KR20220059416A - 리튬 금속 전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 금속 전지 - Google Patents

리튬 금속 전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 금속 전지 Download PDF

Info

Publication number
KR20220059416A
KR20220059416A KR1020210146015A KR20210146015A KR20220059416A KR 20220059416 A KR20220059416 A KR 20220059416A KR 1020210146015 A KR1020210146015 A KR 1020210146015A KR 20210146015 A KR20210146015 A KR 20210146015A KR 20220059416 A KR20220059416 A KR 20220059416A
Authority
KR
South Korea
Prior art keywords
metal
negative electrode
lithium
wire
powder
Prior art date
Application number
KR1020210146015A
Other languages
English (en)
Inventor
윤현웅
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP21886973.3A priority Critical patent/EP4050678A4/en
Priority to CN202180007091.XA priority patent/CN114788046A/zh
Priority to US17/779,103 priority patent/US20220399534A1/en
Priority to PCT/KR2021/015617 priority patent/WO2022092980A1/ko
Publication of KR20220059416A publication Critical patent/KR20220059416A/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

본 발명은, 리튬 금속 전지용 음극으로서,
상기 음극은, 금속 집전 기재, 상기 금속 집전 기재의 적어도 일면에 형성되어 있는 리튬 금속층, 및 상기 리튬 금속층 상에 형성되는 보호층을 포함하고,
상기 보호층은 금속 분말 또는 금속 와이어; 합금속 분말 또는 합금속 와이어; 또는 이들의 혼합물;을 포함하는 음극, 이의 제조방법, 및 이를 포함하는 리튬 금속 전지를 제공한다.

