JP3577810B2 - 湿式成形方法及びその装置 - Google Patents

湿式成形方法及びその装置 Download PDF

Info

Publication number
JP3577810B2
JP3577810B2 JP28356795A JP28356795A JP3577810B2 JP 3577810 B2 JP3577810 B2 JP 3577810B2 JP 28356795 A JP28356795 A JP 28356795A JP 28356795 A JP28356795 A JP 28356795A JP 3577810 B2 JP3577810 B2 JP 3577810B2
Authority
JP
Japan
Prior art keywords
mold
raw material
material slurry
pressure
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28356795A
Other languages
English (en)
Other versions
JPH09123132A (ja
Inventor
孝志 杉田
昭宏 岡
薫 宮原
新 古賀
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP28356795A priority Critical patent/JP3577810B2/ja
Publication of JPH09123132A publication Critical patent/JPH09123132A/ja
Application granted granted Critical
Publication of JP3577810B2 publication Critical patent/JP3577810B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Moulding By Coating Moulds (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セラミックス粉体等を所定形状に成形するための湿式成形方法及びその装置に関するものである。
【0002】
【従来の技術】
一般に、焼結に供するセラミックス等の原料粉末を所定形状に成形する方法としては、目的の形状や仕様に合わせて、加圧成形法(乾式加圧,ラバープレス)、鋳込み成形法、ドクターブレード法、可塑成形法(押出し成形法,射出成形法)等が行われている。このうち高密度の成形体を得るものとして、図10に示すようなサイクリック成形法のラバープレスが提案されている。この成形方法は、ゴム型1に原料の粉末2を入れ、これを液体(水)中に沈めて、この液体3ごと加圧するものであり、加圧手段として主ポンプ4のほかに副ポンプ5を備え、タンク6の液体を圧送するようになっている。そしてこれらポンプ4,5を適宜制御することで静水圧を変化させて、通常の液圧成形法よりも圧密効果を高めようとするものである。
【0003】
【発明が解決しようとする課題】
しかしながら前記ラバープレスによるサイクリック成形法は、所定の高い加圧力を得るために強力なポンプ4,5を必要とし、装置が大規模で高価なものとなってしまうと共に、原料粉末2をゴム型1に均一に充填させることが難しく、手間がかかって量産性に欠けるという問題があった。
【0004】
【課題を解決するための手段】
前記課題を解決すべく本発明は、原料スラリーを自転及び公転させて、その遠心力を合成した変動圧力により所定形状に成形する湿式成形方法であって、上記変動圧力のうち公転による変動成分が自転による基本成分よりも小さくなるように自転及び公転させるようにしたものである
このように加圧することで、原料スラリー自体に加圧力が作用して、高い圧密効果が得られ、高密度の成形品を効率よく製造することができる。なお、公転による変動成分が自転による基本成分よりも大きくなると、成形の機能よりも混合などの機能が卓越するため、変動成分を基本成分よりも小さくしているのである。
また、上記原料スラリーに流度分布の広い粉末のものを使用することで、粗粒の部分が外側に位置し、径方向内方へ移行するに従って順次細粒となり、最も細粒の部分が軸心側に位置するような傾斜機能を有した成形品を製造することができる。
【0005】
また、本発明は、前記成形方法を実施するための装置であって、通水性がある周壁を有し原料スラリーが供給されるモールドと、該モールドをその中心軸回りに自転させると共にモールド外方の公転軸回りに公転させる回転駆動機構とを備え、該回転駆動機構は、上記自転によりモールド内の原料スラリーに加わる圧力の基本成分をPsとし、上記公転によりモールド内の原料スラリーに加わる圧力の変動成分をPdとすると、Pd/Ps<1を満足するように上記モールドを自転及び公転させるものであるものである。
