KR20210143292A - 광 반사 장치, 도광 장치 및 광 주사 장치 - Google Patents

광 반사 장치, 도광 장치 및 광 주사 장치 Download PDF

Info

Publication number
KR20210143292A
KR20210143292A KR1020217034842A KR20217034842A KR20210143292A KR 20210143292 A KR20210143292 A KR 20210143292A KR 1020217034842 A KR1020217034842 A KR 1020217034842A KR 20217034842 A KR20217034842 A KR 20217034842A KR 20210143292 A KR20210143292 A KR 20210143292A
Authority
KR
South Korea
Prior art keywords
light
reflective
reflection
rotation
axis
Prior art date
Application number
KR1020217034842A
Other languages
English (en)
Other versions
KR102658463B1 (ko
Inventor
무츠히로 나카자와
Original Assignee
카와사키 주코교 카부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 카와사키 주코교 카부시키가이샤 filed Critical 카와사키 주코교 카부시키가이샤
Publication of KR20210143292A publication Critical patent/KR20210143292A/ko
Application granted granted Critical
Publication of KR102658463B1 publication Critical patent/KR102658463B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/108Scanning systems having one or more prisms as scanning elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/121Mechanical drive devices for polygonal mirrors
    • G02B26/122Control of the scanning speed of the polygonal mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/129Systems in which the scanning light beam is repeatedly reflected from the polygonal mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Laser Beam Processing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

광 반사 장치는 평면 형상의 반사면을 갖는 반사 부재를 구비한다. 반사면은 입사광을 반사시킨다. 반사 부재는 공전 및 자전을 동시에 행한다. 반사 부재의 공전 방향과 자전 방향이 동일하다. 반사 부재의 공전 각속도가 자전 각속도의 2배와 같다.

