다. 이에 따라 그러한 모든 변형물들, 조합들 및 변동물들이 포괄된다.
예시적 실시례의 일 양상에 따르면, 기판 운반 장치가 기판을 운반하도록 적합화된다. 상기 기판 운반 장치에는 회전 중심축 상에서 구동부에 결합된 가동 아암 조립체가 구비된다. 기판 지지체는 회전 손목 축 상에서 상기 아암 조립체에 결합된다. 신장 및 수축 동안에 상기 아암 조립체는 회전 중심축을 중심으로 회전한다. 신장 및 수축 동안에 상기 회전 손목 축은, 반경방향 경로에 평행하고 그 반경방향 경로로부터 상기 회전 중심축에 대하여 오프셋되는 손목 경로를 따라 움직인다. 신장 및 수축 동안에 상기 기판 지지체는 회전 없이 상기 반경방향 경로에 평행하게 움직인다.
예시적 실시례의 다른 일 양상에 따르면, 기판 운반 장치가 제1 기판 및 제2 기판을 운반하도록 적합화된다. 상기 기판 운반 장치에는 공통 회전축 상에서 구동부에 결합된 제1 독립 가동 아암 조립체 및 제2 독립 가동 아암 조립체가 구비된다. 제1 기판 지지체 및 제2 기판 지지체는 제1 회전 손목 축 및 제2 회전 손목 축 상에서 각각 상기 제1 아암 조립체 및 상기 제2 아암 조립체에 결합된다. 신장 및 수축 동안에 상기 제1 아암 조립체 및 상기 제2 아암 조립체는 상기 공통 회전축을 중심으로 회전한다. 신장 및 수축 동안에 상기 제1 회전 손목 축 및 제2 회전 손목 축은 반경방향 경로에 평행하고 그 반경방향 경로로부터 상기 공통 회전축에 대하여 오프셋되는 제1 손목 경로 및 제2 손목 경로를 따라 움직인다. 신장 및 수축 동안에 상기 제1 기판 지지체 및 제2 기판 지지체는 회전 없이 상기 반경방향 경로에 평행하게 움직인다.
예시적 실시례의 다른 일 양상에 따르면, 기판 운반 장치는 기판을 운반하도록 적합화된다. 상기 기판 운반 장치에는, 구동부 및 상기 구동부에 회전가능하게 결합된 상부 아암이 구비되는바, 상기 상부 아암은 중심축을 중심으로 회전가능하다. 엘보 풀리는 상기 상부 아암에 고정된다. 전측 아암은 상기 상부 아암에 회전가능하게 결합되고 상기 전측 아암은 엘보 축을 중심으로 회전가능하며, 상기 엘보 축은 상기 중심축으로부터 상부 아암 링크 길이만큼 오프셋된다. 엔드이펙터는 상기 전측 아암에 회전가능하게 결합되며, 상기 엔드이펙터는 손목 축을 중심으로 회전가능하고, 상기 손목 축은 전측 아암 링크 길이만큼 상기 엘보 축으로부터 오프셋되며, 상기 엔드이펙터는 기판을 지지한다. 손목 풀리는 상기 엔드이펙터에 고정되는바, 상기 손목 풀리는 밴드(band)로써 상기 엘보 풀리에 결합된다. 상기 전측 아암 링크 길이는 상기 상부 아암 링크 길이와 상이하다. 상기 기판이 상기 중심축에 대하여 반경방향인 선형 경로를 따라 움직이도록 상기 엔드이펙터는 상기 엘보 풀리, 상기 손목 풀리 및 상기 밴드에 의해 상기 상부 아암에 대하여 구속된다.
예시적 실시례의 다른 일 양상에 따르면, 기판 운반 장치는 기판을 운반하도록 적합화된다. 상기 기판 운반 장치에는 제1 회전식 구동 장치(rotary drive) 및 제2 회전식 구동 장치를 구비한 구동부가 구비된다. 상부 아암은 회전 중심축 상에서 상기 제1 회전식 구동 장치에 회전가능하게 결합된다. 전측 아암은 상기 상부 아암에 회전가능하게 결합되고, 상기 전측 아암은 상기 상부 아암의 회전 엘보 축을 중심으로 회전가능하며, 상기 회전 엘보 축은 상기 회전 중심축으로부터 상부 아암 링크 길이만큼 오프셋된다. 상기 전측 아암은, 전측 아암 결합부로써 상기 제2 회전식 구동 장치에 더 결합되고 상기 제2 회전식 구동 장치에 의해 상기 회전 엘보 축을 중심으로 구동된다. 기판 지지체는 상기 기판을 지지하며, 상기 기판 지지체는 상기 전측 아암에 회전가능하게 결합되고 상기 전측 아암의 회전 손목 축을 중심으로 회전가능하며, 상기 회전 손목 축은 상기 회전 엘보 축으로부터 전측 아암 링크 길이만큼 오프셋된다. 상기 기판 지지체는 기판 지지체 결합부로써 상기 상부 아암에 더 결합되고 상기 회전 엘보 축을 중심으로 한 상기 상부 아암과 상기 전측 아암 사이의 상대적 움직임에 의해 상기 회전 손목 축을 중심으로 구동된다. 상기 전측 아암 링크 길이는 상기 상부 아암 링크 길이와 상이하다. 상기 기판 지지체는, 상기 기판이 상기 회전 중심축에 대하여 선형 경로를 따라 움직이도록 상기 기판 지지체 결합부에 의해 구속된다.
예시적 실시례의 다른 일 양상에 따르면, 상기 선형 경로는 상기 회전 중심축과 교차하는 방향을 따른다.
예시적 실시례의 다른 일 양상에 따르면, 상기 선형 경로는, 상기 회전 중심축에 대하여 오프셋되는, 상기 회전 중심축과 직각인 방향을 따른다.
예시적 실시례의 다른 일 양상에 따르면, 상기 회전 손목 축은 상기 선형 경로에 평행한 손목 경로를 따라 움직인다.
예시적 실시례의 다른 일 양상에 따르면, 상기 기판 지지체 결합부는 하나 이상의 비원형 풀리들이 구비된 밴드 구동 장치를 포함한다.
예시적 실시례의 다른 일 양상에 따르면, 상기 전측 아암 결합부는 하나 이상의 비원형 풀리들이 구비된 밴드 구동 장치를 포함한다.
예시적 실시례의 다른 일 양상에 따르면, 운반 장치에는: 구동 장치; 상기 구동 장치에 연결된 제1 아암으로서, 상기 제1 아암은 상기 구동 장치에 직렬로 연결되는 제1 링크, 제2 링크 및 엔드이펙터를 포함하고, 상기 제1 링크와 상기 제2 링크는 상이한 유효 길이들을 가지는, 제1 아암; 및 상기 제1 아암이 신장 또는 수축되는 때에 상기 구동 장치에 대한 상기 엔드이펙터의 직선 움직임만이 실질적으로 제공되도록 상기 제2 링크에 대한 상기 엔드이펙터의 회전을 제한하기 위한 시스템;이 구비된다.
예시적 실시례의 다른 일 양상에 따르면, 상기 제1 링크의 유효 길이는 상기 제2 링크의 유효 길이보다 짧다.
예시적 실시례의 다른 일 양상에 따르면, 상기 제1 링크의 유효 길이는 상기 제2 링크의 유효 길이보다 길다.
예시적 실시례의 다른 일 양상에 따르면, 상기 엔드이펙터는, 상기 제1 링크의 유효 길이와 상기 제2 링크의 유효 길이의 차이와 거의 같은, 상기 제2 링크와의 손목 관절부와 기판 지지부의 중심선 사이의 측방향 오프셋을 포함한다.
예시적 실시례의 다른 일 양상에 따르면, 상기 회전을 제한하기 위한 시스템은, 상기 제1 아암이 신장 또는 수축되는 때 상기 손목 관절부가 상기 구동 장치의 회전 중심축에 대하여 상기 측방향 오프셋에서 유지되는 채로, 상기 엔드이펙터를 병진(translate)시키도록 구성된다.
예시적 실시례의 다른 일 양상에 따르면, 상기 엔드이펙터의 회전을 제한하기 위한 시스템은 상기 제1 아암이 신장 또는 수축되는 때에 상기 구동 장치에 대한 상기 엔드이펙터의 반경방향 움직임만을 실질적으로 제공한다.
예시적 실시례의 다른 일 양상에 따르면, 상기 엔드이펙터의 회전을 제한하기 위한 시스템은 상기 엔드이펙터가 상기 제1 링크의 위치 및 상기 제2 링크의 위치에 관계없이 상기 구동 장치에 대하여 반경방향을 향하게끔 상기 엔드이펙터의 배향을 구속하도록 구성된다.
예시적 실시례의 다른 일 양상에 따르면, 상기 엔드이펙터는 상기 엔드이펙터 상에 적어도 2개의 이격된 기판들을 지지하도록 구성되고, 상기 제1 아암이 신장 또는 수축되는 때에 상기 손목 관절부가 상기 구동 장치의 회전 중심축에 대하여 상기 측방향 오프셋에서 유지되는 채로 상기 엔드이펙터가 실질적으로 병진으로만 움직여지도록, 상기 제1 아암이 신장 또는 수축되는 때의 상기 엔드이펙터의 직선 움직임의 경로의 중심과 상기 엔드이펙터의 상기 제2 링크와의 손목 관절부 사이에 측방향 오프셋이 제공된다.
예시적 실시례의 다른 일 양상에 따르면, 상기 회전을 제한하기 위한 시스템은, 풀리들과 밴드가 포함된 밴드 구동 장치를 포함한다.
예시적 실시례의 다른 일 양상에 따르면, 상기 풀리들은 적어도 하나의 비원형 풀리를 포함한다.
예시적 실시례의 다른 일 양상에 따르면, 상기 풀리들은, 상기 제2 링크 또는 상기 엔드이펙터에 정지 상태로 연결(stationarily connected)된 적어도 하나의 풀리를 포함한다.
예시적 실시례의 다른 일 양상에 따르면, 상기 엔드이펙터는, 기판 지지부, 및 상기 기판 지지부를 상기 엔드이펙터의 상기 제2 링크와의 손목 관절부에 연결하는 다리(leg)를 포함하며, 상기 다리에는 상기 손목 관절부에 연결된 제1 부위 및 상기 기판 지지부에 연결된 제2 부위가 구비되고, 상기 제1 부위 및 상기 제2 부위는 약 90도 내지 약 120도 사이의 각도로 서로 연결된다.
예시적 실시례의 다른 일 양상에 따르면, 상기 엔드이펙터는 2개의 기판 지지부들, 및 상기 기판 지지부를 상기 엔드이펙터의 상기 제2 링크와의 손목 관절부에 연결하는 다리 프레임을 포함하며, 상기 다리 프레임은 기저부 및 2개의 다리들이 갖춰져 실질적으로 U자 형상이며, 각각의 다리는 상기 기판 지지부들 중 개별의 하나에 연결되며, 상기 손목 관절부는 상기 엔드이펙터를 상기 기저부의 중심으로부터 오프셋된 위치에서 상기 제2 링크에 연결한다.
예시적 실시례의 다른 일 양상에 따르면, 방법으로서: 구동 장치에 의하여 아암의 제1 링크를 회전시킴; 상기 제1 링크가 회전하는 때에 상기 아암의 제2 링크가 상기 제1 링크 상에서 회전되게 상기 제2 링크를 회전시킴; 및 상기 제1 링크 및 상기 제2 링크는 상이한 유효 길이들을 가지고, 상기 아암이 신장 또는 수축되는 때 엔드이펙터가 상기 구동 장치에 대하여 실질적으로 직선 움직임만 할 수 있게 제한되게끔 상기 제2 링크 상에서 상기 엔드이펙터의 회전이 구속되도록 상기 제2 링크 상에서 상기 엔드이펙터를 회전시킴;을 포함하는 방법이 제공된다.
예시적 실시례의 다른 일 양상에 따르면, 상기 움직임은 상기 구동 장치의 중심축에 대한 반경방향 움직임이다.
예시적 실시례의 다른 일 양상에 따르면, 상기 엔드이펙터는, 상기 제1 링크의 유효 길이와 상기 제2 링크의 유효 길이의 차이와 거의 같은, 상기 제2 링크와의 손목 관절부와 기판 지지부의 중심선 사이의 측방향 오프셋을 포함한다.
예시적 실시례의 다른 일 양상에 따르면, 상기 제2 링크 상에서 상기 엔드이펙터를 회전시킴은, 상기 제1 아암이 신장 또는 수축되는 때 상기 제2 링크와의 손목 관절부가 상기 구동 장치의 회전 중심축에 대하여 측방향 오프셋에서 유지되는 채, 상기 엔드이펙터의 병진 동작만으로 귀결된다.
예시적 실시례의 다른 일 양상에 따르면, 상기 엔드이펙터를 회전시킴은 상기 제1 아암이 신장 또는 수축되는 때의 상기 구동 장치에 대하여 상기 엔드이펙터의 반경방향 움직임만을 실질적으로 제공한다.
예시적 실시례의 다른 일 양상에 따르면, 상기 엔드이펙터를 회전시킴은, 상기 엔드이펙터가 상기 제1 링크의 위치 및 상기 제2 링크의 위치에 관계없이 상기 구동 장치에 대하여 반경방향을 향하도록 상기 엔드이펙터의 배향을 구속한다.
예시적 실시례의 다른 일 양상에 따르면, 운반 장치로서: 구동 장치; 및 상기 구동 장치에 연결된 아암;을 포함하며,
상기 아암은, 제1 관절부에서 상기 구동 장치에 연결되는 제1 링크, 제2 관절부에서 상기 제1 링크에 연결되는 제2 링크, 및 제3 관절부에서 상기 제2 링크에 연결되는 엔드이펙터를 포함하고, 상기 제1 링크는 상기 제1 관절부와 상기 제2 관절부 사이의 제1 길이를 포함하며, 상기 제1 길이는 상기 제2 관절부와 상기 제3 관절부 사이의 상기 제2 링크의 제2 길이와 상이하고, 상기 제3 관절부에서 상기 엔드이펙터의 움직임은, 상기 아암의 신장 또는 수축 동안에 상기 구동 장치의 회전 중심에 대하여 실질적으로 반경방향 직선을 따르도록 구속되는, 운반 장치가 제공된다.
일 예시 실시례에 따르면, 운반 장치는: 구동 장치; 상기 구동 장치에 연결된 제1 아암으로서, 상기 제1 아암은 상기 구동 장치에 직렬로 연결되는 제1 링크, 제2 링크 및 엔드이펙터를 포함하고, 상기 제1 링크와 상기 제2 링크는 상이한 유효 길이들을 가지는, 제1 아암; 및 상기 제1 아암이 신장 또는 수축되는 때에 상기 구동 장치에 대한 상기 엔드이펙터의 직선 움직임만이 실질적으로 제공되도록 상기 제2 링크에 대한 상기 엔드이펙터의 회전을 제한하기 위한 시스템;을 포함한다.
상기 제1 링크의 유효 길이는 상기 제2 링크의 유효 길이보다 짧을 수 있다. 상기 제1 링크의 유효 길이는 상기 제2 링크의 유효 길이보다 길 수 있다. 상기 엔드이펙터는, 상기 제1 링크의 유효 길이와 상기 제2 링크의 유효 길이의 차이와 거의 같은, 상기 제2 링크와의 손목 관절부와 기판 지지부의 중심선 사이의 측방향 오프셋을 포함할 수 있다. 상기 회전을 제한하기 위한 시스템은, 상기 제1 아암이 신장 또는 수축되는 때 상기 손목 관절부가 상기 구동 장치의 회전 중심축에 대하여 상기 측방향 오프셋에서 유지되는 채로, 상기 엔드이펙터를 병진시키도록 구성될 수 있다. 상기 엔드이펙터의 회전을 제한하기 위한 시스템은 상기 제1 아암이 신장 또는 수축되는 때에 상기 구동 장치에 대한 상기 엔드이펙터의 반경방향 움직임만을 실질적으로 제공할 수 있다. 상기 엔드이펙터의 회전을 제한하기 위한 시스템은 상기 엔드이펙터가 상기 제1 링크의 위치 및 상기 제2 링크의 위치에 관계없이 상기 구동 장치에 대하여 반경방향을 향하게끔 상기 엔드이펙터의 배향을 구속하도록 구성될 수 있다. 상기 엔드이펙터는 상기 엔드이펙터 상에 적어도 2개의 이격된 기판들을 지지하도록 구성될 수 있는바, 상기 제1 아암이 신장 또는 수축되는 때에 상기 손목 관절부가 상기 구동 장치의 회전 중심축에 대하여 상기 측방향 오프셋에서 유지되는 채로 상기 엔드이펙터가 실질적으로 병진으로만 움직여지도록, 상기 제1 아암이 신장 또는 수축되는 때의 상기 엔드이펙터의 직선 움직임의 경로의 중심과 상기 엔드이펙터의 상기 제2 링크와의 손목 관절부 사이에 측방향 오프셋이 제공된다. 상기 회전을 제한하기 위한 시스템은, 풀리들과 밴드가 포함된 밴드 구동 장치를 포함할 수 있다. 상기 풀리들은 적어도 하나의 비원형 풀리를 포함할 수 있다. 상기 풀리들은, 상기 제2 링크 또는 상기 엔드이펙터에 정지 상태로 연결된 적어도 하나의 풀리를 포함할 수 있다. 상기 엔드이펙터는, 기판 지지부, 및 상기 기판 지지부를 상기 엔드이펙터의 상기 제2 링크와의 손목 관절부에 연결하는 다리(leg)를 포함할 수 있는바, 여기에서 상기 다리에는 상기 손목 관절부에 연결된 제1 부위 및 상기 기판 지지부에 연결된 제2 부위가 구비되고, 상기 제1 부위 및 상기 제2 부위는 약 90도 내지 약 120도 사이의 각도로 서로 연결된다. 상기 엔드이펙터는 2개의 기판 지지부들, 및 상기 기판 지지부를 상기 엔드이펙터의 상기 제2 링크와의 손목 관절부에 연결하는 다리 프레임을 포함할 수 있는바, 여기에서 상기 다리 프레임은 기저부(base) 및 2개의 다리들이 갖춰져 실질적으로 U자 형상이며, 각각의 다리는 상기 기판 지지부들 중 개별의 하나에 연결되며, 상기 손목 관절부는 상기 엔드이펙터를 상기 기저부의 중심으로부터 오프셋된 위치에서 상기 제2 링크에 연결한다.
예시 방법의 일 유형은, 구동 장치에 의하여 아암의 제1 링크를 회전시킴; 상기 제1 링크가 회전하는 때에 상기 아암의 제2 링크가 상기 제1 링크 상에서 회전되게 상기 제2 링크를 회전시킴; 및 상기 제1 링크 및 상기 제2 링크는 상이한 유효 길이들을 가지고, 상기 아암이 신장 또는 수축되는 때 엔드이펙터가 상기 구동 장치에 대하여 실질적으로 직선 움직임만 할 수 있게 제한되게끔 상기 제2 링크 상에서 상기 엔드이펙터의 회전이 구속되도록 상기 제2 링크 상에서 상기 엔드이펙터를 회전시킴;을 포함할 수 있다.
상기 움직임은 상기 구동 장치의 중심축에 대한 반경방향 움직임일 수 있다. 상기 엔드이펙터는, 상기 제1 링크의 유효 길이와 상기 제2 링크의 유효 길이의 차이와 거의 같은, 상기 제2 링크와의 손목 관절부와 기판 지지부의 중심선 사이의 측방향 오프셋을 포함할 수 있다. 상기 제2 링크 상에서 상기 엔드이펙터를 회전시킴은, 상기 제1 아암이 신장 또는 수축되는 때 상기 제2 링크와의 손목 관절부가 상기 구동 장치의 회전 중심축에 대하여 측방향 오프셋에서 유지되는 채, 상기 엔드이펙터의 병진 동작만으로 귀결될 수 있다. 상기 엔드이펙터는 상기 제1 아암이 신장 또는 수축되는 때의 상기 구동 장치에 대하여 상기 엔드이펙터의 반경방향 움직임만을 실질적으로 제공할 수 있다. 상기 엔드이펙터를 회전시킴은, 상기 엔드이펙터가 상기 제1 링크의 위치 및 상기 제2 링크의 위치에 관계없이 상기 구동 장치에 대하여 반경방향을 향하도록 상기 엔드이펙터의 배향을 구속할 수 있다.
예시 실시례의 일 유형에 운반 장치가 제공될 수 있는바, 그 운반 장치는: 구동 장치; 및 상기 구동 장치에 연결된 아암;을 포함하며, 상기 아암은, 제1 관절부에서 상기 구동 장치에 연결되는 제1 링크, 제2 관절부에서 상기 제1 링크에 연결되는 제2 링크, 및 제3 관절부에서 상기 제2 링크에 연결되는 엔드이펙터를 포함하고, 상기 제1 링크는 상기 제1 관절부와 상기 제2 관절부 사이의 제1 길이를 포함하며, 상기 제1 길이는 상기 제2 관절부와 상기 제3 관절부 사이의 상기 제2 링크의 제2 길이와 상이하고, 상기 제3 관절부에서 상기 엔드이펙터의 움직임은, 상기 아암의 신장 또는 수축 동안에 상기 구동 장치의 회전 중심에 대하여 실질적으로 반경방향 직선을 따르도록 구속된다.