上記回転駆動手段としては、遊星部にモールドを設けた遊星歯車機構にて構成されたものであることが好ましい。この遊星歯車機構は、太陽歯車の回転駆動でモールドが所定の角速度を以て自転及び公転し、その遠心力の合成による変動圧力が原料スラリー自身に作用して、所定の形状に成形される。
【0006】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に従って説明する。
【0007】
まず図1及び図2によって、本発明の湿式成形方法の基本概念を説明する。この湿式成形方法は、自転及び公転の遠心力Fによる変動圧力Pで、原料スラリーを脱水させつつ固化するものであり、原料スラリーを自転及び公転させるための手段として遊星機構11を例示した。この遊星機構11は、回転する円板或いは円柱体である太陽部12と、太陽部12と同心状のリング13と、太陽部12及びリング13に噛合或いは摩擦接触して太陽部12の回転駆動により自転及び公転する四個の円筒体で成る遊星部14とで構成されている。そして遊星部14の内方を原料スラリーが注入される成形空間とする。すなわち遊星部14の内筒面を成形着肉面とし、その内壁に通水性を有したモールド15を装着させるか、或いは内壁自体をモールド15の周壁として形成する。
【0008】
この遊星機構11において、太陽部12を所定の角速度ωsで駆動させると、遊星部14はその角速度ωsに比例した角速度ωpにて自転すると共に、所定の角速度Ωpにて公転する。その比例割合は太陽部12及び遊星部14の半径Rs,Rpの比で決定される。遊星部14内に注入された原料スラリーにはこの自転と公転による遠心力Fが作用する。すなわち遊星部14の自転によって、モールド15の内壁面の全周に亘りその壁面に垂直な遠心力Fが発生する。一方遊星部14の公転によって、太陽部12の軸心Osと遊星部14の軸心Opとを結ぶ線上で外方に向かう遠心力Fが発生するが、時間経過でみると、遊星部14は自転しているので、この圧力はモールド内壁面に対して変動する圧力として作用する。すなわち図2に示したように、静的な圧力である自転成分(基本成分Ps)に、動的な圧力である公転成分(変動成分Pd)が加算された状態となる。ここで変動成分Pdが基本成分Psよりも大きくなると、成形の機能よりも混合などの機能が卓越するので、変動成分Pdを基本成分Psよりも小さくする必要がある。すなわちこれら成分の関係は次式とするのが好ましい。
【0009】
Pd/Ps<1…▲1▼
▲1▼式の成立条件、すなわち変動圧力成分比(Pd/Ps)の値は、太陽部12、遊星部14、モールド15内面の各半径Rs,Rp,Rmと、自転及び公転の角速度ωp,Ωpを定めると、それぞれの半径比(n=Rp/Rs,α=Rm/Rp)を用いて求めることができる。図3にその計算結果を示すと共に、以下にその計算過程を示す。
【0010】
まず遊星部14の自転による遠心力Fと発生圧力Pを計算する。仮定として原料スラリーは遊星部14と同期して回転し、スリップは生じないものとする。図4(a)に示すように、半径rでdrなる微小幅に存在する原料スラリーSに発生する遠心力dFは、スラリー密度ρ,遊星部14の円筒長さl(図示略)により「2πρ・l・ωp・rdr」で表わされる。従ってモールド内壁面に作用する遠心力F及び発生圧力(作用面圧力)Pは、次式で表わされる。
【0011】
=2πl・ωp Rm(ρr)dr…▲2▼
=F/2π・Rm・l=(ωp/Rm)∫ Rm(ρ・r)dr…▲3▼
この▲2▼,▲3▼式において、スラリー密度ρは一般に半径rと時間の関数と考えられ、定数ではないが、ここでは簡単のために一定の平均値ρeとして考える。従って最終的に、遠心力F及び発生圧力Pは次のように求められる。
【0012】
Figure 0003577810
次に遊星部14の公転による遠心力Fと発生圧力Pを計算する。図4(b)に示すように、公転のみによる遠心力総和は次式で表わされる。
【0013】
=l・ρe・Ωp−R +Rxrdr…▲4▼
ここにxは公転軌道に沿う遊星部長さ、−R=Rs+Rp−Rm,+R=Rs+Rp+Rmである。
【0014】
▲4▼式において、x=f(r)であるが、簡単のためにスラリー遠心力を「カタマリ」として考え、r=Rs+Rpなるモールド15の重心(Op)に原料スラリーSの全質量を集中させるものとし、次式に示すように変形する。
【0015】
=πRm・l(Rs+Rp)ρe・Ωp…▲4▼*