Description

광 반사 장치, 도광 장치 및 광 주사 장치
본 발명은 주로 입사된 광을 편향시켜 반사하는 광 반사 장치에 관한 것이다.
종래부터, 광원으로부터의 광을 직선 형상의 주사선을 따라 주사하는 기술이 레이저 가공 장치나 화상 형성 장치 등에 널리 이용되고 있다. 특허문헌 1 및 2는 이러한 종류의 장치에 구비되는 장치를 개시한다.
특허문헌 1의 미러 선회 장치는 투광 수단과 광 반사 수단을 구비하고 있다. 투광 수단은 정다각형 형상으로 배치된 복수의 평면 미러를 갖는 미러 선회 장치를 구비하고 있고, 소정 방향으로부터 입사된 광을 선회하는 미러 선회 장치에 있어서의 하나의 평면 미러에서 반사함으로써, 당해 평면 미러 선회 장치가 등속으로 각(角) 이동하면서 광을 방사한다. 광 반사 수단은 투광 수단으로부터 방사된 광을 복수의 반사부에 의해 반사하여 소정의 주사선상의 임의의 피조사점으로 유도한다.
특허문헌 2의 폴리곤 미러 회전 장치는 투광 수단과 광 반사 수단을 구비하고 있다. 투광 수단은 폴리곤 미러를 갖고 있으며, 소정 방향으로부터 입사된 광을 회전하는 폴리곤 미러의 정다각형의 각 변의 반사면에서 반사함으로써, 당해 폴리곤 미러가 등속으로 각 이동하면서 광을 방사한다. 광 반사 수단은 투광 수단으로부터 방사된 광을 복수의 반사부에 의해 반사하여 소정의 주사선상의 임의의 피조사점으로 유도한다.
특허문헌 1의 미러 선회 장치에 관해서는, 단순히 미러 선회 장치만을 갖는 투광 수단에서는 미러 선회 장치의 회전에 수반하여 당해 미러 선회 장치의 각 평면 미러에서의 광의 반사 위치가 변동하는 것에 기인하여 주사 왜곡 등이 발생한다. 또한, 특허문헌 2의 폴리곤 미러 회전 장치에 관해서는, 단위 폴리곤 미러 회전 장치만을 갖는 투광 수단에서는 폴리곤 미러의 회전에 수반하여 당해 폴리곤 미러의 정다각형의 각 변의 반사면에서의 광의 반사 위치가 변동하는 것에 기인하여 주사 왜곡 등이 발생한다.
따라서, 특허문헌 1의 미러 선회 장치는 평면 미러를 순차적으로 왕복 운동시키는 왕복 운동기구를 구비하고, 평면 미러를 왕복 운동시킴으로써 광의 반사 위치가 변동하는 것을 억제하고 있다. 또한, 특허문헌 2의 폴리곤 미러 회전 장치는 폴리곤 미러를 회전 가능하게 지지하는 지지 부재와 이 지지 부재를 왕복 운동시키는 왕복 운동 기구를 구비하고, 지지 부재와 함께 폴리곤 미러를 왕복 운동시킴으로써 광의 반사 위치가 변동하는 것을 억제하고 있다.
또한, 전술한 바와 같은 장치로서, 반사경을 구비하는 가동부가 왕복 요동 운동하는 구성을 갖는 갈바노 미러를 구비한 장치도 알려져 있다. 이 장치에서는 갈바노 미러의 가동부를 그 요동 속도를 조정하면서 요동시킴으로써 광의 반사 위치가 변동하는 것을 방지할 수 있다.
일본 특허공개 제2018-105903호 공보 일본 특허공개 제2018-97055호 공보
상기 특허문헌 1의 미러 선회 장치 및 특허문헌 2의 폴리곤 미러 회전 장치에서는 광의 반사 위치가 변동하는 것을 억제할 수는 있으나 완전히 방지할 수는 없다. 또한, 갈바노 미러를 구비한 장치에서는 광의 반사 위치가 변동하는 것을 방지하기 위하여 갈바노 미러의 가동부의 요동 시에 당해 가동부를 가속 또는 감속시킬 필요가 있으므로, 당해 장치가 주사하는 주사 영역이 좁아지고 광이 조사되는 피조사물의 가공 가능 범위가 감소한다.
본 발명은 이상의 사정을 감안하여 이루어진 것으로, 그 목적은 소정 방향으로부터 입사된 광을 편향시키는 장치에 있어서 광이 조사되는 피조사물의 가공 가능 범위를 감소시키지 않고, 광의 반사 위치가 변동하는 것을 방지하는 데 있다.
본 발명이 해결하고자 하는 과제는 이상과 같으며, 이어 이 과제를 해결하기 위한 수단과 그 효과를 설명한다.
본 발명의 제1 관점에 따르면, 다음과 같은 구성의 광 반사 장치가 제공된다. 즉, 광 반사 장치는 입사광을 반사시키는 평면 형상의 반사면을 갖고, 자전 및 공전을 동시에 행하는 반사 부재를 구비한다. 상기 반사 부재의 자전 방향과 공전 방향이 같다. 상기 반사 부재의 공전 각속도가 자전 각속도의 2배와 같다.
본 발명의 제2 관점에 따르면, 다음과 같은 구성의 광 주사 장치가 제공된다. 즉, 광 주사 장치는 회전 미러와 구동 장치와 조사 장치를 구비한다. 상기 구동 장치는 상기 회전 미러를 회전시킨다. 상기 조사 장치는 상기 회전 미러에 광을 조사한다. 상기 회전 미러는 제1 정다각뿔과 제2 정다각뿔을 구비한다. 상기 제2 정다각뿔은 상기 제1 정다각뿔과 축을 일치시켜 당해 제1 정다각뿔과 마주보도록 배치된다. 상기 제1 정다각뿔 및 상기 제2 정다각뿔의 각각의 측면이 평면 형상의 광 반사면으로 되어 있다. 상기 제1 정다각뿔이 갖는 제1 저면과 상기 제2 정다각뿔이 갖는 제2 저면에서 정다각형의 변의 수는 같다. 상기 제1 저면 및 상기 제2 저면은 모두 상기 축과 수직으로 배치된다. 상기 제1 정다각뿔 및 상기 제2 정다각뿔은 상기 제1 저면의 정다각형의 위상과 상기 제2 저면의 정다각형의 위상을 서로 일치시키면서, 상기 구동 장치에 의해 상기 축을 회전축으로 하여 서로 일체적으로 회전한다. 상기 제1 정다각뿔을 그 축을 포함함과 함께 상기 제1 저면의 정다각형의 1변의 중점을 지나는 평면으로 절단했을 때의 밑각이 α°이다. 상기 제2 정다각뿔을 그 축을 포함함과 함께 상기 제2 저면의 정다각형의 1변의 중점을 지나는 평면으로 절단했을 때의 밑각이 (90 - α)°이다. 상기 제1 저면과 상기 제2 저면 사이의 거리는, 상기 제1 저면의 정다각형의 1변의 중점과 상기 회전축 사이의 거리에 tanα를 곱한 것과, 상기 제2 저면의 정다각형의 1변의 중점과 상기 회전축 사이의 거리에 tan(90 - α)를 곱한 것의 합과 같다. 상기 조사 장치는 상기 회전 미러의 상기 회전축과 교차하는 위치에 광을 조사한다.
이에 의해, 반사 부재에 있어서 입사광에 대한 광의 반사 위치가 일정해지므로, 광의 반사 위치가 변동하는 것을 방지할 수 있다. 그로 인해, 주사를 행할 경우의 왜곡을 방지할 수 있다.
본 발명에 따르면, 소정 방향으로부터 입사된 광을 편향시키는 광 반사 장치에 있어서 광의 반사 위치가 변동하는 것을 방지할 수 있다.
도 1은 본 발명의 제1 실시 형태에 관한 도광 장치를 구비하는 레이저 가공 장치의 사시도이다.
도 2는 도광 장치가 하나의 반사 유닛을 구비하는 예를 도시하는 개략도이다.
도 3은 반사 유닛의 사시도이다.
도 4는 반사 유닛의 단면도이다.
도 5는 반사 부재가 360°공전하는 동안에 180° 자전하는 모습을 설명하는 도면이다.
도 6은 반사 부재에 의한 입사광의 반사 시의 모습을 설명하는 도면이다.
도 7은 반사 유닛을 반사 부재의 공전축에 수직한 평면으로 자른 단면도이다.
도 8은 반사 부재에 입사광이 닿는 위치와 공전 각도 및 자전 각도의 관계를 설명하는 도면이다.
도 9는 반사 유닛의 제1 변형예를 도시하는 단면도이다.
도 10은 반사 유닛의 제2 변형예를 도시하는 단면도이다.
도 11은 제2 실시 형태에 관한 도광 장치에 있어서 제1 반사 유닛이 반사 상태로 되어 있는 모습을 도시하는 도면이다.
도 12는 도 11로부터 제1 반사 유닛이 통과 상태로 되고 제2 반사 유닛이 반사 상태로 된 모습을 도시하는 도면이다.
도 13은 제3 실시 형태에 관한 회전 미러의 사시도이다.
이어서, 도면을 참조하여 본 발명의 실시 형태를 설명한다. 먼저, 도 1을 참조하여 본 발명의 제1 실시 형태에 관한 도광 장치(13)를 구비하는 레이저 가공 장치(광 주사 장치)(1)의 구성을 설명한다. 도 1은 레이저 가공 장치(1)의 사시도이다.
도 1에 도시한 레이저 가공 장치(1)는 워크(피조사물)(200)에 레이저 광을 광 주사하면서 조사함으로써 당해 워크(200)를 가공할 수 있다.
본 실시 형태에 있어서, 레이저 가공 장치(1)는 비열 가공을 행할 수 있다. 비열 가공으로서는 예를 들어 어블레이션 가공이 있다. 어블레이션 가공은 레이저 광을 워크(200)의 일부에 조사함으로써 이 워크(200)의 일부를 증발시키는 가공이다. 또한, 레이저 가공 장치(1)는 레이저 광의 열에 의해 워크(200)를 용융시켜 가공하는 열 가공을 행하는 구성일 수도 있다.
워크(200)는 판상의 부재이다. 워크(200)는 예를 들어 CFRP(탄소 섬유 강화 플라스틱)로 구성된다. 또한, 워크(200)는 판상의 부재에 한정되지 않고, 예를 들어 블록 형상의 부재일 수도 있다. 또한, 워크(200)는 다른 재료로 구성될 수도 있다.
레이저 가공 장치(1)에서 사용되는 레이저 광은 가시광일 수도 있고, 가시광 이외의 파장대의 전자파일 수도 있다. 또한, 본 실시 형태에서는 가시광 뿐만 아니라 그보다 파장대가 넓은 각종 전자파를 포함하여 "광"이라 칭한다.
도 1에 도시한 바와 같이, 레이저 가공 장치(1)는 반송부(11)와 레이저 발생기(12)와 도광 장치(13)를 구비한다.
반송부(11)는 워크(200)를 레이저 가공 장치(1)의 주 주사 방향과 대략 직교하는 방향(부 주사 방향)으로 반송할 수 있다. 반송부(11)에서 워크(200)를 반송하면서 레이저 가공이 행해진다.
본 실시 형태에 있어서, 반송부(11)는 벨트 컨베이어이다. 또한, 반송부(11)는 특별히 한정되지 않으나, 롤러 컨베이어일 수도 있고, 워크(200)를 파지하여 반송하는 구성일 수도 있다. 또한, 반송부(11)를 생략하고, 움직이지 않도록 고정된 워크(200)에 대하여 레이저 광을 조사하여 가공을 실시할 수도 있다.
레이저 발생기(12)는 레이저 광의 광원이며, 펄스 발진에 의해 시간 폭이 짧은 펄스 레이저를 발생시킬 수 있다. 펄스 레이저의 시간 폭은 특별히 한정되지 않으나, 예를 들어 나노초 오더, 피코초 오더, 또는 펨토초 오더 등의 짧은 시간 간격이다. 또한, 레이저 발생기(12)는 연속파 발진에 의해 CW 레이저를 발생시키는 구성일 수도 있다.
도광 장치(13)는 레이저 발생기(12)가 발생시킨 레이저 광을 워크(200)에 조사하도록 유도한다. 도광 장치(13)에 의해 유도된 레이저 광은 워크(200)의 표면에 정해진 주사선(201) 상의 피조사점(202)에 조사된다. 상세에 대해서는 후술하지만, 도광 장치(13)의 동작에 의해 워크(200)가 레이저 광에 의해 조사되는 피조사점(202)은 직선 형상의 주사선(201)을 따라 대략 일정한 속도로 이동한다. 이에 의해 광 주사가 실현된다.
계속하여, 도 2를 참조하여 도광 장치(13)에 대하여 상세하게 설명한다. 도 2는 도광 장치(13)의 구성을 도시하는 개략도이다.
도 2에 도시한 바와 같이, 도광 장치(13)는 적어도 하나의 반사 유닛(광 반사 장치)(20)을 구비한다. 본 실시 형태에 있어서, 도광 장치(13)는 하나의 반사 유닛(20)을 구비한다. 반사 유닛(20)은 도광 장치(13)가 구비하는 하우징(17)의 내부에 배치되어 있다.
반사 유닛(20)은 레이저 발생기(12)로부터 출사된 레이저 광이 입사했을 때에 당해 레이저 광을 반사하여 워크(200)에 유도한다. 이하에서는 레이저 발생기(12)로부터 반사 유닛(20)에 입사하는 레이저 광을 입사광으로 칭하는 경우가 있다. 반사 유닛(20)은 워크(200)에 대하여 소정 거리만큼 이격되도록 배치되어 있다.
