KR20220095472A - 패턴 분석 시스템 및 상기 시스템을 이용한 반도체 장치 제조 방법 - Google Patents

패턴 분석 시스템 및 상기 시스템을 이용한 반도체 장치 제조 방법 Download PDF

Info

Publication number
KR20220095472A
KR20220095472A KR1020200187014A KR20200187014A KR20220095472A KR 20220095472 A KR20220095472 A KR 20220095472A KR 1020200187014 A KR1020200187014 A KR 1020200187014A KR 20200187014 A KR20200187014 A KR 20200187014A KR 20220095472 A KR20220095472 A KR 20220095472A
Authority
KR
South Korea
Prior art keywords
image
blending
sem
pattern
generating
Prior art date
Application number
KR1020200187014A
Other languages
English (en)
Inventor
강민철
국동훈
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020200187014A priority Critical patent/KR20220095472A/ko
Priority to US17/547,503 priority patent/US20220207699A1/en
Publication of KR20220095472A publication Critical patent/KR20220095472A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8803Visual inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/174Segmentation; Edge detection involving the use of two or more images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/194Segmentation; Edge detection involving foreground-background segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30144Printing quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Quality & Reliability (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

패턴 분석 시스템 및 상기 패턴 분석 시스템을 이용하는 반도체 장치 제조 방법이 제공된다. 상기 반도체 장치 제조 방법은 패턴이 형성된 기판이 제공되고, 패턴의 엣지를 나타내는 경계 이미지를 포함하는 SEM(Scannig Electron Microscope) 이미지를 생성하고, SEM 이미지와, 경계 이미지를 통해 정렬되는 제1 백그라운드 이미지에 대해 제1 블랜딩(Blending) 동작을 수행하여 제1 블랜딩 이미지를 생성하고, 제1 블랜딩 이미지를 임계값을 기준으로 2치화(binarization)하여 컨투어(Contour) 데이터를 생성하는 것을 포함하되, 임계값은, SEM 이미지를 통해 측정되는 패턴의 임계 치수(critical dimension, CD)에 의해 결정된다.