そして図4(b)に示したように、遠心力Fの向きは常に公転軸心Osから半径方向外方に向かう方向であり、地点Aでモールド内壁面に対し最大荷重(正方向の圧力)となり、地点Cでは最小荷重(負方向の圧力)となる。地点B,Dではその中間である。この遠心力Fによる作用面圧力を求めるのに、簡単のため▲4▼*式の力はDAB面に全部作用し、BCD面には作用しないとする。このときの圧力P2Aは次式で表わされる。
【0016】
2A=F/2Rm・l=1/2 πRm(Rs+Rp)ρe・Ωp…▲5▼
2Aは遊星部14の公転により発生する受圧側投影面積あたりの平均圧力であるが、モールド15の壁面は角速度ωpで自転しているので、地点A,B,C,Dの位置が2π/ωpなる周期で移動することになる。その結果、P2Aはモールド壁面に対して変動する力として作用する。従って公転による発生圧力Pは次式で表わされる。
【0017】
Figure 0003577810
次に自転と公転による合成力Pを計算する。P=P+Pであるので、前記▲3▼*式及び▲6▼式を加算し、さらにα=Rm/Rp,n=Rp/Rs,ωp=ωs/n,Ωp=ωs/(1+2n)により整理すると次式が成立する。
【0018】
P=ρe・Rs・ωs[α{α/3+N・sin (ωs・t/n)}]…▲7▼
ここにN=πn(1+n)/2(1+2n)
従って、▲7▼式の{}内が0以上となるようにすれば、モールド15内には負圧が発生することなく、成形に好適な変動圧力が得られる。すなわち成立条件は次式で表わされる。
【0019】
(α/3)−N>0…▲8▼−1
+n<1/{(1.5 π/α)−4}…▲8▼−2
ここにn>0,0<α<1であるので、成立範囲はα,nの制限範囲として存在する。また▲7▼式より明らかなように、成形圧力Pは太陽部12の半径Rsと角速度ωsの積の二乗に比例するものであり、式中の定数項が基本成分Psに、変数項が変動成分Pdにそれぞれ相当するから、変動圧力成分比(Pd/Ps)は次式で表わされる。
【0020】
Pd/Ps=3πn(1+n)/2α(1+2n)…▲9▼
従って、▲9▼式<1が成立条件であり、かつ図3に示すような形状制限があることになる。また変動圧力Pの周波数fは次式で表わされる。
【0021】
f=ωs/2πn
なお以上の演算は、原料スラリーSが液体で密度一定(半径、時間に対して独立)でスリップ流れが生じないものとしたが、実際の成形では原料スラリーSがモールド内壁に着肉、ケーキ化し密度変化することとなる。しかしながら遠心力場は不変であり、遠心力作用による圧力発生メカニズムは妨げられることがない。すなわち、ケーキ化した物質の遠心力が全て成形圧力として有効に作用するとは限らないが、粉体間に若干の水分が存在しているとすれば、流動性を有しており、圧密が有効に進行すると考えられる。この遠心力場を利用することで、成形品の機能傾斜化が容易となり、複数の種類の原料スラリーSを用意して時間差で供給すると、複合化も可能である。さらに変動圧力Pを作用させることで、流動を継続すると流動抵抗が減少するチクソトロピー性スラリーでは流動性が容易となり、成形時間を著しく短くすることができる。
【0022】
また図3で示したように、変動圧力成分比(Pd/Ps)は半径比n,αで決定され、やや設計範囲が狭く、変動成分Pdが大きい傾向にある。これはリング13を固定とし、太陽部12のみを駆動させるようになっており、変動成分Pdの大きさは公転半径(Rs+Rp)と公転角速度Ωpとの積の二乗に比例し、その周波数fは遊星部の自転角速度ωpで決定されるためである。そこでこの動的な成分(Pd)を制御するためには、リング13を独立に自転させるようにすればよい。例えばリング13の角速度ωrを公転角速度Ωpと逆方向に与えると(ωr=−Ωp)、遊星部14は公転せず、変動成分Pdはなくなる。したがって0<ωr<|Ωp|に設定することにより、簡単に任意の変動成分Pdと周波数fを得ることができる。すなわち前記諸式において「Ωp」に「Ωp−ωr」を代入すればよい。
【0023】
次に本発明の湿式成形装置の実施の形態を、以上の湿式成形方法を実施するための装置として説明する。
【0024】
図5及び図6に示すように、この湿式成形装置は、通水性がある周壁21を有し原料スラリーSが適宜供給される複数(四個)のモールド22と、これらモールド22をその中心軸Op回りにそれぞれ回転させると共に、モールド外方の公転軸Os回りに回転させるための回転駆動手段たる遊星歯車機構23とにより主として構成されている。
【0025】
モールド22は、成形品の外形をかたどる所定の内径(Rm)及び外径(Rp)を有した円筒体で成る。モールド22の軸方向上端には、原料スラリーSを注入するための注入口24が形成された上栓25が嵌着され、下端は成形品を取り出すことができるように軸方向に抜脱可能に形成された下栓26が嵌着されている。周壁22には排水(脱水)用の穴27が多数形成され、その内面には原料スラリーSの粉末の排出を阻み、水分だけを通すペーパーフィルタ51が装着されている。