이제 도 63을 참조하면, 예시적 풀리들의 그래프 표현(graphical representation)(1100)이 도시되어 있다. 그 예시적 풀리 프로파일들은 설명될 바와 같은 상이한 링크 길이들을 가지는 아암에 대한 것일 수 있다. 예시로서, 상기 그래프(1100)에는 엘보 풀리가 원형인 손목 풀리에 대한 프로파일들이 도시될 수 있다. 여기에서 다음의 예시 설계가 도면에 대하여 이용되었다: Re/l2 = 0.2, 여기에서 Re는 상기 엘보 풀리의 반경이며, l2는 상기 전측 아암의 관절-대-관절 길이이다. 대안으로서, 임의의 적합한 비율이 제공될 수 있다. 명료성을 목적으로, 상기 그래프에는 동일-링크 아암에 대한 풀리에 비하면 극단적인 설계의 경우들(extreme design cases)이 도시된다. 가장 바깥쪽의 프로파일(1110)은 l2/l1 = 2에 대한 것인바, 여기에서 l2는 상기 전측 아암의 관절-대-관절 길이이며, l1은 상기 상부 아암의 관절-대-관절 길이인바, 예를 들어 이 경우는 더 긴 전측 아암을 나타낸다. 중간 프로파일(1112)은 l2/l1 = 1에 대한 것인바, 예를 들어 동일한 링크 길이들을 갖는 경우이다. 가장 안쪽 프로파일(1114)은 l2/l1 = 0.5에 대한 것인바, 예를 들어 이 경우는 더 짧은 전측 아암을 나타낸다. 도시된 실시례에서, 극좌표계(1120)가 이용되었다. 여기에서 반경방향 거리는 상기 엘보 풀리의 반경에 대하여 정규화되었으며, 예를 들어 상기 엘보 풀리의 반경의 배수로 표현되었다. 달리 말하자면, Rw/Re가 보였는바, 여기에서 Rw는 상기 손목 풀리의 극좌표들을 나타내며, Re는 상기 엘보 풀리를 나타낸다. 상기 각좌표들은 도수(deg)로 되었으며, 영(the zero)은 상기 엔드-이펙터의 방향(1122)을 따라 가리키는바, 예를 들어 상기 엔드-이펙터는 도면에 대하여 우측을 향한다.
이제 도 64 및 65를 참조하면, 상이한 링크 길이들(1140 및 1150)을 가지는 아암의 2개의 추가적 구성들이 도시되어 있다. 아암(1140)은 상부 아암(1142)보다 긴 전측 아암(l144)을 갖춘 것으로 도시되는바, 여기에서 단일 아암 구성은 도 1 내지 4, 및 5 내지 8 또는 기타에 관하여 개시된 바와 같은 특징들을 활용할 수 있다. 도시된 실시례에서 개별의 기판들(1150, 1152)을 지지하는 2개의 엔드-이펙터들(1146, 1148)은, 서로 강체 연결(connected rigidly)되며 대향되는 방향들을 향한다. 상기 기판들은, 로봇(1140)의 중심(1156)과 일치하고 도시된 바와 같이 손목부로부터 오프셋(1154)된 반경방향 경로 내에서 통행한다. 유사하게, 아암(1160)은 상부 아암(1162)보다 짧은 전측 아암(l164)을 갖춘 것으로 도시되는바, 여기에서 단일 아암 구성은 도 1 내지 4, 및 5 내지 8 또는 기타에 관하여 개시된 바와 같은 특징들을 활용할 수 있다. 도시된 실시례에서 개별의 기판들(1170, 1172)을 지지하는 2개의 엔드-이펙터들(1166, 1168)은 서로 강체 연결되며 대향되는 방향들을 향한다. 상기 기판들은, 로봇(1160)의 중심(1176)과 일치하고 도시된 바와 같이 손목부로부터 오프셋(1174)된 반경방향 경로 내에서 통행한다. 여기에서, 개시된 실시례들의 특징들은 개시된 다른 실시례들 중 임의의 실시례와 유사하게 공유될 수 있다.
도 66a을 참조하면, 예시적 기판 운반 로봇(1200)의 개략 평면도가 도시되어 있다. 로봇(1200)은 진공 적합적(vacuum compatible)일 수 있거나, 또는 구동 부분(drive portion; 1210), 및 구동 부분(1210)에 결합된 아암 부분(1212)을 구비한 임의 적합한 로봇일 수 있는바, 아래에서 더 상세하게 설명될 바와 같다. 도시된 실시례들을 통틀어, 상부 아암 링크 길이들 및 전측 아암 링크 길이들은 상이할 수 있으며, 원형 또는 비원형 풀리들에 의해 구동될 수 있는바, 예를 들어 앞서 설명된 바와 같다. 대안적 양상들에서, 동일한 링크 길이들을 가지거나 상이한 링크 길이들을 가진 아암들로서, 원형 풀리들 또는 다른 적합한 구동 구성들이 구비되는 아암들이, 예를 들어 임의의 개시된 적합한 구성으로써 제공될 수 있다. 도 66a 및 66b에는 아암(1212)을 갖춘 로봇(1200)의 평면도 및 측면도가 각각 도시된다. 상기 구동 유닛(1200)에는 아암(1212)의 제1 부분(1214) 및 제2 부분(1216)이 독립적으로 구동될 수 있도록 4개의 동심축 구동 샤프트들이 제공될 수 있다. 4개의 동심 축을 갖춘 적합한 구동 장치가 도 70b에 예시로서 도시되었다. 여기에서, 아암(1212)은 2개의 독립 연동부들, 즉 상부 연동부(1214) 및 하부 연동부(1216)를 특징으로 가진다. 상기 상부 연동부(1214)는 구동 장치(1210)의 2개의 최내측(inner-most) 구동 샤프트들에 의해 구동될 수 있으며, 상기 하부 연동부(1216)는 구동 장치(1210)의 2개의 최외측(outer-most) 구동 샤프트들에 의해 구동될 수 있다. 상기 연동부들은 도 67a 및 68a에서 수축된 위치로 도시되었다. 상기 2개의 연동부들(1214, 1216) 각각은 제1 링크(상부 아암(1218, 1220)), 제2 링크(전측 아암(1222, 1224)) 및 제3 링크(엔드-이펙터(1226, 1228))로 구성된다. 상기 제2 링크의 관절-대-관절 길이는 상기 제1 링크의 관절-대-관절 길이보다 작은 것으로 도시된다. 상기 제3 링크(1230, 1232)의 측방향 오프셋은 상기 전측 아암의 관절-대-관절 길이와 상기 상부 아암 관절-대-관절 길이의 차이 및 추가적 오프셋에 해당되는바, 이는 상기 2개의 아암들 사이의 오프셋(1234)으로 합산된다. 상기 오프셋(1234)은 2 스테이션 프로세스 모듈에 있는 기판들 사이의 공칭 중심 거리에 해당될 수 있는바, 여기에서 측방향 오프셋들(1230, 1232)은 전체 중심 거리(1234)의 절반일 수 있다. 아암들(1214, 1216)이 갭(G) 안에서 물리적으로 임의의 것과의 간섭 없이, 예를 들어 사중의 용례(quad application)에서의 슬릿 밸브들 사이의 체임버 재료와의 간섭 없이 신장 또는 수축될 수 있도록, 더 짧은 전측 아암들과 결합된 상기 오프셋들(1230, 1232)이 상기 갭(gap)을 형성한다. 대안으로서, 임의의 적합한 오프셋(들)이 제공될 수 있다. 여기에서, 엔드이펙터들(1228, 1226)은 명목상으로(nominally) 서로 평행하게 명목상으로 회전 없이 신장 및 수축할 수 있다. 상기 엔드이펙터들(1228, 1226)은 또한 독립적으로 위치가능하기 때문에, 그 위의 기판들은 독립적으로 위치되거나 피킹(picked)될 수 있다. 또한 도 68a 내지 68b를 참조하면, 예시적 기판 운반 로봇(1200)의 평면도들이 도시되어 있다. 도 68a에는 수축된 로봇(1200)이 도시되는 반면, 도 68b에는 신장된 로봇(1200)이 도시된다. 설명된 로봇(1200)에는 독립적으로 위치가능한 아암들(1214, 1216)이 구비된다. 대안적 실시례에서, 아암들(1214, 1216)은 2개의 동심축 샤프트들에 의해 구동될 수 있으며, 서로 종속될 수 있다. 예시 구동 구성이 도 80b에 대하여 설명되는바, 여기에서 2개의 동심축 세트(coaxial set)의 구동 샤프트들은 2개 세트의 아암들을 구동한다. 여기에서 예시로서 상기 동심축 구동 샤프트들 중 하나가 아암들(1214, 1216)을 구동하도록 제공될 수 있다. 또한 도 67a 내지 67c를 참조하면, 대안적 로봇 구성(1200’)이 도시되어 있다. 로봇(1200’)에는 아암들(1214’ 및 1216’)이 구비되고, 로봇(1200’)은 로봇(1200)의 특징과 유사한 특징들을 가질 수 있다. 여기에서 로봇(1200’)의 아암들은 독립적으로 신장 및 수축될 수 있으나, 함께 회전한다. 4개의 동심 축 구동장치 대신에 로봇(1200’)은 3개의 동심 축을 갖춘 구동 장치를 활용한다. 적합한 구동 장치 및 풀리 구성이 도 23 및 24 또는 도 33 및 34에 대하여 도시되었다. 대안적 양상들에서 임의의 적합한 구동 장치 및 풀리 구성이 제공될 수 있는바, 예를 들어 여기에서 상기 상부 아암들은 개시된 바와 같이 서로 구속된다.
도 69a를 참조하면, 예시적 기판 운반 로봇(1300)의 개략 평면도가 도시되어 있다. 로봇(1300)은 진공 적합적(vacuum compatible)일 수 있거나, 또는 구동 부분(1310), 및 구동 부분(1310)에 결합된 아암 부분(1312)을 구비한 임의 적합한 로봇일 수 있는바, 아래에서 더 상세하게 설명될 바와 같다. 도시된 실시례들을 통틀어, 상부 아암 링크 길이들 및 전측 아암 링크 길이들은 상이할 수 있으며, 원형 또는 비원형 풀리들에 의해 구동될 수 있다. 대안적 양상들에서, 동일한 링크 길이들을 가지거나 상이한 링크 길이들을 가진 아암들로서, 원형 풀리들 또는 다른 적합한 구동 구성들이 구비되는 아암들이 제공될 수 있다. 도 69a 및 69b에는 아암(1312)을 갖춘 로봇(1300)의 평면도 및 측면도가 각각 도시된다. 상기 구동 유닛(1310)에는 아암(1312)의 제1 부분(1314) 및 제2 부분(1316)이 독립적으로 구동될 수 있도록 4개의 동심축 구동 샤프트들이 제공될 수 있다. 여기에서, 아암(1312)은 2개의 독립 연동부들, 즉 상부 연동부(1314) 및 하부 연동부(1316)를 특징으로 가진다. 상기 상부 연동부(1314)는 구동 장치(1310)의 2개의 최내측 구동 샤프트들에 의해 구동될 수 있으며, 상기 하부 연동부(1316)는 구동 장치(1310)의 2개의 최외측 구동 샤프트들에 의해 구동될 수 있다. 상기 연동부들은 도 69a에서 수축된 위치로 도시되었다. 상기 2개의 연동부들(1314, 1316) 각각은 제1 링크(상부 아암(1318, 1320)), 제2 링크(전측 아암(1322, 1324)) 및 제3 링크(엔드-이펙터(1326, 1328))로 구성된다. 상기 제2 링크의 관절-대-관절 길이는 상기 제1 링크의 관절-대-관절 길이보다 작다. 상기 제3 링크(1330, 1332)의 측방향 오프셋은 상기 전측 아암의 관절-대-관절 길이와 상기 상부 아암 관절-대-관절 길이의 차이에 해당된다. 상기 2개의 최내측 구동 샤프트들(1334)을 위한 공간을 제공하도록 상기 제3 링크의 형상이 정해질 수 있다.
또한 도 70a 및 70b를 참조하면, 각각의 연동부의 개개의 링크들을 구동하는 데에 이용되는 예시 내부 구성이 도시되어 있다. 상기 구성은 상기 상부 연동부에 대하여 설명될 것이다. 균등한 구성(equivalent arrangement)이 상기 하부 연동부에 이용될 수 있다. 상기 상부 연동부(1314)의 상부 아암(1318)은 하나의 모터(1350)에 의해 구동될 수 있다. 상기 상부 연동부(1314)의 전측 아암(1322)은 통상의 풀리들이 갖춰진 밴드 구동 장치(1354)를 통하여 다른 하나의 모터(1352)에 의해 구동될 수 있다. 엔드-이펙터(1326)를 갖춘 제3 링크는, 적어도 하나의 비원형 풀리가 갖춰진 밴드 구동 장치(1356)에 의해 구속될 수 있는바, 이는 상부 아암들 및 전측 아암들의 상이한 길이들의 효과를 보상함으로써 2개의 제1 링크들의 위치에 관계없이 상기 엔드-이펙터가 반경방향을 향한다. 상기 밴드 구동 장치의 설계는 도 1 내지 4에 도시된 바에 따른 것일 수 있다. 상기 상부 연동부가 회전하도록 상기 연동부에 결부된 두 구동 샤프트들 모두는 상기 연동부의 회전 방향으로 동일한 양만큼 움직일 필요가 있다. 상기 엔드-이펙터가 직선 경로를 따라 반경방향으로 신장 및 수축하도록 상기 2개의 구동 샤프트들은, 예를 들어 식 1.8 내지 식 1.16에 제시된 바와 같은 역 운동학적 방정식들에 따라 조정되는 방식으로 움직일 필요가 있다. 예를 들어 도 66 내지 68 또는 기타에 대하여 개시된 바와 같은 대안적 양상들에서 오프셋된 엔드이펙터들을 갖춘 임의의 적합한 아암 구성이 이용될 수 있다.
또한 도 71a 및 71b를 참조하면, 각각의 연동부의 개개의 링크들을 구동하는 데에 이용되는 다른 일 예시 내부 구성이 도시되어 있다. 다시금 그 구성이 상기 상부 연동부(1314’)에 대하여 설명될 것이다. 균등한 구성이 상기 하부 연동부에 이용될 수 있다. 여기에서 상기 상부 연동부(1314’)의 상부 아암(1318)은 하나의 모터(1350)에 의해 구동된다. 상기 상부 연동부(1314’)의 전측 아암(1322)은 적어도 하나의 비원형 풀리가 갖춰진 밴드 구성(1354’)을 통하여 다른 하나의 모터(1352)에 결합된다. 상기 밴드 구동 장치(1354’)는, 상기 상부 아암의 회전이, 손목 관절부로 하여금 엔드-이펙터의 원하는 반경방향 경로에 평행한 직선을 따라 신장 및 수축되게 하도록 설계된다. 상기 엔드-이펙터(1326)를 갖춘 제3 링크는, 적어도 하나의 비원형 풀리가 갖춰진 밴드 구동 장치(1356’)에 의해 구속될 수 있는바, 그로써 2개의 제1 링크들의 위치에 관계없이 상기 엔드-이펙터는 반경방향을 향한다. 상기 밴드 구동 장치들은 도 5 내지 8에 따라 설계될 수 있다. 상기 상부 연동부(1314’)가 회전하도록 상기 연동부에 결부된 두 구동 샤프트들 모두는 상기 연동부의 회전 방향으로 동일한 양만큼 움직일 수 있다. 상기 엔드-이펙터(1326)가 직선 경로를 따라 반경방향으로 신장 및 수축하도록, 상기 상부 연동부에 결부된 다른 모터가 정지 상태로 유지되는 동안 상기 상부 연동부의 상부 아암에 결합된 구동 샤프트는 식 2.8 내지 식 2.15에 제시된 바와 같은 역 운동학적 방정식들에 따라 움직일 필요가 있다. 대안적 양상들에서 임의의 적합한 구동 구성이 제공될 수 있다.
도 72a 내지 72c 및 73a 내지 73c에는 도 69의 로봇의 2개의 연동부들의 독립적 작동이 도해된다. 특히 72a 내지 72c 및 73a 내지 73c에는 상기 두 연동부들(1314, 1316) 각각의 독립적인 회전 움직임 및 신장 움직임이 도시된다. 도 72a 내지 72c에는 도 69의 로봇(1300)의 상부 연동부(1314)의 회전 동작이 도해된다. 도 72a에는 수축된 위치에 있는 두 연동부들 모두를 갖춘 로봇의 평면도가 도시된다. 도 72b에는 시계방향으로 90도만큼 회전된 상기 상부 연동부(1314)를 갖춘 로봇의 평면도가 그려진다. 도 72c에는 180도만큼 회전된 상기 상부 연동부(1314)를 갖춘 로봇의 평면도가 도시된다. 도 73a 내지 73c에는 도 69의 로봇(1300)의 신장 움직임이 그려진다. 도 73a에는 수축된 위치에 있는 두 연동부들 모두를 갖춘 로봇의 평면도가 도시된다. 도 73b에는 부분적으로 신장된 상기 상부 연동부(1314)를 갖춘 로봇의 평면도가 도시된다. 도 73c에는 신장된 위치에 있는 상기 상부 연동부(1314)를 갖춘 로봇의 평면도가 도시된다.
개시된 실시례의 대안적 예시 양상이 도 74a 및 74b에 도시되는바, 여기에서 로봇(1450)은 구동 장치(1310) 및 아암(1452)을 구비한 것으로 도시된다. 여기에서 상기 아암(1452)의 2개의 연동부들(1454, 1456)은 도 74a 및 74b에 따라 구성될 수 있는바, 그 도면들에는 로봇(1450)의 평면도 및 측면도가 도시되어 있다. 여기에서 상기 로봇의 구동 유닛 (1310)에는 4개의 동심축 구동 샤프트들이 제공된다. 상기 아암(1452)은 2개의 독립 연동부들, 즉 상부 연동부(1454) 및 하부 연동부(1456)를 특징으로 가진다. 상기 상부 연동부(1454)는 2개의 최내측 구동 샤프트들(1334)에 의해 구동될 수 있으며, 상기 하부 연동부는 구동 장치(1310)의 2개의 최외측 구동 샤프트들에 의해 구동될 수 있다. 상기 연동부들은 도 74a에서 수축된 위치로 도시된다. 상기 2개의 연동부들(1454, 1456) 각각은 제1 링크(상부 아암(1458, 1460)), 제2 링크(전측 아암(1462, 1464)) 및 제3 링크(엔드-이펙터(1466, 1468))로 구성될 수 있다. 상기 제2 링크의 관절-대-관절 길이는 상기 제1 링크의 관절-대-관절 길이보다 작을 수 있다. 상기 제3 링크의 측방향 오프셋(1470)은 상기 전측 아암의 관절-대-관절 길이와 상기 상부 아암 관절-대-관절 길이의 차이에 해당된다. 상기 2개의 최내측 구동 샤프트들(1334)을 위한 공간을 제공하도록 상기 제3 링크의 형상이 정해질 수 있다.
도 75a 및 75b에는 각각의 연동부의 개개의 링크들을 구동하는 데에 이용되는 예시 내부 구성이 도시되어 있다. 상기 구성은 상기 상부 연동부(1454)에 대하여 설명될 것이다. 균등한 구성이 상기 하부 연동부(1456)에 이용될 수 있다. 상기 상부 연동부(1454)의 상부 아암(1458)은 하나의 모터(1350)에 의해 구동될 수 있다. 상기 상부 연동부(1454)의 전측 아암(1362)은 통상의 풀리들이 갖춰진 밴드 구동 장치(1472)를 통하여 다른 하나의 모터(1352)에 의해 구동될 수 있다. 엔드-이펙터(1466)를 갖춘 제3 링크는, 적어도 하나의 비원형 풀리가 갖춰진 밴드 구동 장치(1474)에 의해 구속될 수 있는바, 이는 상부 아암 및 전측 아암의 상이한 길이들의 효과를 보상함으로써 2개의 제1 링크들의 위치에 관계없이 상기 엔드-이펙터가 반경방향을 향한다. 상기 밴드 구동 장치의 설계는 도 1 내지 4에 따른 것일 수 있다. 상기 상부 연동부(1454)가 회전하도록 상기 연동부에 결부된 두 구동 샤프트들 모두는 상기 연동부의 회전 방향으로 동일한 양만큼 움직일 필요가 있다. 상기 엔드-이펙터가 직선 경로를 따라 반경방향으로 신장 및 수축하도록 상기 2개의 구동 샤프트들은, 식 1.8 내지 식 1.16에 제시된 바와 같은 역 운동학적 방정식들에 따라 조정되는 방식으로 움직일 필요가 있다.