반사 유닛(20)은 입사광을 반사함과 함께 편향시킴으로써 광 주사할 수 있다. 도 1 및 도 2에는 반사 유닛(20)에 의해 워크(200)를 광 주사하는 영역인 주사 영역(31)이 도시되어 있다. 주사 영역(31)에 의해 주사선(201)이 구성된다. 주사 영역(31)은 반사 유닛(20)에 의해 주사된다.
이어서, 도 2 내지 도 4를 참조하여 반사 유닛(20)에 대하여 상세하게 설명한다. 도 3은 반사 유닛(20)의 사시도이다. 도 4는 반사 유닛(20)의 단면도이다.
도 2에 도시한 바와 같이, 반사 유닛(20)은 지지 플레이트(지지 부재)(41)와 반사 부재(42)와 모터(44)와 프리즘(51)과 주사용 렌즈(53)를 구비한다.
지지 플레이트(41)는 원판 형상의 부재이며, 후술하는 하우징(63)에 대하여 회전 가능하다. 하우징(63)에는 제1 회전축(61)이 회전 가능하게 지지되어 있다. 지지 플레이트(41)는 제1 회전축(61)의 축방향 일단부에 고정되어 있다. 제1 회전축(61)의 축방향 타단부에는 모터(44)의 출력축이 접속되어 있다.
도 4에 도시한 바와 같이, 반사 유닛(20)은 반사 유닛(20)의 구동 전달 기구가 수용되는 하우징(63)을 구비한다. 하우징(63)은 도 2에 도시한 하우징(17)이 적당한 개소에 고정되어 있다.
하우징(63)은 축방향 일측을 개방시킨 중공 원통형으로 형성되어 있다. 하우징(63)의 개방측을 폐쇄하도록 지지 플레이트(41)가 배치되어 있다. 제1 회전축(61)은 하우징(63)을 관통하도록 배치되어 있다.
반사 부재(42)는 블록 형상으로 형성된 부재이다. 반사 부재(42)는 지지 플레이트(41)에 대하여 회전 가능하다. 지지 플레이트(41)에는 제2 회전축(62)이 회전 가능하게 지지되어 있다. 제2 회전축(62)은 제1 회전축(61)과 평행하게 되어 있고, 지지 플레이트(41)를 관통하도록 배치되어 있다.
반사 부재(42)는 베이스부(71) 및 제2 회전축(62)을 통하여 지지 플레이트(41)에 지지되어 있다.
베이스부(71)는 도 3에 도시한 바와 같이 작은 원판 형상으로 형성되어 있다. 베이스부(71)는 도 4에 도시한 바와 같이 제2 회전축(62)의 축방향 일단부에 고정되어 있다. 제2 회전축(62)의 축방향 타단부는 하우징(63)의 내부에 위치하고 있다.
베이스부(71)에 상술한 반사 부재(42)가 고정되어 있다. 따라서, 반사 부재(42)는 베이스부(71) 및 제2 회전축(62)과 함께 회전할 수 있다.
반사 부재(42)는 지지 플레이트(41)와 함께 제1 회전축(61)을 중심으로 하여 회전(공전)함과 함께, 제2 회전축(62)을 중심으로 하여 회전(자전)할 수 있다. 이하에서는 제1 회전축(61)의 축심을 공전축이라 칭하고 제2 회전축(62)의 축심을 자전축으로 칭하는 경우가 있다. 또한, 반사 부재(42)의 구동 기구에 대해서는 후술한다.
본 실시 형태에 있어서, 반사 부재(42)는 3개 구비되어 있다. 3개의 반사 부재(42)는 지지 플레이트(41) 중 하우징(63)으로부터 먼 측의 면에 배치되어 있다.
도 2에 도시한 바와 같이, 3개의 반사 부재(42)는 지지 플레이트(41)에 있어서 제1 회전축(61)을 중심으로 하는 원을 동등하게 분할하도록 배치되어 있다. 구체적으로, 3개의 반사 부재(42)는 지지 플레이트(41)의 둘레 방향에 있어서 등간격으로(120° 간격으로) 배치되어 있다.
반사 부재(42)는 광을 반사하여 주사 영역(31)까지 유도한다. 반사 부재(42)는 도 4에 도시한 바와 같이 제1 반사부(81) 및 제2 반사부(82)를 갖는다. 제1 반사부(81)와 제2 반사부(82)는 제2 회전축(62)(자전축)을 사이에 두고 쌍으로 배치된다.
구체적으로 설명하면, 반사 부재(42)는 직육면체의 블록 형상으로 형성되어 있다. 이 반사 부재(42)에 있어서, 자전축을 사이에 두고 대향하는 2개의 면 중 일면에 제1 반사부(81)가 배치되고 타면에 제2 반사부(82)가 배치된다. 제1 반사부(81)와 제2 반사부(82)는 서로 대칭으로 형성되어 있다.
상세에 대해서는 후술하지만, 지지 플레이트(41)의 회전 각속도는 반사 부재(42)의 회전 각속도의 2배와 동등해지도록 구동된다. 그로 인해, 지지 플레이트(41)가 360° 회전하는 동안에 반사 부재(42)는 180° 회전한다.
자전축을 따르는 방향에서 반사 부재(42)를 보았을 때, 제1 반사부(81)와 제2 반사부(82)는 서로 반대측을 향하도록 배치된다.
도 5에는 3개 중 하나만의 반사 부재(42)에 주목한 경우의 당해 반사 부재(42)의 공전 및 자전 모습이 그려져 있다. 반사 부재(42)의 방향을 알기 쉽게 하기 위하여, 도 5에 있어서 제1 반사부(81)에 가까운 측의 반사 부재(42)의 테두리부에는 해칭이 부여되어 있다. 도 5에 있어서, 반사 부재(42)의 공전 방향 및 자전 방향은 모두 반시계 방향이다.
도 5에 도시한 바와 같이, 지지 플레이트(41)가 360° 회전하는 것에 연동하여 반사 부재(42)는 180° 회전한다. 따라서, 반사 부재(42)가 360°공전할 때마다 180° 자전하여 제1 반사부(81) 및 제2 반사부(82)의 방향이 바뀌게 된다. 이와 같이, 지지 플레이트(41)가 360° 회전할 때마다 입사광을 반사시키는 면이 제1 반사부(81)와 제2 반사부(82) 사이에서 교대로 전환된다.
제1 반사부(81) 및 제2 반사부(82)는 각각 제1 반사면(85)과 제2 반사면(86)을 구비한다. 제1 반사부(81)와 제2 반사부(82)의 구성은 실질적으로 서로 동일하므로, 이하에서는 대표하여 제1 반사부(81)의 구성을 설명한다.
구체적으로 설명하면, 반사 부재(42)에는 자전축으로부터 먼 측을 개방시키는 단면 V자 형상의 홈이 형성되어 있다. 홈의 길이 방향은 자전축과 수직이다. 이 홈의 내벽에 제1 반사면(85) 및 제2 반사면(86)이 형성되어 있다. 이 제1 반사면(85) 및 제2 반사면(86)에 의해 제1 반사부(81)가 구성된다.
제1 반사면(85) 및 제2 반사면(86)은 모두 평면 형상으로 형성되어 있다. 제1 반사면(85)은 제2 회전축(62)에 수직한 가상 평면에 대하여 경사져 배치되어 있다. 제2 반사면(86)은 제2 회전축(62)에 수직한 가상 평면에 대하여 경사져 배치되어 있다.
도 6에 도시한 바와 같이, 제1 반사면(85)과 제2 반사면(86)은 역방향으로, 또한 서로 동등한 각도(θ)(구체적으로는 45°)로 제2 회전축(62)에 수직한 가상 평면에 대하여 경사져 있다. 따라서, 제1 반사면(85)과 제2 반사면(86)은 제2 회전축(62)에 수직한 대칭면(87)에 관하여 대칭으로 되어 있다. 제1 반사면(85)과 제2 반사면(86)은 각도가 90°의 V자를 이루도록 배치되어 있다.
이 구성에서, 도광 장치(13)에 유도된 입사광은 프리즘(51)을 통하여 구부러지고, 제1 광로(L1)를 따라 반사 유닛(20)에 가까워지는 방향으로 진행한다. 제1 광로(L1)는 반사 부재(42)의 공전축 방향과 직교하는 방향으로 되어 있다.
3개의 반사 부재(42)는 모터(44)에 의해 구동되어 공전 및 자전을 행함으로써 제1 광로(L1)를 순서대로 가로지르도록 이동한다. 따라서, 제1 광로(L1)를 따르는 입사광에 대하여 3개의 반사 부재(42)가 순서대로 닿아 광을 반사시킨다.
공전하는 반사 부재(42)가 제1 광로(L1)의 상류측에 가장 가까운 위치가 되는 타이밍 부근에서는, 제1 반사부(81) 또는 제2 반사부(82)가 갖는 제1 반사면(85)이 도 3에 도시한 바와 같이 제1 광로(L1)와 겹치도록 배치된다. 따라서, 입사광은 제1 반사면(85)에서 반사한 후 제2 반사면(86)에서 반사한다.
도 4와 같이 반사 부재(42)에 입사광이 닿고 있는 상태에서 반사 부재(42)가 공전 및 자전을 행하면, 제1 반사면(85) 및 제2 반사면(86)의 방향이 연속적으로 바뀐다. 따라서, 제2 반사면(86)으로부터 출사하는 광의 방향이 도 3의 백색 화살표로 나타낸 바와 같이 원활하게 변화한다. 이렇게 하여 출사광의 편향이 실현된다.
제1 반사면(85)과 제2 반사면(86)이 V자 형상으로 배치되어 있으므로, 반사 부재(42)의 공전 및 자전에 수반하여 반사 부재(42)로부터의 출사광은 자전축과 수직한 평면을 따라 편향된다. 이 평면은 제1 광로(L1)에 대하여 제2 회전축(62)(환언하면, 제1 회전축(61)) 방향으로 오프셋되어 있다. 이에 의해, 제1 광로(L1)에 대하여 오프셋된 제2 광로(L2)를 통하여, 제2 반사면(86)에서 반사된 광을 워크(200)에 유도할 수 있다.
입사광은 자전축 및 공전축과 수직한 방향에서 반사 유닛(20)에 입사한다. 또한, 반사 부재(42)의 공전 위상이 입사광의 방향과 완전히 일치하고 있을 때는, 제2 회전축(62)을 따라서 보면 제1 반사면(85)과 제2 반사면(86)은 입사광과 직교한다. 따라서, 이때 입사광은 도 3에 도시한 바와 같이 반사 부재(42)에 의해 되돌아가도록 2회 반사하여, 제1 광로(L1) 방향과 평행하고 또한 역방향인 제2 광로(L2)를 따라 출사한다.
이와 같이, 입사광은 제1 반사면(85)과 제2 반사면(86)에 의해 반사함으로써 편향된다. 여기서, 도 6에 도시한 바와 같이, 대칭면(87)의 제1 반사면(85)에 관한 거울상 및 대칭면(87)의 제2 반사면(86)에 관한 거울상을 생각해 본다. 2개의 거울상은 모두 반사 부재(42)의 내부에 위치하는 평면(88)이 된다. 광로 길이의 관점에서 생각하면, 입사광이 제1 반사면(85)과 제2 반사면(86)에 의해 오프셋되면서 반사하는 경우와 입사광이 평면(88)에 의해 오프셋 없이 반사하는 경우가 등가로 된다. 이러한 의미에서, 상기 가상적인 평면(88)은 외관 상의 반사면이라는 것을 알 수 있다.
평면(88)에 대하여 다른 관점에서 설명한다. 이하에서는, 입사광이 제1 반사면(85)에서 반사한 후에 제2 반사면(86)에서 반사할 때까지의 광로를 중간 광로(L3)라 칭한다. 중간 광로(L3)의 이등분점은 대칭면(87)에 위치한다.
도 6의 파선으로 나타낸 바와 같이, 입사광의 제1 광로(L1)를 제1 반사면(85)에서 반사 부재(42)의 내부로 돌입하도록 연장하는 경우를 생각해 본다. 입사광의 제1 광로(L1)를 중간 광로(L3)의 절반의 길이(D1)만큼 연장한 연장선(76)의 선단의 점(77)은 평면(88)에 위치한다.
마찬가지로, 입사광의 제2 광로(L2)를 제2 반사면(86)에서 반사 부재(42)의 내부로 돌입하도록 연장하는 경우를 생각해 본다. 입사광의 제2 광로(L2)를 중간 광로(L3)의 절반의 길이(D1)만큼 연장한 연장선(78)의 선단의 점(79)은 평면(88)에 위치한다.
도 6에는 제2 광로(L2)의 방향이 편향 각도 범위의 중앙으로 되어 있는 상태가 도시되어 있다. 그러나, 반사 부재(42)에 의해 입사광이 어느 방향으로 편향되는 경우에도 연장선(76, 78)의 선단은 항상 평면(88)에 위치한다.