Description

리튬 금속 전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 금속 전지{NEGATIVE ELECTRODE FOR LITHIUM METAL BATTERY, MANUFACTURING METHOD THEREOF, AND LITHIUM METAL BATTERY COMPRISING THE SAME}
본 발명은 리튬 금속 전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 금속 전지에 관한 것이다.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학을 이용한 발전, 축전 분야이다.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차 전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다.
최근에는 휴대용 컴퓨터, 휴대용 전화기, 카메라 등의 휴대용 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차 전지의 수요가 급격히 증가하고 있고, 그러한 이차 전지 중에서, 높은 충방전 특성과 수명특성을 나타내고 친환경적인 리튬 이차 전지에 대해 많은 연구가 행해져 왔고, 또한 상용화되어 널리 사용되고 있다.
일반적으로 리튬 이차 전지는 양극과 음극 및 다공성 분리막으로 이루어진 전극 조립체에 비수계 전해액이 함침되어 있는 구조로 이루어져 있다. 또한, 일반적으로, 상기 양극은 일반적으로 양극 활물질을 포함하는 양극 합제를 알루미늄 호일에 코팅하여 제조되며, 음극은 음극 활물질을 포함하는 음극 합제를 구리 호일에 코팅하여 제조된다.
보통 양극 활물질은 리튬 전이금속 산화물이며, 음극 활물질은 카본계 물질을 사용한다.
그러나, 최근 음극 활물질로서, 높은 에너지 밀도를 나타내는 리튬 금속 자체를 사용하는 리튬 금속 전지가 상용화되고 있다.
이때, 상기 음극으로서 사용되는 리튬 금속은 밀도(0.54g/cm3)가 낮고, 또 표준환원 전위(-3.045V SHE)가 매우 낮기 때문에 고에너지 밀도 전지용 음극 재료로서 가장 각광받는 재료이다. 또한, 화학적으로 활성이 매우 높아서 발생하는 문제들에도 불구하고, 최근 이동통신 및 휴대용 전자기기 사용의 지속적인 증가 및 급속한 발전에 따라 고에너지 밀도 이차전지의 개발에 대한 요구가 계속해서 증대되고 있기 때문에, 리튬 금속 음극 사용에 대한 필요성이 계속하여 대두되고 있다.
이때 상기 음극으로서 리튬 금속 전극을 사용하는 경우, 리튬 금속은 반응성이 너무 좋아서, 이차전지 조립 중에는 대기와 반응하여 붕괴되고, 충전에 의해 형성되는 리튬 전착층은 전해질과의 직접적인 접촉에 의한 부반응이 심해서 빠른 수명 특성의 퇴화가 발생한다.
따라서, 이러한 문제를 해결하여 리튬 금속 전지에 사용될 수 있는 음극 개발이 필요하다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
구체적으로, 본 발명의 목적은, 이차전지 조립 중에 음극이 대기와 반응하는 것을 최소화시켜 저항을 감소시킬 수 있는 음극을 제공하는 것이다.
또한, 이에 따라, 이를 사용하는 리튬 금속 전지의 작동 중에 형성되는 리튬 전착층의 두께를 최소화하고 전착 밀도를 높여, 전해액 부반응을 방지함으로써 수명특성을 향상시키는 것을 목적으로 한다.
이러한 목적을 달성하기 위한 본 발명의 일 실시예에 따른 리튬 금속 전지용 음극은, 금속 집전 기재, 상기 금속 집전 기재의 적어도 일면에 형성되어 있는 리튬 금속층, 및 상기 리튬 금속층 상에 형성되는 보호층을 포함하고,
상기 보호층은 금속 분말 또는 금속 와이어; 합금속 분말 또는 합금속 와이어; 또는 이들의 혼합물;을 포함하는 것을 특징으로 한다.
상기 금속 집전 기재는 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 이종 금속으로 표면 처리된 구리, 이종 금속으로 표면 처리된 스테인레스 스틸, 및 알루미늄-카드뮴 합금으로 이루어진 군에서 선택되는 1종일 수 있다.
상기 금속 집전 기재는 구리일 수 있다.
하나의 구체적인 예에서, 상기 리튬 금속층은 1 내지 100㎛의 두께를 가질 수 있다.
하나의 구체적인 예에서, 상기 금속 분말 또는 금속 와이어는, 구리, 스테인레스 스틸, 니켈, 티탄, 소성 탄소, 및 이종(異種) 금속으로 이루어진 군에서 선택되는 금속으로 이루어질 수 있고, 상세하게는 구리, 또는 니켈의 금속으로 이루어질 수 있다.
또한, 상기 합금속 분말 또는 합금속 와이어는, Mg, Ca, Al, Si, Ge, Sn, Pb, As, Sb, Bi, Ag, Zn, Cd, P 및 Hg로 이루어진 군에서 선택되는 합금속으로 이루어질 수 있다.
하나의 구체적인 예에서, 상기 보호층의 금속 분말 및 합금속 분말의 각각의직경은 1nm 내지 30㎛일 수 있고, 상기 보호층의 금속 와이어 및 합금속 와이어의 각각의 직경은 1nm 내지 30㎛이고, 각각의 에스펙트비(와이어의 길이/와이어의 직경)는 3 이상일 수 있다.
하나의 구체적인 예에서, 상기 보호층은 금속 분말 또는 금속 와이어; 및 합금속 분말 또는 합금속 와이어;의 혼합물일 수 있다.
상기 보호층은, 하나의 구체적인 예에서, 두께가 0.1 ㎛ 내지 100 ㎛일 수 있고, 1 내지 70%의 기공율을 가질 수 있다.
상기 보호층은 바인더와 도전재를 더 포함할 수 있다.
본 발명의 다른 일 실시예에 따르면,
상기 음극을 제조하는 방법으로서,
(a) 금속 집전 기재의 적어도 일면에 리튬 금속층을 형성시키는 과정;
(b) 금속 분말 또는 금속 와이어; 합금속 분말 또는 합금속 와이어; 또는 이들의 혼합물;을 용매와 함께 혼합하여 슬러리를 제조하는 과정; 및
(c) 상기 슬러리를 상기 과정(a)의 리튬 금속 상에 코팅, 건조하여 보호층을 형성함으로써 음극을 제조하는 과정;
을 포함하고,
상기 과정 (b)의 분말 또는 와이어는 1㎛ 내지 30㎛의 직경을 가지는 음극의 제조방법이 제공된다.
본 발명의 또 다른 일 실시예에 따르면,
상기 음극을 제조하는 방법으로서,
(a) 금속 집전 기재의 적어도 일면에 리튬 금속층을 형성시키는 과정;
(b) 금속 입자 또는 금속 와이어; 합금속 입자 또는 와이어; 또는 이들의 혼합물;을 용매에 분산시켜 분산액을 제조하는 과정; 및
(c) 상기 분산액을 상기 과정(a)의 리튬 금속 상에 코팅, 건조하여 보호층을 형성함으로써 음극을 제조하는 과정;
을 포함하고,
상기 과정 (b)의 분말 또는 와이어는 1nm 내지 1000nm의 직경을 가지는 음극의 제조방법이 제공된다.