【0026】
遊星歯車機構23は、モールド22の軸方向上下端に一体的に形成されて遊星部を構成する遊星歯車28と、その遊星歯車28に噛合する太陽部たる一対の太陽歯車29と、太陽歯車29と同心状に形成されて遊星歯車28に噛合する内歯30を有したリング31とで構成されている。一対の太陽歯車29は、所定の外径(Rs)で成り、その軸心Os位置に設けられたシャフト33にて同軸に連結されている。シャフト33は軸受32にて固定系に軸支され、その下端延出部34には駆動源となるモータ35が伝動手段36を介して連結されている。従ってモータ35の回転出力により太陽歯車29が所定の角速度(ωs)で回転すると、遊星歯車28が所定の角速度(Ωp)で公転軌道37上を旋回すると共に、所定の角速度(ωp)でその中心軸Op回りに自転することとなる。なお伝動手段36としては、ギヤ、プーリ及びベルト、チェーン及びスプロケットなど、公知の動力伝達機構が使用できる。またリング31にモータ38及び伝動手段39を設けて、太陽歯車29と反対方向に回転させるようにしてもよい。そのモータ38は太陽歯車29のモータ35と兼用にして、その回転方向及び回転速度を適宜変更するような伝達手段のみを設けるものとしてもよい。
【0027】
また太陽歯車29とモールド22との間には放射状の連結アーム40が設けられている。連結アーム40は、その基端40aが太陽歯車29の上面の軸心Os位置にジョイント41で固定されている。また先端40bはモールド22の上端の軸心Op位置においてその軸回りに回転自在なロータリージョイント42にて連結されている。なおリング31を太陽歯車29と反対方向に回転させる場合は、連結アーム40の基端40aの連結もロータリージョイントとする。そして連結アーム40の内部には長手方向に沿ってスラリー供給通路43が形成され、上栓25の注入口24に連通している。連結アーム40の基端40aにはロータリージョイント52を介して移送管44が接続されている。移送管44の基端側には原料スラリーSのタンク45が設けられていると共に、途中にその原料スラリーSを適宜圧送するフィーダー(スラリーポンプ)46が設けられている。原料スラリーSとしては、成形品の材質となるセラミックス、金属、有機物などの粉体、或いは短繊維等の原料を、液体(水)に混合させて適度な濃度(密度ρ)にしたものを使用する。
【0028】
さらに移送管44には温風ライン47が接続されている。温風ライン47にはエアを圧送するためのファン48と、エアを適宜加熱するためのヒータ49が設けられ、成形が終了した時点で、移送管44を利用してモールド22内に温風を送ることで、成形品の乾燥を促進するようになっている。また移送管44と温風ライン47との接続部には制御弁50が設けられ、原料スラリーSの移送を連続或いは間欠に制御したり、温風との切り替えを行うようになっている。
【0029】
このような構成の湿式成形装置により、例えばパイプ形状の部品を成形するに際しては、まずモータ35を作動させてその回転出力により太陽歯車29を回転させ、遊星歯車28を自転及び公転させる。このとき連結アーム40は、遊星歯車28の自転を許容しつつ、その公転に追従して旋回する。また必要ならばリング31を太陽歯車29と反対の方向に所定の角速度(ωr)で回転させる。モータ35の起動からモールド22が所定の定常回転(Ωp,ωp)に達したなら(図2参照)、フィーダ46を駆動させる。フィーダ46は、原料スラリーSを連続的に、或いは間欠的にスラリータンク45から移送し、連結アーム40のスラリー供給通路43を経由させて、モールド22内に所定の量だけ注入する。注入された原料スラリーSには、その粉末粒子自身に遠心力Fが作用し、基本成分Ps及び変動成分Pdを含む変動圧力Pが発生する。この変動圧力Pによって圧密は効果的に進行し、原料スラリーSが短時間のうちに脱水されつつ固められて成形される。成形が終了したなら回転を停止させる(図2参照)。そして制御弁50の切り替えにより温風ライン47で温風をモールド22内に供給して、成形品を乾燥させた後、ペーパーフィルタ51ごとモールド22から離脱させる。この温風による乾燥を円滑に行うために、例えばモールド22の下端に温風出口を設けてもよい。
【0030】