이 평면(88)은 제1 반사부(81)와 제2 반사부(82)가 대칭 배치되는 기준면이기도 하다. 따라서, 도 6에서는 제1 반사부(81)와의 관계에서 평면(88)이 도시되어 있으나, 당해 평면(88)은 제1 반사부(81) 및 제2 반사부(82) 양쪽에서 공통이다. 그리고, 본 실시 형태에서는 반사 부재(42)의 자전축(환언하면, 제2 회전축(62)의 축심)이 그 평면(88)에 포함되도록 배치되어 있다.
따라서, 반사 부재(42)의 제1 반사부(81) 및 제2 반사부(82)에서 입사광을 편향시키는 것은, 반사 부재(42)와 함께 자전 및 공전하는 두께가 0인 평면(88)의 표리에 반사면을 배치하여 입사광을 편향시키는 것과 실질적으로 동일하다. 도 2에는 자전 및 공전하는 반사 부재(42)와 평면(88)의 관계가 도시되어 있다.
프리즘(51)은 적절한 광학 소자로 구성되어 있다. 프리즘(51)은 반사 부재(42)보다 제1 광로(L1)의 상류측에 배치되어 있다. 이 프리즘(51)에 의해 레이저 발생기(12)로부터의 레이저 광을 반사 부재(42)로 유도할 수 있다.
주사용 렌즈(53)는 자유 곡면 렌즈이며, 예를 들어 공지의 fθ 렌즈를 사용할 수 있다. 주사용 렌즈(53)는 반사 부재(42)와 주사 영역(31) 사이에 배치되어 있다. 이 주사용 렌즈(53)에 의해 주사 범위의 중앙부와 주변부에서 초점 거리를 일정하게 할 수 있다.
모터(44)는 반사 부재(42)를 공전 및 자전시키기 위한 구동력을 발생한다. 모터(44)의 구동력이 당해 모터(44)의 출력축을 통하여 유성 기어열에 전달됨으로써 지지 플레이트(41) 및 반사 부재(42)가 회전한다. 또한, 모터(44)는 본 실시 형태에서는 전동 모터이지만, 이에 한정되지 않는다.
이어서, 도 4 및 도 7을 참조하여 지지 플레이트(41) 및 반사 부재(42)를 회전시키기 위한 구동 기구에 대하여 설명한다. 도 7은 공전축에 수직한 평면으로 반사 유닛(20)을 자른 단면도이다.
도 4에 도시한 바와 같이, 지지 플레이트(41)의 중심부가 제1 회전축(61)의 축방향 일단부에 고정되어 있다. 이 제1 회전축(61)의 축방향 타단부에 모터(44)의 출력축이 접속되어 있다.
또한, 지지 플레이트(41)의 중심부보다 직경 방향 외측의 위치에 제2 회전축(62)이 배치되어 있다. 제2 회전축(62)은 지지 플레이트(41)에 회전 가능하게 지지되어 있다. 제2 회전축(62)의 축방향 일단부는 하우징(63)의 외부에 배치되고 베이스부(71)에 고정되어 있다. 제2 회전축(62)의 축방향 타단부는 하우징(63)의 내부에 배치되어 있다.
도 7에 도시한 바와 같이, 하우징(63)의 내부에 있어서 제2 회전축(62)에 유성 기어(91)가 고정되어 있다. 유성 기어(91)는 제1 회전축(61) 주위에 설치된 썬 기어(92)와 카운터 기어(93)를 통하여 맞물려 있다. 썬 기어(92)는 하우징(63)에 고정되어 있다. 카운터 기어(93)는 지지 플레이트(41)에 회전 가능하게 지지되어 있다.
이에 의해, 모터(44)가 구동하면 모터(44)의 구동력이 제1 회전축(61)에 전달되어 지지 플레이트(41)가 회전한다. 지지 플레이트(41)의 회전에 의해 카운터 기어(93)의 축 및 유성 기어(91)의 축(제2 회전축(62))이 썬 기어(92)의 주위를 이동한다. 이때, 썬 기어(92)에 맞물리는 카운터 기어(93)가 회전하고, 카운터 기어(93)에 맞물리는 유성 기어(91)도 회전한다. 따라서, 제2 회전축(62)을 통하여 유성 기어(91)에 고정되어 있는 반사 부재(42)는 공전 및 자전을 동시에 행한다.
썬 기어(92)는 하우징(63)에 고정되어 있고, 유성 기어(91)와 썬 기어(92) 사이에 카운터 기어(93)가 개재되어 있으므로, 유성 캐리어인 지지 플레이트(41)의 회전 방향과 제2 회전축(62)(반사 부재(42))의 회전 방향은 동일한 방향이 된다. 또한, 유성 기어(91)의 잇수는 썬 기어(92)의 잇수의 2배이다. 이에 의해, 반사 부재(42)의 공전 각속도는 반사 부재(42)의 자전 각속도의 2배와 동등해진다.
이어서, 도 8을 참조하여 반사 부재(42)의 공전 각속도와 자전 각속도의 관계에 대하여 상세하게 설명한다.
도 8에는 지지 플레이트(41)의 회전에 수반하는 제2 회전축(62)의 궤적이 공전 원(101)으로서 도시되어 있다. 공전 원(101)의 중심은 서로 수직한 방향으로 연장되는 X축과 Y축의 교점(원점(O))에 위치한다. 원점(O)은 반사 부재(42)의 공전축에 상당한다. 상술한 바와 같이, 반사 부재(42)에서의 광의 편향은 전술한 평면(88)에서 광을 반사시키는 것에 의한 편향과 실질적으로 동일하다고 생각할 수 있다. 따라서, 도 8에서는 반사 부재(42)가 등가인 가상 반사면인 평면(88)을 나타내는 직선에 의해 표현되어 있다.
반사 부재(42)의 자전축은 공전 원(101) 상의 임의의 점에 위치한다. 여기서, 반사 부재(42)의 자전축이 점 P의 위치에 있고, 반사 부재(42)의 반사면의 방향이 X축과 수직으로 되어 있는 상태를 생각해 본다. 이때, X축 방향에서 원점(O)을 향하여 입사하는 광은 점 P에 있어서 반사 부재(42)에 의해 반사된다. 도 8과 같이 2차원적으로 보았을 때 반사광의 광로는 입사광의 광로와 일치한다.
지지 플레이트(41)의 회전에 수반하여 반사 부재(42)의 자전축의 위치가 각도(θ)만큼 변화하고 점 P로부터 점 Q로 이동한 것으로 한다. 이 공전에 의해서도 입사광이 반사 부재(42)에 닿는 점이 점 P로부터 변화하지 않기 위해서는, 반사 부재(42)의 자전 각도를 공전 각도와의 관계에서 어떻게 해야 할지를 생각해 본다.
반사 부재(42)의 자전축이 점 Q에 있더라도 입사광이 점 P에서 반사하기 위해서는, 반사 부재(42)의 방향은 점 Q에서 점 P에 그은 직선의 방향과 일치해야 한다.
점 P와 점 Q를 연결하는 직선의 중점을 M으로 한다. 또한, 점 Q를 지나고 또한 Y축과 평행하게 연장되는 직선을 생각하고, 이 직선과 X축의 교점을 N으로 한다.
점 P 및 점 Q는 모두 공전 원(101)의 원주 상에 있으므로, 삼각형 OPQ는 이등변 삼각형이다. 따라서, 직선 OP와 직선 PM이 이루는 각도 OPM은 직선 OQ와 직선 QM이 이루는 각도 OQM과 같다. 직선 OM과 직선 PQ는 직교한다. 또한, 직선 OP와 직선 QN은 직교한다.
삼각형 OQM과 삼각형 NQP에 주목하면, 상기한 바와 같이 삼각형의 2개의 각도가 서로 같다. 따라서, 삼각형 OQM과 삼각형 NQP는 상사이다.
그로 인해, 직선 QO와 직선 OM이 이루는 각도 QOM과 직선 PQ와 직선 QN이 이루는 각도 PQN은 같다. 직선 QO와 직선 OP가 이루는 각도 QOP는 θ이다. 따라서, 각도 QOM은 θ/2이며 각도 PQN도 θ/2이다.
이 결과로부터, 반사 부재(42)의 공전 각속도가 자전 각속도의 2배로 되도록 공전과 자전을 동시에 행하면, 반사 부재(42)가 항상 점 P에서 입사광에 닿도록 광로를 가로지르므로, 광로의 길이를 일정하게 할 수 있는 것을 알 수 있다.
이와 같이, 본 실시 형태에서는 반사면(85, 86)을 갖는 반사 부재(42)를 회전시킴으로써 입사광을 반사하여 편향시키고 있다. 반사 부재(42)는 각속도가 일정하게 회전 구동되고, 갈바노 미러와 같은 왕복 운동(가감속)을 행하지 않으므로, 피조사점(202)의 이동 속도를 일정하게 할 수 있는 주사 영역(31)이 좁아지는 것을 회피하고, 광에 의한 워크(200)의 가공 가능 범위의 감소를 억제할 수 있다. 또한, 반사 부재(42)의 공전과 자전의 조합에 의해 입사광에 반사 부재(42)가 닿는 점의 변동을 방지할 수 있으므로, 갈바노 미러와 마찬가지로 이상적인 상태로 주사용 렌즈(53)에 광을 유도할 수 있다. 이와 같이, 폴리곤 미러의 특징인 조사율의 높이와 갈바노 미러의 특징인 반사점이 변동하기 어려운 것을 겸비한 광 반사 장치를 얻을 수 있다.
이상에서 설명한 바와 같이, 본 실시 형태의 반사 유닛(20)은 평면 형상의 반사면(85, 86)을 갖는 반사 부재(42)를 구비한다. 반사면(85, 86)은 입사광을 반사시킨다. 반사 부재(42)는 공전 및 자전을 동시에 행한다. 반사 부재(42)의 공전 방향과 자전 방향이 동일하다. 반사 부재(42)의 공전 각속도가 자전 각속도의 2배와 같다.
이에 의해, 반사 부재(42)에 있어서 입사광에 대한 광의 반사 위치가 일정해지고, 광의 반사 위치가 변동하는 것을 방지할 수 있다. 따라서, 주사 왜곡을 적게 할 수 있다. 갈바노 미러와 비교하면, 왕복 운동이 아니라 반사 부재(42)의 회전에 의해 편향을 실현하므로, 주사를 일정한 속도로 행하는 것이 용이하다.
또한, 본 실시 형태의 반사 유닛(20)에 있어서, 반사면(85, 86)은 반사 부재(42)의 자전축을 사이에 두고 쌍을 이루도록 배치되어 있다.
반사 부재(42)는 360°공전할 때마다 180° 자전하여 방향을 바꾼다. 따라서, 방향이 서로 180° 다른 반사면(85, 86)이 쌍을 이루어 반사 부재(42)에 배치됨으로써, 반사 부재(42)가 입사광의 광로를 가로지를 때에 어느 하나의 반사면이 광을 유효하게 반사한다. 따라서, 워크(200)에 대하여 입사광을 효율적으로 유도할 수 있다.
또한, 본 실시 형태의 반사 유닛(20)은 3개의 반사 부재(42)를 구비한다. 3개의 반사 부재(42)의 공전축은 일치하고 있다. 3개의 반사 부재(42)는 공전축을 중심으로 한 원을 등각도 간격으로 분할하도록 배치되어 있다.
이에 의해, 워크(200)에 대하여 입사광을 한층 더 효율적으로 유도할 수 있다.
또한, 본 실시 형태의 반사 유닛(20)은 반사 부재(42)의 공전 및 자전을 행하게 하는 유성 기어열을 구비한다.
이에 의해, 반사 부재(42)의 공전 및 자전을 조합한 복합적인 동작을 간소한 구성으로 실현할 수 있다.
또한, 본 실시 형태의 반사 유닛(20)에 있어서, 반사 부재(42)는 도 3에 도시한 바와 같이 자전축과 수직한 평면을 따라 편향되도록 광을 반사시킨다. 이 평면은 반사 부재(42)에 대한 입사광에 대하여 자전축 방향으로 오프셋되어 있다.
이에 의해, 반사 부재(42)에서 반사한 반사광이 입사광을 반사 유닛(20)으로 유도하기 위한 광학 부재 등과 간섭하지 않는 레이아웃을 실현할 수 있다.
또한, 본 실시 형태에서는 반사 부재(42)에 제1 반사면(85) 및 제2 반사면(86)이 형성되어 있다. 제1 반사면(85)은 반사 부재(42)의 자전축에 수직한 평면에 대하여 경사진 평면 형상으로 형성된다. 제2 반사면(86)은 반사 부재(42)의 자전축에 수직한 평면에 대하여 경사진 평면 형상으로 형성된다. 자전축에 수직한 평면에 대해 제1 반사면(85)이 경사지는 방향과 자전축에 수직한 평면에 대해 제2 반사면(86)이 경사지는 방향이 반대이다. 입사광은 제1 반사면(85)에서 반사한 후 제2 반사면(86)에서 반사한다. 제1 반사면(85) 및 제2 반사면(86)은 대칭면(87)에 대하여 서로 대칭이 되도록 형성된다. 대칭면(87)의 제1 반사면(85)에 대한 거울상 및 대칭면(87)의 제2 반사면(86)에 대한 거울상은 서로 동일한 평면(88)이다. 반사 부재(42)의 자전축이 거울상의 평면(88)에 포함된다.