이때, 상기 슬러리 또는 분산액에서 금속 분말, 금속 와이어, 합금속 분말, 또는 합금속 와이어의 고형분이 전체 슬러리 또는 분산액 부피를 기준으로 0.1 내지 80부피%를 차지하도록 슬러리 또는 분산액을 제조할 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 음극; 양극 집전체의 적어도 일면에 활물질을 포함하는 양극 합제가 도포되어 있는 구조의 양극; 및 상기 음극과 양극 사이에 개재되는 분리막;을 포함하는 전극조립체가 리튬 비수계 전해질과 함께 전지케이스에 내장되어 있는 구조인 리튬 금속 전지가 제공된다.
이때, 상기 음극은 보호층 상에 리튬의 석출에 의한 리튬 전착층을 더 포함하고, 상기 리튬 전착층의 두께는 0.1 내지 90㎛일 수 있다.
이상에서 설명한 바와 같이, 본 발명의 일 실시예에 따른 음극은, 리튬 금속층 상에 보호층을 형성함으로써, 이차전지의 조립 공정 중에 리튬 금속이 대기와 반응하는 것을 최소화할 수 있어 저항 증가를 낮출 수 있는 효과가 있다.
또한, 이에 따라, 상기 음극을 포함하는 리튬 금속 전지는 실제 충방전 동안에 상기 보호의 합금 기작을 이용하여 보호층 상에 형성되는 리튬 전착층의 두께를 최소화하고 전착밀도를 높일 수 있고, 따라서, 전해액 부반응을 최소화하여 수명 특성을 향상시킬 수 있다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 발명의 일 실시예에 따르면, 리튬 금속 전지용 음극으로서, 상기 음극은, 금속 집전 기재, 상기 금속 집전 기재의 적어도 일면에 형성되어 있는 리튬 금속층, 및 상기 리튬 금속층 상에 형성되는 보호층을 포함하고, 상기 보호층은 금속 분말 또는 금속 와이어; 합금속 분말 또는 합금속 와이어; 또는 이들의 혼합물을 포함하는 음극이 제공된다.
여기서, 상기 합금속이라 함은, 리튬과 합금을 이룰 수 있는 금속을 의미한다.
또한, 상기 이종(異種) 금속들은 Cu-Ni, Ti-Ni, Cu-Al, Cu-Zn, Sn-Al 및 Si-Ag로 이루어진 군에서 선택되는 1종 이상 일 수 있다.
상기 금속 집전 기재는 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 이종 금속으로 표면 처리된 구리, 이종 금속으로 표면 처리된 스테인레스 스틸, 및 알루미늄-카드뮴 합금으로 이루어진 군에서 선택되는 1종일 수 있다.
상기 금속 집전 기재는 구리일 수 있다.
상기 리튬 금속층은 음극 활물질로서, 목적하는 바에 따라 그 두께, 양이 정해질 수 있으며, 한정되지 아니하나, 예를 들어, 1 내지 100㎛의 두께를 가질 수 있다. 상세하게는 5 내지 70㎛, 더욱 상세하게는 10 내지 50㎛의 두께를 가질 수 있다.
상기 범위를 벗어나, 너무 그 두께가 얇은 경우에는, 활물질로서 리튬이 충분하지 않은 반면, 너무 두꺼운 경우에는 이후, 이차전지의 충방전에서 리튬 전착층이 형성되어 활물질처럼 작용하게 되므로, 부피 대비 에너지 밀도가 오히려 저하될 수 있으므로, 상기 범위를 만족하는 것이 가장 바람직하다.
그러나, 상기에서 설명한 바와 같이, 이러한 리튬 금속층만 형성된 음극은 조립 중에 대기와 반응성이 크고, 충방전을 통해 리튬을 전착하는 경우, 전착 밀도가 낮은 리튬층이 형성되면서, 전해액 부반응이 심해져 빠른 수명 특성의 퇴화가 일어나는 문제가 있어왔다. 이는, 상기 리튬 금속층이, 리튬과 친화성이 적어 리튬이 전착될 때 얼기설기 전착되기 때문이다.
이러한 문제를 해결하기 위해, 본 실시예에 따르면 상기 리튬 금속층 상에얇은 층으로서, 그레인 바운더리(grain boundary)를 갖는 보호층을 형성함으로써, 비표면적을 증가시켜 저항을 감소시키고, 이후 충방전을 통해 리튬이 전착되는 경우, 전착 밀도가 높은 리튬 전착층을 형성할 수 있다.
이러한 상기 보호층에 포함되는 금속 분말 또는 금속 와이어는, 구리, 스테인레스 스틸, 니켈, 티탄, 소성 탄소, 및 이종(異種) 금속으로 이루어진 군에서 선택되는 금속으로 이루어질 수 있으며, 상세하게는 구리 또는 니켈의 금속으로 이루어질 수 있다.
또한, 상기 합금속 분말 또는 합금속 와이어는, Mg, Ca, Al, Si, Ge, Sn, Pb, As, Sb, Bi, Ag, Zn, Cd, P 및 Hg로 이루어진 군에서 선택되는 합금속으로 이루어질 수 있고, 상세하게는 Al, 또는 Si의 합금속으로 이루어질 수 있다.
이와 같이, 본원발명은 상기에서 설명한 바와 같은 금속 또는 합금속을 분말이나 와이어 형태로 포함할 수 있고, 상세하게는, 합금속으로만 구성된 보호층의 경우에는 합금속에 리튬이 alloying/dealloying 하면서 전해액과의 부반응에 의해 서 합금속이 고립(isolation)되어 저항이 큰 부산물로 변형될 수 있는 바, 합금속이 소모되어도 보호층을 유지하기 위해, 이러한 금속 분말 또는 금속 와이어;와 합금속 분말 또는 합금속 와이어;의 혼합물을 포함하고, 더욱 상세하게는, 혼합물로 이루어질 수 있다.
상기 보호층이 혼합물로 이루어진 경우, 상기 금속 분말 또는 금속 와이어와, 상기 합금속 분말 또는 합금속 와이어는 중량을 기준으로, 1:99 내지 99:1로 혼합될 수 있고, 상세하게는 1:9 내지 9:1. 더욱 상세하게는 3:7 내지 7:3으로 혼합될 수 있다.
한편, 상기 보호층은 상기 금속 또는 합금속이 분말 형태 및/또는 와이어 형태로 포함되어 그레인 바운더리를 가지는 형태가 되어 소정 이상의 기공을 가지는 것이 바람직하다.
이때, 상기 보호층의 금속 분말 또는 합금속 분말의 각각의 직경은 1nm 내지 30㎛일 수 있다. 또한, 상기 보호층의 금속 와이어 및 합금속 와이어의 각각의 직경은 1nm 내지 30㎛이고, 각각의 에스펙트비(와이어의 길이/와이어의 직경)는 3 이상, 상세하게는 3 이상 내지 2000 이하일 수 있다.
상기 범위를 벗어나, 직경이 너무 작은 형태는 제조하기 어렵고, 상기 범위를 벗어나, 직경이 너무 크면, 비표면적 증가 효과가 미미하므로, 바람직하지 않다. 상기 와이어의 에스펙트비가 너무 크면 보호층의 형성이 어렵고, 너무 작으면, 분말과 다르지 않다.
이때, 직경은, 평균 직경(D50)으로서, 입경에 따른 입자 개수 누적 분포의 50% 지점에서의 입경을 의미한다. 즉, D50은 입경에 따른 입자 개수 누적 분포의 50% 지점에서의 입경이다.
이는 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출한다. 측정 장치에 있어서의 입경에 따른 입자 개수 누적 분포의 50%가 되는 지점에서의 입자 직경을 산출함으로써, D50을 측정할 수 있다.
에스펙트비는 이러한 D50으로 와이어의 길이를 나눈 것인데, 이때 상기 와이어의 길이는 SEM 사진을 찍어 형성된 금속 또는 합금속 와이어를 임의로 10 내지 100개 지정하여 이들의 평균값을 구한 것이다.