Description

패턴 분석 시스템 및 상기 시스템을 이용한 반도체 장치 제조 방법{A PATTERN ANALYSIS SYSTEM AND A METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE USING THE SAME SYSTEM}
본 발명은 패턴 분석 시스템 및 상기 시스템을 이용한 반도체 장치 제조 방법에 관한 것이다.
반도체 장치의 제조에 있어서, 포토리소그래피 공정, 에칭 공정 등에 의하여 형성되는 미세 패턴들을 정밀하게 측정하는 것이 필수적이다. 패턴 형성 공정 전후에 정확한 치수로 미세 패턴이 형성되는 지를 확인하기 위해 전기적 특성 검사 또는 미세 패턴의 임계 치수(CD, critical dimension) 등을 측정한다.
예를 들면, 임계 치수를 측정하는 설비로 주사전자현미경(SEM, scanning electron microscope)이 사용될 수 있다. 여기서, 임계 치수는 반도체 장치의 상호 연결된 라인 사이의 공간적 한계 및 라인 자체의 폭에 대한 규정치로서, 반도체 장치의 제조에 허용되는 두 개의 라인들 사이의 최소 공간 또는 최소 회로 선폭을 의미한다.
다만, EUV(Extreme Ultraviolet) 패터닝 기술을 통해 형성되는 고도로 미세한 패턴에 대해서, 임계 치수만으로는 오버레이와 OPC(Optical Proximity Correction)에서 발생하는 에러 및 임계 치수의 불일치를 보정하기 어렵고, 2차원 패턴에 대한 측정 정확도가 떨어진다. 이를 해결하기 위한 연구가 진행되고 있다.
본 발명이 해결하고자 하는 기술적 과제는, 명암 대비(Contrast) 품질이 열화된 SEM 이미지를 통해서 EP 데이터를 생성하는 패턴 분석 시스템을 제공하는 것이다.
본 발명이 해결하고자 하는 기술적 과제는, 명암 대비 품질이 열화된 SEM 이미지를 통해서 EP 데이터를 생성하는 반도체 장치 제조 방법을 제공하는 것이다.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 해당 기술 분야의 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 달성하기 위한 몇몇 실시 예에 따른 반도체 장치 제조 방법은 패턴이 형성된 기판이 제공되고, 상기 패턴의 엣지를 나타내는 경계 이미지를 포함하는 SEM(Scannig Electron Microscope) 이미지를 생성하고, 상기 SEM 이미지와, 상기 경계 이미지를 통해 정렬되는 제1 백그라운드 이미지에 대해 제1 블랜딩(Blending) 동작을 수행하여 제1 블랜딩 이미지를 생성하고, 상기 제1 블랜딩 이미지를 임계값을 기준으로 2치화(binarization)하여 컨투어(Contour) 데이터를 생성하는 것을 포함하되, 상기 임계값은, 상기 SEM 이미지를 통해 측정되는 상기 패턴의 CD(critical dimension)에 의해 결정된다.
상기 기술적 과제를 달성하기 위한 몇몇 실시 예에 따른 반도체 장치 제조 방법은 패턴이 형성된 기판이 제공되고, 상기 패턴의 엣지를 나타내는 경계 이미지를 포함하는 SEM(Scannig Electron Microscope) 이미지를 생성하고, 상기 SEM 이미지와, 상기 경계 이미지에 정렬되는 제1 백그라운드 이미지에 대해 제1 블랜딩(Blending) 동작을 수행하여 제1 블랜딩 이미지를 생성하고, 미리 정해진 조건의 만족 여부에 따라, 상기 SEM 이미지와, 상기 제1 블랜딩 이미지를 기초로 생성된 제2 백그라운드 이미지에 대해 제2 블랜딩 동작을 수행하여 제2 블랜딩 이미지를 생성하고, 상기 제2 블랜딩 이미지를 2치화(binarization)하여 컨투어(Contour) 데이터를 생성하는 것을 포함한다.
상기 기술적 과제를 달성하기 위한 몇몇 실시 예에 따른 패턴 분석 시스템은, 패턴이 형성된 기판에 대한 SEM(Scannig Electron Microscope) 이미지를 생성하는 촬영 장치로, SEM 이미지는 패턴의 엣지를 나타내는 경계 이미지를 포함하는 촬영 장치, 경계 이미지를 통해 SEM 이미지와 정렬되는 백그라운드 이미지를 제공하는 이미지 모듈, 백그라운드 이미지와 SEM 이미지를 제공받아, 백그라운드 이미지와 SEM 이미지 대해 블랜딩(Blending) 동작을 수행하여 블랜딩 이미지를 생성하는 블랜딩 모듈 및 블랜딩 이미지를 임계값을 기준으로 2치화(binarization)하여 컨투어(Contour) 데이터를 생성하는 엣지 측정 묘듈을 포함하되, 임계값은, SEM 이미지를 통해 측정되는 패턴의 임계 치수에 의해 결정된다.
도 1은 본 발명의 몇몇 실시예들에 따른 패턴 분석 시스템을 설명하기 위한 블록도이다.
도 2는 본 발명의 몇몇 실시예들에 따른 백그라운드 이미지 모듈을 설명하기 위한 블록도이다.
도 3은 본 발명의 몇몇 실시예들에 따른 반도체 장치 제조 방법을 설명하기 위한 순서도이다.
도 4 및 도 5는 본 발명의 몇몇 실시예들에 따른 패턴 분석 시스템의 측정 대상인 패턴을 설명하기 위한 도면들이다.
도 6는 도 5의 R 영역을 확대한 확대도이다.
도 7는 도 6의 R' 영역에 대한 SEM 이미지를 나타내는 도면이다.
도 8는 도 7의 SEM 이미지에 대응하는 백그라운드 이미지를 나타내는 도면이다.
도 9a는 도 7의 A-A'선을 따라 측정한 이미지의 명암 대비(Contrast)를 나타내는 그래프이다.
도 9b는 도 8의 A-A'선을 따라 측정한 이미지의 명암 대비(Contrast)를 나타내는 그래프이다.
도 10 내지 도 11은 본 발명의 몇몇 실시예들에 따른 반도체 장치 제조 방법을 설명하기 위한 도면들이다.
도 12 및 도 13은 본 발명의 또 다른 몇몇 실시예들에 따른 반도체 장치 제조 방법을 설명하기 위한 순서도이다.
도 14 내지 도 17은 본 발명의 몇몇 실시예들에 따른 반도체 장치 제조 방법을 설명하기 위한 도면들이다.
도 18은 본 발명의 몇몇 실시예들에 따른 반도체 장치 제조 방법을 설명하기 위한 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 기술적 사상에 따른 실시예들에 대해 설명한다. 도 1 내지 도 18의 설명에서 실질적으로 동일한 구성 요소에 대해서는 동일한 도면 부호 사용하며, 해당 구성요소에 대한 중복된 설명은 생략하기로 한다. 또한 본 발명의 여러 도면에 걸쳐서, 유사한 구성요소에 대해서는 유사한 도면 부호가 사용된다.