이에 의해, 반사 부재(42)에서 입사광을 오프셋시키면서 반사시키고, 또한 반사 부재(42)에 있어서 입사광에 대한 광의 반사 위치가 일정한 간소한 구성을 실현할 수 있다.
또한, 본 실시 형태의 도광 장치(13)에 있어서, 자전축에 수직한 평면에 대하여 제1 반사면(85)이 경사지는 각도(θ)는 45°이다. 자전축에 수직한 평면(88)에 대하여 제2 반사면(86)이 경사지는 각도(θ)는 45°이다.
이에 의해, 반사 부재(42)의 간소한 구성을 실현할 수 있다.
또한, 본 실시 형태의 도광 장치(13)는 상기한 구성의 반사 유닛(20)을 구비한다. 입사광은 반사 유닛(20)에서 편향됨으로써 워크(200)를 주사한다.
이에 의해, 왜곡이 적은 주사를 실현할 수 있다.
또한, 본 실시 형태의 도광 장치(13)는 주사용 렌즈(53)를 구비한다. 주사용 렌즈(53)는 반사 부재(42)로부터 주사 영역(31)까지의 광로에 배치된다.
이에 의해, 주사 영역의 전체에 걸쳐 초점 거리를 정렬시킬 수 있다. 또한, 광을 이상적인 상태로 주사용 렌즈(53)에 유도할 수 있다.
이어서, 지지 플레이트(41) 및 반사 부재(42)의 구동 기구의 제1 변형예에 대하여 설명한다. 본 변형예의 설명에 있어서는 전술한 실시 형태와 동일 또는 유사한 부재에는 도면에 동일한 부호를 부여하고 설명을 생략하는 경우가 있다.
도 9에 나타낸 변형예에서는, 지지 플레이트(41)의 외주 근방에 링 기어(94)가 고정되어 있다. 링 기어(94)는 모터(44)의 출력축에 고정된 구동 기어(95)와 맞물려 있다. 다른 구성은 도 4와 실질적으로 마찬가지이다.
본 변형예에서도, 모터(44)의 구동에 의해 지지 플레이트(41)를 회전시켜 반사 부재(42)의 공전 및 자전을 행하게 할 수 있다.
이어서, 지지 플레이트(41) 및 반사 부재(42)의 구동 기구의 제2 변형예에 대하여 설명한다. 본 변형예의 설명에 있어서는 전술한 실시 형태와 동일 또는 유사한 부재에는 도면에 동일한 부호를 부여하고 설명을 생략하는 경우가 있다.
도 10에 도시한 변형예에서도, 도 9과 마찬가지로 지지 플레이트(41)의 외주 근방에 링 기어(94)가 고정되어 있다.
하우징(63)의 내부에 2단 기어(96)가 회전 가능하게 지지되어 있다. 2단 기어(96)는 대직경 기어(96a)와 소직경 기어(96b)를 갖는다. 대직경 기어(96a)와 소직경 기어(96b)는 서로 일체적으로 회전한다. 대직경 기어(96a)는 모터(44)의 출력축에 고정된 구동 기어(95)와 맞물려 있다. 소직경 기어(96b)는 링 기어(94)와 맞물려 있다.
하우징(63)의 내부에 전달 기어(97)가 회전 가능하게 지지되어 있다. 전달 기어(97)는 2단 기어(96)가 구비하는 대직경 기어(96a)와 맞물려 있다.
썬 기어(92)는 전술한 실시 형태 등과 달리 회전 가능하게 하우징(63)에 지지되어 있다. 전달 기어(97)는 전달축(98)을 통하여 썬 기어(92)와 연결되어 있다. 썬 기어(92)는 전달축(98)과 일체적으로 회전한다.
본 변형예에서는 카운터 기어(93)가 생략되어 있다. 썬 기어(92)는 카운터 기어(93)를 통하지 않고 유성 기어(91)와 직접 맞물려 있다.
이 구성에서, 모터(44)가 구동하면 2단 기어(96)가 회전한다. 그 결과, 소직경 기어(96b)에 의해 링 기어(94)가 구동되고 지지 플레이트(41)가 회전한다. 동시에, 대직경 기어(96a)에 의해 전달 기어(97)가 구동되고 썬 기어(92)가 회전한다.
썬 기어(92)는 지지 플레이트(41)보다 큰 각속도로 지지 플레이트(41)와 동일한 방향으로 회전한다. 그 결과, 유성 기어(91)를 공전과 동일한 방향으로 자전시킬 수 있다. 또한, 2단 기어(96) 등의 잇수를 공지의 식에 따라 정함으로써, 반사 부재(42)의 공전 각속도가 자전 각속도의 2배가 되도록 공전과 자전을 동시에 행하는 구성으로 할 수 있다.
이어서, 도 11 및 도 12를 참조하여 도광 장치(13)의 제2 실시 형태를 설명한다. 본 실시 형태의 설명에 있어서는 전술한 실시 형태와 동일 또는 유사한 부재에는 도면에 동일한 부호를 부여하고 설명을 생략하는 경우가 있다.
본 실시 형태는 도광 장치(13)가 복수의 반사 유닛(20)을 구비하는 점에서 제1 실시 형태와 다르다. 본 실시 형태는 예를 들어 제1 실시 형태에 비하여 주 주사 방향에서 긴 워크(200)의 가공을 행하기 위하여 사용된다.
도 11 및 도 12에 도시한 바와 같이, 도광 장치(13)는 복수의 반사 유닛(20)을 구비한다. 본 실시 형태의 도광 장치(13)에는 2개의 반사 유닛(20)이 배치되어 있다. 각 반사 유닛(20)은 레이저 발생기(12)로부터 입사하는 레이저 광을 반사하여 워크(200)에 유도한다.
2개의 반사 유닛(20)은 주 주사 방향을 따라서 직선상으로 배열되어 배치되어 있다. 반사 유닛(20)이 배열되는 방향은 주사선(201)의 길이 방향과도 일치하고 있다. 2개의 반사 유닛(20) 각각은 주사선(201)으로부터의 거리가 대략 동등해지는 위치에 배치되어 있다.
이하, 복수의 반사 유닛(20)에 관하여, 입사광의 진행 방향에 있어서 상류측(레이저 발생기(12)에 대하여 가까운 측)에 위치하는 반사 유닛(20)을 제1 반사 유닛(21)이라 칭하는 경우가 있다. 입사광의 진행 방향에 있어서 하류측(레이저 발생기(12)에 대하여 먼 측)에 위치하는 반사 유닛(20)을 제2 반사 유닛(22)으로 칭하는 경우가 있다.
각각의 반사 유닛(20)은 레이저 광을 반사함과 함께 편향시킴으로써 광 주사할 수 있다. 제1 반사 유닛(21)에 의해 워크(200)를 광 주사하는 영역(주사 영역)(181)은 제2 반사 유닛(22)에 의한 주사 영역(182)과는 다르다. 2개의 주사 영역(181, 182)은 직선 형상으로 배열되어 배치되어 있다. 2개의 주사 영역(181, 182)의 집합에 의해 주사선(201)이 구성된다.
각각의 반사 유닛(20)은 입사광을 반사시켜 주사를 행하는 반사 상태와 입사광을 반사시키지 않고 하류측에 통과시키는 통과 상태를 반복하여 전환할 수 있다. 반사 유닛(20)이 반사 상태일 때, 대응하는 주사 영역(예를 들어, 제1 반사 유닛(21)이면 주사 영역(181))이 광 주사된다. 반사 유닛(20)이 통과 상태일 때, 당해 반사 유닛(20)은 광 주사를 행하지 않는다.
각각의 반사 유닛(20)이 반사 상태가 되는 타이밍은 복수의 반사 유닛(20) 간에 상이하다. 이에 의해, 반사 상태가 되는 반사 유닛(20)이 전환됨으로써 복수의 주사 영역이 각각 주사된다.
본 실시 형태에 있어서, 반사 부재(42)는 하나의 반사 유닛(20)에 대하여 2개 설치되어 있다. 2개의 반사 부재(42)는 각각 지지 플레이트(41)에 있어서 360°를 동등하게 분할하도록 배치되어 있다. 구체적으로는 2개의 반사 부재(42)는 지지 플레이트(41)의 둘레 방향에 있어서 일측의 반사 부재(42)가 타측의 반사 부재(42)에 대하여 180° 어긋난 위치에 배치되어 있다.
지지 플레이트(41) 상에 있어서, 2개의 반사 부재(42)는 정다각형(구체적으로는 정사각형)의 서로 대향하는 변에 상당하는 위치에 배치된다. 따라서, 2개의 반사 부재(42)에 있어서, 반사 부재(42)의 하나분에 상당하는 중심각은 90°이다. 상기 대향하는 변 이외의 변에 상당하는 위치에는 반사 부재(42)는 배치되어 있지 않다.
2개의 반사 부재(42)가 각각 지지 플레이트(41)의 회전에 따라서 이동하면, 반사 유닛(20)에 입사하여 제1 광로(L1)를 진행하는 레이저 광에 대하여 반사 부재(42)가 닿는 상태와 닿지 않는 상태가 교대로 전환된다. 도 11의 제1 반사 유닛(21)에서 나타낸 바와 같이, 2개 중 어느 하나의 반사 부재(42)가 입사광에 닿는 상태가 전술한 반사 상태이다. 도 12의 제1 반사 유닛(21)에서 나타낸 바와 같이, 2개의 반사 부재(42) 모두가 입사광에 닿지 않는 상태가 전술한 통과 상태이다.
제1 광로(L1)는 제1 회전축(61) 및 제2 회전축(62)에 직교하고 있다. 또한, 2개의 반사 부재(42)는 서로 180°의 위상 어긋남을 갖고 배치된다. 따라서, 제1 회전축(61)을 사이에 두고 배치되는 2개의 반사 부재(42) 중 제1 광로(L1)의 상류측에 가까운 측에 위치하는 반사 부재(42)만이 입사광에 닿게 된다.
이상과 같이 구성된 2개의 반사 유닛(20)이 레이저 발생기(12)로부터 적당한 프리즘(51)을 거쳐 진행하는 입사광에 대하여 설치됨으로써 본 실시 형태의 도광 장치(13)가 구성된다. 2개의 반사 유닛(20)에 있어서 반사 부재(42)의 공전축 및 자전축은 서로 평행하다. 그리고, 반사 부재(42)는 동일한 방향으로 공전과 자전을 행한다. 반사 부재(42)의 공전 각속도는 자전 각속도의 2배와 같다.
또한, 반사 부재(42)는 각각 다른 반사 유닛(20)에 있어서의 반사 부재(42)의 공전과 동등한 각속도와 동일한 방향으로 회전 위상의 소정 각도(본 실시 형태에서는 90°)의 어긋남을 가지면서 공전한다. 이에 의해, 반사 부재(42)가 입사광에 닿는 타이밍을 2개의 반사 유닛(20) 간에 상이하게 할 수 있다.
복수의 반사 유닛에 있어서의 반사 부재(42)의 상기와 같은 공전 및 자전은 예를 들어 2개의 반사 유닛(20)이 구비하는 도시하지 않은 모터를 동기 회전하도록 제어함으로써 실현할 수 있다. 단, 예를 들어 2개의 반사 유닛(20)을 공통의 모터로 구동할 수도 있다.
도 11에는 2개의 반사 유닛(20) 중 제1 반사 유닛(21)이 반사 상태가 되고 제2 반사 유닛(22)이 통과 상태가 된 경우가 도시되어 있다. 도 12에는 도 11의 상태로부터 각 반사 유닛(20)의 반사 부재(42)가 공전 및 자전을 행한 결과 제1 반사 유닛(21)이 통과 상태가 되고 제2 반사 유닛(22)이 반사 상태가 된 경우가 도시되어 있다. 이와 같이, 광 주사를 행하는 반사 유닛(20)을 순차적으로 전환하여, 전체적으로 제1 실시 형태보다 긴 주사선(201)을 따른 광 주사를 실현할 수 있다.
이상에서 설명한 바와 같이, 본 실시 형태의 레이저 가공 장치(1)에 있어서, 반사 유닛(20)의 반사 부재(42)가 공전 및 자전을 동시에 행함으로써, 입사광이 반사면(85)에 닿아 반사하는 반사 상태와 입사광이 반사면(85)에 닿지 않고 통과하는 통과 상태 사이에서 전환된다. 반사 상태가 되는 타이밍이 복수의 도광 장치(13) 간에 상이하다. 복수의 도광 장치(13)에 대응하는 주사 영역(181, 182)의 집합에 의해 하나의 직선 형상의 주사선(201)이 구성된다.
이에 의해, 긴 주사선을 따른 주사를 실현할 수 있다.
이어서, 도 13을 참조하여 특별한 형상의 반사 부재인 회전 미러(250)에 대하여 설명한다. 본 실시 형태의 설명에 있어서는 전술한 실시 형태와 동일 또는 유사한 부재에는 도면에 동일한 부호를 부여하고 설명을 생략하는 경우가 있다.