이와 같이, 그레인 바운더리를 가지는 보호층을 포함하는 경우, 음극 집전체의 비표면적이 증가하여, 충방전에 의해 발생되는 리튬 이온이 전착될 수 있는 사이트(site)가 증가하여, 이후, 전착 밀도가 향상된 리튬 전착층이 얻어질 수 있다.
이러한 상기 보호층은, 추가적 구성으로 비교적 얇은 범위로 형성되어, 리튬 금속 전지 부피 대비 에너지 밀도를 낮추지 않는 것이 바람직하므로, 구체적으로, 0.1 ㎛ 내지 100 ㎛의 두께를 가질 수 있고, 상세하게는 1 ㎛ 내지 60 ㎛, 더욱 상세하게는 1 ㎛ 내지 50 ㎛의 두께를 가질 수 있다.
상기 범위를 벗어나, 너무 두껍게 형성되는 경우, 리튬이 이러한 보호층으로 많이 삽입하게 되는 바, 전착에 의한 리튬 전착층을 충분히 얻을 수 없어 고에너지 밀도를 얻을 수 없고, 너무 얇게 형성되는 경우, 본원이 의도한 효과로서 충방전에 따른 리튬의 전착 밀도 향상 효과를 얻을 수 없는 바, 바람직하지 않다.
이러한 보호층은, 기공율이 너무 작으면 계면저항이 크게 되므로, 적어도 1% 이상, 상세하게는 10% 이상, 더욱 상세하게는, 20% 이상의 기공율을 가지는 것이 바람직하며, 보호층이 소정의 강도를 가지고, 합금 기작을 통해 리튬 전착층의 두께를 감소시키기 위해서는 적어도 상기 금속 또는 합금속이 일정함량 필요한 바, 70%이하, 상세하게는 60% 이하, 더욱 상세하게는 50% 이하의 기공율을 가지는 것이 바람직하다. 이러한 기공율은 고형분의 함량, 건조 조건, 제조방식 등에 따라 달라질 수 있으며, 구체적으로, 하기에서 슬러리를 사용하여 제조하면 20 내지 70%의 범위로 형성될 수 있고, 분산제를 사용하여 제조하는 경우, 1 내지 30%의 범위로 형성될 수 있다.
한편, 상기 보호층은, 바인더가 없는 경우, 코팅, 건조, 압연을 통해 바인더 효과를 보완할 수 있으며, 보호층 자체가 금속 물질이므로, 도전재도 포함되지 않을 수 있다. 다만, 보호층의 두께가 두꺼워지는 경우, 이들을 추가 결착시키는 바인더, 도전성을 증가시키는 도전재가 추가적으로 더 포함될 수 있다.
상기 바인더는, 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 상기 보호층의 금속 또는 합금속 물질과 바인더는 그 중량을 기준으로 7:3 내지 99:1의 비율로 포함될 수 있다.
상기 범위를 벗어나, 바인더의 함량이 너무 크면 보호층을 형성함으로써 달성하고자 했던 리튬 전착층의 전착 밀도 향상 효과를 충분히 발휘하기 어렵고, 너무 작으면 리튬 금속층과의 결착이 잘 이루어지지 않는 바, 바람직하지 않다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유 등의 도전성 섬유; 불화 카본; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 이때, 상기 보호층의 금속 또는 합금속 물질과 도전재는 그 중량을 기준으로 7:3 내지 99:1의 비율로 포함될 수 있다.
본 발명의 또 다른 일 실시예에 따르면,
상기 음극을 제조하는 방법으로서,
(a) 금속 집전 기재의 적어도 일면에 리튬 금속층을 형성시키는 과정;
(b) 금속 분말 또는 금속 와이어; 합금속 분말 또는 합금속 와이어; 또는 이들의 혼합물;을 용매와 함께 혼합하여 슬러리를 제조하는 과정; 및
(c) 상기 슬러리를 상기 과정(a)의 리튬 금속 상에 코팅, 건조하여 보호층을 형성함으로써 음극을 제조하는 과정;
을 포함하고,
상기 과정 (b)의 분말 또는 와이어는 1㎛ 내지 30㎛의 직경을 가지는 음극의 제조방법이 제공된다.
또는, 본 발명의 또 다른 일 실시예에 따른 상기 음극의 제조방법으로서,
(a) 금속 집전 기재의 적어도 일면에 리튬 금속층을 형성시키는 과정;
(b) 금속 분말 또는 금속 와이어; 합금속 분말 또는 합금속 와이어; 또는 이들의 혼합물;을 용매에 분산시켜 분산액을 제조하는 과정; 및
(c) 상기 분산액을 상기 과정(a)의 리튬 금속 상에 코팅, 건조하여 보호층을 형성함으로써 음극을 제조하는 과정;
을 포함하고,
상기 과정 (b)의 분말 또는 와이어는 1nm 내지 1000nm의 직경을 가지는 음극의 제조방법이 제공된다.
즉, 상기 제조방법은 금속 집전 기재의 적어도 일면에 형성된 리튬 금속층 상에 코팅에 의한 보호층을 형성하지만, 보호층에 포함되는 금속 또는 합금속 분말 또는 와이어의 직경에 따라 그 제조방법이 소정 상이하다.
구체적으로, 직경이 비교적 큰 경우, 슬러리와 같은 형태로 제조하여 리튬 금속층 상에 코팅하는 방법으로 수행될 수 있고, 직경이 작은 경우에는, 도전재 선분산액을 제조하는 방법과 같이, 금속 또는 합금속 분말 또는 와이어를 포함하는 선분산액을 제조하여 리튬 금속층 상에 코팅하는 방법으로 수행될 수 있다.
상기 직경은 입자들의 평균 직경(D50)으로서, 상기에서 설명한 바와 같다.
상세하게는, 상기 분말 또는 와이어의 직경은 상세하게는, 0.01㎛ 내지 10㎛, 더욱 상세하게는 0.1㎛ 내지 5㎛일 수 있다.
상기와 같은 제조방법에서, 본 발명에 따른 효과를 만족시키기 위해서는 상기에서 설명한 바와 같이 기공율을 조절하는 것이 더욱 바람직하고, 따라서, 용매에 포함되는 금속 분말, 금속 와이어, 합금속 분말, 또는 합금속 와이어의 고형분이 전체 슬러리 또는 분산액 부피를 기준으로 0.1 내지 80부피%를 차지하도록 슬러리 또는 분산액을 제조할 수 있다. 더욱 구체적으로는, 상기 슬러리의 고형분이 전체 슬러리 부피를 기준으로 30 내지 80부피%를 차지하도록 슬러리를 제조하거나, 상기 분산액의 고형분이 전체 분산액 부피를 기준으로 0.1 내지 30부피%를 차지하도록 분산액을 제조하여 코팅, 건조함으로써, 기공율을 조절할 수 있다.
상기 금속 분말 또는 금속 와이어, 합금속 분말 또는 합금속 와이어의 구체적인 종류는 상기에서 설명한 바와 같다.
한편, 상기 리튬 금속층은 증착, 또는 전착의 방법으로 형성할 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 음극; 양극 집전체의 적어도 일면에 활물질을 포함하는 양극 합제가 도포되어 있는 구조의 양극; 및 상기 음극과 양극 사이에 개재되는 분리막;을 포함하는 전극 조립체가 리튬 비수계 전해질과 함께 전지케이스에 내장되어 있는 구조의 리튬 금속 전지가 제공된다.
상기 양극은, 양극 집전체의 적어도 일면에 활물질을 포함하는 양극 합제가 도포되어 있는 구조이다.