このように、モールド22を自転及び公転させることで、原料スラリーSの粉末粒子自身に遠心力による変動圧力Pを作用させるようにしたので、従来の外圧による固化では不可避であった圧力伝播の減少化が生じず、加圧力が極めて有効に作用して、高能率成形が達成される。また基本成分Psと変動成分Pdとで成る変動圧力Pにより圧密成形するようにしたので、極めて短時間に高密度の成形品を製造することができる。そして太陽歯車29の回転を制御するだけの簡単な構成により、成形条件を一定にでき、多量に品質が同じ成形品を生産することができる。また動的な圧力(Pd)は、一般のスラリーによくみられるチクソトロピー性スラリーに対して有効であり、低粘度化をうながし、流動化を良好にし、短時間での高圧密成形が達成される。さらにリング31を適宜回転させることによって、モールド22の公転の角速度(Ωp)を制御することができ、変動圧力Pの変動成分Pdを任意に変えることができる。また成形終了後にスラリー供給通路43を利用して温風を送り、湿潤した状態の成形品を乾燥させるようにしたので、焼結に供する前に必要な乾燥工程の省略化、或いは簡略化が達成される。またペーパーフィルタ51をモールド22内に設けることにより、乾燥した成形品をフィルタごと型から離脱させることができるので、取り出しが容易になり、より一層の生産性の向上が達成される。
【0031】
またモールド22内においては、圧密成形がその壁面位置から順次進行するので、このことを利用して、成形品に付加機能を与えることができる。例えば粒度分布の広い粉末の原料スラリーSを使用すると、図9(a)に示すように、粗粒の部分52が外側に位置し、径方向内方へゆくに従って順次細粒となり、最も細粒の部分53が軸心側に位置するような傾斜機能を有した成形品を製造することができる。また複数の品種の原料スラリーSを用いて、時間差を与えてモールド22内に注入することにより、図9(b)に示すように、異なる材質54,55,56が所望の厚さで同心状に積層した成形品を製造することができる。さらに原料としては粉末だけでなく、短繊維系の原料も注入可能であり、図9(c)に示すように粉末の層57に短繊維の層58が挟まれた複合成形品(繊維強化部品)を製造することができる。
【0032】
次に図7及び図8は、本発明の他の実施の形態を示したもので、リング61には内歯が形成されておらず、遊星部(遊星歯車28及びモールド22)の径方向外方を覆うケーシングとして構成されている。また連結アーム40の基端40aは、太陽歯車29に対して回動自在となるようにロータリージョイント65で連結されていると共に、その軸部62にはモータ63及び伝動手段64が設けられ、太陽歯車29の回転とは別個に旋回駆動されるようになっている。従って、太陽歯車29と反対方向に、その駆動角速度ωsとは独立した角速度ωaで連結アーム40を旋回させることで、モールド22の自転と公転とを独立して制御することができる。すなわち変動圧力Pの変動成分Pdと基本成分Psとの関係を自由に設定できる。このほかの構成及び作用は、図5及び図6のものと同様であるので省略する。
【0033】
なお以上の湿式成形装置の実施の形態では、モールド22と遊星歯車28とを一体に設けるものとしたが、モールド22に公転及び自転の回転駆動を与えるようになっていれば、どのように構成してもよい。またモールド22の形状は円筒形に限らず、生産する成形品の形状に相応させた形状としてよい。この場合、その外壁が円筒形になるようにし、回転バランスをとるようにする。さらに図示例ではモールド22の数を四個としたが、太陽部及び遊星部のサイズにより可能なかぎり多数設けるようにしてもよい。この場合、さらに同一成形品の量産化に貢献できる。
【0034】
【発明の効果】
以上要するに本発明によれば、自転及び公転の遠心力を利用した変動圧力を原料スラリー自身に作用させることで、簡単な構成にて高圧密の成形品を高能率で得られるという優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明の湿式成形方法の基本原理を説明するための平面図である。
【図2】図1の機能を説明するための圧力変化図ある。
【図3】図1の遊星部の幾何パラメータと変動圧力成分比との関係図である。
【図4】図1の遠心力及び発生圧力を説明するための平面図である。
【図5】本発明の湿式成形装置の実施の形態を示した要部平面図である。
【図6】図5の側断面図である。
【図7】本発明の湿式成形装置の他の実施の形態を示した要部平面図である。
【図8】図7の側断面図である。
【図9】本発明の作用効果を説明するための拡大側断面図である。
【図10】従来の成形方法を説明するための概念図である。
【符号の説明】
11 遊星機構
12 太陽部
13 リング
14 遊星部
15,22 モールド
21 周壁
23 遊星歯車機構(回転駆動手段)
28 遊星歯車(遊星部)
29 太陽歯車(太陽部)
S 原料スラリー
F 遠心力
P 変動圧力
Pd 変動成分(公転成分)
Ps 基本成分(自転成分)