이 회전 미러(250)는 제1 정다각뿔(251)과 제2 정다각뿔(252)을 구비한다. 본 실시 형태에 있어서, 2개의 정다각뿔(251, 252)은 정팔각뿔로서 형성되어 있으나, 이에 한정되지 않는다.
2개의 정다각뿔(251, 252)은 그 축(260)끼리 일치시켜서 서로 마주보도록 배치되어 있다. 2개의 정다각뿔(251, 252)은 중간부(255)에 의해 서로 결합되어 있다. 따라서, 2개의 정다각뿔(251, 252)은 실질적으로는 다각뿔대 형상으로 형성되어 있다.
회전 미러(250)에는 전달축(259)이 설치되어 있다. 이 전달축(259)에 도시되지 않은 구동 장치(구체적으로는 모터)의 구동력이 전달됨으로써 회전 미러(250)가 회전한다. 회전 미러(250)와 구동 장치에 의해 광을 편향시켜 반사하는 반사 장치가 구성된다. 이때의 회전축은 2개의 정다각뿔(251, 252)의 축(260)과 일치하고 있다.
2개의 정다각뿔(251, 252)의 측면은 평면 형상의 광 반사면(257)으로 되어 있다. 광 반사면(257)은 축(260) 주위에 배열되어 배치된다. 각각의 광 반사면(257)은 축(260)에 대하여 경사져 있다.
제1 정다각뿔(251)은 제1 저면(261)을 갖는다. 제2 정다각뿔(252)은 제2 저면(262)을 갖는다. 제1 저면(261) 및 제2 저면(262)은 정다각형이며, 축(260)에 대하여 수직으로 배치된다.
본 실시 형태에 있어서, 제1 정다각뿔(251)과 제2 정다각뿔(252)은 동일 형상이다. 2개의 정다각뿔(251, 252)은 정팔각뿔이므로, 제1 저면(261)과 제2 저면(262)은 모두 정팔각형이다. 따라서, 제1 저면(261)과 제2 저면(262)에서 정다각형의 변의 수는 같다.
2개의 정다각뿔(251, 252)은 2개의 저면(261, 262)이 갖는 정팔각형의 위상을 서로 일치시키도록 하여 중간부(255)에 의해 결합된다.
도 13에는 회전 미러(250)를 절단하는 가상 평면(270)이 도시되어 있다. 이 가상 평면(270)은 축(260)을 포함함과 함께, 저면(261, 262)의 정팔각형의 1변의 중점(271, 272)을 통과하도록 정해진다.
제1 정다각뿔(251)을 가상 평면(270)으로 절단했을 때의 밑각을 α로 하고, 제2 정다각뿔(252)을 가상 평면(270)으로 절단했을 때의 밑각을 β로 하면, 본 실시 형태의 회전 미러(250)에서는 α+β = 90°의 관계가 성립한다. 본 실시 형태에서는 α = β = 45°이지만, 이에 한정되지 않는다. 예를 들어, α = 30°, β = 60° 등으로 할 수도 있다.
또한, 본 실시 형태에서는 제1 저면(261)과 제2 저면(262) 사이의 거리를 D2로 하고, 제1 저면(261)의 정다각형의 1변의 중점(271)과 축(260) 사이의 거리를 D3으로 하며, 제2 저면(262)의 정다각형의 1변의 중점(272)과 축(260) 사이의 거리를 D4로 할 때, D2 = D3 × tanα + D4 × tanβ의 관계가 성립한다.
이상의 구성에서, 회전 미러(250)를 가상 평면(270)으로 자른 윤곽을 생각했을 때에, 제1 정다각뿔(251)의 광 반사면(257)에 상당하는 직선(281)과 제2 정다각뿔(252)의 광 반사면(257)에 상당하는 직선은 서로 수직 관계가 된다.
또한, 거리(D2, D3, D4) 사이에 상기한 식의 관계가 성립하고 있는 점에서, 2개의 직선(281, 282)을 도 13의 쇄선으로 나타내도록 연장하면 그 교점은 축(260)에 위치하게 된다. 이것은 2개의 직각 삼각형과 tanα 및 tanβ의 관계를 생각하면 명확하다.
그런데, 전술한 실시 형태에 있어서의 도 6의 반사 부재(42)에 있어서는 그 자전축이 광의 외관 상의 반사면인 가상적인 평면(88)에 포함되도록 배치되어 있다. 도 13의 회전 미러(250)의 구성은 상기 발상을 정다각뿔 형상의 미러로 확장한 것이다.
도 13의 회전 미러(250)에 있어서, 축(260)에 교차하도록 조사 장치로부터 광 반사면(257)에 광을 조사하는 경우를 생각해 본다. 입사한 광(예를 들어, 레이저 광)은 제1 정다각뿔(251)의 광 반사면(257)에서 반사한 후 제2 정다각뿔(252)의 광 반사면(257)에서 반사하여 출사한다.
회전 미러(250)의 측면에 배치되어 있는 광 반사면(257) 각각은 저면(261, 262)에 있어서의 정다각형의 각 변에 대응될 수 있다. 이하에서는 광이 닿는 광 반사면(257)에 대응하는 상기 정다각형의 변을 대응변으로 칭하는 경우가 있다.
여기서, 축(260)을 포함하도록 위치하고, 회전 미러(250)와 함께 회전하는 두께가 0인 평면(290)을 가상적으로 생각한다. 이 평면(290)은 상기 대응변과 평행하게 배치되어 있다. 정다각뿔 형상의 부분을 1쌍으로 갖는 회전 미러(250)에서 2회의 반사에 의해 입사광을 편향시키는 것은, 당해 평면(290)에 의한 1회의 반사로 입사광을 편향시키는 것과 등가이다.
따라서, 회전 미러(250)에 있어서 입사광에 대한 광의 반사 위치가 일정해진다. 그 결과, 광의 반사 위치가 변동하는 것을 방지할 수 있다.
본 실시 형태에서는, 전달축(259)을 통하여 회전 미러(250)를 단순히 회전시키는 구성이며, 회전 중심인 축(260)은 이동하지 않는다. 본 실시 형태에서는 공전과 자전을 조합하는 대규모의 회전 장치가 불필요하게 되므로, 구성의 간소화 및 소형화를 용이하게 실현할 수 있다.
이 회전 미러(250)는 예를 들어 상술한 모터(44), 하우징(17), 주사용 렌즈(53), 레이저 발생기(12) 등과 함께 사용하여 도 1에 도시한 도광 장치(13) 및 레이저 가공 장치(1)를 구성할 수 있다. 상술한 바와 같이, 이 레이저 가공 장치에서는 회전 미러(250)에서의 광의 반사 위치가 실질적으로 일정해진다. 따라서, 주사용 렌즈(53)로서 fθ 렌즈를 사용함으로써 피조사점(202)에서 초점을 일정 속도로 주사할 수 있다. 갈바노 미러와 비교하면, 왕복 운동이 아니라 회전 미러(250)의 회전에 의해 편향을 실현하므로, 주사를 일정한 속도로 행하는 것이 용이하다.
이상에서 설명한 바와 같이, 본 실시 형태의 레이저 가공 장치는 회전 미러(250), 모터 및 조사 장치를 구비한다. 모터는 회전 미러(250)를 회전시킨다. 조사 장치는 회전 미러(250)에 광을 조사한다. 회전 미러(250)는 제1 정다각뿔(251)과 제2 정다각뿔(252)을 구비한다. 제2 정다각뿔(252)은 제1 정다각뿔(251)과 축(260)을 일치시켜 당해 제1 정다각뿔(251)과 마주보도록 배치된다. 제1 정다각뿔(251) 및 제2 정다각뿔(252)의 각각의 측면이 평면 형상의 광 반사면(257)으로 되어 있다. 제1 정다각뿔(251)이 갖는 제1 저면(261)과 제2 정다각뿔(252)이 갖는 제2 저면(262)에서 정다각형의 변의 수는 같다. 제1 저면(261) 및 제2 저면(262)은 모두 축(260)과 수직으로 배치된다. 제1 정다각뿔(251) 및 제2 정다각뿔(252)은 제1 저면(261)의 정다각형의 위상과 제2 저면(262)의 정다각형의 위상을 서로 일치시키면서, 모터에 의해 축(260)을 회전축으로 하여 서로 일체적으로 회전한다. 제1 정다각뿔(251)을 그 축(260)을 포함함과 함께 제1 저면(261)의 정다각형의 1변의 중점(271)을 지나는 가상 평면(270)으로 절단했을 때의 밑각이 α°이다. 제2 정다각뿔(252)을 그 축(260)을 포함함과 함께 제2 저면(262)의 정다각형의 1변의 중점(272)을 지나는 가상 평면(270)으로 절단했을 때의 밑각이 β = (90 - α)°이다. 제1 저면(261)과 제2 저면(262) 사이의 거리(D2)는, 제1 저면(261)의 정다각형의 1변의 중점(271)과 축(260) 사이의 거리(D3)에 tanα을 곱한 것과 제2 저면(262)의 정다각형의 1변의 중점과 축(260) 사이의 거리(D4)에 tan(90 - α)를 곱한 것의 합과 같다. 조사 장치는 회전 미러(250)의 축(260)과 교차하는 방향으로 광을 조사한다.
이에 의해, 회전 미러(250)에 있어서 입사광에 대한 광의 반사 위치가 일정해지고, 광의 반사 위치가 회전에 따라 변동하는 것을 방지할 수 있다. 따라서, 주사 왜곡을 적게 할 수 있다.
또한, 본 실시 형태의 도광 장치에 있어서, 밑각(α)은 45°이다.
이에 의해, 회전 미러(250)를 단순한 형상으로 할 수 있다. 또한, 간결한 광로 레이아웃을 실현할 수 있다.
이상으로 본 발명의 적합한 실시 형태 및 변형예를 설명하였으나, 상기의 구성은 예를 들어 이하와 같이 변경할 수 있다.
반사 유닛(20)에 있어서의 지지 플레이트(41)에 대한 반사 부재(42)의 수는 제1 실시 형태와 같이 3개에 한정되는 것이 아니라, 예를 들어 4개 또는 5개로 할 수 있다.
반사 유닛(20)의 수는 피조사물의 형상 등에 따라서 설정할 수 있고, 제2 실시 형태와 같이 2개로 하는 것 대신에, 예를 들어 3개, 4개, 또는 5개로 할 수 있다.
반사 부재(42)에 있어서의 제1 반사부(81) 및 제2 반사부(82)를 프리즘에 의해 실현할 수도 있다.
도광 장치(13)를 적용하는 광 주사 장치는 레이저 가공 장치(1)에 한정하는 것이 아니라, 예를 들어 화상 형성 장치로 할 수도 있다.
제3 실시 형태에 있어서, 제1 정다각뿔(251) 및 제2 정다각뿔(252)로서 정팔각뿔 대신에 예를 들어 정육각뿔, 정구각뿔 등을 사용할 수 있다. 제1 저면(261) 및 제2 저면(262)의 크기가 서로 다른 구성으로 할 수도 있다.
제3 실시 형태의 회전 미러(250)에 있어서, 광을 반사시키지 않는 부분에 대해서는 자유로운 형상을 채용할 수 있다. 도 13에 나타낸 제1 정다각뿔(251) 및 제2 정다각뿔(252)은 실제로는 정다각뿔대 형상이지만, 광을 반사시키는 부분이 정다각뿔 형상으로 되어 있는 한 정다각뿔에 포함된다. "저면" 및 "밑각"의 호칭은 정다각뿔의 방향을 한정하는 것이 아니다. 회전 미러(250)는 그 축(260)을 임의의 방향으로 하여 사용할 수 있다.
전술한 교시를 고려하면, 본 발명이 많은 변경 형태 및 변형 형태를 취할 수 있는 것은 명확하다. 따라서, 본 발명이 첨부된 특허청구범위 내에서 본 명세서에 기재된 이외의 방법으로 실시될 수 있는 것을 이해하기 바란다.
1: 레이저 가공 장치(광 주사 장치)
13: 도광 장치
20: 반사 유닛(광 반사 장치)
31: 주사 영역
42: 반사 부재
53: 주사용 렌즈
61: 제1 회전축(지지 플레이트의 회전축)
62: 제2 회전축(반사 부재의 회전축)
81: 제1 반사부(반사부)
82: 제2 반사부(반사부)
85: 제1 반사면
86: 제2 반사면
200: 워크(피조사물)
201: 주사선
202: 피조사점
250: 회전 미러(반사 부재)
251: 제1 정다각뿔
252: 제2 정다각뿔
257: 광 반사면
260: 축(회전축)
261: 제1 저면
262: 제2 저면
α, β: 밑각