상기 양극 집전체는, 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 활물질로서의 양극 활물질은, 예를 들어, 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiV3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등으로 구성될 수 있으며, 이들만으로 한정되는 것은 아니다.
상기 양극 합제는 앞서 설명한 양극 활물질과 함께, 도전재 및 바인더를 더 포함할 수 있다.
상기 도전재는 통상적으로 양극 합제 전체 중량을 기준으로 0.1 내지 30 중량%, 상세하게는 1 내지 10 중량%, 더욱 상세하게는 1 내지 5 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 합제 전체 중량을 기준으로 0.1 내지 30 중량%, 상세하게는 1 내지 10 중량%, 더욱 상세하게는 1 내지 5 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리불화비닐리덴-헥사플루오로프로필렌, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 분리막은, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 리튬 비수계 전해질은, 일반적으로 리튬염, 및 비수계 용매를 포함한다. 비수계 용매로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 푸란(furan), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드계 염 등이 사용될 수 있다.
또한, 비수 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.
상기 전지 케이스는 전극 조립체를 내장할 수 있는 구조라면 한정되지 아니한, 종래 당업계에 알려진, 파우치형 전지케이스, 금속 캔으로 이루어진 각형 또는 원통형의 전지 케이스일 수 있다.
한편, 상기 리튬 금속 전지는 전극조립체를 리튬 비수계 전해질과 함께 전지케이스에 내장한 후, 밀봉하고 이를 활성화 하여 제조되는데, 이때, 상기 음극은, 보호층 상에 리튬의 석출에 의한 리튬 전착층을 더 포함할 수 있다.
구체적으로, 상기 보호층에 리튬을 충전하면 처음에 리튬이 금속 또는 합금속과 반응을 일으키게 되며, 예를 들어, 합금속의 경우, 합금 반응을 일으킨다. 이후, 합금반응이 완료되고 나면 그 합금 입자들 위쪽으로 리튬 전착이 진행된다.
따라서, 본 발명에 따르면, 리튬 전착층을 필수적으로 포함해야 하므로, 양극에서 제공하는 리튬 량이, 예를 들어, Al이 합금하는 량을 넘어야 한다. 다시 말해, 양극이 제공할 수 있는 리튬 량을 양극 로딩이라고 하고(예를 들어, 5mAh/cm2) 음극에 형성된 Al이 합금할 수 있는 량을 음극 로딩이라고(예를 들어, 1mAh/cm2)한다면 1mAh/cm2 만큼의 Li이 Li9Al4를 형성하고 4mAh/cm2은 리튬 전착층이 형성되는 것이다.
본 발명에 따르면, 상기 리튬 전착층 역시 음극 활물질로서 사용되는데, 종래 보호층이 형성되지 않은 경우에는, 리튬 전착층의 전착 두께가 100㎛ 이상으로 두꺼워 전해액과의 반응 면적이 넓어 수명 특성이 급격히 퇴화하는 문제가 있었으나, 본 발명에 따르면, 보호층이 리튬과의 합금 기작으로 리튬 전착층의 두께를 90㎛ 이하로 얇게 함에 따라 전해액과의 부반응성이 감소하는 바, 향상된 수명 특성을 나타낼 수 있다.
더욱 구체적으로는, 본 발명에 따르면, 상기 리튬 전착층의 두께가 0.1 내지 90㎛, 상세하게는 5㎛ 내지 40㎛, 더욱 상세하게는, 10㎛ 내지 30㎛일 수 있다.
또한, 상기와 같이 보호층의 형성으로, 이차전지 조립 중에 음극이 대기와 반응하는 것을 최소화시킬 수 있는 바, 저항이 감소될 수 있다.
이하, 본 발명의 바람직한 실시예, 이에 대비되는 비교예, 이들을 평가하는 실험예를 기재한다. 그러나, 상기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
<비교예 1>
금속 집전 기재로 상용 구리 집전체(I2B, Iljin Materials)를 준비하였다.
상기 구리 집전체의 일면에 리튬 호일(Li foil, 두께: 20 ㎛)이 대향하도록 한 뒤, 집전체와 리튬 호일이 합지되어 떨어지지 않을 정도로 롤 프레스(roll press)하여, 리튬 금속층을 형성하여 음극으로 수득하였다.
<비교예 2>
금속 집전 기재로 상용 구리 집전체(I2B, Iljin Materials)를 준비하였다.
상기 구리 집전체의 일면에 리튬 호일(Li foil, 두께: 20 ㎛)이 대향하도록 한 뒤, 집전체와 리튬 호일이 합지되어 떨어지지 않을 정도로 롤 프레스(roll press)하여, 리튬 금속층을 형성하였다.
상기 리튬 금속층 상에 알루미늄 금속을 진공 하에서 7um 두께로 스퍼터링 증착하여 음극으로 수득하였다.
<비교예 3>
금속 집전 기재로 상용 구리 집전체(I2B, Iljin Materials)를 준비하였다.
상기 구리 집전체의 일면에 리튬 호일(Li foil, 두께: 20 ㎛)이 대향하도록 한 뒤, 집전체와 리튬 호일이 합지되어 떨어지지 않을 정도로 롤 프레스(roll press)하여, 리튬 금속층을 형성하였다.
상기 리튬 금속층 상에 스테인리스 스틸 금속을 진공 하에서 7um 두께로 스퍼터링 증착하여 음극으로 수득하였다.
<실시예 1>
금속 집전 기재로 상용 구리 집전체(I2B, Iljin Materials)를 준비하였다.
상기 구리 집전체의 일면에 리튬 호일(Li foil, 두께: 20 ㎛)이 대향하도록 한 뒤, 집전체와 리튬 호일이 합지되어 떨어지지 않을 정도로 롤 프레스(roll press)하여, 리튬 금속층을 형성하였다.
또한, 구리 금속 분말(평균 직경(D50): 3㎛), 및 바인더(PVDF)를 중량을 기준으로 9:1로 NMP 용매 하에서 고형분 : NMP 용매가 부피를 기준으로 5:5가 되도록 혼합한 보호층 슬러리를 상기 리튬 금속층 상에 코팅, 건조하여 7㎛ 두께의 보호층을 형성하여 음극으로 수득하였다.
<실시예 2>
상기 실시예 1에서, 구리 금속 분말(평균 직경(D50): 3㎛) 및 실리콘 분말(평균 직경(D50): 3㎛)이 중량을 기준으로 5:5로 혼합된 혼합물, 및 바인더(PVDF)를 중량을 기준으로 9:1로 NMP 용매에 고형분 : NMP 용매가 부피를 기준으로 5:5가 되도록 혼합한 보호층 슬러리를 상기 리튬 금속층 상에 코팅, 건조하여 7㎛ 두께의 보호층을 형성한 것을 제외하고는, 실시예 1과 같은 방법으로 음극을 수득하였다.
<실시예 3>
상기 실시예 1에서, 실리콘 분말(입자 직경(D50): 3 ㎛), 및 바인더(PVDF)를 중량을 기준으로 9:1로 NMP 용매 하에서 고형분 : NMP 용매가 부피를 기준으로 5:5가 되도록 혼합한 보호층 슬러리를 상기 리튬 금속층 상에 코팅, 건조하여 7㎛ 두께의 보호층을 형성한 것을 제외하고는, 실시예 1과 같은 방법으로 음극을 수득하였다.