도 76a 및 76b에는 각각의 연동부의 개개의 링크들을 구동하는 데에 이용되는 다른 일 예시 내부 구성이 도시되어 있다. 여기에서 상기 구성은 상기 상부 연동부(1454)에 대하여 설명될 것이다. 균등한 구성이 상기 하부 연동부(1456)에 이용될 수 있다. 상기 상부 연동부의 상부 아암(1458)은 하나의 모터(1350)에 의해 구동될 수 있다. 상기 상부 연동부(1454)의 전측 아암(1462)은 적어도 하나의 비원형 풀리가 갖춰진 밴드 구성(1472’)을 통하여 다른 하나의 모터(1352)에 결합될 수 있다. 상기 밴드 구동 장치는, 상기 상부 아암(1458)의 회전이, 손목 관절부로 하여금 엔드-이펙터(1466)의 원하는 반경방향 경로에 평행한 직선을 따라 신장 및 수축되게 하도록 설계된다. 상기 엔드-이펙터(1466)를 갖춘 제3 링크는, 적어도 하나의 비원형 풀리가 갖춰진 밴드 구동 장치에 의해 구속되는바, 그로써 2개의 제1 링크들의 위치에 관계없이 상기 엔드-이펙터는 반경방향을 향한다. 상기 밴드 구동 장치들은 도 5 내지 8에 따라 설계될 수 있다. 상기 상부 연동부(1454)가 회전하도록 상기 연동부에 결부된 두 구동 샤프트들 모두는 상기 연동부의 회전 방향으로 동일한 양만큼 움직일 수 있다. 상기 엔드-이펙터(1466)가 직선 경로를 따라 반경방향으로 신장 및 수축하도록, 상기 상부 연동부에 결부된 다른 모터가 정지 상태로 유지되는 동안 상기 상부 연동부의 상부 아암에 결합된 구동 샤프트는 식 2.8 내지 식 2.15에 제시된 바와 같은 역 운동학적 방정식들에 따라 움직일 필요가 있다.
도 77a 내지 77c 및 78a 내지 78c에는 도 74a 및 74b의 로봇의 2개의 연동부들(1454, 1456)의 독립적 작동이 도해된다. 특히 도 77a 내지 77c 및 78a 내지 78c에는 상기 두 연동부들(1454, 1456)의 독립적인 회전 움직임 및 신장 움직임이 도시된다. 도 77a 내지 77c에는 상기 로봇의 상부 연동부의 회전 동작이 도해된다. 도 77a에는 수축된 위치에 있는 두 연동부들 모두를 갖춘 로봇의 평면도가 도시된다. 도 77b에는 시계방향으로 90도만큼 회전된 상기 상부 연동부(1454)를 갖춘 로봇의 평면도가 그려진다. 도 77c에는 180도만큼 회전된 상기 상부 연동부(1454)를 갖춘 로봇의 평면도가 도시된다. 도 78a 내지 78c에는 도 74a 및 74b의 로봇의 신장 움직임이 도시된다. 도 78a에는 수축된 위치에 있는 두 연동부들 모두를 갖춘 로봇의 평면도가 도시된다. 도 78b에는 부분적으로 신장된 상기 상부 연동부를 갖춘 로봇의 평면도가 도시된다. 도 78c에는 신장된 위치에 있는(완전히 신장된 것은 아님) 상기 상부 연동부(1454)를 갖춘 로봇의 평면도가 도시된다.
위의 이중 연동부 구성들의 대안적 실시례도 제공될 수 있다. 상기 제1 링크는 모터에 의하여 직접적으로 또는 임의의 종류의 결합 또는 전달 구성을 통하여 구동될 수 있다. 임의의 전달비가 이용될 수 있다. 다른 예시로서, 상기 제2 링크를 작동시키는 밴드 구동 장치들은 균등한 기능성을 갖춘 임의의 다른 구성, 예컨대 벨트 구동 장치, 케이블 구동 장치, 기어 구동 장치, 연동-기반 메커니즘 또는 상기한 것의 임의의 조합에 의해 대체될 수 있다. 유사하게 상기 제3 링크를 구속하는 밴드 구동 장치는 임의의 다른 적합한 구성, 예컨대 벨트 구동 장치, 케이블 구동 장치, 비원형 기어들, 연동-기반 메커니즘 또는 상기한 것의 임의의 조합에 의해 대체될 수 있다. 여기에서 상기 엔드-이펙터는 반경방향을 향할 필요는 없다. 상기 엔드이펙터는 상기 제3 링크에 대하여 임의의 적합한 오프셋을 가진 채 위치되고 임의의 적합한 방향을 향할 수 있다. 또한 상기 제3 링크는 하나 초과의 엔드-이펙터를 보유할 수 있다. 임의의 적합한 개수의 엔드-이펙터들 및/또는 재료 홀더들이 상기 제3 링크에 의해 보유될 수 있다. 다른 일 예시로서, 개개의 링크들 및 엔드-이펙터들의 임의의 순서의 수직 구성(vertical arrangement)이 이용될 수 있다. 예를 들어 상부 연동부의 엔드-이펙터는, 2개의 연동부들 사이에 끼워지는(sandwiched) 것과는 반대로 상기 상부 연동부 위에 배치될 수 있다.
이제 도 79a 및 79b를 참조하면, 아암(1552) 및 구동 장치(1310)를 갖춘 로봇(1550)의 평면도 및 측면도가 도시되어 있다. 그 구동 유닛(1310)에는 4개의 동심축 구동 샤프트들이 제공된다. 상기 아암은 2개의 독립 연동부 쌍들, 즉 상부 연동부 쌍(1554) 및 하부 연동부 쌍(1556)을 특징으로 가진다. 상기 상부 연동부 쌍(1554)은 2개의 최내측 구동 샤프트들(1334)에 의해 구동되며, 상기 하부 연동부 쌍은 2개의 최외측 구동 샤프트들에 의해 구동된다. 상기 연동부들은 도 79a에서 수축된 위치로 도시된다. 상기 2개의 연동부들(1554, 1556) 각각은 2개의 연동부들, 즉 좌측 연동부(1558, 1560) 및 우측 연동부(1562, 1564)로 구성된다. 상기 연동부들 각각은 제1 링크(상부 아암), 제2 링크(전측 아암) 및 제3 링크(엔드-이펙터)를 포함한다. 상기 제2 링크의 관절-대-관절 길이는 상기 제1 링크의 관절-대-관절 길이보다 작다. 상기 제2 링크의 관절-대-관절 길이와 상기 제1 링크의 관절-대-관절 길이의 차이는, 상기 제2 링크가 상기 구동 유닛의 구동 샤프트들에 닿지 않고 지나가도록 선택된다.
도 80a 및 80b에는 각각의 연동부의 개개의 링크들을 구동하는 데에 이용되는 일 예시 내부 구성이 도시되어 있다. 여기에서 상기 구성은 상기 상부 연동부 쌍(1554)에 대하여 설명될 것이다. 균등한 구성이 상기 하부 연동부 쌍(1556)에 이용될 수 있다. 측면도의 명료함을 위하여 상기 상부 연동부 쌍의 전측 아암들(및 엔드-이펙터들)은 (비록 동일한 수평 평면 내에 배치될 수 있을지라도) 상이한 고도에 있는 것으로 그려졌다. 유사하게 상기 하부 연동부 쌍의 전측 아암들은 측면도에서 상이한 고도에 있는 것으로 그려졌다. 좌측 상부 연동부(1558)의 상부 아암(1570)은 제1 구동 샤프트(1572)에 의해 구동되고, 우측 상부 연동부(1562)의 상부 아암(1574)은 제2 구동 샤프트(1576)에 의해 구동된다. 상기 좌측 상부 연동부(1558)의 전측 아암(1578)은 적어도 하나의 비원형 풀리가 갖춰진 밴드 구동 장치(1580)를 통하여 상기 제2 구동 샤프트(1576)에 의해 구동된다. 유사하게, 상기 우측 상부 연동부(1562)의 전측 아암(1582)은 적어도 하나의 비원형 풀리가 갖춰진 밴드 구동 장치(1584)를 통하여 상기 제1 구동 샤프트(1572)에 의해 구동된다. 예를 들어 동일한 링크 길이들이 제공되는 대안적 양상들에서 원형 풀리들이 이용될 수 있다. 2개의 전측 아암들의 밴드 구동 장치들은, 상기 제1 구동 샤프트(1572) 및 제2 구동 샤프트(1576)가 대향되는 방향들로 동일하게 회전할 때 상기 좌측 연동부의 손목 관절부 및 우측 연동부의 손목 관절부가 서로 평행한 직선 경로들을 따라서 움직이도록 설계된다. 상기 좌측 상부 연동부(1558)의 제3 링크/엔드-이펙터(1586)는, 적어도 하나의 비원형 풀리가 갖춰진 밴드 구동 장치(1558)에 의해 구속되는바, 이는 상기 좌측 상부 연동부(1558)의 상부 아암(1570) 및 전측 아암(1578)의 상이한 길이들의 효과를 보상함으로써 상기 좌측 상부 연동부(358)의 2개의 제1 링크들(1570, 1578)의 위치에 관계없이 상기 엔드-이펙터(1586)는 반경방향을 향한다. 상기 밴드 구동 장치의 설계는 도 1 내지 4에 따른 것일 수 있다. 유사하게, 상기 우측 상부 연동부(1562)의 제3 링크/엔드-이펙터(1590)는, 적어도 하나의 비원형 풀리가 갖춰진 밴드 구동 장치(1592)에 의해 구속될 수 있는바, 이는 상기 우측 상부 연동부의 상부 아암 및 전측 아암의 상이한 길이들의 효과를 보상함으로써 상기 우측 상부 연동부의 2개의 제1 링크들의 위치에 관계없이 상기 엔드-이펙터는 반경방향을 향한다. 예를 들어 동일한 링크 길이들이 제공되는 대안적 양상들에서 원형 풀리들이 이용될 수 있다. 역시, 이 밴드 구동 장치는 도 1 내지 4에 따라 설계될 수 있다. 상기 상부 연동부 쌍이 회전하도록, 상기 제1 구동 샤프트 및 상기 제2 구동 샤프트는 상기 상부 연동부 쌍의 원하는 회전 방향으로 동시에(in sync) 회전할 수 있다. 상기 상부 연동부 쌍의 엔드-이펙터들이 직선 경로들을 따라 신장 및 수축하도록, 상기 2개의 구동 샤프트들은 대향되는 방향들로 동시에 회전할 수 있다.
도 81a 내지 81c 및 82a 내지 82c에는 도 79a 및 79b의 로봇의 2개의 연동부 쌍들의 독립적 작동이 도해된다. 특히 도 81a 내지 81c 및 82a 내지 82c에는 상기 두 연동부 쌍들의 독립적인 회전 움직임 및 신장 움직임이 도시된다. 도 81a 내지 81c에는 상기 로봇의 상부 연동부 쌍(1554)의 회전 동작이 도해된다. 도 81a에는 수축된 위치에 있는 두 연동부 쌍들 모두를 갖춘 로봇의 평면도가 도시된다. 도 81b에는 시계방향으로 45도만큼 회전된 상기 상부 연동부 쌍(1554)을 갖춘 로봇의 평면도가 도시된다. 도 81c에는 180도만큼 회전된 상기 상부 연동부 쌍을 갖춘 로봇의 평면도가 도시된다. 도 82a 내지 82c에는 상기 로봇의 신장 움직임이 도시된다. 도 82a에는 수축된 위치에 있는 두 연동부 쌍들 모두를 갖춘 로봇의 평면도가 도시된다. 도 82b에는 부분적으로 신장된 상기 상부 연동부 쌍을 갖춘 로봇의 평면도가 도시된다. 도 82a에 도시된 신장은 대략적으로, 강체 결합된 나란한 엔드-이펙터들을 갖춘 통상의 해결법의 최대 신장에 해당된다. 도 82c에 도시된 바와 같이, 본 실시례는, 상기 연동부들이, 이 특정한 예시에서는 상기 상부 연동부 쌍이 이 지점 너머로 상당히(well) 신장될 수 있게 함으로써 동일한 격납 용적으로부터 더 긴 도달거리가 제공된다.
대안으로서, 상기 연동부들은 도 83a 및 83b에 따라 배치될 수 있는바, 이 도면들에는 로봇(1650)의 평면도 및 측면도가 도시된다. 여기에서, 로봇(1650)은, 상부 아암 쌍(1554) 및 하부 아암 쌍(1556’)이 구비된 도 79a 및 79b에 관하여 설명된 바와 같은 특징들을 가질 수 있다. 그러나 이 실시례에서 상기 하부 아암 쌍(1556’)의 우측 상부 아암은 상기 하부 아암 쌍의 좌측 상부 아암 아래에 위치된다.
대안적 실시례들에서 임의의 적합한 사중 연동부 구성이 제공될 수 있다. 예시로서, 상기 제1 링크는 모터에 의하여 직접적으로 또는 임의의 종류의 결합 또는 전달 구성을 통하여 구동될 수 있다. 여기에서 임의의 전달비가 이용될 수 있다. 대안으로서, 상기 제2 링크를 작동시키는 밴드 구동 장치들은 균등한 기능성을 갖춘 임의의 다른 구성, 예컨대 벨트 구동 장치, 케이블 구동 장치, 기어 구동 장치, 연동-기반 메커니즘 또는 상기한 것의 임의의 조합에 의해 대체될 수 있다. 유사하게, 상기 제3 링크를 구속하는 밴드 구동 장치는 임의의 다른 적합한 구성, 예컨대 벨트 구동 장치, 케이블 구동 장치, 비원형 기어들, 연동-기반 메커니즘 또는 상기한 것의 임의의 조합에 의해 대체될 수 있다. 게다가 상기 엔드-이펙터들은 임의의 적합한 오프셋을 가진 채 위치되고 임의의 적합한 방향을 향할 수 있다. 대안으로서, 상기 제3 링크는 하나 초과의 엔드-이펙터를 보유할 수 있다. 임의의 적합한 개수의 엔드-이펙터들 및/또는 재료 홀더들이 상기 연동부들 중 임의의 연동부의 상기 제3 링크에 의해 보유될 수 있다. 예시로서, 태양전지(solar cell)들의 제조에 적합한 구성(1700)이 도 83 내지 86에 그려져 있는바, 여기에서 다수의 기판들이 각각의 엔드이펙터에 의해 지지된다. 여기에서, 개개의 링크들 및 엔드-이펙터들의 임의의 순서의 수직 구성(vertical arrangement)이 이용될 수 있다. 예를 들어 상기 상부 연동부 쌍에 의해 보유되는 엔드-이펙터는, 상기 하부 연동부 쌍과 상기 상부 연동부 쌍 사이에 끼워지는 것과는 반대로 상기 상부 연동부 쌍 위에 배치될 수 있다.
위에서 설명된 이중 아암 구성 및 사중 아암 구성은, 예를 들어 위에서 설명되고 도면에 도해된 바와 같이 4개의 동심축 회전축들을 가진 로봇 구동 유닛에 의해 구동될 수 있다. 상기 로봇 구동 유닛은 도 87a 및 87b에 도식적으로 그려진 바와 같이 공통 수직 리프트 축(common vertical lift axis; 1750)을 더 포함할 수 있다. 대안으로서, 상기 로봇 구동 유닛은 2개의 독립적인 수직 리프트 축들(1750a 및 1750b)을 포함할 수 있는바, 도 88a 내지 b 및 89a 내지 b에 개략적으로 도시된 바와 같다. 이 경우에 각각의 수직 축은 이중 연동부 구성들의 2개의 연동부들 중 하나에 결합되거나 또는 사중 연동부 구성의 2개의 연동부 쌍들 중 하나에 결합된다. 도 88a 내지 b에서, 리프트 축(1750a, 1750b)은 회전식 구동 유닛들(1806, 1808)에 독립적으로 결합되는바, 여기에서 리프트 축(1750a, 1750b)에는 독립적으로 회전가능한 리드 스크루들이 구비된다. 유사하게, 도 89a 내지 b에서 리프트 축(1750a’, 1750b’)은 회전식 구동 유닛들(1806’, 1808’)에 독립적으로 결합되는바, 여기에서 리프트 축(1750a’, 1750b’)은 공통의 고정된 리드 스크루를 공유한다.
도 90a 및 90b에는 진공 체임버(1900)의 평면도 및 측면도의 예시 도식적 묘사가 보이는바, 그 진공 체임버(1900)에는, 병치되지 않은(non-collocated) 구동 유닛들에 의해 구동되는 독립적인 로봇 아암들(1802, 1904)이 갖춰져 있다. 도 90a 및 90b의 예시에서 각각의 구동 유닛에는 3개의 회전축들 및 선택적(optional) 수직 리프트 축이 제공될 수 있다. 각각의 로봇 아암은 제1 링크(상부 아암), 제2 링크(전측 아암) 및 엔드-이펙터를 갖춘 제3 링크로 구성될 수 있다. 도면에 그려진 바와 같이 상기 제2 링크의 관절-대-관절 길이는 상기 제1 링크의 관절-대-관절 링크보다 작을 수 있다. 상기 3개의 링크들 각각은 대응되는 로봇 구동 유닛의 회전축들 중 하나에 의해 구동될 수 있다. 일반적으로 임의의 개수의 회전축들 및 링크들이 채용될 수 있다. 도 90a 및 90b의 2개의 로봇 아암들 및 구동 유닛들은, 그 2개의 아암들이 서로의 위 및/또는 아래에 닿을(reach) 수 있으며 상기 진공 체임버에 부착된 임의의 스테이션(station)에 접근하여 상기 스테이션으로부터/상기 스테이션으로 재료를 전달/제거할 수 있도록, 구성될 수 있다. 대안으로서, 도 91a 및 91b에 도식적으로 도시된 바와 같이 2개의 구동 유닛들(1902’, 1904’) 각각은 신장 부재(extension member)를 특징으로 가질 수 있는바, 그 신장 부재는 상기 구동 유닛의 회전축들로부터 상기 진공 체임버의 주어진 지점으로 회전 동작을 전달할 수 있다. 상기 신장 부재가 수평 평면 내에서 정지 상태로 있을 수 있는 데 반하여, 대응되는 구동 유닛이 수직 리프트 축에 의해 장착된다면 상기 신장 부재는 수직으로 움직일 수 있다. 도 91a 및 91b의 예시에서 도해된 바와 같이 표준(standard) 로봇 팔이 상기 신장 부재들 각각에 의해 구동될 수 있다. 예를 들어 신장 부재를 갖춘 각각의 구동 유닛은 2개의 회전축들 및 선택적 수직 리프트 축을 제공할 수 있다. 그렇다면 상기 로봇 아암들 각각은 제1 링크(상부 아암), 제2 링크(전측 아암) 및 엔드-이펙터를 갖춘 제3 링크로 구성될 수 있다. 도 91a 및 91b의 예시에서 2개의 제1 링크들은 대응되는 구동 유닛의 2개의 회전축들에 의해 구동되며, 상기 제3 링크는, 상기 엔드-이펙터가 반경방향으로 배향을 유지하도록 기계적으로 구속된다. 3-링크 아암들이 도 91a 및 91b에 도시되지만, 상기 아암들은 임의의 적합한 개수의 링크들로 구성될 수 있다. 대안적 실시례에서, 도 90a 및 90b, 및 도 91a 및 91b 또는 기타의 아암 구성들 및 구성 유닛들의 임의의 적합한 조합이 이용될 수 있다. 다른 일 예시에 따르면, 작동들(operations)을 수행하도록 기계에 의해 실행가능한 인스트럭션들의 프로그램이 유형물로 실체화되는, 기계에 의해 판독가능한 비일시적 프로그램 저장 장치가 제공될 수 있는바, 예를 들어 메모리(1951’)와 같은 것이며, 여기에서 상기 작동들에는 본 명세서에서 설명된 바와 같이 컨트롤러에 의해 수행되는 작동들 중 임의의 것이 포함된다. 위에서 설명된 방법들은, 프로세서(1951), 메모리(1951’), 및 소프트웨어(1951”)로써 적어도 부분적으로 수행되거나 제어될 수 있다.
전술한 설명은 예시적 설명일 뿐이라는 점이 이해되어야 한다. 본 발명 기술분야의 통상의 기술자에 의해 다양한 대안들 및 변형물들이 고안될 수 있다. 이에 따라 본 실시례는 그러한 모든 대안들, 변형물들(modifications), 및 변동물들(variances)을 포괄하는 것으로 의도된다. 예를 들어 다양한 종속항들에 기재된 특징들은 임의의 적합한 조합(들)으로 서로 결합될 수 있을 것이다. 덧붙여, 위에서 설명된 상이한 실시례들로부터의 특징들이 선별적으로 새로운 실시례로 조합될 수 있을 것이다. 따라서, 본 설명서는 첨부된 청구항들의 범위 내에 속하는 그러한 모든 대안들, 변경물들 및 변동물들을 포괄하는 것으로 의도된다.