도 1은 본 발명의 몇몇 실시예들에 따른 패턴 분석 시스템을 설명하기 위한 블록도이다. 도 2는 본 발명의 몇몇 실시예들에 따른 백그라운드 이미지 모듈을 설명하기 위한 블록도이다.
도 1 및 도 2를 참조하면, 패턴 분석 시스템(1)은 촬영 장치(100), 분석 장치(200)를 포함할 수 있다.
촬영 장치(100)는 패턴이 형성되는 기판에 대한 촬영을 수행할 수 있다. 본 발명의 몇몇 실시예들에 따른 촬영 장치(100)는 반도체 기판 또는 식각이 수행된 반도체 기판을 촬영할 수 있다. 촬영 장치(100)에 의해 촬영된 반도체 기판의 이미지(I)는 SEM(Scanning electron microscope) 이미지 또는 강도 맵(intensity map) 이미지일 수 있고, 설명의 용이성을 위해 이하 반도체 기판의 이미지(I)를 SEM 이미지(I)라 한다. 하지만, 본 발명의 기술적 사상에 따른 실시예는 이에 제한되지 않는다.
SEM 이미지(I)의 해상도(resolution)는 범위 내에 있다. 몇몇 실시예에 따른 촬영 장치(100)는 SEM 이미지(I)의 촬영을 위해 전자총을 포함할 수 있다. 상기 전자총은 열방사형(themionic electron gun)과 전계 방사형(field emission electron gun) 등으로 구현될 수 있으나, 본원의 기술적 사상은 상기 구현예들로 제한되지 않는다.
SEM 이미지(I)의 해상도는 2nm 내지 10nm 범위 내에 있을 수 있으며, 실시예에 따라 상기 범위를 넘어서는 복수의 패턴들의 임계 치수 혹은 피치에 대해 촬영하는 경우 상기 패턴들에 대한 이미지가 왜곡될 수 있다.
분석 장치(200)는 노이즈 필터(210), 백그라운드 이미지 모듈(220), 블랜딩 모듈(230), 임계 치수 측정 모듈(240), 엣지 측정 모듈(250) 및 모델링 모듈(260)을 포함할 수 있다.
노이즈 필터(210)는 촬영 장치(100)로부터 SEM 이미지(I)를 제공받아 노이즈 필터링 동작을 수행하고, 노이즈가 제거된 필터링 이미지(F_I)를 생성한다. 상기 노이즈 필터링 동작에는 가우시안(Gaussian) 노이즈 필터링 및 미디언 커널(Median kernal) 노이즈 필터링 등을 포함할 수 있고, SEM 이미지(I)에 대해 가우시안 커널 또는 미디언 커널 등을 컨볼루션하여 SEM 이미지(I)에 포함된 고주파의 노이즈를 제거하고, 필터링 이미지(F_I)를 블랜딩 모듈(230) 및 임계 치수 측정 모듈(240)에 제공한다.
백그라운드 이미지 모듈(220)은 블랜딩 모듈에 백그라운드 이미지(BG_I)를 제공하는 모듈로, 메모리(221), 2치화 유닛(222), 블러 유닛(223)을 포함할 수 있다.
메모리(221)는 백그라운드 이미지(BG_I)의 기초가 되는 프리 백그라운드 이미지(BG_Ia)를 저장할 수 있다. 메모리(221)는 라운드 타겟 이미지(RT_I), 블랜딩 모듈(230)로부터 제공되는 컨투어 이미지(CT_I), 모델링 모듈(260)로부터 제공되는 모델 이미지(M_I)를 프리 백그라운드 이미지(BG_Ia)로 저장할 수 있다.
몇몇 실시예에 따라, 저장된 라운드 타겟 이미지(RT_I), 컨투어 이미지(CT_I), 모델 이미지(M_I)는 2치화된 이미지일 수 있고, 실시예에 따라 몇몇 프리 백그라운드 이미지(BG_Ia)는 그레이 스케일(grayscale) 이미지일 수 있다.
2치화 유닛(222)은, 메모리(221)를 통해 제공되는 프리 백그라운드 이미지(BG_Ia)를 2치화하여 컨투어 이미지(BG_Ia')로 변환할 수 있다.
블러 유닛(223)은 컨투어 이미지(BG_Ia')에 대해 가우시안 블러(Gaussian Blur) 처리하여 백그라운드 이미지(BG_I)를 생성하여 블랜딩 모듈(230)에 제공할 수 있다. 상기 가우시안 블러 처리는 필터링 동작으로 수행될 수 있으며, 후에 블랜딩 동작에서 SEM 이미지(I)의 화이트 밴드(WB, 도 7 참조)의 정보 손실 최대한 줄이기 위해 수행될 수 있다.
블랜딩 모듈(230)은 백그라운드 이미지 모듈(220)로부터 백그라운드 이미지(BG_I)를 제공받고, 노이즈 필터(210)로부터 필터링 이미지(F_I)를 제공받고, 백그라운드 이미지(BG_I)와 필터링 이미지(F_I)에 대해 블랜딩 동작을 수행하여 블랜딩 이미지(BI)를 생성하고, 엣지 측정 모듈에 제공할 수 있다.
몇몇 실시예들에 따라 블랜딩 모듈(230)은 블랜딩 이미지(BI)에 대해 2치화한 컨투어 이미지(CT_I)를 백그라운드 이미지 모듈(220)에 제공하고, 다시 블랜딩 모듈(230)은 백그라운드 이미지 모듈(220)로부터 블랜딩 이미지(BI)를 백그라운드 이미지(BG_I)로 제공받아 블랜딩 이미지(BI)와 백그라운드 이미지(BG_I)에 대해 블랜딩 동작을 수행할 수 있다.
블랜딩 모듈(230)은 미리 정해진 조건의 만족 여부에 따라 블랜딩 반복 횟수를 제어할 수 있다. 블랜딩 이미지(BI)의 라인 프로파일의 슬롭(Slope) 비교 또는 이미 수행된 블랜딩 횟수에 따라 블랜딩 동작 반복 횟수를 제어할 수 있다.
임계 치수 측정 모듈(240)은 필터링 이미지(F_I)를 제공받아 임계 치수 데이터(CD_D)를 생성하고, 상기 측정된 임계 치수 데이터(CD_D)를 엣지 측정 모듈(250)로 제공할 수 있다.
엣지 측정 모듈(250)은 블랜딩 모듈(240)으로부터 제공받은 블랜딩 이미지(BI)와 임계 치수 측정 모듈(240)부터 제공받은 임계 치수 데이터(CD_D)를 기준으로 2치화 동작을 수행하고, SEM 이미지(I)에서 촬영된 패턴들의 컨투어 데이터(EP_D)를 생성하고, 이를 모델링 모듈(260)에 제공할 수 있다.
모델링 모듈(260)은 복수의 컨투어 데이터(EP_D)를 제공받아, 이를 기초로 OPC 모델링을 수행할 수 있다. 또한, 동일 패턴에 대한 다양한 SEM 이미지(I)의 컨투어 데이터(EP_D)를 추출함으로써 OPC 모델링에 대한 산포 분석을 수행하고, OPC 시뮬레이션 컨투어와 엣지 배치 에러(Edge Placement Error) 분석을 통해 패턴에 대한 OPC 모델링의 검증도 가능하다. 또한 OPC 모델링의 검증의 결과에 대한 모델 이미지(M_I)를 백그라운드 이미지 모듈(220)에 제공할 수 있다.
이후, OPC 모델링 결과를 통해 MTO(Mask Tape-Out) 디자인 데이터를 생성하고, 상기 MTO 디자인 데이터를 통해 마스크를 생성할 수 있다.
도 3은 본 발명의 몇몇 실시예들에 따른 반도체 장치 제조 방법을 설명하기 위한 순서도이다. 도 4 및 도 5는 본 발명의 몇몇 실시예들에 따른 패턴 분석 시스템의 측정 대상인 패턴을 설명하기 위한 도면들이다. 도 6는 도 5의 R 영역을 확대한 확대도이다. 도 7는 도 6의 R' 영역에 대한 SEM 이미지를 나타내는 도면이다.
도 3 내지 도 7를 참조하면, 촬영 장치(100)는 스테이지(300)상에서 패턴(P)이 형성된 반도체 기판(10)에 대해 전자선(E)을 방출하여 촬영을 수행할 수 있고, 이에 따라 촬영 장치(100)는 패턴(P)에 대한 SEM 이미지(I)를 획득한다(S110).
분석 장치(200)는 획득된 SEM 이미지(I)를 분석 장치(200)에 제공한다.
실시예에 따라, 반도체 기판(10) 상의 패턴(P)은 포토 레지스트(Photo Resist, PR) 패턴일 수 있으며, 이에 따라 SEM 이미지(I)는 ADI(After Development Inspection) 이미지일 수 있다. 실시예에 따라 EUV 광에 의해 형성되는 포토 레지스트에는 PMMA(polumethylmethacrylate), poly(4-hydroxystryrene) 등이 이용될 수 있으나, 본 발명의 기술적 사상은 이에 제한되지 않는다. 또한 EUV 광에 의한 포토 레지스트의 패턴의 두께는 50nm 내지 80nm 범위 내일 수 있다. 이는 포토 레지스트 패턴의 불량을 방지하기 위함이다.
또 다른 실시예에서, 반도체 기판(10) 상의 패턴(P)은, 포토 레지스트 패턴에 의해 형성되는 웨어퍼 패턴일 수 있으며, 이에 따라 SEM 이미지(I)는 ACI (After Cleaning Inspection) 이미지일 수 있으나, 본 발명의 기술적 사상은 상기 이미지들의 예시에 제한되지 않으며, 광학 모델에 의한 이미지 일 수 있다.
반도체 기판(10) 상에서, 패턴(P)은 제1 패턴(P1) 및 제2 패턴(P2)을 포함할 수 있다. 제1 패턴(P1)은 제1 방향(x)으로 연장되고, 제2 패턴(P2)은 제1 방향(x)과 교차하는 제2 방향(y)으로 연장될 수 있다.
EUV(Extreme Ultraviolet) 패터닝 기술에 의해 형성될 수 있다. 따라서, 예시적으로 제1 패턴(P1)의 제2 방향(y)으로의 임계 치수(CD)는 3nm 내지 4nm 범위일 수 있으며, 제1 패턴(P1) 간 피치(pitch) 또한 3nm 내지 4nm 범위일 수 있다. 또한 각각의 제1 패턴(P1) 및 제2 패턴(P2)의 엣지 부분이 라운드된 코너 반지름은 70nm 내지 170nm 범위 내에 있다.
또한 패터닝 시 사용되는 EUV 광은 4nm 내지 124nm 범위 내의 파장을 갖는 광이고, 예시적으로 본원 발명에서는 4 nm 내지 20 nm 범위 내의 파장이 이용될 수 있고, 상기 EUV 광은 플라즈마 소스 재료(예를 들어, TiN)에 레이저를 제공하여 발생될 수 있다.
따라서, 해상도가 2nm 내지 10nm 범위 내인 SEM 촬영 방법을 통해 EUV광에 의해 형성된 패턴(P) 촬영할 경우, 일부 영역이 왜곡되거나 명암 대비 품질(Contrast)이 열화된 SEM 이미지(I)가 획득할 수 있다.
도 9a는 도 7의 A-A'선을 따라 측정한 이미지의 명암 대비(Contrast)를 나타내는 그래프이다.
도 7 및 도 9을 추가적으로 참조하면, 제1 패턴(P1)에 대한 SEM 이미지(I)는 제1 영역(R1), 제2 영역(R2) 및 화이트 밴드(WB) 구간을 포함할 수 있다.
화이트 밴드(WB) 구간은 제1 영역(R1)과 제2 영역(R2) 사이에 배치되며, 제1 영역(R1)과 제2 영역(R2)을 구분할 수 있다. 화이트 밴드(WB) 구간은 제1 영역(R1), 제2 영역(R2)에 비해 명암 대비 값이 높은 구간으로 패턴(P)의 엣지를 나타내는 경계 이미지에 해당한다. 화이트 밴드(WB) 구간을 통해 패턴의 컨투어(contour)를 확정할 수 있다.
실시예에 따라 다르나, 제1 영역(R1)과 제2 영역(R2)은 폴리곤 영역이거나 스페이스 영역 중 어느 하나에 해당할 수 있다. 다만, 제1 영역(R1)과 제2 영역(R2)에서의 명암 대비(Contrast) 값이 큰 차이가 없어, 명암 대비(Contrast) 값을 통해서 폴리곤 영역/스페이스 영역의 구분이 어려울 수 있다.
블랜딩 모듈(230)은 백그라운드 이미지 모듈(220)로부터 백그라운드 이미지(BG_I)를 제공받고, 노이즈 필터(210)로부터 SEM 이미지(I)의 필터링 이미지(F_I)를 제공받고, 두 이미지의 정렬을 수행한다(S120)
도 8는 도 7의 SEM 이미지에 대응하는 백그라운드 이미지를 나타내는 도면이다. 도 9b는 도 8의 A-A'선을 따라 측정한 이미지의 명암 대비(Contrast)를 나타내는 그래프이다.
도 7, 도 8 및 도 9b를 추가적으로 참조하면, 백그라운드 이미지(BG_I)는 2치화된 컨투어 이미지(BG_Ia')에 대해, 블러 유닛(223)에 의해 블러 처리된 이미지이기 때문에 명암 대비 값이 변동되는 슬롭 구간(R_slope)을 포함할 수 있다.
상기 슬롭 구간(R_slope)은 SEM 이미지(I)의 화이트 밴드(WB) 구간에 대응될 수 있고, 슬롭 구간(R_slope)과 화이트 밴드(WB) 구간을 기준으로 백그라운드 이미지(BG_I)와 SEM 이미지(I)의 필터링 이미지(F_I)의 정렬을 수행한다.
블랜딩 모듈(230)은 정렬된 이미지들에 대해 아래의 수학식 1과 같이 수행할 수 있다.
Figure pat00001
?? 수학식 1
Figure pat00002
는 이미지 내 위치를 나타내고,
Figure pat00003
는 블랜딩 결과 값을 나타내고,
Figure pat00004
는 SEM 이미지(I)의 필터링 이미지(F_I)의 명암 대비 값을 나타내고,
Figure pat00005
는 백그라운드 이미지(BG_I)의 명암 대비 값을 나타내고, 상기
Figure pat00006
는 0 내지 1 범위 내의 값을 가진다.
블랜딩 모듈(230)은 상기 수학식 1과 같은 알파 블랜딩(alpha blending) 방법으로 블랜딩 동작을 수행할 수 있으나, 이는 예시적인 방법으로 본 발명의 기술적 사상은 상기 블랜딩 방법에 제한되지 않는다.
도 10 내지 도 11은 본 발명의 몇몇 실시예들에 따른 반도체 장치 제조 방법을 설명하기 위한 도면들이다. 도 10은 블랜딩 모듈(230)의 블랜딩 동작에 따른 제1 패턴(P1)의 대한 블랜딩 이미지를 나타내는 도면이다.
블랜딩 모듈(230)은 SEM 이미지(I)의 필터링 이미지(F_I)에 대한 블랜딩 동작 횟수(n)와 미리 정해진 숫자(N, N은 1 이상의 자연수)와 비교하여, 블랜딩 동작의 반복을 결정할 수 있다(S140_1). 설명의 용이성을 위해 N이 3이라고 전제할 수 있다.
블랜딩 모듈(230)은 SEM 이미지(I)와 제1 백그라운드 이미지(BG_I1)에 대해 제1 블랜딩 동작(1st_B)을 수행하여, 제1 블랜딩 이미지(BI1)를 생성할 수 있다.
블랜딩 동작 횟수가 1이므로(N), 블랜딩 모듈(230)은 제1 블랜딩 이미지(BI1)를 백그라운드 이미지 모듈(220)에 제공하고, 백그라운드 이미지 모듈(220)은 제1 블랜딩 이미지(BI1)를 기초로 제2 백그라운드 이미지(BG_I2)를 생성한다(S150).
백그라운드 이미지 모듈(220)은, 2치화 유닛(222)과 블러 유닛(223)을 통해, 제1 블랜딩 이미지(BI1)에 2치화 및 블러 처리 수행하여 제2 백그라운드 이미지(BG_I2)를 형성할 수 있다.
SEM 이미지(I)의 필터링 이미지(F_I)와 제2 백그라운드 이미지(BG_I2)에 대해 단계 S120 및 단계 S130 동작을 수행하는 것은 앞서 서술한 제1 블랜딩 동작(1st_B)에 대한 설명으로 대체될 수 있는 것은 자명하다.
블랜딩 모듈(230)은 제2 블랜딩 동작(2nd_B)을 수행하여, 제2 블랜딩 이미지(BI2)를 생성할 수 있다.
블랜딩 동작 횟수가 2이므로(N), 블랜딩 모듈(230)은 제2 블랜딩 이미지(BI2)를 백그라운드 이미지 모듈(220)에 제공하고, 백그라운드 이미지 모듈(220)은 제2 블랜딩 이미지(BI2)를 기초로 제3 백그라운드 이미지(BG_I3)를 생성한다(S150).
백그라운드 이미지 모듈(220)은, 2치화 유닛(222)과 블러 유닛(223)을 통해, 제2 블랜딩 이미지(BI2)에 2치화 및 블러 처리 수행하여 제3 백그라운드 이미지(BG_I3)를 형성할 수 있다.
SEM 이미지(I)의 필터링 이미지(F_I)와 제3 백그라운드 이미지(BG_I3)에 대해 단계 S120 및 단계 S130 동작을 수행하는 것은 앞서 서술한 제1 블랜딩 동작(1st_B)에 대한 설명으로 대체될 수 있는 것은 자명하다.
블랜딩 모듈(230)은 제2 블랜딩 동작(3rd_B)을 수행하여, 제3 블랜딩 이미지(BI3)를 생성할 수 있다.
블랜딩 동작 횟수가 3이므로(Y), 블랜딩 모듈(230)은 제3 블랜딩 이미지(BI3) 형태의 블랜딩 이미지(BI)를 엣지 측정 모듈(250)에 제공할 수 있다.
제1 내지 제3 블랜딩 동작(1st_B-3rd _B)을 통해 생성된 제1 내지 제3 블랜딩 이미지(BI3)를 비교하였을 때, 화이트 밴드(WB) 구간에서의 제3 블랜딩 이미지(BI3)의 명암 대비 기울기는, 제1 블랜딩 이미지(BI1)보다, 화이트 밴드(WB) 구간에서의 SEM 이미지(I)의 필터링 이미지(F_I)의 명암 대비 기울기와 유사하다.
뿐만 아니라 화이트 밴드(WB) 구간에서, 제3 블랜딩 이미지(BI3)의 명암 대비 값이 제1 블랜딩 이미지(BI1)의 명암 대비 값보다 커지게 되어 컨투어를 형성하기 용이해진다.
즉, 블랜딩 동작을 수행하는 횟수가 증가할수록, 화이트 밴드(WB) 구간에서의 블랜딩 이미지(BI)의 데이터가 화이트 밴드(WB) 구간에서 필터링 이미지(F_I)의 데이터와 유사해지고, 또 제1 영역(R1)과 제2 영역(R2)의 명암 대비 값의 구분도 명확해지는 것을 알 수 있다.
도 12 및 도 13은 본 발명의 또 다른 몇몇 실시예들에 따른 반도체 장치 제조 방법을 설명하기 위한 순서도이다.
이하에서, 도 12 및 도 13를 참조하여 본 발명의 또 다른 몇몇 실시예에 따른 반도체 장치 제조 방법을 설명한다. 도 3에 도시된 단계 S140_1과 상이한 S140_2를 중심으로 설명한다.
몇몇 실시예에 따른 반도체 제조 방법에서, 블랜딩 동작(S130) 후 블랜딩 이미지(BI)의 라인 프로파일 내 슬롭(s')을 분석한다(S170).
블랜딩 모듈(230)은 화이트 밴드(WB) 구간에 포함되는 제1 지점(a)에서 블랜딩 이미지(BI)의 명암 대비 기울기(s')를 측정한다. 또한, 블랜딩 모듈(230)은 동일한 제1 지점(a)에서 SEM 이미지(I)의 필터링 이미지(F_I)의 명암 대비 기울기(s)를 측정한다.
필터링 이미지(F_I)의 명암 대비 기울기(s)를 기준으로 제1 및 제2 기울기 계수(s1, s2)를 생성하고, 기울기(s')와 제1 및 제2 기울기 계수(s1, s2)를 비교하여 블랜딩 동작의 반복을 결정할 수 있다(S140_2).
예시적으로 제1 기울기 계수(s1)를 0.99s로 하고, 제2 기울기 계수(s2)를 1.01s로 할 수 있다. 아래의 수학식 2을 만족하면 블랜딩 모듈(230)은 블랜딩 이미지(BI)를 엣지 측정 모듈(250)에 제공할 수 있다.
Figure pat00007
?? 수학식 2
다만, 수학식 2는, 블랜딩 이미지(BI)의 명암 대비 기울기(s')와 필터링 이미지(F_I)의 명암 대비 기울기(s) 사이의 비교를 위한 일 예시이고, 해당 수학식 2가 본 발명의 기술적 사상을 제한하지 않는다.
도 14 내지 도 17은 본 발명의 몇몇 실시예들에 따른 반도체 장치 제조 방법을 설명하기 위한 도면들이다.
도 14 내지 도 17을 참조하면, 임계 치수 측정 모듈(240)은 제2 지점(b)과 제3 지점(c)의 임계 명암 대비 값(Th_A)을 기준으로 임계 치수(CD)를 측정하고, 제2 지점(b)과 제3 지점(c)과 임계 치수(CD)를 포함하는 임계 치수 데이터(CD_D)를 엣지 측정 모듈(250)에 제공할 수 있다.
엣지 측정 모듈(250)은 블랜딩 이미지(BI)와 임계 치수 데이터(CD_D)를 제공받고, 제2 지점(b)과 제3 지점(c)과 임계 치수(CD)를 기준으로 명암 대비의 임계값(Th_B)을 결정할 수 있다.
엣지 측정 모듈(250)은 임계값(Th_B)을 기준으로 2치화하여 2치화 블랜딩 이미지(Binary_BI)를 형성하고, 블랜딩 이미지(Binary_BI)에 대한 컨투어 데이터(EP_D)를 형성한다. 컨투어 데이터(EP_D)는 블랜딩 이미지(Binary_BI)의 엣지 지점(Pa)에 대한 좌표 정보를 포함할 수 있다.
도 18은 본 발명의 몇몇 실시예들에 따른 반도체 장치 제조 방법을 설명하기 위한 순서도이다.
엣지 측정 모듈(250)은 측정 결과인 컨투어 데이터(EP_D)를 모델링 모듈(260)에 제공할 수 있고, 모델링 모듈(260)은 복수의 컨투어 데이터(EP_D)를 기초로 OPC(Optical Proximity Correction) 모델링 수행한다(S210)
OPC 모델링 수행 후, MTO 디자인 데이터를 입력받는다(S220). 일반적으로, MTO는 OPC 모델링 단계가 완료된 마스크 디자인 데이터를 넘겨 마스크 제작을 의뢰하는 것을 의미할 수 있다. 따라서, MTO 디자인 데이터는 결국, OPC 모델링 단계가 완료된 마스크 디자인 데이터라고 볼 수 있다. 이러한 MTO 디자인 데이터는 전자 설계 자동화(Electronic Design Automation: EDA) 소프트웨어 등에서 사용되는 그래픽 데이터 포맷을 가질 수 있다. 예컨대, MTO 디자인 데이터는 GDS2(Graphic Data System Ⅱ), OASIS(Open Artwork System Interchange Standard) 등의 데이터 포맷을 가질 수 있다.
MTO 디자인 데이터를 입력받은 후, 마스크 데이터 준비(Mask Data Preparation: MDP)를 수행한다(S230). 마스크 데이터 준비는 예컨대, 분할(fracturing)로 불리는 포맷 변환, 기계식 판독을 위한 바코드, 검사용 표준 마스크 패턴, 잡-덱(job deck) 등의 추가(augmentation), 그리고 자동 및 수동 방식의 검증을 포함할 수 있다. 여기서 잡-덱은 다중 마스크 파일들의 배치정보, 기준 도우즈(dose), 노광 속도나 방식 등의 일련의 지령에 관한텍스트 파일을 만드는 것을 의미할 수 있다.
한편, 포맷 변환, 즉 분할(fracturing)은 MTO 디자인 데이터를 각 영역별로 분할하여 전자빔 노광기용 포맷으로 변경하는 공정을 의미할 수 있다. 분할에는 예컨대, 크기 조절(Scaling), 데이터의 정립(sizing), 데이터의 회전, 패턴 반사, 색상 반전 등의 데이터 조작이 포함될 수 있다. 분할을 통한 변환 과정에서, 설계 데이터로부터 반도체 기판 상의 이미지로의 전달과정 중의 어디에선가 발생할 수 있는 수많은 계통 오차들(systematic errors)에 대한 데이터가 보정될 수 있다. 상기 계통 오차들에 대한 데이터 보정 공정을 마스크 프로세스 보정(Mask Process Correction: MPC)이라고 부르며, 예컨대 EP 조절이라고 부르는 오버레이 조절 및 패턴 배치 정밀도를 높이는 작업 등이 포함될 수 있다. 따라서, 분할은 최종 마스크의 품질 향상에 기여할 수 있고 또한 마스크 프로세스 보정을 위해 선행적으로 수행되는 공정일 수 있다. 여기서, 계통 오차들은 노광 공정, 마스크 현상(development) 및 에칭(etching) 공정, 그리고 기판 이미징 공정 등에서 발생하는 왜곡에 의해서 유발될 수 있다.
한편, 마스크 데이터 준비는 MPC를 포함할 수 있다. MPC는 전술한 바와 같이 노광 공정 중에 발생하는 에러, 즉 계통 오차를 보정하는 공정을 말한다. 여기서, 노광 공정은 전자빔 쓰기(Writing), 현상, 에칭, 베이크(bake) 등을 전반적으로 포함하는 개념일 수 있다. 덧붙여, 노광 공정 전에 데이터 프로세싱이 수행될 수 있다. 데이터 프로세싱은 일종의 마스크 데이터에 대한 전처리 과정으로서, 마스크 데이터에 대한 문법 체크, 노광 시간 예측 등을 포함할 수 있다.
마스크 데이터 준비 후, 마스크 데이터를 기반으로 하여 마스크용 기판을 노광한다(S240). 여기서, 노광은 예컨대, 전자빔 쓰기를 의미할 수 있다. 여기서, 전자빔 쓰기는 예컨대, 멀티-빔 마스크 노광기(Multi-Beam Mask Writer: MBMW)를 이용한 그레이 노광(Gray Writing) 방식으로 진행할 수 있다. 또한, 전자빔 쓰기는 가변 형상 빔(Variable Shape Beam: VSB) 노광기를 이용하여 수행할 수도 있다.
한편, 마스크 데이터 준비 단계 이후, 노광 공정 전에 마스크 데이터를 픽셀 데이터로 변환하는 과정이 수행될 수 있다. 픽셀 데이터는 실제의 노광에 직접 이용되는 데이터로서, 노광 대상이 되는 형상에 대한 데이터와 그 각각에 할당된 도우즈에 대한 데이터를 포함할 수 있다. 여기서, 형상에 대한 데이터는 벡터 데이터인 형상 데이터가 래스터라이제이션(rasterization) 등을 통해 변환된 비트-맵(bit-map) 데이터일 수 있다.
노광 공정 후, 일련의 공정들을 진행하여 마스크를 제조한다(S250). 일련의 공정들은 예컨대, 현상, 식각, 및 세정 등의 공정을 포함할 수 있다. 또한, 마스크 제조를 위한 일련의 공정에는 계측 공정, 결함 검사나 결함 수리 공정이 포함될 수 있다. 또한, 펠리클(pellicle) 도포 공정이 포함될 수도 있다. 여기서 펠리클 도포 공정은 최종 세척과 검사를 통해서 오염입자나 화학적 얼룩이 없다고 확인이 되면, 마스크 표면을 마스크의 배송 및 마스크의 가용수명 기간 동안 후속적인 오염으로부터 마스크를 보호하기 위해서 펠리클을 부착하는 공정을 의미할 수 있다.
본 발명의 몇몇 실시예에 따른 반도체 장치 제조 방법들은, 촬영 대상 패턴의 임계 치수, 피치 등에 비해 해상도가 정밀하지 못하거나 여러 다른 이유 등으로 인해 명암 대비(Contrast) 품질이 열화된 SEM 이미지에 대해 명암 대비(Contrast) 값을 상승시킬 수 있고, 화이트 밴드(White Band) 정보 손실을 최대한 줄이면서 컨투어(Contour) 데이터를 추출할 수 있고, 이를 통해 OPC 모델링의 정확도를 높여 사용자가 원하는 마스크를 제조할 수 있게 된다.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
1: 패턴 분석 시스템 100: 촬영 장치
200: 분석 장치 210: 노이즈 필터
220: 백그라운드 이미지 모듈 230: 블랜딩 모듈
240: 임계 치수 측정 모듈 250: 엣지 측정 모듈
260: 모델링 모듈