<실시예 4>
상기 실시예 1에서, 알루미늄 분말(입자 직경(D50): 3 ㎛), 및 바인더(PVDF)를 중량을 기준으로 9:1로 NMP 용매 하에서 고형분 : NMP 용매가 부피를 기준으로 5:5가 되도록 혼합한 보호층 슬러리를 상기 리튬 금속층 상에 코팅, 건조하여 7㎛ 두께의 보호층을 형성한 것을 제외하고는, 실시예 1과 같은 방법으로 음극을 수득하였다.
<실시예 5>
상기 실시예 1에서, 구리 금속 분말(평균 직경(D50): 500nm) 및 실리콘 분말(평균 직경(D50): 50nm)이 5:5 중량을 기준으로 NMP 용매 하에서 고형분 : NMP 용매가 부피를 기준으로 1:9가 되도록 분산시킨 분산액을 상기 리튬 금속층 상에 코팅, 건조하여 3㎛ 두께의 보호층을 형성하고 압연하여 리튬금속상에 합지한 것을 제외하고는, 실시예 1과 같은 방법으로 음극을 수득하였다.
<실시예 6>
상기 실시예 1에서, 구리 금속 와이어(평균 직경(D50): 500nm, 에스팩트비 10) 및 실리콘 분말(평균 직경(D50): 3㎛)이 중량을 기준으로 5:5로 혼합된 혼합물, 및 바인더(PVDF)를 중량을 기준으로 9:1로 NMP 용매에 고형분 : NMP 용매가 부피를 기준으로 5:5가 되도록 혼합한 보호층 슬러리를 상기 리튬 금속층 상에 코팅, 건조하여 7㎛ 보호층을 형성한 것을 제외하고는, 실시예 1과 같은 방법으로 음극을 수득하였다.
<실시예 7>
상기 실시예 1에서, 구리 금속 분말(평균 직경(D50): 3㎛) 및 실리콘 와이어(평균 직경(D50): 500nm, 에스팩트비 10)이 중량을 기준으로 5:5로 혼합된 혼합물, 및 바인더(PVDF)를 중량을 기준으로 9:1로 NMP 용매에 고형분 : NMP 용매가 부피를 기준으로 5:5가 되도록 혼합한 보호층 슬러리를 상기 리튬 금속층 상에 코팅, 건조하여 7㎛ 보호층을 형성한 것을 제외하고는, 실시예 1과 같은 방법으로 음극을 수득하였다.
<실험예 1>
양극 활물질로 LiNi0.8Mn0.1Co0.1O2, 도전재로 카본 블랙, 및 바인더로 폴리비닐리덴 풀루오라이드(PVdF)를 각각 사용하고, 양극 활물질: 도전재: 바인더의 중량비를 96:2:2로 하여 혼합한 혼합물에, 용제인 NMP에 첨가하여 양극 활물질 슬러리를 제조하였다.
알루미늄 집전체의 편면당 5.01 mAh/cm2의 로딩(loading)량으로 상기 양극 활물질 슬러리를 도포한 뒤, 건조 및 압연하여, 양극을 수득하였다.
전해액으로는, 프로필렌 카보네이트(PC), 디에틸카보네이트(DEC), 및 디메틸카보네이트(DMC)를 1:2:1의 부피비(PC:DEC:DMC)로 혼합한 용매를 포함하고, 전해액 총량 중 1M의 LiFSI, 1M LiPF6 및 30 wt%의 플루오로에틸렌 카보네이트(FEC)를 포함하는 전해액을 제조하였다.
상기 비교예 1 내지 3 및 실시예 1 내지 7의 각 음극 및 상기 양극 사이에, 폴리에틸렌 소재의 분리막(두께: 20 ㎛)를 개재시킨 뒤, 상기 전해액을 주액하고, 통상적인 방법에 따라 CR2032 코인셀(Coin cell)을 제조하여, 리튬 금속 전지들을 수득하였다.
제조된 리튬 금속 전지를 하기와 같은 조건으로 충전한 후, 리튬 금속 전지를 분해하여 음극에 형성된 리튬 전착층의 두께를 구하여 하기 표 1에 나타내었다.
Charge: 0.2C, CC/CV, 4.25V, 1/20C cut-off
상기 전착층의 두께는 임의의 두 지점을 선택하여 그 두께의 평균을 구하였다.
두께(㎛)
비교예 1 100
비교예 2 65
비교예 3 80
실시예 1 50
실시예 2 43
실시예 3 42
실시예 4 45
실시예 5 41
실시예 6 44
실시예 7 43
표 1을 참조하면, 본 발명에 따른 경우, 전착 두께가 확연히 감소하는 것을 확인할 수 있다.
한편, 보호층을 형성하지 않거나, 증착의 방법으로 형성하는 경우에는 전착두께가 충분히 감소되지 않는 것을 확인할 수 있다. 증착의 방법으로 형성하는 경우에는, 보호층이 충분한 기공율을 갖지 못하기 때문이다.
<실험예 2>
전지 조립 공정 중 음극 리튬의 대기와의 반응 정도를 파악하기 위해, 상기 실험예 1에서 기재된 것과 동일한 방법으로 리튬 금속 전지들을 제조하되, 이슬점 -20℃에서 제조하여, 활성화하기 전 1KHz 히오키 저항을 측정하여, 그 결과를 하기 표 2에 나타내었다.
저항(Ohm)
비교예 1 2.59
비교예 2 1.20
비교예 3 2.01
실시예 1 1.15
실시예 2 1.19
실시예 3 1.22
실시예 4 1.21
실시예 5 1.11
실시예 6 1.18
실시예 7 1.18
표 2를 참조하면, 리튬금속상에 보호층이 적용되면 대기와의 반응을 줄여서셀내부저항(1kHz 히오키 저항으로 측정)이 작은 것을 확인할 수 있다.
<실험예 3>
6.25cm2의 면적을 가지는 모노셀로 제작한 것 이외에는 상기 실험예 1의 조건으로 제조된 리튬 금속 전지들을 하기 조건으로 충방전을 200회 실시한 후, 1회 방전 용량 대비 200회의 방전 용량 유지율을 계산하여 그 결과를 하기 표 3에 나타내었다.
Charge: 0.2C, CC/CV, 4.25V, 1/20C cut-off
Discharge: 0.5C, CC, 3.0 V, cut-off
1회
방전용량(mAh)
100회 용량유지율(%)
비교예 1 28.47 50
비교예 2 28.43 71
비교예 3 28.45 60
실시예 1 28.19 86
실시예 2 28.33 96
실시예 3 28.44 92
실시예 4 28.49 90
실시예 5 28.22 90
실시예 6 28.35 99
실시예 7 28.55 99
표 3을 참조하면, 표 1에서 나타내었듯이 전착두께가 얇아지면서 실시예들이 수명이 개선됨을 확인할 수 있었다.또한, 증착으로 형성한 경우보다, 본원과 같이 형성한 경우, 소정의 기공을가짐으로써, 리튬 금속층의 리튬이 보호층 밖으로 원활하게 용출됨에 따라 수명 특성 개선 효과가 있음을 확인할 수 있다. 증착으로 형성하는 경우, 기공이 거의 없어 리튬의 용출이 어려워 수명퇴화가 빨라진다. 더욱이, 스테인리스 스틸을 사용하는 경우 알루미늄을 사용하는 경우보다 그 효과가 더 저하되는 것을 확인할 수 있다.
더욱이, 금속과 합금속을 혼합하는 합금속이 전해질과 부반응하여 소모되어도 금속이 남으면서 보호층을 더 오래 유지할 수 있어서 수명 개선 효과가 더욱 우수한 것을 확인할 수 있으며, 분말과 와이어를 혼합해 보호층을 제작하는 것도 바람직한 보호층의 형태가 될 수 있음을 알 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.