Claims (67)

  1. 어깨 축을 중심으로 회전하는 제 1 상부 아암;
    상기 제 1 상부 아암으로부터 수직하게 이격되어 있으며, 상기 어깨 축을 중심으로 회전하는 제 2 상부 아암;
    상기 제 1 상부 아암에 연결되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되고, 상기 어깨 축으로부터 오프셋 된 위치에서 제 2 축을 중심으로 제 1 상부 아암에 대하여 회전하게 되는 제 1 전측 아암;
    상기 제 2 상부 아암에 연결되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되고, 상기 어깨 축으로부터 오프셋 된 위치에서 제 3 축을 중심으로 제 2 상부 아암에 대하여 회전하게 되는 제 2 전측 아암;
    상기 제 1 전측 아암에 연결되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되며, 상기 제 2 축으로부터 오프셋 된 위치에서 제 4 축을 중심으로 제 1 전측 아암에 대하여 회전하게 되는 제 1 손목 부재;
    상기 제 2 전측 아암에 연결되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되며, 상기 제 3 축으로부터 오프셋 된 위치에서 제 5 축을 중심으로 제 2 전측 아암에 대하여 회전하게 되는 제 2 손목 부재;
    상기 제 1 상부 아암 및 제 1 손목 부재 구동 부재에 연결되는 제 1 전측 아암 샤프트로서, 상기 제 1 손목 부재 구동 부재는 상기 제 1 전측 아암 샤프트에 의해 상기 제 1 상부 아암에 그라운드되며(groounded), 상기 제 1 손목 부재 구동 부재는 상기 제 1 상부 아암에 구속되는(constrained), 제 1 전측 아암 샤프트;
    상기 제 1 손목 부재에 연결되는 제 1 손목 부재 피동 부재로서, 제 1 손목 부재 구동 부재는 제 1 캠 표면을 포함하고, 제 1 손목 부재 피동 부재는 제 2 캠 표면을 포함하는, 제 1 손목 부재 피동 부재; 및
    상기 제 1 캠 표면 및 제 2 캠 표면 사이에서 연결되는 제 1 손목 부재 트랜스미션 부재로서, 상기 제 1 캠 표면 및 제 2 캠 표면은 제 1 손목 부재가 제 1 전측 아암에 대하여 비선형의 회전 속력으로 회전하게 하는, 제 1 손목 부재 트랜스미션 부재;를 포함하는 것을 특징으로 하는 로봇.
  2. 제 1 항에 있어서,
    상기 제 1 손목 부재에 연결되는 제 1 엔드이펙터 및 상기 제 2 손목 부재에 연결되는 제 2 엔드이펙터를 추가로 포함하는 것을 특징으로 하는 로봇.
  3. 제 1 항에 있어서,
    제 1 상부 아암 구동 조립체를 추가로 포함하되, 상기 제 1 상부 아암 구동 조립체는,
    제 1 모터; 및
    상기 제 1 모터 및 상기 제 1 상부 아암에 연결되되, 상기 제 1 상부 아암이 독립적으로 회전하게 하는 제 1 샤프트;를 포함하는 것을 특징으로 하는 로봇.
  4. 제 1 항에 있어서,
    제 2 상부 아암 구동 조립체를 추가로 포함하되, 상기 제 2 상부 아암 구동 조립체는, 제 2 모터 및 상기 제 2 상부 아암에 연결되는 제 2 샤프트를 포함하되, 상기 제 2 샤프트는 상기 제 2 상부 아암이 독립적으로 회전하게 하는 것을 특징으로 하는 로봇.
  5. 제 1 항에 있어서,
    제 1 전측 아암 구동 조립체를 추가로 포함하되, 상기 제 1 전측 아암 구동 조립체는,
    제 3 모터;
    상기 제 3 모터 및 제 1 전측 아암 구동 부재에 연결되는 제 3 샤프트;
    상기 제 1 전측 아암에 연결되는 제 1 전측 아암 피동 부재; 및
    상기 제 1 전측 아암 구동 부재 및 상기 제 1 전측 아암 피동 부재 사이에서 연결되는 제 1 전측 아암 트랜스미션 요소;를 포함하는 것을 특징으로 하는 로봇.
  6. 제 1 항에 있어서,
    상기 제 1 손목 부재 구동 부재는 제 1 장형(oblong) 풀리를 포함하며, 상기 제 1 손목 부재 피동 부재는 제 2 장형 풀리를 포함하되, 상기 제 1 장형 풀리의 제 1 최대 반경은 상기 제 2 장형 풀리의 제 2 최대 반경에 수직한 것을 특징으로 하는 로봇.
  7. 제 1 항에 있어서,
    제 2 전측 아암 구동 조립체를 포함하되, 상기 제 2 전측 아암 구동 조립체는,
    제 4 모터;
    상기 제 4 모터 및 제 2 전측 아암 구동 부재에 연결되는 제 4 샤프트;
    상기 제 2 전측 아암에 연결되는 제 2 전측 아암 피동 부재; 및
    상기 제 2 전측 아암 구동 부재 및 제 2 전측 아암 피동 부재 사이에서 연결되는 제 2 전측 아암 트랜스미션 요소;를 포함하는 것을 특징으로 하는 로봇.
  8. 제 1 항에 있어서,
    상기 제 2 상부 아암 및 제 2 손목 부재 구동 부재에 연결된 제 2 전측 아암 샤프트를 포함하는 제 2 손목 부재 구동 조립체로서, 상기 제 2 손목 부재 구동 부재는 상기 제 2 전측 아암 샤프트에 의해 제 1 상부 아암에 그라운드되고, 상기 제 2 손목 부재 구동 부재는 상기 제 2 상부 아암에 구속되는, 제 2 손목 부재 구동 조립체;
    상기 제 2 손목 부재에 연결되는 제 2 손목 부재 피동 부재; 및
    상기 제 2 손목 부재 구동 부재 및 상기 제 2 손목 부재 피동 부재 사이에서 연결되는 제 2 손목 부재 트랜스미션 요소;를 추가로 포함하는 것을 특징으로 하는 로봇.
  9. 제 8 항에 있어서,
    상기 제 2 손목 부재 구동 부재는 제 3 캠 표면을 포함하고, 상기 제 2 손목 부재 피동 부재는 제 4 캠 표면을 포함하되, 상기 제 3 캠 표면 및 제 4 캠 표면은 제 2 손목 부재 트랜스미션 요소에 의해 연결되고 제 1 손목 부재가 제 1 전측 아암에 대하여 비선형의 회전 속력으로 회전하게 하는 것을 특징으로 하는 로봇.
  10. 제 1 항에 있어서,
    상기 제 1 전측 아암 및 제 2 손목 부재는 상기 제 2 전측 아암 및 제 2 손목 부재 아래에 배치되는 것을 특징으로 하는 로봇.
  11. 제 1 항에 있어서,
    상기 제 1 전측 아암은 제 1 상부 아암과는 다른 중심 대 중심 간 거리를 가지며, 상기 제 2 전측 아암은 제 2 상부 아암과는 다른 중심 대 중심 간 거리를 가지는 것을 특징으로 하는 로봇.
  12. 이송 챔버;
    상기 이송 챔버 내에 적어도 부분적으로 배치되되 상기 이송 챔버에 연결된 처리 챔버에 대하여 기판을 이송하도록 된 로봇;을 구비하는 전자 장치 처리 시스템에 있어서, 상기 로봇은,
    어깨 축을 중심으로 회전하는 제 1 상부 아암;
    상기 제 1 상부 아암으로부터 수직하게 이격되어 있으며, 상기 어깨 축을 중심으로 회전하는 제 2 상부 아암;
    상기 제 1 상부 아암에 연결되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되고, 상기 어깨 축으로부터 오프셋 된 위치에서 제 2 축을 중심으로 제 1 상부 아암에 대하여 회전하게 되는 제 1 전측 아암;
    상기 제 2 상부 아암에 연결되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되고, 상기 어깨 축으로부터 오프셋 된 위치에서 제 3 축을 중심으로 제 2 상부 아암에 대하여 회전하게 되는 제 2 전측 아암;
    상기 제 1 전측 아암에 연결되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되며, 상기 제 2 축으로부터 오프셋 된 위치에서 제 4 축을 중심으로 제 1 전측 아암에 대하여 회전하게 되는 제 1 손목 부재;
    상기 제 2 전측 아암에 연결되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되며, 상기 제 3 축으로부터 오프셋 된 위치에서 제 5 축을 중심으로 제 2 전측 아암에 대하여 회전하게 되는 제 2 손목 부재;
    상기 제 1 상부 아암 및 제 1 손목 부재 구동 부재에 연결되는 제 1 전측 아암 샤프트로서, 상기 제 1 손목 부재 구동 부재는 상기 제 1 전측 아암 샤프트에 의해 제 1 상부 아암에 그라운드되고, 상기 제 1 손목 부재 구동 부재는 상기 제 1 상부 아암에 의해 구속되는, 제 1 전측 아암 샤프트;
    상기 제 1 손목 부재에 연결되는 제 1 손목 부재 피동 부재로서, 제 1 손목 부재 구동 부재는 제 1 캠 표면을 포함하고, 제 1 손목 부재 피동 부재는 제 2 캠 표면을 포함하는, 제 1 손목 부재 피동 부재; 및
    상기 제 1 캠 표면 및 제 2 캠 표면 사이에서 연결되는 제 1 손목 부재 트랜스미션 부재로서, 상기 제 1 캠 표면 및 제 2 캠 표면은 제 1 손목 부재가 제 1 전측 아암에 대하여 비선형의 회전 속력으로 회전하게 하는, 제 1 손목 부재 트랜스미션 부재;를 포함하는 것을 특징으로 하는 전자 장치 처리 시스템.
  13. 제 12 항에 있어서,
    상기 로봇은 제 1 상부 아암 구동 조립체를 추가로 포함하되, 상기 제 1 상부 아암 구동 조립체는,
    제 1 모터; 및
    상기 제 1 모터 및 상기 제 1 상부 아암에 연결되되, 상기 제 1 상부 아암이 독립적으로 회전하게 하는 제 1 샤프트;를 포함하는 것을 특징으로 하는 전자 장치 처리 시스템.
  14. 제 12 항에 있어서,
    상기 로봇은 제 2 상부 아암 구동 조립체를 추가로 포함하되, 상기 제 2 상부 아암 구동 조립체는,
    제 2 모터; 및
    상기 제 2 모터 및 제 2 상부 아암에 연결되되 상기 제 2 상부 아암이 독립적으로 회전하게 하도록 된 제 2 샤프트;를 포함하는 것을 특징으로 하는 전자 장치 처리 시스템.
  15. 제 12 항에 있어서,
    상기 로봇은 제 1 전측 아암 구동 조립체를 추가로 포함하되, 상기 제 1 전측 아암 구동 조립체는,
    제 3 모터;
    상기 제 3 모터 및 제 1 전측 아암 구동 부재에 연결되는 제 3 샤프트;
    상기 제 1 전측 아암에 연결되는 제 1 전측 아암 피동 부재; 및
    상기 제 1 전측 아암 구동 부재 및 상기 제 1 전측 아암 피동 부재 사이에서 연결되는 제 1 전측 아암 트랜스미션 요소;를 포함하는 것을 특징으로 하는 전자 장치 처리 시스템.
  16. 제 12 항에 있어서,
    상기 로봇은 제 2 전측 아암 구동 조립체를 추가로 포함하되, 상기 제 2 전측 아암 구동 조립체는,
    제 4 모터;
    상기 제 4 모터 및 제 2 전측 아암 구동 부재에 연결되는 제 4 샤프트;
    상기 제 2 전측 아암에 연결되는 제 2 전측 아암 피동 부재; 및
    상기 제 2 전측 아암 구동 부재 및 제 2 전측 아암 피동 부재 사이에서 연결되는 제 2 전측 아암 트랜스미션 요소;를 포함하는 것을 특징으로 하는 전자 장치 처리 시스템.
  17. 제 12 항에 있어서,
    상기 제 1 손목 부재 구동 부재는 제 1 장형 풀리를 포함하며, 상기 제 1 손목 부재 피동 부재는 제 2 장형 풀리를 포함하되, 상기 제 1 장형 풀리의 제 1 최대 반경은 상기 제 2 장형 풀리의 제 2 최대 반경에 수직한 것을 특징으로 하는 전자 장치 처리 시스템.
  18. 어깨 축을 중심으로 회전하되, 제 1 캔틸레버 비임이 되는 제 1 상부 아암;
    상기 제 1 상부 아암의 위에서 상기 제 1 상부 아암으로부터 수직하게 이격되어 있으며, 상기 어깨 축을 중심으로 회전하되, 제 2 캔틸레버 비임이 되는 제 2 상부 아암;
    상기 제 1 상부 아암에 부착되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되고, 상기 어깨 축으로부터 오프셋 된 위치에서 제 2 축을 중심으로 제 1 상부 아암에 대하여 독립적으로 회전하게 되는 제 1 전측 아암;
    상기 제 2 상부 아암에 부착되고, 상기 제 1 전측 아암 및 제 2 상부 아암 사이에서 수직하게 배치되고, 상기 어깨 축으로부터 오프셋 된 위치에서 제 3 축을 중심으로 제 2 상부 아암에 대하여 독립적으로 회전하게 되는 제 2 전측 아암;
    상기 제 1 전측 아암에 부착되고, 상기 제 1 전측 아암 및 제 2 전측 아암 사이에서 수직하게 배치되며, 상기 제 2 축으로부터 오프셋 된 위치에서 제 4 축을 중심으로 제 1 전측 아암에 대하여 회전하게 되는 제 1 손목 부재;
    상기 제 2 전측 아암에 부착되고, 상기 제 1 손목 부재 및 제 2 전측 아암 사이에서 수직하게 배치되며, 상기 제 3 축으로부터 오프셋 된 위치에서 제 5 축을 중심으로 제 2 전측 아암에 대하여 회전하게 되는 제 2 손목 부재; 및
    제 1 손목 부재 구동 조립체로서, 상기 제 1 손목 부재 구동 조립체는,
    상기 제 1 상부 아암 및 제 1 손목 부재 풀리에 연결되는 제 1 전측 아암 샤프트로서, 상기 제 1 손목 부재 풀리는 상기 제 1 전측 아암 샤프트에 의해 제 1 상부 아암에 그라운드 되며, 상기 제 1 손목 부재 풀리는 상기 제 1 상부 아암으로 구속되는, 제 1 전측 아암 샤프트;
    상기 제 1 손목 부재에 연결된 제 1 손목 부재 캠; 및
    상기 제 1 손목 부재 풀리 및 제 1 손목 부재 캠 사이에서 연결되는 제 1 손목 부재 벨트;를 포함하되,
    상기 제 1 손목 부재 풀리의 캠 표면 및 상기 제 1 손목 부재 캠의 캠 표면은 상기 제 1 손목 부재가 상기 제 1 전측 아암에 대하여 비선형의 회전 속력으로 회전하게 하는, 제 1 손목 부재 구동 조립체; 포함하는 것을 특징으로하는 로봇.
  19. 제 18 항에 있어서,
    상기 1 손목 부재에 연결된 제 1 엔드이펙터; 및
    상기 제 2 손목 부재에 연결된 제 2 엔드이펙터;를 추가로 포함하는 것을 특징으로 하는 로봇.
  20. 제 18 항에 있어서,
    제 1 상부 아암 구동 조립체를 추가로 포함하되, 상기 제 1 상부 아암 구동 조립체는,
    제 1 모터; 및
    상기 제 1 모터 및 상기 제 1 상부 아암에 연결되되, 상기 제 1 상부 아암이 독립적으로 회전하게 하는 제 1 샤프트;를 포함하는 것을 특징으로 하는 로봇
  21. 제 18 항에 있어서,
    제 2 상부 아암 구동 조립체를 추가로 포함하되, 상기 제 2 상부 아암 구동 조립체는 제 2 모터 및 상기 제 2 상부 아암에 연결되는 제 2 샤프트를 포함하며, 상기 제 2 샤프트는 상기 제 2 상부 아암이 독립적으로 회전하게 하는 것을 특징으로 하는 로봇.
  22. 제 18 항에 있어서,
    제 1 전측 아암 구동 조립체를 추가로 포함하되, 상기 제 1 전측 아암 구동 조립체는,
    제 3 모터;
    상기 제 3 모터 및 제 1 전측 아암 풀리에 연결되는 제 3 샤프트;
    상기 제 1 전측 아암에 연결되는 제 1 전측 아암 파일럿(pilot); 및
    상기 제 1 전측 아암 풀리 및 상기 제 1 전측 아암 파일럿 사이에서 연결되는 제 1 전측 아암 벨트;를 포함하는 것을 특징으로 하는 로봇.
  23. 제 18 항에 있어서,
    제 2 전측 아암 구동 조립체를 추가로 포함하되, 상기 제 2 전측 아암 구동 조립체는
    제 4 모터;
    상기 제 4 모터 및 제 2 전측 아암 풀리에 연결되는 제 4 샤프트;
    상기 제 2 전측 아암에 연결되는 제 2 전측 아암 파일럿; 및
    상기 제 2 전측 아암 풀리 및 제 2 전측 아암 파일럿 사이에서 연결되는 제 2 전측 아암 벨트;를 포함하는 것을 특징으로 하는 로봇
  24. 제 18 항에 있어서,
    제 2 손목 부재 구동 조립체를 추가로 포함하되, 상기 제 2 손목 부재 구동 조립체는,
    상기 제 2 상부 아암 및 제 2 손목 부재 풀리에 연결되는 제 2 전측 아암 샤프트;
    상기 제 2 손목 부재에 연결되는 제 2 손목 부재 캠; 및
    상기 제 2 손목 부재 풀리 및 제 2 손목 부재 캠 사이에서 연결되는 제 2 손목 부재 벨트;를 포함하며,
    상기 제 2 손목 부재 풀리는 상기 제 2 전측 아암 샤프트에 의해 상기 제 2 상부 아암에 그라운드되며, 상기 제 2 손목 부재 풀리는 상기 제 2 상부 아암에 구속되는 것을 특징으로 하는 로봇.
  25. 제 24 항에 있어서,
    제 2 손목 부재 풀리 및 제 2 손목 부재 캠은 각각 캠 표면을 포함하는 것을 특징으로 하는 로봇.
  26. 제 18 항에 있어서,
    상기 제 1 전측 아암은 제 1 상부 아암과는 다른 중심 대 중심 간 거리를 가지며, 상기 제 2 전측 아암은 제 2 상부 아암과는 다른 중심 대 중심 간 거리를 가지는 것을 특징으로 하는 로봇.
  27. 제 18 항에 있어서,
    상기 제 1 손목 부재에 연결된 제 1 엔드이펙터 및 상기 제 2 손목 부재에 연결된 제 2 엔드이펙터를 추가로 포함하되,
    상기 제 1 엔드이펙터는 제 1 경로를 따라 이동 가능하며,
    상기 제 2 엔드이펙터는 제 2 경로를 따라 이동 가능하며,
    상기 제 1 경로와 제 2 경로는 서로 오버랩되지 않는 것을 특징으로 하는 로봇.
  28. 제 18 항에 있어서,
    상기 제 1 상부 아암 및 제 2 상부 아암 중 적어도 하나를 회전시키도록 된 샤프트 조립체;
    상기 제 1 손목 부재 내의 제 1 만곡부(curved portion); 및
    상기 제 2 손목 부재 내의 제 2 만곡부;를 추가로 포함하되,
    각각의 상기 제 1 만곡부 및 제 2 만곡부는 상기 샤프트 조립체의 주위에서 적어도 부분적으로 만곡되는 것을 특징으로 하는 로봇.
  29. 제 18 항에 있어서,
    상기 제 1 상부 아암은 제 1 길이를 가지며,
    상기 제 1 전측 아암은 제 2 길이를 가지며,
    상기 제 1 길이는 상기 제 2 길이보다 더 길며,
    상기 제 2 상부 아암은 제 3 길이를 가지며,
    상기 제 2 전측 아암은 제 4 길이를 가지며,
    상기 제 3 길이는 상기 제 4 길이보다 더 길게 된 것을 특징으로 하는 로봇.
  30. 제 29 항에 있어서,
    상기 제 1 길이는 상기 제 2 길이의 110% 내지 200% 이며,
    상기 제 3 길이는 상기 제 4 길이의 110% 내지 200% 인 것을 특징으로 하는 로봇.
  31. 제 18 항에 있어서,
    제 1 상부 아암 구동 조립체 및 제 2 상부 아암 구동 조립체를 추가로 포함하되,
    상기 제 1 상부 아암 구동 조립체는 제 1 모터, 및 상기 제 1 모터 및 제 1 상부 아암에 연결되는 제 1 샤프트를 포함하며, 상기 제 1 상부 아암 구동 조립체는 상기 제 1 상부 아암이 독립적으로 회전하게 하고,
    상기 제 2 상부 아암 구동 조립체는 제 2 모터, 및 상기 제 2 모터 및 제 2 상부 아암에 연결되는 제 2 샤프트를 포함하며, 상기 제 2 상부 아암 구동 조립체는 상기 제 2 상부 아암이 독립적으로 회전하게 하는 것을 특징으로 하는 로봇.
  32. 제 31 항에 있어서,
    제 1 전측 아암 구동 조립체를 추가로 포함하되, 상기 제 1 전측 아암 구동 조립체는,
    전측 아암 구동 모터;
    상기 전측 아암 구동 모터를 전측 아암 풀리에 연결하는 전측 아암 구동 샤프트;
    전측 아암 파일럿; 및
    상기 전측 아암 풀리 및 상기 전측 아암 파일럿 사이에서 연결되는 전측 아암 벨트;를 포함하는 것을 특징으로 하는 로봇.
  33. 제 31 항에 있어서,
    상기 제 2 샤프트 및 전측 아암 구동 샤프트를 포함하는 샤프트 조립체를 추가로 포함하되,
    상기 제 1 손목 부재 및 상기 제 2 손목 부재는 상기 샤프트 조립체의 양측 상에서 이격되어 있는 것을 특징으로 하는 로봇.
  34. 이송 챔버; 및
    상기 이송 챔버 내에 적어도 부분적으로 배치되며 상기 이송 챔버에 연결된 처리 챔버에 대하여 기판을 이송하도록 된 로봇;을 포함하는 전자 장치 처리 시스템에 있어서,
    상기 로봇은,
    어깨 축을 중심으로 회전하되, 제 1 단일 캔틸레버 비임이 되는 제 1 상부 아암;
    상기 제 1 상부 아암 상으로부터 수직하게 이격되어 있으며, 상기 어깨 축을 중심으로 회전하게 되며, 제 2 단일 캔필레버 비임이 되는 제 2 상부 아암;
    상기 제 1 상부 아암에 부착되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되고, 상기 어깨 축으로부터 오프셋 된 위치에서 제 2 축을 중심으로 제 1 상부 아암에 대하여 독립적으로 회전하게 되는 제 1 전측 아암;
    상기 제 2 상부 아암에 부착되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되고, 상기 어깨 축으로부터 오프셋 된 위치에서 제 3 축을 중심으로 제 2 상부 아암에 대하여 독립적으로 회전하게 되는 제 2 전측 아암;
    상기 제 1 전측 아암에 부착되고, 상기 제 1 전측 아암 및 제 2 전측 아암 사이에서 수직하게 배치되며, 상기 제 2 축으로부터 오프셋 된 위치에서 제 4 축을 중심으로 제 1 전측 아암에 대하여 회전하게 되는 제 1 손목 부재; 및
    상기 제 2 전측 아암에 연결되고, 상기 제 1 손목 부재 및 제 2 전측 아암 사이에서 수직하게 배치되며, 상기 제 3 축으로부터 오프셋 된 위치에서 제 5 축을 중심으로 제 2 전측 아암에 대하여 회전하게 되는 제 2 손목 부재;
    상기 제 1 상부 아암 및 제 1 캠 표면을 포함하는 제 1 캠에 연결되는 제 1 전측 아암 샤프트로서, 상기 제 1 캠은 상기 제 1 전측 아암 샤프트에 의해 상기 제 1 상부 아암에 그라운드되며, 상기 제 1 캠은 상기 제 1 상부 아암에 구속되는, 제 1 전측 아암 샤프트;
    상기 제 1 손목 부재에 연결되고 제 2 캠 표면을 포함하는 제 2 캠; 및
    상기 제 1 캠 표면 및 제 2 캠 표면 사이에서 연결되는 제 1 벨트로서, 상기 제 1 캠 표면 및 제 2 캠 표면은 상기 제 1 손목 부재가 상기 제 1 전측 아암에 대하여 비선형의 회전 속력으로 회전하게 하는, 제 1 벨트;를 포함하는 것을 특징으로 하는 전자 장치 처리 시스템.
  35. 전자 장치 처리 시스템 내에서 기판을 이송하는 기판 이송 방법에 있어서, 상기 기판 이송 방법은,
    로봇을 제공하는 단계로서, 상기 로봇은
    어깨 축을 중심으로 회전하되, 제 1 캔틸레버 비임이 되는 제 1 상부 아암;
    상기 제 1 상부 아암으로부터 수직하게 이격되어 있으며, 상기 어깨 축을 중심으로 회전하게 되며, 제 2 캔틸레버 비임이 되는 제 2 상부 아암;
    상기 제 1 상부 아암에 부착되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되고, 상기 어깨 축으로부터 오프셋 된 위치에서 제 2 축을 중심으로 제 1 상부 아암에 대하여 독립적으로 회전하게 되는 제 1 전측 아암;
    상기 제 2 상부 아암에 부착되고, 상기 제 1 전측 아암 및 제 2 상부 아암 사이에서 수직하게 배치되고, 상기 어깨 축으로부터 오프셋 된 위치에서 제 3 축을 중심으로 제 2 상부 아암에 대하여 독립적으로 회전하게 되는 제 2 전측 아암;
    상기 제 1 전측 아암에 부착되고, 상기 제 1 전측 아암 및 제 2 전측 아암 사이에서 수직하게 배치되며, 상기 제 2 축으로부터 오프셋 된 위치에서 제 4 축을 중심으로 제 1 전측 아암에 대하여 회전하게 되는 제 1 손목 부재;
    상기 제 2 전측 아암에 연결되고, 상기 제 1 손목 부재 및 제 2 전측 아암 사이에서 수직하게 배치되며, 상기 제 3 축으로부터 오프셋 된 위치에서 제 5 축을 중심으로 제 2 전측 아암에 대하여 회전하게 되는 제 2 손목 부재;
    상기 제 1 상부 아암 및 제 1 캠 표면을 구비하는 제 1 캠에 연결되는 제 1 전측 아암 샤프트로서, 상기 제 1 캠은 상기 제 1 전측 아암 샤프트에 의해 상기 제 1 상부 아암에 그라운드되며, 상기 제 1 캠은 상기 제 1 상부 아암에 구속되는, 제 1 전측 아암 샤프트;
    상기 제 1 손목 부재에 연결되며 제 2 캠 표면을 구비하는 제 2 캠; 및
    상기 제 1 캠 표면 및 제 2 캠 표면 사이에서 연결되는 제 1 벨트로서, 상기 제 1 캠 표면 및 제 2 캠 표면은 상기 제 1 손목 부재가 상기 제 1 전측 아암에 대하여 비선형의 회전 속력으로 회전하게 하는, 제 1 벨트;를 포함하는, 로봇을 제공하는 단계;
    상기 제 1 상부 아암을 독립적으로 회전시켜서 제 1 엔드이펙터를 제 1 챔버 내부로 반경방향으로 신장시키는 단계; 및
    상기 제 2 상부 아암을 독립적으로 회전시켜서 제 2 엔드이펙터를 제 2 챔버 내부로 반경방향으로 신장시키는 단계;를 포함하는 것을 특징으로 하는 기판 이송 방법.
  36. 어깨 축을 중심으로 회전하는 제 1 상부 아암;
    상기 제 1 상부 아암으로부터 수직하게 이격되어 있으며, 상기 어깨 축을 중심으로 회전하는 제 2 상부 아암;
    상기 제 1 상부 아암에 연결되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되고, 상기 어깨 축으로부터 오프셋 된 위치에서 제 2 축을 중심으로 제 1 상부 아암에 대하여 독립적으로 회전하게 되는 제 1 전측 아암;
    상기 제 2 상부 아암에 연결되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되고, 상기 어깨 축으로부터 오프셋 된 위치에서 제 3 축을 중심으로 제 2 상부 아암에 대하여 독립적으로 회전하게 되는 제 2 전측 아암;
    상기 제 1 전측 아암에 연결되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되며, 상기 제 2 축으로부터 오프셋 된 위치에서 제 4 축을 중심으로 제 1 전측 아암에 대하여 회전하게 되는 제 1 손목 부재;
    상기 제 2 전측 아암에 연결되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되며, 상기 제 3 축으로부터 오프셋 된 위치에서 제 5 축을 중심으로 제 2 전측 아암에 대하여 회전하게 되는 제 2 손목 부재;
    상기 제 1 상부 아암 및, 제 1 캠 표면을 가진 제 1 캠에 연결되는 제 1 전측 아암 샤프트로서, 상기 제 1 캠 표면은 상기 제 1 전측 아암 샤프트에 의해 상기 제 1 상부 아암에 그라운드되며, 제 1 캠 부재는 상기 제 1 상부 아암에 구속되는, 제 1 전측 아암 샤프트;
    상기 제 1 손목 부재에 연결되고 제 2 캠 표면을 구비하는 제 2 캠;
    상기 제 1 캠 표면 및 제 2 캠 표면 사이에서 연결되는 제 1 벨트로서, 상기 제 1 캠 표면 및 제 2 캠 표면은 상기 제 1 손목 부재가 제 1 전측 아암에 대하여 비선형의 회전 속력으로 회전하게 하는, 제 1 벨트;를 포함하는 것을 특징으로 하는 로봇.
  37. 제 36 항에 있어서,
    상기 제 1 손목 부재에 연결된 제 1 엔드이펙터 및 상기 제 2 손목 부재에 연결된 제 2 엔드이펙터를 추가로 포함하는 것을 특징으로 하는 로봇.
  38. 제 36 항에 있어서,
    제 1 상부 아암 구동 조립체를 추가로 포함하되, 상기 제 1 상부 아암 구동 조립체는,
    제 1 모터; 및
    상기 제 1 모터 및 제 1 상부 아암에 연결되되, 상기 제 1 상부 아암이 독립적으로 회전하게 하는 제 1 샤프트;를 포함하는 것을 특징으로 하는 로봇.
  39. 제 36 항에 있어서,
    제 2 상부 아암 구동 조립체를 추가로 포함하되, 상기 제 2 상부 아암 구동 조립체는 제 2 모터 및 상기 제 2 상부 아암에 연결되는 제 2 샤프트를 포함하되, 상기 제 2 샤프트는 상기 제 2 상부 아암이 독립적으로 회전하게 하는 것을 특징으로 하는 로봇.
  40. 제 36 항에 있어서,
    제 1 전측 아암 구동 조립체를 추가로 포함하되, 상기 제 1 전측 아암 구동 조립체는,
    제 3 모터;
    상기 제 3 모터 및 제 1 전측 아암 원통 풀리에 연결되는 제 3 샤프트;
    상기 제 1 전측 아암에 연결되는 제 1 전측 아암 원통 파일럿; 및
    상기 제 1 전측 아암 원통 풀리 및 제 1 전측 아암 원통 파일럿 사이에서 연결되는 제 1 벨트;를 포함하는 것을 특징으로 하는 로봇.
  41. 제 36 항에 있어서,
    상기 제 1 캠 표면은 제 1 장형 풀리를 추가로 포함하고, 상기 제 2 캠 표면은 제 2 장형 풀리를 추가로 포함하되,
    상기 제 1 장형 풀리의 제 1 최대 반경은 상기 제 2 장형 풀리의 제 2 최대 반경에 수직한 것을 특징으로 하는 로봇.
  42. 제 36 항에 있어서,
    제 2 전측 아암 구동 조립체를 추가로 포함하되, 상기 제 2 전측 아암 구동 조립체는,
    제 4 모터;
    상기 제 4 모터 및 제 2 전측 아암 원통 풀리에 연결되는 제 4 샤프트;
    상기 제 2 전측 아암에 연결되는 제 2 전측 아암 원통 파일럿; 및
    상기 제 2 전측 아암 원통 풀리 및 제 2 전측 아암 원통 파일럿 사이에서 연결되는 제 2 벨트;를 포함하는 것을 특징으로 하는 로봇.
  43. 제 36 항에 있어서,
    상기 제 2 상부 아암 및 제 3 캠 표면을 구비하는 제 3 캠에 연결되는 제 2 전측 아암 샤프트를 포함하는 제 2 손목 부재 구동 조립체로서, 상기 제 3 캠 표면은 상기 제 2 전측 아암 샤프트에 의해 상기 제 2 상부 아암에 그라운드되며, 제 3 캠 부재는 상기 제 2 상부 아암에 구속되는, 제 2 손목 부재 구동 조립체;
    상기 제 2 손목 부재에 연결되되, 제 4 캠 표면을 구비하는 제 4 캠; 및
    제 3 캠 표면 및 제 4 캠 표면 사이에서 연결되는 제 2 벨트;를 추가로 포함하는 것을 특징으로 하는 로봇.
  44. 제 43 항에 있어서,
    상기 제 3 캠 표면 및 제 4 캠 표면은 제 2 벨트에 의해 연결되어, 제 2 손목 부재가 제 2 전측 아암에 대하여 비선형의 회전 속력으로 회전하게 되는 것을 특징으로 하는 로봇.
  45. 제 36 항에 있어서,
    상기 제 1 전측 아암 및 상기 제 1 손목 부재는 상기 제 2 전측 아암 및 제 2 손목 부재 아래에 배치되는 것을 특징으로 하는 로봇.
  46. 제 36 항에 있어서,
    상기 제 1 전측 아암은 제 1 상부 아암에 대하여 다른 중심 대 중심 거리를 가지며, 상기 제 2 전측 아암은 제 2 상부 아암에 대하여 다른 중심 대 중심 거리를 가지는 것을 특징으로 하는 로봇.
  47. 이송 챔버; 및
    상기 이송 챔버 내에 적어도 부분적으로 배치되며, 상기 이송 챔버에 연결된 처리 챔버에 대하여 기판을 이송하도록 된 로봇;을 포함하는 전자 장치 처리 시스템에 있어서, 상기 로봇은,
    어깨 축을 중심으로 회전하는 제 1 상부 아암;
    상기 제 1 상부 아암으로부터 수직하게 이격되어 있으며, 상기 어깨 축을 중심으로 회전하는 제 2 상부 아암;
    상기 제 1 상부 아암에 연결되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되고, 상기 어깨 축으로부터 오프셋 된 위치에서 제 2 축을 중심으로 제 1 상부 아암에 대하여 독립적으로 회전하게 되는 제 1 전측 아암;
    상기 제 2 상부 아암에 연결되고, 상기 제 1 전측 아암 및 제 2 전측 아암 사이에서 수직하게 배치되고, 상기 어깨 축으로부터 오프셋 된 위치에서 제 3 축을 중심으로 제 2 상부 아암에 대하여 회전하게 되는 제 2 전측 아암;
    상기 제 1 전측 아암에 연결되고, 상기 제 1 전측 아암 및 제 2 전측 아암 사이에서 수직하게 배치되며, 상기 제 2 축으로부터 오프셋 된 위치에서 제 4 축을 중심으로 제 1 전측 아암에 대하여 회전하게 되는 제 1 손목 부재;
    상기 제 2 전측 아암에 연결되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되며, 상기 제 3 축으로부터 오프셋 된 위치에서 제 5 축을 중심으로 제 2 전측 아암에 대하여 회전하게 되는 제 2 손목 부재;
    상기 제 1 상부 아암 및, 제 1 캠 표면을 가진 제 1 캠에 연결되는 제 1 전측 아암 샤프트로서, 상기 제 1 캠은 상기 제 1 전측 아암 샤프트에 의해 상기 제 1 상부 아암에 그라운드되며, 상기 제 1 캠은 상기 제 1 상부 아암에 구속되는, 제 1 전측 아암 샤프트;
    상기 제 1 손목 부재에 연결되고 제 2 캠 표면을 구비하는 제 2 캠; 및
    상기 제 1 캠 표면 및 제 2 캠 표면 사이에서 연결되는 제 1 벨트로서, 상기 제 1 캠 표면 및 제 2 캠 표면은 상기 제 1 손목 부재가 제 1 전측 아암에 대하여 비선형의 회전 속력으로 회전하게 하는, 제 1 벨트;를 포함하는 것을 특징으로 하는 전자 장치 처리 시스템.
  48. 제 47 항에 있어서,
    상기 로봇은 제 1 상부 아암 구동 조립체를 추가로 포함하되, 상기 제 1 상부 아암 구동 조립체는,
    제 1 모터; 및
    상기 제 1 모터 및 제 1 상부 아암에 연결되고, 상기 제 1 상부 아암이 독립적으로 회전하게 하는 제 1 샤프트;를 포함하는 것을 특징으로 하는 전자 장치 처리 시스템.
  49. 제 47 항에 있어서,
    상기 로봇은 제 2 상부 아암 구동 조립체를 추가로 포함하되, 상기 제 2 상부 아암 구동 조립체는,
    제 2 모터; 및
    상기 제 2 모터 및 제 2 상부 아암에 연결되되, 상기 제 2 상부 아암을 독립적으로 회전시키는 제 2 샤프트;를 포함하는 것을 특징으로 하는 전자 장치 처리 시스템.
  50. 제 47 항에 있어서,
    상기 로봇은 제 1 전측 아암 구동 조립체를 추가로 포함하되, 상기 제 1 전측 아암 구동 조립체는,
    제 3 모터;
    상기 제 3 모터 및 제 1 전측 아암 원통 풀리에 연결되는 제 3 샤프트;
    상기 제 1 전측 아암에 연결되는 제 1 전측 아암 원통 파일럿; 및
    상기 제 1 전측 아암 원통 풀리 및 제 1 전측 아암 원통 파일럿 사이에서 연결되는 제 1 벨트;를 포함하는 것을 특징으로 하는 전자 장치 처리 시스템.
  51. 제 47 항에 있어서,
    상기 로봇은 제 2 전측 아암 구동 조립체를 추가로 포함하되, 상기 제 2 전측 아암 구동 조립체는,
    제 4 모터;
    상기 제 4 모터 및 제 2 전측 아암 원통 풀리에 연결되는 제 4 샤프트;
    상기 제 2 전측 아암에 연결된 제 2 전측 아암 원통 파일럿; 및
    상기 제 2 전측 아암 원통 풀리 및 제 2 전측 아암 원통 파일럿 사이에서 연결되는 제 2 벨트;를 포함하는 전자 장치 처리 시스템.
  52. 제 47 항에 있어서,
    상기 제 1 캠 표면은 제 1 장형 풀리를 추가로 포함하고, 상기 제 2 캠 표면은 제 2 장형 풀리를 추가로 포함하되,
    상기 제 1 장형 풀리의 제 1 최대 반경은 상기 제 2 장형 풀리의 제 2 최대 반경에 수직한 것을 특징으로 하는 전자 장치 처리 시스템.
  53. 전자 장치 처리 시스템 내에서 기판을 이송하는 기판 이송 방법에 있어서, 상기 기판 이송 방법은,
    로봇을 제공하는 방법으로서, 상기 로봇은,
    어깨 축을 중심으로 회전하는 제 1 상부 아암;
    상기 제 1 상부 아암으로부터 수직하게 이격되어 있으며, 상기 어깨 축을 중심으로 회전하는 제 2 상부 아암;
    상기 제 1 상부 아암에 연결되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되고, 상기 어깨 축으로부터 오프셋 된 위치에서 제 2 축을 중심으로 제 1 상부 아암에 대하여 회전하게 되는 제 1 전측 아암;
    상기 제 2 상부 아암에 연결되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되고, 상기 어깨 축으로부터 오프셋 된 위치에서 제 3 축을 중심으로 제 2 상부 아암에 대하여 회전하게 되는 제 2 전측 아암;
    상기 제 1 전측 아암에 연결되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되며, 상기 제 2 축으로부터 오프셋 된 위치에서 제 4 축을 중심으로 제 1 전측 아암에 대하여 회전하게 되는 제 1 손목 부재;
    상기 제 2 전측 아암에 연결되고, 상기 제 1 상부 아암 및 제 2 상부 아암 사이에서 수직하게 배치되며, 상기 제 3 축으로부터 오프셋 된 위치에서 제 5 축을 중심으로 제 2 전측 아암에 대하여 회전하게 되는 제 2 손목 부재;
    상기 제 1 상부 아암 및, 제 1 캠 표면을 가진 제 1 캠에 연결되는 제 1 전측 아암 샤프트로서, 상기 제 1 캠은 상기 제 1 전측 아암 샤프트에 의해 상기 제 1 상부 아암에 그라운드되며, 상기 제 1 캠 표면은 상기 제 1 상부 아암에 구속되는, 제 1 전측 아암 샤프트;
    상기 제 1 손목 부재에 연결되고 제 2 캠 표면을 구비하는 제 2 캠; 및
    상기 제 1 캠 표면 및 제 2 캠 표면 사이에서 연결되는 제 1 벨트로서, 상기 제 1 캠 표면 및 제 2 캠 표면은 상기 제 1 손목 부재가 제 1 전측 아암에 대하여 비선형 회전 속력으로 회전하게 하는, 제 1 벨트;를 포함하는, 로봇을 제공하는 단계;
    상기 제 1 상부 아암을 독립적으로 회전시켜서 제 1 기판을 운반하는 제 1 엔드이펙터를 제 1 챔버의 내부로 반경방향으로 신장하는 단계;
    상기 제 2 상부 아암을 독립적으로 회전시켜서, 제 2 기판이 제 1 기판을 통과하게 않도록, 제 2 기판을 운반하는 제 2 엔드이펙터를 제 2 챔버의 내부로 반경방향으로 신장하는 단계;를 포함하는 것을 특징으로 하는 기판 이송 방법.
  54. 제 53 항에 있어서,
    상기 제 1 전측 아암을 독립적으로 회전시키는 단계를 추가로 포함하는 것을 특징으로 하는 기판 이송 방법.
  55. 제 53 항에 있어서,
    상기 제 2 전측 아암을 독립적으로 회전시키는 단계를 추가로 포함하는 것을 특징으로 하는 기판 이송 방법.
  56. 어깨 축을 중심으로 회전하는 제 1 상부 아암;
    상기 제 1 상부 아암으로부터 수직하게 이격되어 있으며, 상기 어깨 축을 중심으로 회전하는 제 2 상부 아암;
    상기 제 1 상부 아암에 연결되고, 상기 제 1 상부 아암의 위에서 수직하게 배치되고, 상기 어깨 축으로부터 오프셋 된 위치에서 제 2 축을 중심으로 제 1 상부 아암에 대하여 회전하게 되는 제 1 전측 아암;
    상기 제 2 상부 아암에 연결되고, 상기 제 1 상부 아암의 위에서 수직하게 배치되고, 상기 어깨 축으로부터 오프셋 된 위치에서 제 3 축을 중심으로 제 2 상부 아암에 대하여 회전하게 되는 제 2 전측 아암;
    상기 제 1 전측 아암에 연결되고, 상기 제 1 상부 아암의 위에서 수직하게 배치되며, 상기 제 2 축으로부터 오프셋 된 위치에서 제 4 축을 중심으로 제 1 전측 아암에 대하여 회전하게 되는 제 1 손목 부재;
    상기 제 2 전측 아암에 연결되고, 상기 제 1 상부 아암의 위에서 수직하게 배치되며, 상기 제 3 축으로부터 오프셋 된 위치에서 제 5 축을 중심으로 제 2 전측 아암에 대하여 회전하게 되는 제 2 손목 부재;
    상기 제 1 상부 아암 및 제 1 손목 부재 구동 부재에 연결되는 제 1 전측 아암 샤프트로서, 상기 제 1 손목 부재 구동 부재는 제 1 캠 표면을 포함하고, 제 1 캠 표면은 제 1 전측 아암 샤프트에 연결되며, 상기 제 1 캠 표면은 상기 제 1 전측 아암 샤프트에 의해 상기 제 1 상부 아암에 그라운드되고, 상기 제 1 손목 부재 구동 부재는 상기 제 1 상부 아암에 구속되는, 제 1 전측 아암 샤프트;
    상기 제 1 손목 부재에 연결되는 제 1 손목 부재 피동 부재로서, 제 1 손목 부재 피동 부재는 제 2 캠 표면을 포함하는, 제 1 손목 부재 피동 부재; 및
    상기 제 1 캠 표면 및 제 2 캠 표면 사이에서 연결되는 제 1 손목 부재 트랜스미션 요소로서, 상기 제 1 손목 부재 구동 부재의 상기 제 1 캠 표면, 제 2 캠 표면, 및 상기 제 1 손목 부재 트랜스미션 요소는 제 1 손목 부재가 비선형의 회전 속력으로 제 1 전측 아암에 대하여 회전하게 하는, 제 1 손목 부재 트랜스미션 부재;를 포함하는 것을 특징으로 하는 로봇.
  57. 제 56 항에 있어서,
    상기 제 1 상부 아암은 상기 제 1 전측 아암의 엔드이펙터의 길이보다 더 긴 엑트이펙터를 가지는 것을 특징으로 하는 로봇.
  58. 제 56 항에 있어서,
    상기 제 1 손목 부재는 상기 제 1 전측 아암에 회전 가능하게 연결된 제 1 엔드이펙터를 포함하며,
    상기 제 1 엔드이펙터는 기판 지지 섹션 및 상기 기판 지지 섹션을 제 1 손목 부재에 연결하는 레그부를 포함하며,
    상기 레그부는 상기 제 1 손목 부재에 연결된 제 1 섹션, 상기 기판 지지 섹션에 연결된 제 2 섹션, 및 상기 제 1 섹션 및 제 2 섹션 사이의 밴드부를 구비하여, 상기 제 1 섹션 및 제 2 섹션이 서로 각을 이루어 배치되는 것을 특징으로 하는 로봇.
  59. 제 58 항에 있어서,
    상기 밴드부는 상기 밴드부의 측면에 제 1 섹션 및 제 2 섹션 사이에 오목한 포켓을 형성하는 것을 특징으로 하는 로봇.
  60. 제 58 항에 있어서,
    상기 제 1 손목 부재에서 상기 제 1 전측 아암에 대한 상기 레그부의 연결부는 상기 기판 지지 섹션의 중심선에 대하여 오프셋 되고 상기 어깨 축에 대하여 오프셋 되는 것은 특징으로 하는 로봇.
  61. 제 58 항에 있어서,
    상기 기판 지지 섹션의 중심선은 구동 축에 수직하게 정렬되는 것을 특징으로 하는 로봇.
  62. 제 58 항에 있어서,
    상기 로봇은 상기 어깨 축에 대하여 엔드이펙터의 직선 운동만을 제공하도록 되며, 제 1 아암은 신장되거나 수축하는 것을 특징으로 하는 것을 특징으로 하는 로봇.
  63. 제 35 항에 있어서,
    상기 제 1 상부 아암을 독립적으로 회전시켜서 제 1 엔드이펙터를 신장시키는 단계는 제 1 엔드이펙터 상의 제 1 기판을 반경방향으로 제 1 챔버 내부로 이송시키는 단계를 추가로 포함하고,
    상기 제 2 상부 아암을 독립적으로 회전시켜서 제 2 엔드이펙터를 신장시키는 단계는 제 2 엔드이펙터 상의 제 2 기판을 반경방향으로 제 2 챔버 내부로 이송시키는 단계를 추가로 포함하되,
    상기 제 2 기판은 상기 제 1 기판 상을 통과하지 않는 것을 특징으로 하는 기판 이송 방법.
    것을 특징으로 하는 기판 이송 방법
  64. 제 35 항에 있어서,
    상기 제 2 전측 아암을 독립적으로 회전시키는 단계 또는 상기 제 2 전측 아암을 독립적으로 회전시키는 단계 중 적어도 하나를 추가로 포함하는 것을 특징으로 하는 기판 이송 방법.
  65. 제 47 항에 있어서,
    상기 제 2 상부 아암 및 제 3 캠 표면을 가지는 제 3 캠에 연결되는 제 2 전측 아암 샤프트를 포함하는 제 2 손목 부재 구동 조립체로서, 상기 제 3 캠은 상기 제 2 전측 아암 샤프트에 의해 상기 제 2 상부 아암에 그라운드되며, 상기 제 3 캠은 상기 제 1 상부 아암에 구속되는, 제 3 손목 부재 구동 조립체;
    상기 제 2 손목 부재에 연결되며 제 4 캠 표면을 포함하는 제 4 캠; 및
    상기 제 3 캠 표면 및 제 4 캠 표면 사이에서 연결되는 제 2 벨트;를 포함하는 것을 특징으로 하는 전자 장치 처리 시스템.
  66. 제 47 항에 있어서,
    상기 제 1 전측 아암 및 제 1 손목 부재는 상기 제 2 전측 아암 및 제 2 손목 부재 아래에 배치되는 것을 특징으로 하는 전자 장치 처리 시스템.
  67. 제 53 항에 있어서,
    상기 제 3 캠 표면 및 제 4 캠 표면은 제 2 벨트에 의해 연결되어, 상기 제 2 손목 부재의 회전 속력은 제 2 전측 아암에 대하여 비선형인 것을 특징으로 하는 기판 이송 방법.



KR1020227022151A 2013-01-18 2014-01-14 로봇, 전자 장치 처리 시스템, 기판 이송 방법 KR102465277B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227038798A KR20220153121A (ko) 2013-01-18 2014-01-14 이송 장치

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201361754125P 2013-01-18 2013-01-18
US61/754,125 2013-01-18
US201361762063P 2013-02-07 2013-02-07
US61/762,063 2013-02-07
US13/833,732 2013-03-15
US13/833,732 US9149936B2 (en) 2013-01-18 2013-03-15 Robot having arm with unequal link lengths
US201361825162P 2013-05-20 2013-05-20
US61/825,162 2013-05-20
PCT/US2014/011416 WO2014113364A1 (en) 2013-01-18 2014-01-14 Robot having arm with unequal link lengths
KR1020217003575A KR102528833B1 (ko) 2013-01-18 2014-01-14 로봇, 전자 장치 처리 시스템, 기판 이송 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020217003575A Division KR102528833B1 (ko) 2013-01-18 2014-01-14 로봇, 전자 장치 처리 시스템, 기판 이송 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020227038798A Division KR20220153121A (ko) 2013-01-18 2014-01-14 이송 장치

Publications (2)

Publication Number Publication Date
KR20220098809A true KR20220098809A (ko) 2022-07-12
KR102465277B1 KR102465277B1 (ko) 2022-11-09

Family

ID=51210011

Family Applications (7)

Application Number Title Priority Date Filing Date
KR1020217003575A KR102528833B1 (ko) 2013-01-18 2014-01-14 로봇, 전자 장치 처리 시스템, 기판 이송 방법
KR1020227038798A KR20220153121A (ko) 2013-01-18 2014-01-14 이송 장치
KR1020157022143A KR102184870B1 (ko) 2013-01-18 2014-01-14 상이한 링크 길이를 가지는 아암이 구비되는 로봇
KR1020217003579A KR102503229B1 (ko) 2013-01-18 2014-01-14 이송 장치
KR1020227022151A KR102465277B1 (ko) 2013-01-18 2014-01-14 로봇, 전자 장치 처리 시스템, 기판 이송 방법
KR1020237014614A KR20230062681A (ko) 2013-01-18 2014-01-14 로봇, 전자 장치 처리 시스템, 기판 이송 방법
KR1020177037778A KR102214943B1 (ko) 2013-01-18 2014-01-14 상이한 링크 길이를 가지는 아암이 구비되는 로봇

Family Applications Before (4)

Application Number Title Priority Date Filing Date
KR1020217003575A KR102528833B1 (ko) 2013-01-18 2014-01-14 로봇, 전자 장치 처리 시스템, 기판 이송 방법
KR1020227038798A KR20220153121A (ko) 2013-01-18 2014-01-14 이송 장치
KR1020157022143A KR102184870B1 (ko) 2013-01-18 2014-01-14 상이한 링크 길이를 가지는 아암이 구비되는 로봇
KR1020217003579A KR102503229B1 (ko) 2013-01-18 2014-01-14 이송 장치

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020237014614A KR20230062681A (ko) 2013-01-18 2014-01-14 로봇, 전자 장치 처리 시스템, 기판 이송 방법
KR1020177037778A KR102214943B1 (ko) 2013-01-18 2014-01-14 상이한 링크 길이를 가지는 아암이 구비되는 로봇

Country Status (4)

Country Link
JP (5) JP6235612B2 (ko)
KR (7) KR102528833B1 (ko)
CN (1) CN105026115B (ko)
WO (1) WO2014113364A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10224232B2 (en) 2013-01-18 2019-03-05 Persimmon Technologies Corporation Robot having two arms with unequal link lengths
KR102430044B1 (ko) * 2015-02-06 2022-08-05 퍼시몬 테크놀로지스 코포레이션 동등하지 않은 링크 길이를 가진 아암을 구비한 로봇
US11691268B2 (en) 2015-03-12 2023-07-04 Persimmon Technologies Corporation Robot having a variable transmission ratio
JP6492271B2 (ja) 2016-04-08 2019-04-03 株式会社安川電機 搬送システムおよびロボット
TWI724971B (zh) * 2016-06-28 2021-04-11 美商應用材料股份有限公司 包括間隔上臂與交錯腕部的雙機器人以及包括該者之系統及方法
US10099377B2 (en) * 2016-06-29 2018-10-16 Applied Materials, Inc. Methods and systems providing misalignment correction in robots
JP6774276B2 (ja) * 2016-09-13 2020-10-21 川崎重工業株式会社 基板移載装置
CN117754552A (zh) * 2017-02-15 2024-03-26 柿子技术公司 具有多个末端执行器的物料操纵机器人
WO2020237019A1 (en) * 2019-05-21 2020-11-26 Persimmon Technologies Corporation Asymmetric dual end effector robot arm
US11850742B2 (en) 2019-06-07 2023-12-26 Applied Materials, Inc. Dual robot including splayed end effectors and systems and methods including same
CN112192795B (zh) * 2020-08-10 2022-12-09 李全 一种浸胶专用机器人以及手套浸胶系统
CN113263523B (zh) * 2021-04-25 2022-06-17 项淮智能科技(长兴)有限公司 一种测量scara机器人臂长方法
CN113459078B (zh) * 2021-06-28 2024-04-19 安徽工程大学 一种非圆齿轮关节机器人及其设计方法
WO2023102497A1 (en) * 2021-12-03 2023-06-08 Lam Research Corporation Direct-pick robot for multi station semiconductor processing chambers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096364A (en) * 1986-04-28 1992-03-17 Varian Associates, Inc. Wafer arm handler mechanism
JP2004288718A (ja) * 2003-03-19 2004-10-14 Tokyo Electron Ltd 基板搬送装置及び基板処理装置
KR200422315Y1 (ko) * 2006-04-28 2006-07-25 주식회사 싸이맥스 이중 아암 로봇
KR200436002Y1 (ko) * 2006-09-29 2007-04-04 주식회사 싸이맥스 이중 아암 로봇

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE84276T1 (de) * 1986-04-28 1993-01-15 Varian Associates Modulare foerder- und beabeitungsanlage fuer halbleiterwafer.
GB8709064D0 (en) * 1986-04-28 1987-05-20 Varian Associates Wafer handling arm
JPS6456983U (ko) * 1987-10-02 1989-04-10
US4865577A (en) * 1988-09-08 1989-09-12 Trustees Of Columbia University In The City Of New York Noncircular drive
JPH09285982A (ja) * 1996-04-19 1997-11-04 Metsukusu:Kk 薄型ワーク搬送装置
JPH10217167A (ja) * 1997-02-03 1998-08-18 Hitachi Ltd スカラ形ロボット
US6126381A (en) * 1997-04-01 2000-10-03 Kensington Laboratories, Inc. Unitary specimen prealigner and continuously rotatable four link robot arm mechanism
JP3806812B2 (ja) * 1997-07-16 2006-08-09 株式会社ダイヘン 2アーム方式の搬送用ロボット装置
US6547510B1 (en) * 1998-05-04 2003-04-15 Brooks Automation Inc. Substrate transport apparatus with coaxial drive shafts and dual independent scara arms
US6960057B1 (en) * 1998-09-30 2005-11-01 Brooks Automation, Inc. Substrate transport apparatus
US6659939B2 (en) * 1998-11-20 2003-12-09 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
JP2000167792A (ja) 1998-12-04 2000-06-20 Daihen Corp 搬送装置
US6485250B2 (en) * 1998-12-30 2002-11-26 Brooks Automation Inc. Substrate transport apparatus with multiple arms on a common axis of rotation
JP3639764B2 (ja) * 2000-02-01 2005-04-20 タツモ株式会社 基板搬送装置
US6601468B2 (en) * 2000-10-24 2003-08-05 Innovative Robotic Solutions Drive system for multiple axis robot arm
US7891935B2 (en) * 2002-05-09 2011-02-22 Brooks Automation, Inc. Dual arm robot
JP2004288719A (ja) * 2003-03-19 2004-10-14 Tokyo Electron Ltd 基板搬送装置及び基板処理装置
US6748293B1 (en) * 2003-03-24 2004-06-08 Varian Semiconductor Equipment Associates, Inc. Methods and apparatus for high speed object handling
JP4513435B2 (ja) * 2003-07-16 2010-07-28 東京エレクトロン株式会社 搬送装置
US20050113964A1 (en) * 2003-11-10 2005-05-26 Blueshift Technologies, Inc. Sensor methods and systems for semiconductor handling
JP4262064B2 (ja) * 2003-11-28 2009-05-13 株式会社ダイヘン 搬送ロボット
KR100583727B1 (ko) 2004-01-07 2006-05-25 삼성전자주식회사 기판 제조 장치 및 이에 사용되는 기판 이송 모듈
JP4852719B2 (ja) * 2005-12-05 2012-01-11 日本電産サンキョー株式会社 多関節型ロボット
US9248568B2 (en) * 2005-07-11 2016-02-02 Brooks Automation, Inc. Unequal link SCARA arm
US20120064949A1 (en) * 2007-03-06 2012-03-15 Kavounas Gregory T I-ringer for personal electronic device
KR20160068991A (ko) * 2007-05-08 2016-06-15 브룩스 오토메이션 인코퍼레이티드 기계적 스위치 메카니즘을 이용한 복수의 가동 암들을 갖는 기판 이송 장치
WO2008144664A1 (en) * 2007-05-18 2008-11-27 Brooks Automation, Inc. Compact substrate transport system with fast swap robot
JP4684268B2 (ja) * 2007-08-30 2011-05-18 株式会社アルバック 真空処理装置、基板搬送方法
US8322963B2 (en) * 2008-04-18 2012-12-04 Applied Materials, Inc. End effector for a cluster tool
JP5480562B2 (ja) * 2009-08-26 2014-04-23 日本電産サンキョー株式会社 産業用ロボット
KR102060544B1 (ko) * 2010-11-10 2019-12-30 브룩스 오토메이션 인코퍼레이티드 이중 아암 로봇
JP6092183B2 (ja) * 2011-03-21 2017-03-08 エスアールアイ インターナショナルSRI International 可動式ロボットマニピュレーターシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096364A (en) * 1986-04-28 1992-03-17 Varian Associates, Inc. Wafer arm handler mechanism
JP2004288718A (ja) * 2003-03-19 2004-10-14 Tokyo Electron Ltd 基板搬送装置及び基板処理装置
KR200422315Y1 (ko) * 2006-04-28 2006-07-25 주식회사 싸이맥스 이중 아암 로봇
KR200436002Y1 (ko) * 2006-09-29 2007-04-04 주식회사 싸이맥스 이중 아암 로봇

Also Published As

Publication number Publication date
KR20230062681A (ko) 2023-05-09
JP6538137B2 (ja) 2019-07-03
CN105026115B (zh) 2018-11-16
KR20210016095A (ko) 2021-02-10
KR20220153121A (ko) 2022-11-17
JP2021088055A (ja) 2021-06-10
WO2014113364A1 (en) 2014-07-24
JP7342046B2 (ja) 2023-09-11
CN105026115A (zh) 2015-11-04
KR102503229B1 (ko) 2023-02-23
JP2018037673A (ja) 2018-03-08
JP6235612B2 (ja) 2017-11-22
KR20210018524A (ko) 2021-02-17
KR102528833B1 (ko) 2023-05-04
JP2016505219A (ja) 2016-02-18
KR102214943B1 (ko) 2021-02-10
JP2019195069A (ja) 2019-11-07
JP6901522B2 (ja) 2021-07-14
JP2022062094A (ja) 2022-04-19
KR102465277B1 (ko) 2022-11-09
KR20180004327A (ko) 2018-01-10
KR102184870B1 (ko) 2020-12-01
KR20150110625A (ko) 2015-10-02

Similar Documents

Publication Publication Date Title
KR102465277B1 (ko) 로봇, 전자 장치 처리 시스템, 기판 이송 방법
US9889557B2 (en) Robot having arm with unequal link lengths
US10224232B2 (en) Robot having two arms with unequal link lengths
KR102451144B1 (ko) 동등하지 않은 링크 길이를 가진 아암을 구비한 로봇

Legal Events

Date Code Title Description
A107 Divisional application of patent
E701 Decision to grant or registration of patent right