Claims (12)

  1. 입사광을 반사시키는 평면 형상의 반사면을 갖고, 공전 및 자전을 동시에 행하는 반사 부재를 구비하며,
    상기 반사 부재의 공전 방향과 자전 방향이 동일하고,
    상기 반사 부재의 공전 각속도가 자전 각속도의 2배와 같은 것을 특징으로 하는, 광 반사 장치.
  2. 제1항에 있어서,
    상기 반사면은 상기 반사 부재의 자전축을 사이에 두고 쌍을 이루도록 배치되어 있는 것을 특징으로 하는, 광 반사 장치.
  3. 제1항 또는 제2항에 있어서,
    상기 반사 부재를 복수 구비하고,
    복수의 상기 반사 부재의 공전축은 일치하며,
    복수의 상기 반사 부재는 공전축을 중심으로 한 원을 등각도 간격으로 분할하도록 배치되는 것을 특징으로 하는, 광 반사 장치.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 반사 부재의 공전 및 자전을 행하게 하는 유성 기어열을 구비하는 것을 특징으로 하는, 광 반사 장치.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 반사 부재는 자전축과 수직한 평면을 따라 편향되도록 광을 반사시키고,
    상기 평면은 상기 반사 부재에 대한 입사광에 대하여 상기 자전축 방향으로 오프셋되어 있는 것을 특징으로 하는, 광 반사 장치.
  6. 제5항에 있어서,
    상기 반사면은,
    상기 자전축에 수직한 평면에 대하여 경사진 평면 형상으로 형성된 제1 반사면과,
    상기 자전축에 수직한 평면에 대하여 경사진 평면 형상으로 형성된 제2 반사면을 포함하고,
    상기 자전축에 수직한 평면에 대하여 상기 제1 반사면이 경사지는 방향과 상기 자전축에 수직한 평면에 대하여 상기 제2 반사면이 경사지는 방향이 반대이며,
    상기 입사광은 상기 제1 반사면에서 반사한 후 상기 제2 반사면에서 반사하고,
    상기 제1 반사면 및 상기 제2 반사면은 대칭면에 관하여 서로 대칭이 되도록 형성되며,
    상기 대칭면의 상기 제1 반사면에 관한 거울상 및 상기 대칭면의 상기 제2 반사면에 관한 거울상은 서로 동일한 평면이고,
    상기 자전축이 상기 거울상의 평면에 포함되는 것을 특징으로 하는, 광 반사 장치.
  7. 제6항에 있어서,
    상기 자전축에 수직한 평면에 대하여 상기 제1 반사면이 경사지는 각도는 45°이고,
    상기 자전축에 수직한 평면에 대하여 상기 제2 반사면이 경사지는 각도는 45°인 것을 특징으로 하는, 광 반사 장치.
  8. 제1항 내지 제7항 중 어느 한 항에 기재된 광 반사 장치를 구비하고,
    상기 입사광은 상기 광 반사 장치에서 편향됨으로써 피조사물을 주사하는 것을 특징으로 하는, 도광 장치.
  9. 제8항에 있어서,
    주사용 렌즈를 구비하고,
    상기 주사용 렌즈는 상기 반사 부재로부터 상기 피조사물까지의 광로에 배치되는 것을 특징으로 하는, 도광 장치.
  10. 제8항 또는 제9항에 기재된 도광 장치를 복수 구비하고,
    각각의 상기 도광 장치에 있어서, 상기 광 반사 장치의 상기 반사 부재가 공전 및 자전을 동시에 행함으로써 상기 입사광이 상기 반사면에 닿아 반사하는 반사 상태와, 상기 입사광이 상기 반사면에 닿지 않고 통과하는 통과 상태 사이에서 전환되고,
    상기 반사 상태가 되는 타이밍이 복수의 상기 도광 장치 간에 상이하며,
    복수의 상기 도광 장치에 대응하는 주사 영역의 집합에 의해 하나의 직선 형상의 주사선이 구성되는 것을 특징으로 하는, 광 주사 장치.
  11. 회전 미러와,
    상기 회전 미러를 회전시키는 구동 장치와,
    상기 회전 미러에 광을 조사하는 조사 장치를 구비하고,
    상기 회전 미러는,
    제1 정다각뿔과,
    상기 제1 정다각뿔과 축을 일치시켜 당해 제1 정다각뿔과 마주보도록 배치된 제2 정다각뿔을 구비하며,
    상기 제1 정다각뿔 및 상기 제2 정다각뿔의 각각의 측면이 평면 형상의 광 반사면으로 되어 있고,
    상기 제1 정다각뿔이 갖는 제1 저면과 상기 제2 정다각뿔이 갖는 제2 저면에서 정다각형의 변의 수는 동등하게 되어 있으며,
    상기 제1 저면 및 상기 제2 저면은 모두 상기 축과 수직으로 배치되고,
    상기 제1 정다각뿔 및 상기 제2 정다각뿔은 상기 제1 저면의 정다각형의 위상과 상기 제2 저면의 정다각형의 위상을 서로 일치시키면서, 상기 구동 장치에 의해 상기 축을 회전축으로 하여 서로 일체적으로 회전하며,
    상기 제1 정다각뿔을 그 축을 포함함과 함께 상기 제1 저면의 정다각형의 1변의 중점을 지나는 평면으로 절단했을 때의 밑각이 α°이고,
    상기 제2 정다각뿔을 그 축을 포함함과 함께 상기 제2 저면의 정다각형의 1변의 중점을 지나는 평면으로 절단했을 때의 밑각이 (90 - α)°이며,
    상기 제1 저면과 상기 제2 저면 사이의 거리는, 상기 제1 저면의 정다각형의 1변의 중점과 상기 회전축 사이의 거리에 tanα를 곱한 것과, 상기 제2 저면의 정다각형의 1변의 중점과 상기 회전축 사이의 거리에 tan(90 - α)를 곱한 것의 합과 같고,
    상기 조사 장치는 상기 회전 미러의 상기 회전축과 교차하는 위치에 광을 조사하는 것을 특징으로 하는, 광 주사 장치.
  12. 제11항에 있어서,
    밑각 α가 45°인 것을 특징으로 하는, 광 주사 장치.
KR1020217034842A 2019-04-01 2020-03-31 광 반사 장치, 도광 장치 및 광 주사 장치 KR102658463B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019069626 2019-04-01
JPJP-P-2019-069626 2019-04-01
PCT/JP2020/014750 WO2020204020A1 (ja) 2019-04-01 2020-03-31 光反射装置、導光装置、及び光走査装置

Publications (2)

Publication Number Publication Date
KR20210143292A true KR20210143292A (ko) 2021-11-26
KR102658463B1 KR102658463B1 (ko) 2024-04-18

Family

ID=72668960

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217034842A KR102658463B1 (ko) 2019-04-01 2020-03-31 광 반사 장치, 도광 장치 및 광 주사 장치

Country Status (8)

Country Link
US (1) US11921235B2 (ko)
EP (2) EP4295987A3 (ko)
JP (1) JP7154391B2 (ko)
KR (1) KR102658463B1 (ko)
CN (2) CN117850023A (ko)
IL (1) IL286840A (ko)
TW (2) TWI747769B (ko)
WO (1) WO2020204020A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112596196B (zh) * 2020-12-16 2023-07-21 中国科学院上海光学精密机械研究所 大口径连续可调空心角锥反射镜装置和调整方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109737A (ko) * 1974-02-04 1975-08-29
JP2005338730A (ja) * 2004-05-31 2005-12-08 Konica Minolta Medical & Graphic Inc 回転多面鏡及び光走査装置
US20070291487A1 (en) * 2006-06-16 2007-12-20 Sl Corporation Lamp assembly automatically controlling main beam direction and additional beam direction
JP2018097055A (ja) 2016-12-09 2018-06-21 川崎重工業株式会社 ポリゴンミラー回転装置
JP2018105903A (ja) 2016-12-22 2018-07-05 川崎重工業株式会社 ミラー旋回装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2198858B (en) * 1984-03-02 1989-05-24 British Aerospace Surveillance apparatus
US4816661A (en) * 1986-12-22 1989-03-28 Symbol Technologies, Inc. Scan pattern generators for bar code symbol readers
US5124539A (en) * 1989-06-16 1992-06-23 Symbol Technologies, Inc. Scan pattern generators for bar code symbol readers
US5059779A (en) * 1989-06-16 1991-10-22 Symbol Technologies, Inc. Scan pattern generators for bar code symbol readers
US5200599A (en) * 1989-06-16 1993-04-06 Symbol Technologies, Inc Symbol readers with changeable scan direction
JPH0429214A (ja) * 1990-05-25 1992-01-31 Hitachi Ltd 光ビーム走査装置
JP3577810B2 (ja) * 1995-10-31 2004-10-20 石川島播磨重工業株式会社 湿式成形方法及びその装置
JP2001117042A (ja) * 1999-10-20 2001-04-27 Canon Inc 光偏向走査装置
JP2001264671A (ja) * 2000-03-15 2001-09-26 Sumitomo Heavy Ind Ltd 光線束スキャニング装置
KR100462358B1 (ko) * 2004-03-31 2004-12-17 주식회사 이오테크닉스 폴리곤 미러를 이용한 레이저 가공장치
TW201400864A (zh) * 2012-06-27 2014-01-01 Metal Ind Res & Dev Ct 光學掃描裝置
JPWO2017065048A1 (ja) * 2015-10-16 2018-08-02 コニカミノルタ株式会社 光走査型の対象物検出装置
JP2017138298A (ja) * 2016-02-03 2017-08-10 コニカミノルタ株式会社 光走査型の対象物検知装置
JPWO2018008393A1 (ja) * 2016-07-07 2019-04-25 コニカミノルタ株式会社 レーザーレーダー装置
CN108121146B (zh) * 2016-11-30 2024-02-09 北京弘益鼎视科技发展有限公司 全景扫描装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109737A (ko) * 1974-02-04 1975-08-29
JP2005338730A (ja) * 2004-05-31 2005-12-08 Konica Minolta Medical & Graphic Inc 回転多面鏡及び光走査装置
US20070291487A1 (en) * 2006-06-16 2007-12-20 Sl Corporation Lamp assembly automatically controlling main beam direction and additional beam direction
JP2018097055A (ja) 2016-12-09 2018-06-21 川崎重工業株式会社 ポリゴンミラー回転装置
JP2018105903A (ja) 2016-12-22 2018-07-05 川崎重工業株式会社 ミラー旋回装置

Also Published As

Publication number Publication date
JP7154391B2 (ja) 2022-10-17
TW202103829A (zh) 2021-02-01
JPWO2020204020A1 (ko) 2020-10-08
US20220155423A1 (en) 2022-05-19
EP3951475A1 (en) 2022-02-09
TWI736200B (zh) 2021-08-11
US11921235B2 (en) 2024-03-05
TWI747769B (zh) 2021-11-21
IL286840A (en) 2021-12-01
EP3951475A4 (en) 2023-05-03
EP4295987A3 (en) 2024-03-20
CN113711102A (zh) 2021-11-26
KR102658463B1 (ko) 2024-04-18
TW202124081A (zh) 2021-07-01
CN117850023A (zh) 2024-04-09
EP4295987A2 (en) 2023-12-27
WO2020204020A1 (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
KR102658463B1 (ko) 광 반사 장치, 도광 장치 및 광 주사 장치
JP2010515093A (ja) 光学スキャナ、並びに光学スキャナを用いた構成およびシステム
RU2777881C1 (ru) Светоотражающее устройство, светонаправляющее устройство и устройство оптического сканирования
TWI720833B (zh) 導光裝置以及光掃描裝置
RU2778820C1 (ru) Светонаправляющее устройство
JP7193367B2 (ja) ポリゴンミラー、導光装置及び光走査装置
WO2023048109A1 (ja) レーザ加工方法
KR102530490B1 (ko) 도광 장치 및 레이저 가공 장치
WO2023282223A1 (ja) レーザ走査装置及びレーザ走査方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right