Claims (18)

  1. 리튬 금속 전지용 음극으로서,
    상기 음극은, 금속 집전 기재, 상기 금속 집전 기재의 적어도 일면에 형성되어 있는 리튬 금속층, 및 상기 리튬 금속층 상에 형성되는 보호층을 포함하고,
    상기 보호층은 금속 분말 또는 금속 와이어; 합금속 분말 또는 합금속 와이어; 또는 이들의 혼합물을 포함하는 음극.
  2. 제1항에 있어서,
    상기 금속 집전 기재는 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 이종 금속으로 표면 처리된 구리, 이종 금속으로 표면 처리된 스테인레스 스틸, 및 알루미늄-카드뮴 합금으로 이루어진 군에서 선택되는 1종인 음극.
  3. 제1항에 있어서,
    상기 금속 집전 기재는 구리인 음극.
  4. 제1항에 있어서,
    상기 리튬 금속층은 1 내지 100㎛의 두께를 가지는 음극.
  5. 제1항에 있어서,
    상기 금속 분말 또는 금속 와이어는, 구리, 스테인레스 스틸, 니켈, 티탄, 소성 탄소, 및 이종(異種) 금속으로 이루어진 군에서 선택되는 금속으로 이루어지는 음극.
  6. 제5항에 있어서,
    상기 금속 분말 또는 금속 와이어는, 구리, 또는 니켈의 금속으로 이루어지는 음극.
  7. 제1항에 있어서,
    상기 합금속 분말 또는 합금속 와이어는, Mg, Ca, Al, Si, Ge, Sn, Pb, As, Sb, Bi, Ag, Zn, Cd, P 및 Hg로 이루어진 군에서 선택되는 합금속으로 이루어지는 음극.
  8. 제1항에 있어서,
    상기 보호층의 금속 분말 및 합금속 분말의 각각의 직경은 1nm 내지 30㎛인 음극.
  9. 제1항에 있어서,
    상기 보호층의 금속 와이어 및 합금속 와이어의 각각의 직경은 1nm 내지 30㎛이고, 각각의 에스펙트비(와이어의 길이/와이어의 직경)는 3 이상인 음극.
  10. 제1항에 있어서,
    상기 보호층은 금속 분말 또는 금속 와이어; 및 합금속 분말 또는 합금속 와이어의 혼합물인 음극.
  11. 제 1 항에 있어서,
    상기 보호층은 두께가 0.1 ㎛ 내지 100 ㎛의 범위인 음극.
  12. 제1항에 있어서,
    상기 보호층은 1 내지 70%의 기공율을 가지는 음극.
  13. 제1항에 있어서,
    상기 보호층은 바인더와 도전재를 더 포함하는 음극.
  14. 제1항에 따른 음극을 제조하는 방법으로서,
    (a) 금속 집전 기재의 적어도 일면에 리튬 금속층을 형성시키는 과정;
    (b) 금속 분말 또는 금속 와이어; 합금속 분말 또는 합금속 와이어; 또는 이들의 혼합물;을 용매와 함께 혼합하여 슬러리를 제조하는 과정; 및
    (c) 상기 슬러리를 상기 과정(a)의 리튬 금속 상에 코팅, 건조하여 보호층을 형성함으로써 음극을 제조하는 과정;
    을 포함하고,
    상기 과정 (b)의 분말 또는 와이어는 1㎛ 내지 30㎛의 직경을 가지는 음극의 제조방법.
  15. 제 1 항에 따른 음극을 제조하는 방법으로서,
    (a) 금속 집전 기재의 적어도 일면에 리튬 금속층을 형성시키는 과정;
    (b) 금속 분말 또는 금속 와이어; 합금속 분말 또는 합금속 와이어; 또는 이들의 혼합물을 용매에 분산시켜 분산액을 제조하는 과정; 및
    (c) 상기 분산액을 상기 과정(a)의 리튬 금속 상에 코팅, 건조하여 보호층을 형성함으로써 음극을 제조하는 과정을 포함하고,
    상기 과정 (b)의 분말 또는 와이어는 1nm 내지 1000nm의 직경을 가지는 음극의 제조방법.
  16. 제14항 또는 제15항에 있어서,
    상기 슬러리 또는 분산액에서 금속 분말, 금속 와이어, 합금속 분말, 또는 합금속 와이어의 고형분이 전체 슬러리 또는 분산액 부피를 기준으로 0.1 내지 80부피%를 차지하도록 슬러리 또는 분산액을 제조하는 음극의 제조방법.
  17. 제1항에 따른 음극;
    양극 집전체의 적어도 일면에 활물질을 포함하는 양극 합제가 도포되어 있는 구조의 양극;
    상기 음극과 양극 사이에 개재되는 분리막을 포함하는 전극조립체가 리튬 비수계 전해질과 함께 전지케이스에 내장되어 있는 구조인 리튬 금속 전지.
  18. 제17항에 있어서,
    상기 음극은 보호층 상에 리튬 석출에 의한 리튬 전착층을 더 포함하고, 상기 리튬 전착층의 두께는 0.1 내지 90㎛인 리튬 금속 전지.
KR1020210146015A 2020-11-02 2021-10-28 리튬 금속 전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 금속 전지 KR20220059416A (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21886973.3A EP4050678A4 (en) 2020-11-02 2021-11-01 NEGATIVE ELECTRODE FOR LITHIUM METAL BATTERY, METHOD FOR MANUFACTURING THEREOF, AND LITHIUM METAL BATTERY COMPRISING IT
CN202180007091.XA CN114788046A (zh) 2020-11-02 2021-11-01 锂金属电池用负极、其制造方法和包含其的锂金属电池
US17/779,103 US20220399534A1 (en) 2020-11-02 2021-11-01 Negative electrode, manufacturing method thereof, and lithium metal battery comprising the same
PCT/KR2021/015617 WO2022092980A1 (ko) 2020-11-02 2021-11-01 리튬 금속 전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 금속 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200144667 2020-11-02
KR20200144667 2020-11-02