Claims (4)

  1. 原料スラリーを自転及び公転させて、その遠心力を合成した変動圧力により所定形状に成形する湿式成形方法であって、上記変動圧力のうち公転による変動成分が自転による基本成分よりも小さくなるように自転及び公転させることを特徴とする湿式成形方法。
  2. 上記原料スラリーに流度分布の広い粉末のものを使用することで、粗粒の部分が外側に位置し、径方向内方へ移行するに従って順次細粒となり、最も細粒の部分が軸心側に位置するような傾斜機能を有した成形品を製造するようにした請求項1記載の湿式成形方法。
  3. 通水性がある周壁を有し原料スラリーが供給されるモールドと、該モールドをその中心軸回りに自転させると共にモールド外方の公転軸回りに公転させる回転駆動機構とを備え、該回転駆動機構は、上記自転によりモールド内の原料スラリーに加わる圧力の基本成分をPsとし、上記公転によりモールド内の原料スラリーに加わる圧力の変動成分をPdとすると、Pd/Ps<1を満足するように上記モールドを自転及び公転させるものであることを特徴とする湿式成形装置。
  4. 上記回転駆動手段が、遊星部に上記モールドを設けた遊星歯車機構にて構成されたものである請求項3に記載の湿式成形装置。
JP28356795A 1995-10-31 1995-10-31 湿式成形方法及びその装置 Expired - Fee Related JP3577810B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28356795A JP3577810B2 (ja) 1995-10-31 1995-10-31 湿式成形方法及びその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28356795A JP3577810B2 (ja) 1995-10-31 1995-10-31 湿式成形方法及びその装置

Publications (2)

Publication Number Publication Date
JPH09123132A JPH09123132A (ja) 1997-05-13
JP3577810B2 true JP3577810B2 (ja) 2004-10-20

Family

ID=17667205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28356795A Expired - Fee Related JP3577810B2 (ja) 1995-10-31 1995-10-31 湿式成形方法及びその装置

Country Status (1)

Country Link
JP (1) JP3577810B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024136392A1 (ko) * 2022-12-20 2024-06-27 주식회사 그린첨단소재 희토류 소결자석의 제조방법, 장치 및 이를 통하여 제조된 희토류 소결자석

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020204020A1 (ja) * 2019-04-01 2020-10-08 川崎重工業株式会社 光反射装置、導光装置、及び光走査装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024136392A1 (ko) * 2022-12-20 2024-06-27 주식회사 그린첨단소재 희토류 소결자석의 제조방법, 장치 및 이를 통하여 제조된 희토류 소결자석

Also Published As

Publication number Publication date
JPH09123132A (ja) 1997-05-13

Similar Documents

Publication Publication Date Title
US4205919A (en) Mixer for and method for mixing particulate constituents
FI91487C (fi) Laite materiaalisekoitusten käsittelemiseksi
JP3577810B2 (ja) 湿式成形方法及びその装置
JP4603688B2 (ja) ばら粒状材料の高密度化
CN206965154U (zh) 一种中药中空浓缩器
US2623737A (en) Material conditioning apparatus
CN207563224U (zh) 一种适用于氨基模塑料的高速筛粉设备的筛粉主机
US5695281A (en) Device for manufacturing paint
CN214389751U (zh) 一种陶瓷胶注模装置
US20070008813A1 (en) Apparatus for foaming a slurry
CN216321464U (zh) 一种无机纳米粉体自动化生产装置
CN214561841U (zh) 一种真空混练挤管一体机
CN210495515U (zh) 一种浆料沉积塔
CN210945451U (zh) 一种超细重质碳酸钙高低速串联改性装置
CN114749059A (zh) 一种石墨烯基双金属纳米复合催化剂的制备装置
CN111632517A (zh) 一种用于水泥制品生产的原料搅拌装置
WO2000050174A1 (fr) Dispositif de traitement de matiere particulaire
US3200184A (en) Process for forming hollow articles
JP2003231116A (ja) 石膏ボード製造工程における泥漿比重調整方法及び泡量制御方法
US409560A (en) carey
JPH0422822Y2 (ja)
CN211306826U (zh) 一种文艺陶瓷原料搅拌箱
CN217531310U (zh) 一种水泥涵管生产用水泥搅拌装置
CN1532174A (zh) 粉状硝铵炸药连续碾混机
SU1414659A1 (ru) Планетарный смеситель

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040705

LAPS Cancellation because of no payment of annual fees