Claims (10)

  1. 패턴이 형성된 기판이 제공되고,
    상기 패턴의 엣지를 나타내는 경계 이미지를 포함하는 SEM(Scannig Electron Microscope) 이미지를 생성하고,
    상기 SEM 이미지와, 상기 경계 이미지를 통해 정렬되는 제1 백그라운드 이미지에 대해 제1 블랜딩(Blending) 동작을 수행하여 제1 블랜딩 이미지를 생성하고,
    상기 제1 블랜딩 이미지를 임계값을 기준으로 2치화(binarization)하여 컨투어(Contour) 데이터를 생성하는 것을 포함하되,
    상기 임계값은, 상기 SEM 이미지를 통해 측정되는 상기 패턴의 임계 치수(critical dimension, CD)에 의해 결정되는 반도체 장치 제조 방법.
  2. 제1항에 있어서,
    상기 경계 이미지는 명암 대비(contrast)가 변동되는 화이트 밴드(White band) 구간을 포함하고,
    상기 제1 백그라운드 이미지는 명암 대비가 변동되는 슬롭(slope) 구간을 포함하고,
    상기 화이트 밴드 구간과 상기 슬롭 구간을 정렬하여, 상기 제1 블랜딩 동작을 수행하는 반도체 장치 제조 방법.
  3. 제2항에 있어서,
    상기 제1 백그라운드 이미지는, 2치화된 컨투어 이미지를 기초로 생성되는 반도체 장치 제조 방법.
  4. 제1항에 있어서,
    상기 제1 백그라운드 이미지는,
    상기 제1 블랜딩 동작 수행 전에, 가우시안 블러(Gaussian Blur) 처리가 수행되는 반도체 제조 방법.
  5. 제1항에 있어서,
    상기 SEM 이미지와, 상기 제1 블랜딩 이미지를 기초로 생성된 제2 백그라운드 이미지에 대해 제2 블랜딩 동작을 수행하여 제2 블랜딩 이미지를 생성하고,
    상기 제1 블랜딩 이미지를 기초로 상기 컨투어 데이터를 생성하는 것 대신, 상기 제2 블랜딩 이미지를 상기 임계값을 기준으로 상기 컨투어 데이터를 생성하는 것을 더 포함하는 반도체 장치 제조 방법.
  6. 제5항에 있어서,
    상기 SEM 이미지와, 제N-1(N은, 2 이상의 자연수) 블랜딩 이미지를 기초로 생성된 제N 백그라운드 이미지에 대해 제N 블랜딩 동작을 수행하여 제N 블랜딩 이미지를 생성하고,
    상기 제1 블랜딩 이미지를 기초로 상기 컨투어 데이터를 생성하는 것 대신, 상기 제N 블랜딩 이미지를 상기 임계값을 기준으로 상기 컨투어 데이터를 생성하는 것을 더 포함하되,
    상기 N은 미리 정해진 숫자인 반도체 장치 제조 방법.
  7. 제1항에 있어서,
    상기 경계 이미지에서 제1 지점의 제1 명암 대비 기울기와 상기 제1 블랜딩 이미지에서 상기 제1 지점에서의 제2 명암 대비 기울기를 비교하여, 상기 SEM 이미지와 상기 제1 블랜딩 이미지를 기초로 생성된 제2 백그라운드 이미지에 대해 제2 블랜딩 동작을 수행하는 것을 결정하는 것을 더 포함하는 반도체 장치 제조 방법.
  8. 패턴이 형성된 기판이 제공되고,
    상기 패턴의 엣지를 나타내는 경계 이미지를 포함하는 SEM(Scannig Electron Microscope) 이미지를 생성하고,
    상기 SEM 이미지와, 상기 경계 이미지에 정렬되는 제1 백그라운드 이미지에 대해 제1 블랜딩(Blending) 동작을 수행하여 제1 블랜딩 이미지를 생성하고,
    미리 정해진 조건의 만족 여부에 따라, 상기 SEM 이미지와, 상기 제1 블랜딩 이미지를 기초로 생성된 제2 백그라운드 이미지에 대해 제2 블랜딩 동작을 수행하여 제2 블랜딩 이미지를 생성하고,
    상기 제2 블랜딩 이미지를 2치화(binarization)하여 컨투어(Contour) 데이터를 생성하는 것을 포함하는 반도체 장치 제조 방법.
  9. 제8항에 있어서,
    상기 SEM 이미지와, 제N-1(N은, 3 이상의 자연수) 블랜딩 이미지를 기초로 생성된 제N 백그라운드 이미지에 대해 제N 블랜딩 동작을 수행하여 제N 블랜딩 이미지를 생성하고,
    상기 제2 블랜딩 이미지 대신 상기 제N 블랜딩 이미지를 2치화(binarization)하여 상기 컨투어 데이터를 생성하는 것을 더 포함하되,
    상기 N은 미리 정해진 숫자인 반도체 장치 제조 방법.
  10. 패턴이 형성된 기판에 대한 SEM(Scannig Electron Microscope) 이미지를 생성하는 촬영 장치로, 상기 SEM 이미지는 상기 패턴의 엣지를 나타내는 경계 이미지를 포함하는 촬영 장치;
    상기 경계 이미지를 통해 상기 SEM 이미지와 정렬되는 백그라운드 이미지를 제공하는 이미지 모듈;
    상기 백그라운드 이미지와 상기 SEM 이미지를 제공받아, 상기 백그라운드 이미지와 상기 SEM 이미지 대해 블랜딩(Blending) 동작을 수행하여 블랜딩 이미지를 생성하는 블랜딩 모듈; 및
    상기 블랜딩 이미지를 임계값을 기준으로 2치화(binarization)하여 컨투어(Contour) 데이터를 생성하는 엣지 측정 묘듈을 포함하되,
    상기 임계값은, 상기 SEM 이미지를 통해 측정되는 상기 패턴의 임계 치수에 의해 결정되는 패턴 분석 시스템.
KR1020200187014A 2020-12-30 2020-12-30 패턴 분석 시스템 및 상기 시스템을 이용한 반도체 장치 제조 방법 KR20220095472A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200187014A KR20220095472A (ko) 2020-12-30 2020-12-30 패턴 분석 시스템 및 상기 시스템을 이용한 반도체 장치 제조 방법
US17/547,503 US20220207699A1 (en) 2020-12-30 2021-12-10 Pattern analysis system and method of manufacturing semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200187014A KR20220095472A (ko) 2020-12-30 2020-12-30 패턴 분석 시스템 및 상기 시스템을 이용한 반도체 장치 제조 방법

Publications (1)

Publication Number Publication Date
KR20220095472A true KR20220095472A (ko) 2022-07-07

Family

ID=82117294

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200187014A KR20220095472A (ko) 2020-12-30 2020-12-30 패턴 분석 시스템 및 상기 시스템을 이용한 반도체 장치 제조 방법

Country Status (2)

Country Link
US (1) US20220207699A1 (ko)
KR (1) KR20220095472A (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11995848B2 (en) * 2021-03-22 2024-05-28 Applied Materials Israel Ltd. Image generation for examination of a semiconductor specimen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4825734B2 (ja) * 2007-06-15 2011-11-30 株式会社日立ハイテクノロジーズ 異種計測装置間のキャリブレーション方法及びそのシステム
JP5276854B2 (ja) * 2008-02-13 2013-08-28 株式会社日立ハイテクノロジーズ パターン生成装置およびパターン形状評価装置
JP5707423B2 (ja) * 2011-01-26 2015-04-30 株式会社日立ハイテクノロジーズ パターンマッチング装置、及びコンピュータープログラム
JP6061496B2 (ja) * 2012-05-21 2017-01-18 株式会社日立ハイテクノロジーズ パターン計測装置、パターン計測方法及びパターン計測プログラム
FR3009863B1 (fr) * 2013-08-21 2015-09-04 Commissariat Energie Atomique Procede de calibration d'une technique de caracterisation cd-sem
JP2018056143A (ja) * 2014-12-26 2018-04-05 株式会社日立ハイテクノロジーズ 露光条件評価装置
US10754256B2 (en) * 2015-10-08 2020-08-25 Asml Netherlands B.V. Method and apparatus for pattern correction and verification
US9793183B1 (en) * 2016-07-29 2017-10-17 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for measuring and improving overlay using electronic microscopic imaging and digital processing
JP7144244B2 (ja) * 2018-08-31 2022-09-29 株式会社日立ハイテク パターン検査システム
US10762618B1 (en) * 2019-02-14 2020-09-01 United Microelectronics Corp. Mask weak pattern recognition apparatus and mask weak pattern recognition method

Also Published As

Publication number Publication date
US20220207699A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
US8260031B2 (en) Pattern inspection apparatus, pattern inspection method, and computer-readable recording medium storing a program
US7664308B2 (en) Photomask inspection apparatus comparing optical proximity correction patterns to minimum and maximum limits
US7639863B2 (en) Die-to-database photomask defect detection using region data to modify inspection thresholds
US20110255770A1 (en) Inspection system and method for inspecting line width and/or positional errors of a pattern
US20040225488A1 (en) System and method for examining mask pattern fidelity
KR20140141645A (ko) 처리된 이미지를 사용한 레티클 검사 동안 선택적 감도를 위한 세선의 검출
JP2006276214A (ja) 光学画像取得装置、光学画像取得方法、及びマスク検査装置
KR101994524B1 (ko) 포커싱 장치, 포커싱 방법 및 패턴 검사 방법
US10140698B2 (en) Polygon-based geometry classification for semiconductor mask inspection
JP2008112178A (ja) マスク検査装置
JP2007086617A (ja) 試料検査装置、試料検査方法及びプログラム
JP4970569B2 (ja) パターン検査装置およびパターン検査方法
KR20170030038A (ko) 패턴 폭 치수의 이탈량 측정 방법 및 패턴 검사 장치
US20200081336A1 (en) Method for performing optical proximity correction and method of manufacturing a mask using optical proximity correction
DE102018103231B4 (de) Verfahren zur optischen nahbereichskorrektur und verfahren zur erzeugung einer maske unter verwendung desselben
US20220207699A1 (en) Pattern analysis system and method of manufacturing semiconductor device using the same
US20240079206A1 (en) Scanning electron microscope (sem) measurement method and apparatus
US11747721B2 (en) Method of forming shape on mask based on deep learning, and mask manufacturing method using the method of forming the shape on mask
US20220283496A1 (en) Photomask and method for inspecting photomask
JP2016035542A (ja) 位置測定方法、位置ずれマップの作成方法および検査システム
US11300873B2 (en) Optical proximity correction (OPC) method using a multi-OPC model and method of manufacturing a mask by using the OPC method
US20230132893A1 (en) Mask layout correction methods based on machine learning, and mask manufacturing methods including the correction methods
US20230280646A1 (en) Corner rounding method of opc pattern based on deep learning, and opc method and mask manufacturing method including the corner rounding method
JP2016035539A (ja) 位置測定方法、位置ずれマップの作成方法および検査システム
US20230197460A1 (en) Image-based semiconductor device patterning method using deep neural network

Legal Events

Date Code Title Description
A201 Request for examination