Publications (1)

Publication Number Publication Date
KR20220059416A true KR20220059416A (ko) 2022-05-10

Family

ID=81591565

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210146015A KR20220059416A (ko) 2020-11-02 2021-10-28 리튬 금속 전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 금속 전지

Country Status (1)

Country Link
KR (1) KR20220059416A (ko)

Similar Documents

Publication Publication Date Title
CN108701810B (zh) 多层负极以及包括该多层负极的锂二次电池
KR101783445B1 (ko) 다층 구조 전극 및 이를 포함하는 리튬 이차전지
KR102500085B1 (ko) 리튬-결핍 전이금속 산화물을 포함하는 코팅층이 형성된 리튬 과잉의 리튬 망간계 산화물을 포함하는 양극 활물질 및 이를 포함하는 리튬 이차전지용 양극
KR20190064480A (ko) 다층 전극 및 그의 제조방법
KR101463996B1 (ko) 안전성이 향상된 리튬 이차 전지
KR102328260B1 (ko) 리튬 이차전지
KR102657553B1 (ko) 특정한 조성 조건을 가지는 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지
CN105098190A (zh) 用于可再充电锂电池的负极和包括其的可再充电锂电池
KR20180103412A (ko) 이차전지의 충전방법
KR20210136831A (ko) 리튬 프리 전지용 음극 집전체, 이를 포함하는 전극 조립체 및 리튬 프리 전지
KR20210143562A (ko) 다공성의 금속 폼 구조층을 가지는 리튬 프리 전지 및 이의 제조 방법
KR102498342B1 (ko) 리튬 과잉의 리튬 망간계 산화물 및 리튬 과잉의 리튬 망간계 산화물상에 리튬 텅스텐 화합물, 또는 추가적으로 텅스텐 화합물을 더 포함하는 양극 활물질 및 이를 포함하는 리튬 이차전지용 양극
KR20180089059A (ko) 코어-쉘 구조의 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법
KR20170142393A (ko) 리튬 코발트계 산화물을 포함하는 코어 및 리튬 니켈계 산화물을 포함하는 쉘을 포함하는 양극 활물질 입자 및 이의 제조 방법
CN114097109B (zh) 无锂电池及其制备方法
CN114730866A (zh) 锂金属电池用负极、其制造方法及包含其的锂金属电池
KR102246628B1 (ko) 압연 속도 조절을 통한 이차전지용 전극의 제조방법 및 이에 의해 제조된 전극
KR20140009625A (ko) 이차전지용 전극 및 이의 제조방법
KR101595605B1 (ko) 그래핀을 포함하는 이차전지용 슬러리 및 이를 포함하는 이차전지
KR20220059416A (ko) 리튬 금속 전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 금속 전지
EP4053939A1 (en) Negative electrode for lithium metal battery, comprising prelithiation layer, manufacturing method therefor, and lithium metal battery comprising same
JP7350420B2 (ja) リチウムフリー電池、およびその製造方法
US20220399534A1 (en) Negative electrode, manufacturing method thereof, and lithium metal battery comprising the same
KR20210136833A (ko) 리튬 프리 전지 및 이의 제조 방법
KR20210136830A (ko) 리튬 프리 전지, 및 이의 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination