KR20210141402A - 유기 발광 소자 - Google Patents

유기 발광 소자 Download PDF

Info

Publication number
KR20210141402A
KR20210141402A KR1020210062250A KR20210062250A KR20210141402A KR 20210141402 A KR20210141402 A KR 20210141402A KR 1020210062250 A KR1020210062250 A KR 1020210062250A KR 20210062250 A KR20210062250 A KR 20210062250A KR 20210141402 A KR20210141402 A KR 20210141402A
Authority
KR
South Korea
Prior art keywords
compound
mmol
added
organic layer
water
Prior art date
Application number
KR1020210062250A
Other languages
English (en)
Other versions
KR102545207B1 (ko
Inventor
김민준
이동훈
서상덕
김영석
김동희
최승원
심재훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202180013215.5A priority Critical patent/CN115066761A/zh
Priority to PCT/KR2021/006089 priority patent/WO2021230714A1/ko
Publication of KR20210141402A publication Critical patent/KR20210141402A/ko
Application granted granted Critical
Publication of KR102545207B1 publication Critical patent/KR102545207B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • H01L51/0067
    • H01L51/0061
    • H01L51/0071
    • H01L51/0073
    • H01L51/5012
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 구동 전압, 효율 및 수명이 개선된 유기발광 소자를 제공한다.

Description

유기 발광 소자{Organic light emitting device}
본 발명은 구동 전압, 효율 및 수명이 개선된 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기 에너지를 빛 에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에서, 구동 전압, 효율 및 수명이 개선된 유기 발광 소자의 개발이 지속적으로 요구되고 있다.
한국특허 공개번호 제10-2000-0051826호
본 발명은 구동 전압, 효율 및 수명이 개선된 유기 발광 소자에 관한 것이다.
본 발명은 하기의 유기 발광 소자를 제공한다:
양극; 음극; 및 상기 양극과 음극 사이의 발광층을 포함하고,
상기 발광층은 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하는,
유기 발광 소자:
[화학식 1]
Figure pat00001
상기 화학식 1에서,
Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
L1 내지 L3는 각각 독립적으로, 단일결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고,
R1은 수소; 중수소; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
Ar1, Ar2 및 R1 중 적어도 하나는 나프틸, 페닐 나프틸, 나프틸 페닐, 페난트레닐, 플루오란테닐, 디벤조퓨라닐, 디벤조티오페닐, 벤조나프토퓨라닐, 또는 벤조나프토티오페닐이고,
a은 0 내지 7의 정수이고,
[화학식 2]
Figure pat00002
상기 화학식 1에서,
A는 인접한 고리와 융합된 나프탈렌 고리이고,
Ar3 및 Ar4는 각각 독립적으로, 치환 또는 비치환된 C1-60 알킬; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
Ar5는 치환 또는 비치환된 C1-60 알킬; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
L4 내지 L6는 각각 독립적으로, 단일결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고,
L7은 단일결합; 또는 치환 또는 비치환된 C6-60 아릴렌이다.
상술한 유기 발광 소자는 발광층에 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물을 포함함으로써, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다.
도 1은, 기판(1), 양극(2), 발광층(3), 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는, 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 전자차단층(7), 발광층(3), 정공저지층(8), 전자수송층(9), 전자주입층(10) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 명세서에서,
Figure pat00003
또는
Figure pat00004
는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.
Figure pat00005
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.
Figure pat00006
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.
Figure pat00007
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸, 사이클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure pat00008
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
이하, 각 구성 별로 본 발명을 상세히 설명한다.
양극 및 음극
본 발명에서 사용되는 양극 및 음극은, 유기 발광 소자에서 사용되는 전극을 의미한다.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
정공주입층
본 발명에 따른 유기 발광 소자는, 필요에 따라 상기 양극 상에 정공주입층을 추가로 포함할 수 있다.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 또한, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다.
정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
정공수송층
본 발명에 따른 유기 발광 소자는, 필요에 따라 상기 양극 상에(또는 정공주입층이 존재하는 경우 정공주입층 상에) 정공수송층을 포함할 수 있다.
상기 정공수송층은 양극 또는 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다.
상기 정공 수송 물질의 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
전자차단층
본 발명에 따른 유기 발광 소자는, 필요에 따라 상기 정공수송층 상에 전자차단층을 포함할 수 있다.
상기 전자차단층은 음극에서 주입된 전자가 발광층에서 재결합되지 않고 정공수송층으로 넘어가는 것을 방지하기 위해 정공수송층과 발광층의 사이에 두는 층으로, 전자저지층 또는 전자억제층으로 불리기도 한다. 전자차단층에는 전자수송층보다 전자 친화력이 작은 물질이 바람직하다.
발광층
본 발명에서 사용되는 발광층은, 양극과 음극으로부터 전달받은 정공과 전자를 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 층을 의미한다. 일반적으로, 발광층은 호스트 재료와 도펀트 재료를 포함하며, 본 발명에는 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물을 호스트로 포함한다.
바람직하게는, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1 내지 화학식 1-3 중 어느 하나로 표시될 수 있다:
[화학식 1-1]
Figure pat00009
[화학식 1-2]
Figure pat00010
[화학식 1-3]
Figure pat00011
상기 화학식 1-1 내지 1-3에서,
Ar1, Ar2, L1 내지 L3 및 R1은 화학식 1에서 정의한 바와 같다.
바람직하게는, Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-20 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-20 헤테로아릴일 수 있고,
보다 바람직하게는, Ar1 및 Ar2는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 디벤조퓨라닐, 또는 디벤조티오페닐일 수 있고,
가장 바람직하게는, Ar1 및 Ar2는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure pat00012
.
바람직하게는, L1 내지 L3는 각각 독립적으로, 단일결합; 또는 치환 또는 비치환된 C6-20 아릴렌일 수 있고,
보다 바람직하게는, L1 내지 L3는 각각 독립적으로, 단일결합, 페닐렌, 비페닐릴렌, 또는 나프틸렌일 수 있고,
가장 바람직하게는, L1 내지 L3는 각각 독립적으로, 단일결합 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure pat00013
.
바람직하게는, R1은 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 C6-20 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-20 헤테로아릴일 수 있고,
보다 바람직하게는, R1은 각각 독립적으로, 수소, 중수소, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 트리페닐레닐, 나프틸 페닐, 페닐 나프틸, 플루오란테닐, 디하이드로인데닐, 디벤조퓨라닐, 디벤조티오페닐, 벤조나프토퓨라닐, 또는 벤조나프토티오페닐일 수 있다.
바람직하게는, Ar1, Ar2 및 R1 중 적어도 하나는 나프틸, 페닐 나프틸, 나프틸 페닐, 플루오란테닐, 디벤조퓨라닐, 디벤조티오페닐, 벤조나프토퓨라닐, 또는 벤조나프토티오페닐일 수 있다.
바람직하게는, a는 0 또는 1일 수 있다. 보다 바람직하게는, a는 1일 수 있다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure pat00014
Figure pat00015
Figure pat00016
Figure pat00017
Figure pat00018
Figure pat00019
Figure pat00020
Figure pat00021
Figure pat00022
Figure pat00023
Figure pat00024
Figure pat00025
Figure pat00026
Figure pat00027
Figure pat00028
Figure pat00029
Figure pat00030
Figure pat00031
Figure pat00032
Figure pat00033
Figure pat00034
Figure pat00035
Figure pat00036
Figure pat00037
Figure pat00038
Figure pat00039
Figure pat00040
Figure pat00041
Figure pat00042
Figure pat00043
Figure pat00044
Figure pat00045
Figure pat00046
Figure pat00047
Figure pat00048
Figure pat00049
Figure pat00050
Figure pat00051
Figure pat00052
Figure pat00053
Figure pat00054
Figure pat00055
Figure pat00056
Figure pat00057
Figure pat00058
Figure pat00059
Figure pat00060
Figure pat00061
Figure pat00062
Figure pat00063
Figure pat00064
Figure pat00065
Figure pat00066
Figure pat00067
Figure pat00068
Figure pat00069
Figure pat00070
Figure pat00071
Figure pat00072
Figure pat00073
Figure pat00074
Figure pat00075
Figure pat00076
Figure pat00077
Figure pat00078
Figure pat00079
Figure pat00080
Figure pat00081
Figure pat00082
Figure pat00083
Figure pat00084
Figure pat00085
Figure pat00086
Figure pat00087
Figure pat00088
Figure pat00089
Figure pat00090
Figure pat00091
Figure pat00092
Figure pat00093
Figure pat00094
Figure pat00095
Figure pat00096
Figure pat00097
Figure pat00098
Figure pat00099
Figure pat00100
Figure pat00101
Figure pat00102
Figure pat00103
Figure pat00104
Figure pat00105
Figure pat00106
Figure pat00107
Figure pat00108
Figure pat00109
Figure pat00110
Figure pat00111
Figure pat00112
Figure pat00113
Figure pat00114
Figure pat00115
Figure pat00116
Figure pat00117
Figure pat00118
Figure pat00119
Figure pat00120
Figure pat00121
Figure pat00122
Figure pat00123
Figure pat00124
Figure pat00125
Figure pat00126
Figure pat00127
Figure pat00128
Figure pat00129
Figure pat00130
Figure pat00131
Figure pat00132
Figure pat00133
Figure pat00134
Figure pat00135
Figure pat00136
Figure pat00137
Figure pat00138
Figure pat00139
Figure pat00140
Figure pat00141
Figure pat00142
Figure pat00143
Figure pat00144
Figure pat00145
Figure pat00146
Figure pat00147
Figure pat00148
Figure pat00149
Figure pat00150
Figure pat00151
Figure pat00152
Figure pat00153
Figure pat00154
Figure pat00155
Figure pat00156
Figure pat00157
Figure pat00158
Figure pat00159
Figure pat00160
Figure pat00161
.
상기 화학식 1로 표시되는 화합물은 일례로 하기 반응식 1과 같은 제조 방법으로 제조할 수 있으며, 그 외 나머지 화합물도 유사하게 제조할 수 있다.
[반응식 1]
Figure pat00162
상기 반응식 1에서, Ar1, Ar2, L1 내지 L3, R1 및 a는 상기 화학식 1에서 정의한 바와 같으며, X1은 할로겐이고, 바람직하게는 X1은 클로로 또는 브로모이다.
상기 반응식 1은 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
바람직하게는, 상기 화학식 2로 표시되는 화합물은 하기 화학식 2-1 내지 화학식 2-3 중 어느 하나로 표시될 수 있다:
[화학식 2-1]
Figure pat00163
[화학식 2-2]
Figure pat00164
[화학식 2-3]
Figure pat00165
상기 화학식 2-1 내지 2-3에서,
Ar3 내지 Ar5 및 L4 내지 L7은 화학식 2에서 정의한 바와 같다.
바람직하게는, Ar3 및 Ar4는 각각 독립적으로, 치환 또는 비치환된 C1-10 알킬; 치환 또는 비치환된 C6-20 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-20 헤테로아릴일 수 있고,
보다 바람직하게는, Ar3 및 Ar4는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 아다만틸, 터트뷰틸 페닐, 나프틸 페닐, 페닐 나프틸, 디메틸플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 또는 벤조나프토퓨라닐일 수 있고,
가장 바람직하게는, Ar3 및 Ar4는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure pat00166
Figure pat00167
.
바람직하게는, Ar5는 치환 또는 비치환된 C1-10 알킬; 치환 또는 비치환된 C6-20 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-20 헤테로아릴일 수 있고,
보다 바람직하게는, Ar5는 페닐, 비페닐릴, 터페닐릴, 나프틸, 터트뷰틸 페닐, 또는 아다만틸일 수 있고,
가장 바람직하게는, Ar5는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure pat00168
.
바람직하게는, L4 내지 L6는 각각 독립적으로, 단일결합; 또는 치환 또는 비치환된 C6-20 아릴렌일 수 있고,
보다 바람직하게는, L4 내지 L6는 각각 독립적으로, 단일결합 또는 페닐렌일 수 있다.
바람직하게는, L7은 단일결합; 또는 치환 또는 비치환된 C6-20 아릴렌일 수 있고,
보다 바람직하게는, L7은 단일결합 또는 페닐렌일 수 있다.
상기 화학식 2로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure pat00169
Figure pat00170
Figure pat00171
Figure pat00172
Figure pat00173
Figure pat00174
Figure pat00175
Figure pat00176
Figure pat00177
Figure pat00178
Figure pat00179
Figure pat00180
Figure pat00181
Figure pat00182
Figure pat00183
Figure pat00184
Figure pat00185
Figure pat00186
Figure pat00187
Figure pat00188
Figure pat00189
Figure pat00190
Figure pat00191
Figure pat00192
Figure pat00193
Figure pat00194
Figure pat00195
Figure pat00196
Figure pat00197
Figure pat00198
Figure pat00199
Figure pat00200
Figure pat00201
Figure pat00202
Figure pat00203
Figure pat00204
Figure pat00205
Figure pat00206
Figure pat00207
Figure pat00208
Figure pat00209
Figure pat00210
Figure pat00211
.
상기 화학식 2로 표시되는 화합물은 일례로 하기 반응식 2-1 또는 반응식 2-2와 같은 제조 방법으로 제조할 수 있으며, 그 외 나머지 화합물도 유사하게 제조할 수 있다.
[반응식 2-1]
Figure pat00212
[반응식 2-2]
Figure pat00213
상기 반응식 2-1 및 2-2에서, Ar3 내지 Ar5 및 L4 내지 L7은 상기 화학식 2에서 정의한 바와 같으며, X2 및 X3는 각각 독립적으로, 할로겐이고, 바람직하게는 X2 및 X3는 각각 독립적으로, 클로로 또는 브로모이다.
상기 반응식 2-1은 아민 치환 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 아민 치환 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 반응식 2-2는 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
바람직하게는, 상기 발광층에서 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물의 중량비는 10:90 내지 90:10이고, 보다 바람직하게는 20:80 내지 80:20, 30:70 내지 70:30 또는 40:60 내지 60:40이다.
한편, 상기 발광층은 호스트 외에 도펀트를 추가로 포함할 수 있다. 상기 도펀트 재료로는 유기 발광 소자에 사용되는 물질이면 특별히 제한되지 않는다. 일례로, 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
정공저지층
본 발명에 따른 유기 발광 소자는, 필요에 따라 상기 발광층 상에 전자수송층을 포함할 수 있다.
상기 정공저지층은 양극에서 주입된 정공이 발광층에서 재결합되지 않고 전자수송층으로 넘어가는 것을 방지하기 위해 전자수송층과 발광층의 사이에 두는 층으로, 정공억제층, 정공차단층으로 불리기도 한다. 정공저지층에는 이온화에너지가 큰 물질이 바람직하다.
전자수송층
본 발명에 따른 유기 발광 소자는, 필요에 따라 상기 발광층 상에 전자수송층을 포함할 수 있다.
상기 전자수송층은, 음극 또는 음극 상에 형성된 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하고, 또한 발광층에서 정공이 전달되는 것을 억제하는 층으로, 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다.
상기 전자 수송 물질의 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
전자주입층
본 발명에 따른 유기 발광 소자는, 필요에 따라 상기 발광층 상에(또는 전자주송층이 존재하는 경우 전자수송층 상에) 전자주입층을 추가로 포함할 수 있다.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물을 사용하는 것이 바람직하다.
상기 전자주입층으로 사용될 수 있는 물질의 구체적인 예로는, 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
한편, 본 발명에 있어서 "전자 주입 및 수송층"은 상기 전자주입층과 상기 전자수송층의 역할을 모두 수행하는 층으로 상기 각 층의 역할을 하는 물질을 단독으로, 혹은 혼합하여 사용할 수 있으나, 이에 한정되지 않는다.
유기 발광 소자
본 발명에 따른 유기 발광 소자의 구조를 도 1 및 도 2에 예시하였다. 도 1은, 기판(1), 양극(2), 발광층(3), 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 도 2는, 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 전자차단층(7), 발광층(3), 정공저지층(8), 전자수송층(9), 전자주입층(10) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
본 발명에 따른 유기 발광 소자는 상술한 구성을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 상술한 각 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 상술한 구성의 역순으로 양극 물질까지 차례로 증착시켜 유기 발광 소자를 만들 수 있다(WO 2003/012890). 또한, 발광층은 호스트 및 도펀트를 진공 증착법 뿐만 아니라 용액 도포법에 의하여 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
한편, 본 발명에 따른 유기 발광 소자는 배면 발광(bottom emission) 소자, 전면 발광(top emission) 소자, 또는 양면 발광 소자일 수 있으며, 특히 상대적으로 높은 발광 효율이 요구되는 배면 발광 소자일 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
[제조예]
제조예 1-1: 화합물 1-1의 제조
Figure pat00214
질소 분위기에서 화합물 1-A(15 g, 60.9 mmol)와 화합물 Trz27(25.6 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-A-1를 19.1 g 제조하였다(수율 65%, MS: [M+H]+= 484).
Figure pat00215
질소 분위기에서 화합물 sub1-A-1(15 g, 31 mmol)와 화합물 sub1(6.1 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.6 g, 62 mmol)를 물 26 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-1를 12.3 g 제조하였다(수율 66%, MS: [M+H]+= 602).
제조예 1-2: 화합물 1-3의 제조
Figure pat00216
질소 분위기에서 화합물 1-A(15 g, 60.9 mmol)와 화합물 Trz3(19.3 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-A-3를 23.2 g 제조하였다(수율 79%, MS: [M+H]+= 484).
Figure pat00217
질소 분위기에서 화합물 sub1-A-3(15 g, 31 mmol)와 화합물 sub3(7.1 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.6 g, 62 mmol)를 물 26 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-3를 12.9 g 제조하였다(수율 66%, MS: [M+H]+= 632).
제조예 1-3: 화합물 1-4의 제조
Figure pat00218
질소 분위기에서 화합물 1-A(15 g, 60.9 mmol)와 화합물 Trz4(27 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-A-4를 26 g 제조하였다(수율 70%, MS: [M+H]+= 610).
Figure pat00219
질소 분위기에서 화합물 sub1-A-4(15 g, 24.6 mmol)와 화합물 sub4(5.6 g, 24.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(6.8 g, 49.2 mmol)를 물 20 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-4를 11.2 g 제조하였다(수율 60%, MS: [M+H]+= 758).
제조예 1-4: 화합물 1-5의 제조
Figure pat00220
질소 분위기에서 화합물 1-B(15 g, 60.9 mmol)와 화합물 Trz5(24 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-B-1를 26.2 g 제조하였다(수율 77%, MS: [M+H]+= 560).
Figure pat00221
질소 분위기에서 화합물 sub1-B-1(15 g, 26.8 mmol)와 화합물 sub5(3.3 g, 26.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(7.4 g, 53.6 mmol)를 물 22 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-5를 12.9 g 제조하였다(수율 80%, MS: [M+H]+= 602).
제조예 1-5: 화합물 1-6의 제조
Figure pat00222
질소 분위기에서 화합물 1-B(15 g, 60.9 mmol)와 화합물 Trz3(19.3 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-B-2를 18.2 g 제조하였다(수율 62%, MS: [M+H]+= 484).
Figure pat00223
질소 분위기에서 화합물 sub1-B-2(15 g, 31 mmol)와 화합물 sub6(7.6 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.6 g, 62 mmol)를 물 26 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-6를 15.3 g 제조하였다(수율 76%, MS: [M+H]+= 650).
제조예 1-6: 화합물 1-7의 제조
Figure pat00224
질소 분위기에서 화합물 1-B(15 g, 60.9 mmol)와 화합물 Trz2(16.3 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-B-3를 20.8 g 제조하였다(수율 79%, MS: [M+H]+= 434).
Figure pat00225
질소 분위기에서 화합물 sub1-B-3(15 g, 34.6 mmol)와 화합물 sub7(8.6 g, 34.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.6 g, 69.1 mmol)를 물 29 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-7를 15.4 g 제조하였다(수율 74%, MS: [M+H]+= 602).
제조예 1-7: 화합물 1-8의 제조
Figure pat00226
질소 분위기에서 화합물 sub1-B-2(15 g, 31 mmol)와 화합물 sub8(8.1 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.6 g, 62 mmol)를 물 26 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-8를 15.5 g 제조하였다(수율 75%, MS: [M+H]+= 666).
제조예 1-8: 화합물 1-9의 제조
Figure pat00227
질소 분위기에서 화합물 1-B(15 g, 60.9 mmol)와 화합물 Trz6(22.4 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-B-4를 23.7 g 제조하였다(수율 73%, MS: [M+H]+= 534).
Figure pat00228
질소 분위기에서 화합물 sub1-B-4(15 g, 28.1 mmol)와 화합물 sub9(6 g, 28.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(7.8 g, 56.2 mmol)를 물 23 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-9를 11.6 g 제조하였다(수율 62%, MS: [M+H]+= 666).
제조예 1-9: 화합물 1-10의 제조
Figure pat00229
질소 분위기에서 화합물 1-B(15 g, 60.9 mmol)와 화합물 Trz7(28.6 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-B-5를 28.6 g 제조하였다(수율 74%, MS: [M+H]+= 636).
Figure pat00230
질소 분위기에서 화합물 sub1-B-5(15 g, 23.6 mmol)와 화합물 sub5(2.9 g, 23.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(6.5 g, 47.2 mmol)를 물 20 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-10을 10.4 g 제조하였다(수율 65%, MS: [M+H]+= 678).
제조예 1-10: 화합물 1-11의 제조
Figure pat00231
질소 분위기에서 화합물 1-B(15 g, 60.9 mmol)와 화합물 Trz8(21.8 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-B-6를 20.1 g 제조하였다(수율 63%, MS: [M+H]+= 524).
Figure pat00232
질소 분위기에서 화합물 sub1-B-6(15 g, 28.6 mmol)와 화합물 sub10(4.9 g, 28.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(7.9 g, 57.3 mmol)를 물 24 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-11를 11.4 g 제조하였다(수율 65%, MS: [M+H]+= 616).
제조예 1-11: 화합물 1-12의 제조
Figure pat00233
질소 분위기에서 화합물 1-C(15 g, 60.9 mmol)와 화합물 Trz3(19.3 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-C-1를 17.6 g 제조하였다(수율 60%, MS: [M+H]+= 484).
Figure pat00234
질소 분위기에서 화합물 sub1-C-1(15 g, 31 mmol)와 화합물 sub10(5.3 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.6 g, 62 mmol)를 물 26 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-12를 12.8 g 제조하였다(수율 72%, MS: [M+H]+= 576).
제조예 1-12: 화합물 1-13의 제조
Figure pat00235
질소 분위기에서 화합물 1-C(15 g, 60.9 mmol)와 화합물 Trz9(24 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-C-2를 23.5 g 제조하였다(수율 69%, MS: [M+H]+= 560).
Figure pat00236
질소 분위기에서 화합물 sub1-C-2(15 g, 26.8 mmol)와 화합물 sub10(4.6 g, 26.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(7.4 g, 53.6 mmol)를 물 22 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-13를 14 g 제조하였다(수율 80%, MS: [M+H]+= 652).
제조예 1-13: 화합물 1-14의 제조
Figure pat00237
질소 분위기에서 화합물 1-C(15 g, 60.9 mmol)와 화합물 Trz10(20.9 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-C-3를 20.5 g 제조하였다(수율 66%, MS: [M+H]+= 510).
Figure pat00238
질소 분위기에서 화합물 sub1-C-3(15 g, 29.4 mmol)와 화합물 sub11(7.3 g, 29.4 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.1 g, 58.8 mmol)를 물 24 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-14를 15.3 g 제조하였다(수율 77%, MS: [M+H]+= 678).
제조예 1-14: 화합물 1-15의 제조
Figure pat00239
질소 분위기에서 화합물 1-C(15 g, 60.9 mmol)와 화합물 Trz2(16.3 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-C-4를 18.7 g 제조하였다(수율 71%, MS: [M+H]+= 434).
Figure pat00240
질소 분위기에서 화합물 sub1-C-4(15 g, 37.1 mmol)와 화합물 sub12(9.7 g, 37.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.3 g, 74.3 mmol)를 물 31 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-15를 14.6 g 제조하였다(수율 64%, MS: [M+H]+= 616).
제조예 1-15: 화합물 1-16의 제조
Figure pat00241
질소 분위기에서 화합물 sub1-C-3(15 g, 26.8 mmol)와 화합물 sub13(7.4 g, 26.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(7.4 g, 53.6 mmol)를 물 22 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-16를 16.2 g 제조하였다(수율 80%, MS: [M+H]+= 758).
제조예 1-16: 화합물 1-17의 제조
Figure pat00242
질소 분위기에서 화합물 sub1-C-4(15 g, 34.6 mmol)와 화합물 sub14(7.7 g, 34.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.6 g, 69.1 mmol)를 물 29 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-17를 12.3 g 제조하였다(수율 62%, MS: [M+H]+= 576).
제조예 1-17: 화합물 1-18의 제조
Figure pat00243
질소 분위기에서 화합물 sub1-C-1(15 g, 31 mmol)와 화합물 sub9(6.6 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.6 g, 62 mmol)를 물 26 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-18를 12 g 제조하였다(수율 63%, MS: [M+H]+= 616).
제조예 1-18: 화합물 1-19의 제조
Figure pat00244
질소 분위기에서 화합물 1-C(15 g, 60.9 mmol)와 화합물 Trz11(22.4 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-C-5를 22.4 g 제조하였다(수율 69%, MS: [M+H]+= 534).
Figure pat00245
질소 분위기에서 화합물 sub1-C-5(15 g, 28.1 mmol)와 화합물 sub15(6 g, 28.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(7.8 g, 56.2 mmol)를 물 23 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-19를 13.3 g 제조하였다(수율 71%, MS: [M+H]+= 666).
제조예 1-19: 화합물 1-20의 제조
Figure pat00246
질소 분위기에서 화합물 1-C(15 g, 60.9 mmol)와 화합물 Trz12(21.8 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-C-6를 21 g 제조하였다(수율 66%, MS: [M+H]+= 524).
Figure pat00247
질소 분위기에서 화합물 sub1-C-6(15 g, 28.6 mmol)와 화합물 sub10(4.9 g, 28.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.9 g, 85.9 mmol)를 물 36 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-20를 12.3 g 제조하였다(수율 70%, MS: [M+H]+= 616).
제조예 1-20: 화합물 1-21의 제조
Figure pat00248
질소 분위기에서 화합물 1-C(15 g, 60.9 mmol)와 화합물 Trz13(24 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-C-7를 26.2 g 제조하였다(수율 77%, MS: [M+H]+= 560).
Figure pat00249
질소 분위기에서 화합물 sub1-C-7(15 g, 26.8 mmol)와 화합물 sub5(3.3 g, 26.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.1 g, 80.3 mmol)를 물 33 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-21를 10.5 g 제조하였다(수율 65%, MS: [M+H]+= 602).
제조예 1-21: 화합물 1-23의 제조
Figure pat00250
질소 분위기에서 화합물 1-D(15 g, 60.9 mmol)와 화합물 Trz2(16.3 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-D-2를 20 g 제조하였다(수율 76%, MS: [M+H]+= 434).
Figure pat00251
질소 분위기에서 화합물 sub1-D-2(15 g, 34.6 mmol)와 화합물 sub16(9.1 g, 34.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3 g, 103.7 mmol)를 물 43 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-23를 14 g 제조하였다(수율 66%, MS: [M+H]+= 616).
제조예 1-22: 화합물 1-24의 제조
Figure pat00252
질소 분위기에서 화합물 1-D(15 g, 60.9 mmol)와 화합물 Trz10(20.9 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-D-3를 20.8 g 제조하였다(수율 67%, MS: [M+H]+= 510).
Figure pat00253
질소 분위기에서 화합물 sub1-D-3(15 g, 29.4 mmol)와 화합물 sub17(7.7 g, 29.4 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.2 g, 88.2 mmol)를 물 37 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-24를 12.4 g 제조하였다(수율 61%, MS: [M+H]+= 692).
제조예 1-23: 화합물 1-25의 제조
Figure pat00254
질소 분위기에서 화합물 1-D(15 g, 60.9 mmol)와 화합물 Trz15(21.8 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-D-4를 21.3 g 제조하였다(수율 67%, MS: [M+H]+= 524).
Figure pat00255
질소 분위기에서 화합물 sub1-D-4(15 g, 28.6 mmol)와 화합물 sub10(4.9 g, 28.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.9 g, 85.9 mmol)를 물 36 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-25를 10.7 g 제조하였다(수율 61%, MS: [M+H]+= 616).
제조예 1-24: 화합물 1-26의 제조
Figure pat00256
질소 분위기에서 화합물 sub1-D-3(15 g, 29.4 mmol)와 화합물 sub18(6.2 g, 29.4 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.2 g, 88.2 mmol)를 물 37 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-26를 14.3 g 제조하였다(수율 76%, MS: [M+H]+= 642)
제조예 1-25: 화합물 1-27의 제조
Figure pat00257
질소 분위기에서 화합물 1-D(15 g, 60.9 mmol)와 화합물 Trz16(27 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-D-5를 27.1 g 제조하였다(수율 73%, MS: [M+H]+= 610).
Figure pat00258
질소 분위기에서 화합물 sub1-D-5(15 g, 24.6 mmol)와 화합물 sub9(5.2 g, 24.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.2 g, 73.8 mmol)를 물 31 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-27를 12.8 g 제조하였다(수율 70%, MS: [M+H]+= 742).
제조예 1-26: 화합물 1-28의 제조
Figure pat00259
질소 분위기에서 화합물 1-D(15 g, 60.9 mmol)와 화합물 Trz13(24 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-D-6를 20.8 g 제조하였다(수율 61%, MS: [M+H]+= 560).
Figure pat00260
질소 분위기에서 화합물 sub1-D-6(15 g, 26.8 mmol)와 화합물 sub10(4.6 g, 26.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.1 g, 80.3 mmol)를 물 33 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-28를 12.2 g 제조하였다(수율 70%, MS: [M+H]+= 652).
제조예 1-27: 화합물 1-30의 제조
Figure pat00261
질소 분위기에서 화합물 1-E(15 g, 60.9 mmol)와 화합물 Trz9(24 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-E-2를 26.9 g 제조하였다(수율 79%, MS: [M+H]+= 560).
Figure pat00262
질소 분위기에서 화합물 sub1-E-2(15 g, 26.8 mmol)와 화합물 sub19(7 g, 26.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.1 g, 80.3 mmol)를 물 33 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-30를 15.9 g 제조하였다(수율 80%, MS: [M+H]+= 742).
제조예 1-28: 화합물 1-31의 제조
Figure pat00263
질소 분위기에서 화합물 1-E(15 g, 60.9 mmol)와 화합물 Trz17(22.4 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-E-3를 25.3 g 제조하였다(수율 78%, MS: [M+H]+= 534).
Figure pat00264
질소 분위기에서 화합물 sub1-E-3(15 g, 28.1 mmol)와 화합물 sub20(7.8 g, 28.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.6 g, 84.3 mmol)를 물 35 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-31를 14.8 g 제조하였다(수율 72%, MS: [M+H]+= 732).
제조예 1-29: 화합물 1-32의 제조
Figure pat00265
질소 분위기에서 화합물 sub1-E-1(15 g, 34.6 mmol)와 화합물 sub21(7.7 g, 34.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3 g, 103.7 mmol)를 물 43 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-32를 12.9 g 제조하였다(수율 65%, MS: [M+H]+= 576).
제조예 1-30: 화합물 1-33의 제조
Figure pat00266
질소 분위기에서 화합물 1-E(15 g, 60.9 mmol)와 화합물 Trz15(21.8 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-E-4를 25.5 g 제조하였다(수율 80%, MS: [M+H]+= 524).
Figure pat00267
질소 분위기에서 화합물 sub1-E-4(15 g, 28.6 mmol)와 화합물 sub10(4.9 g, 28.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.9 g, 85.9 mmol)를 물 36 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-33를 10.6 g 제조하였다(수율 60%, MS: [M+H]+= 616).
제조예 1-31: 화합물 1-34의 제조
Figure pat00268
질소 분위기에서 화합물 1-E(15 g, 60.9 mmol)와 화합물 Trz3(19.3 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-E-5를 17.6 g 제조하였다(수율 60%, MS: [M+H]+= 484).
Figure pat00269
질소 분위기에서 화합물 sub1-E-5(15 g, 31 mmol)와 화합물 sub9(6.6 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.9 g, 93 mmol)를 물 39 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-34를 11.4 g 제조하였다(수율 60%, MS: [M+H]+= 616).
제조예 1-32: 화합물 1-35의 제조
Figure pat00270
질소 분위기에서 화합물 1-E(15 g, 60.9 mmol)와 화합물 Trz10(20.9 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-E-6를 21.7 g 제조하였다(수율 70%, MS: [M+H]+= 510).
Figure pat00271
질소 분위기에서 화합물 sub1-E-6(15 g, 29.4 mmol)와 화합물 sub22(7.7 g, 29.4 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.2 g, 88.2 mmol)를 물 37 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-35를 14.6 g 제조하였다(수율 72%, MS: [M+H]+= 692)
제조예 1-33: 화합물 1-36의 제조
Figure pat00272
질소 분위기에서 화합물 sub1-E-5(15 g, 31 mmol)와 화합물 sub23(8.1 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.9 g, 93 mmol)를 물 39 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-36를 12.4 g 제조하였다(수율 60%, MS: [M+H]+= 666).
제조예 1-34: 화합물 1-37의 제조
Figure pat00273
질소 분위기에서 화합물 sub1-E-5(15 g, 31 mmol)와 화합물 sub10(5.3 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.9 g, 93 mmol)를 물 39 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-37를 14.1 g 제조하였다(수율 79%, MS: [M+H]+= 576).
제조예 1-35: 화합물 1-38의 제조
Figure pat00274
질소 분위기에서 화합물 1-E(15 g, 60.9 mmol)와 화합물 Trz18(27 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-E-7를 24.1 g 제조하였다(수율 65%, MS: [M+H]+= 610).
Figure pat00275
질소 분위기에서 화합물 sub1-E-7(15 g, 24.6 mmol)와 화합물 sub5(3 g, 24.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.2 g, 73.8 mmol)를 물 31 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-38를 10.1 g 제조하였다(수율 63%, MS: [M+H]+= 652).
제조예 1-36: 화합물 1-39의 제조
Figure pat00276
질소 분위기에서 화합물 1-E(15 g, 60.9 mmol)와 화합물 Trz13(24 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-E-8를 26.2 g 제조하였다(수율 77%, MS: [M+H]+= 560).
Figure pat00277
질소 분위기에서 화합물 sub1-E-8(15 g, 26.8 mmol)와 화합물 sub5(3.3 g, 26.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.1 g, 80.3 mmol)를 물 33 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-39를 10.9 g 제조하였다(수율 68%, MS: [M+H]+= 602).
제조예 1-37: 화합물 1-40의 제조
Figure pat00278
질소 분위기에서 화합물 1-F(15 g, 60.9 mmol)와 화합물 Trz2(16.3 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-F-1를 19.2 g 제조하였다(수율 73%, MS: [M+H]+= 434).
Figure pat00279
질소 분위기에서 화합물 1-F-1(15 g, 34.6 mmol)와 화합물 sub6(8.5 g, 34.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3 g, 103.7 mmol)를 물 43 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-40를 14.7 g 제조하였다(수율 71%, MS: [M+H]+= 600).
제조예 1-38: 화합물 1-42의 제조
Figure pat00280
질소 분위기에서 화합물 Trz7(15 g, 31.9 mmol)와 화합물 sub9(6.8 g, 31.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.2 g, 95.8 mmol)를 물 40 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-42를 15.2 g 제조하였다(수율 79%, MS: [M+H]+= 602).
제조예 1-39: 화합물 1-43의 제조
Figure pat00281
질소 분위기에서 화합물 Trz16(15 g, 33.8 mmol)와 화합물 sub9(7.2 g, 33.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14 g, 101.4 mmol)를 물 42 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-43를 15 g 제조하였다(수율 77%, MS: [M+H]+= 576).
제조예 1-40: 화합물 1-44의 제조
Figure pat00282
질소 분위기에서 화합물 Trz4(15 g, 33.8 mmol)와 화합물 sub9(7.2 g, 33.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14 g, 101.4 mmol)를 물 42 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-44를 14.2 g 제조하였다(수율 73%, MS: [M+H]+= 576).
제조예 1-41: 화합물 1-46의 제조
Figure pat00283
질소 분위기에서 화합물 Trz19(15 g, 33.8 mmol)와 화합물 sub9(7.2 g, 33.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14 g, 101.4 mmol)를 물 42 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-46를 13.6 g 제조하였다(수율 70%, MS: [M+H]+= 576).
제조예 1-42: 화합물 1-47의 제조
Figure pat00284
질소 분위기에서 화합물 Trz20(15 g, 35.9 mmol)와 화합물 sub9(7.6 g, 35.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.9 g, 107.7 mmol)를 물 45 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-47를 15 g 제조하였다(수율 76%, MS: [M+H]+= 550).
제조예 1-43: 화합물 1-48의 제조
Figure pat00285
질소 분위기에서 화합물 Trz3(15 g, 47.2 mmol)와 화합물 sub24(9.7 g, 47.2 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19.6 g, 141.6 mmol)를 물 59 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-1를 13 g 제조하였다(수율 62%, MS: [M+H]+= 444).
Figure pat00286
질소 분위기에서 화합물 sub1-G-1(15 g, 33.8 mmol)와 화합물 sub9(7.2 g, 33.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14 g, 101.4 mmol)를 물 42 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-48를 15.2 g 제조하였다(수율 78%, MS: [M+H]+= 576).
제조예 1-44: 화합물 1-49의 제조
Figure pat00287
질소 분위기에서 화합물 Trz15(15 g, 41.9 mmol)와 화합물 sub25(8.7 g, 41.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(17.4 g, 125.8 mmol)를 물 52 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-2를 12.6 g 제조하였다(수율 62%, MS: [M+H]+= 484).
Figure pat00288
질소 분위기에서 화합물 sub1-G-2(15 g, 31 mmol)와 화합물 sub9(6.6 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.9 g, 93 mmol)를 물 39 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-49를 13.7 g 제조하였다(수율 72%, MS: [M+H]+= 616).
제조예 1-45: 화합물 1-50의 제조
Figure pat00289
질소 분위기에서 화합물 Trz21(15 g, 36.8 mmol)와 화합물 sub26(5.8 g, 36.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.2 g, 110.3 mmol)를 물 46 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-3를 12.8 g 제조하였다(수율 72%, MS: [M+H]+= 484).
Figure pat00290
질소 분위기에서 화합물 sub1-G-3(15 g, 31 mmol)와 화합물 sub9(6.6 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.9 g, 93 mmol)를 물 39 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-50를 13.2 g 제조하였다(수율 69%, MS: [M+H]+= 616).
제조예 1-46: 화합물 1-51의 제조
Figure pat00291
질소 분위기에서 화합물 Trz16(15 g, 33.8 mmol)와 화합물 sub27(5.3 g, 33.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14 g, 101.4 mmol)를 물 42 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-4를 13.3 g 제조하였다(수율 76%, MS: [M+H]+= 520).
Figure pat00292
질소 분위기에서 화합물 sub1-G-4(15 g, 28.8 mmol)와 화합물 sub9(6.1 g, 28.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12 g, 86.5 mmol)를 물 36 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-51를 13.3 g 제조하였다(수율 71%, MS: [M+H]+= 652).
제조예 1-47: 화합물 1-52의 제조
Figure pat00293
질소 분위기에서 화합물 Trz22(15 g, 36.8 mmol)와 화합물 sub28(5.8 g, 36.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.2 g, 110.3 mmol)를 물 46 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-5를 12.8 g 제조하였다(수율 72%, MS: [M+H]+= 484).
Figure pat00294
질소 분위기에서 화합물 sub1-G-5(15 g, 31 mmol)와 화합물 sub9(6.6 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.9 g, 93 mmol)를 물 39 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-52를 13 g 제조하였다(수율 68%, MS: [M+H]+= 616).
제조예 1-48: 화합물 1-53의 제조
Figure pat00295
질소 분위기에서 화합물 Trz23(15 g, 34.6 mmol)와 화합물 sub27(5.4 g, 34.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3 g, 103.7 mmol)를 물 43 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-6를 11.3 g 제조하였다(수율 64%, MS: [M+H]+= 510).
Figure pat00296
질소 분위기에서 화합물 sub1-G-6(15 g, 31 mmol)와 화합물 sub9(6.6 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.9 g, 93 mmol)를 물 39 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-53를 13 g 제조하였다(수율 68%, MS: [M+H]+= 616).
제조예 1-49: 화합물 1-54의 제조
Figure pat00297
질소 분위기에서 화합물 sub1-G-1(15 g, 33.8 mmol)와 화합물 1-E(8.3 g, 33.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14 g, 101.4 mmol)를 물 42 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-E-9를 14.4 g 제조하였다(수율 70%, MS: [M+H]+= 610).
Figure pat00298
질소 분위기에서 화합물 sub1-E-9(15 g, 24.6 mmol)와 화합물 sub5(3 g, 24.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.2 g, 73.8 mmol)를 물 31 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-54를 12.2 g 제조하였다(수율 76%, MS: [M+H]+= 652).
제조예 1-50: 화합물 1-56의 제조
Figure pat00299
질소 분위기에서 화합물 Trz24(15 g, 38.1 mmol)와 화합물 sub25(9.4 g, 38.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.8 g, 114.3 mmol)를 물 47 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-8를 13.8 g 제조하였다(수율 65%, MS: [M+H]+= 560).
Figure pat00300
질소 분위기에서 화합물 sub1-G-8(15 g, 30 mmol)와 화합물 sub9(6.4 g, 30 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.4 g, 90 mmol)를 물 37 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-56를 13.4 g 제조하였다(수율 71%, MS: [M+H]+= 632).
제조예 1-51: 화합물 1-57의 제조
Figure pat00301
질소 분위기에서 화합물 Trz25(15 g, 41.9 mmol)와 화합물 sub24(8.7 g, 41.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(17.4 g, 125.8 mmol)를 물 52 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-9를 12.4 g 제조하였다(수율 61%, MS: [M+H]+= 484).
Figure pat00302
질소 분위기에서 화합물 sub1-G-9(15 g, 31 mmol)와 화합물 1-F(7.6 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.9 g, 93 mmol)를 물 39 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-F-3를 12.5 g 제조하였다(수율 62%, MS: [M+H]+= 650).
Figure pat00303
질소 분위기에서 화합물 sub1-F-3(15 g, 23.1 mmol)와 화합물 sub5(2.8 g, 23.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.6 g, 69.2 mmol)를 물 29 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-57를 12.8 g 제조하였다(수율 80%, MS: [M+H]+= 692).
제조예 1-52: 화합물 1-58의 제조
Figure pat00304
질소 분위기에서 화합물 Trz26(15 g, 33.8 mmol)와 화합물 sub26(5.3 g, 33.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14 g, 101.4 mmol)를 물 42 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-10를 10.5 g 제조하였다(수율 60%, MS: [M+H]+= 520).
Figure pat00305
질소 분위기에서 화합물 sub1-G-10(15 g, 28.8 mmol)과 화합물 1-D(7.1 g, 28.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12 g, 86.5 mmol)를 물 36 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-D-7를 15 g 제조하였다(수율 76%, MS: [M+H]+= 686)
Figure pat00306
질소 분위기에서 화합물 sub1-D-7(15 g, 21.9 mmol)와 화합물 sub5(2.7 g, 21.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.1 g, 65.6 mmol)를 물 27 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-58를 9.9 g 제조하였다(수율 62%, MS: [M+H]+= 728)
제조예 1-53: 화합물 1-59의 제조
Figure pat00307
질소 분위기에서 화합물 Trz15(15 g, 41.9 mmol)와 화합물 sub24(8.7 g, 41.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(17.4 g, 125.8 mmol)를 물 52 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-11를 12.4 g 제조하였다(수율 61%, MS: [M+H]+= 484).
Figure pat00308
질소 분위기에서 화합물 sub1-G-11(15 g, 28.8 mmol)와 화합물 1-F(7.1 g, 28.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12 g, 86.5 mmol)를 물 36 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-F-7를 15 g 제조하였다(수율 76%, MS: [M+H]+= 686).
Figure pat00309
질소 분위기에서 화합물 sub1-F-4(15 g, 23.1 mmol)와 화합물 sub5(2.8 g, 23.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.6 g, 69.2 mmol)를 물 29 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-59를 12.1 g 제조하였다(수율 76%, MS: [M+H]+= 692).
제조예 1-54: 화합물 1-60의 제조
Figure pat00310
질소 분위기에서 화합물 Trz12(15 g, 41.9 mmol)와 화합물 sub28(6.6 g, 41.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(17.4 g, 125.8 mmol)를 물 52 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-12를 11.1 g 제조하였다(수율 61%, MS: [M+H]+= 434).
Figure pat00311
질소 분위기에서 화합물 sub1-G-12(15 g, 34.6 mmol)와 화합물1-D(8.5 g, 34.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3 g, 103.7 mmol)를 물 43 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-D-8를 13.6 g 제조하였다(수율 79%, MS: [M+H]+= 500).
Figure pat00312
질소 분위기에서 화합물 sub1-D-8(15 g, 25 mmol)와 화합물 sub10(4.3 g, 25 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.4 g, 75 mmol)를 물 31 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-60를 13.3 g 제조하였다(수율 77%, MS: [M+H]+= 692).
제조예 2-1: 화합물 2-1의 제조
Figure pat00313
질소 분위기에서 화합물 E(10 g, 39.7 mmol), 화합물 sub33(6.2 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subE-1 8.6 g을 얻었다(수율 66%, MS: [M+H]+= 328).
Figure pat00314
질소 분위기에서 화합물 subE-1(10 g, 30.5 mmol), 화합물 amine1(11.9 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-1 12.7 g을 얻었다(수율 63%, MS: [M+H]+= 664).
제조예 2-2: 화합물 2-2의 제조
Figure pat00315
질소 분위기에서 화합물 subE-1(10 g, 30.5 mmol), 화합물 amine2(11.9 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-2 10.9 g을 얻었다(수율 54%, MS: [M+H]+= 664).
제조예 2-3: 화합물 2-3의 제조
Figure pat00316
질소 분위기에서 화합물 subE-1(10 g, 30.5 mmol), 화합물 amine3(10.7 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-3 12.4 g을 얻었다(수율 65%, MS: [M+H]+= 628).
제조예 2-4: 화합물 2-4의 제조
Figure pat00317
질소 분위기에서 화합물 F(10 g, 39.7 mmol), 화합물 sub33(6.2 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subF-1 9 g을 얻었다(수율 69%, MS: [M+H]+= 328).
Figure pat00318
질소 분위기에서 화합물 subF-1(10 g, 30.5 mmol), 화합물 amine4(10.3 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-4 11.4 g을 얻었다(수율 61%, MS: [M+H]+= 614).
제조예 2-5: 화합물 2-5의 제조
Figure pat00319
질소 분위기에서 화합물 subF-1(10 g, 30.5 mmol), 화합물 amine5(11.3 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-5 12.2 g을 얻었다(수율 62%, MS: [M+H]+= 644).
제조예 2-6: 화합물 2-6의 제조
Figure pat00320
질소 분위기에서 화합물 G(10 g, 39.7 mmol), 화합물 sub33(6.2 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subG-1 7.8 g을 얻었다(수율 60%, MS: [M+H]+= 328).
Figure pat00321
질소 분위기에서 화합물 subG-1(10 g, 30.5 mmol), 화합물 amine6(10.3 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-6 11.4 g을 얻었다(수율 61%, MS: [M+H]+= 614).
제조예 2-7: 화합물 2-7의 제조
Figure pat00322
질소 분위기에서 화합물 subG-1(10 g, 30.5 mmol), 화합물 amine7(11.6 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-7 13.1 g을 얻었다(수율 66%, MS: [M+H]+= 654).
제조예 2-8: 화합물 2-8의 제조
Figure pat00323
질소 분위기에서 화합물 subG-1(10 g, 30.5 mmol), 화합물 amine8(11.3 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-8 11.6 g을 얻었다(수율 59%, MS: [M+H]+= 644).
제조예 2-9: 화합물 2-9의 제조
Figure pat00324
질소 분위기에서 화합물 subG-1(10 g, 30.5 mmol), 화합물 amine9(11.2 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-9 13.5 g을 얻었다(수율 69%, MS: [M+H]+= 642).
제조예 2-10: 화합물 2-10의 제조
Figure pat00325
질소 분위기에서 화합물 H(10 g, 39.7 mmol), 화합물 sub33(6.2 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subH-1 8.3 g을 얻었다(수율 64%, MS: [M+H]+= 328).
Figure pat00326
질소 분위기에서 화합물 subH-1(10 g, 30.5 mmol), 화합물 amine10(11.9 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-10 10.9 g을 얻었다(수율 54%, MS: [M+H]+= 664).
제조예 2-11: 화합물 2-11의 제조
Figure pat00327
질소 분위기에서 화합물 subH-1(10 g, 30.5 mmol), 화합물 amine11(11.6 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-11 10.6 g을 얻었다(수율 53%, MS: [M+H]+= 654)
제조예 2-12: 화합물 2-12의 제조
Figure pat00328
질소 분위기에서 화합물 subH-1(10 g, 30.5 mmol), 화합물 amine12(12.2 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-12 12.5 g을 얻었다(수율 61%, MS: [M+H]+= 674).
제조예 2-13: 화합물 2-13의 제조
Figure pat00329
질소 분위기에서 화합물 I(10 g, 39.7 mmol), 화합물 sub33(6.2 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subI-1 7.8 g을 얻었다(수율 60%, MS: [M+H]+= 328).
Figure pat00330
질소 분위기에서 화합물 subI-1(10 g, 30.5 mmol), 화합물 amine6(10.3 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-13 9.5 g을 얻었다(수율 51%, MS: [M+H]+= 614).
제조예 2-14: 화합물 2-14의 제조
Figure pat00331
질소 분위기에서 화합물 subI-1(10 g, 30.5 mmol), 화합물 amine13(11.6 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-14 13.5 g을 얻었다(수율 68%, MS: [M+H]+= 654).
제조예 2-15: 화합물 2-15의 제조
Figure pat00332
질소 분위기에서 화합물 J(10 g, 39.7 mmol), 화합물 sub33(6.2 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subJ-1 6.6 g을 얻었다(수율 51%, MS: [M+H]+= 328).
Figure pat00333
질소 분위기에서 화합물 subJ-1(10 g, 30.5 mmol), 화합물 amine3(10.7 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-15 9.8 g을 얻었다(수율 51%, MS: [M+H]+= 628).
제조예 2-16: 화합물 2-16의 제조
Figure pat00334
질소 분위기에서 화합물 subJ-1(10 g, 30.5 mmol), 화합물 amine1(11.9 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-16 13.3 g을 얻었다(수율 66%, MS: [M+H]+= 664)
제조예 2-17: 화합물 2-17의 제조
Figure pat00335
질소 분위기에서 화합물 K(10 g, 39.7 mmol), 화합물 sub33(6.2 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subK-1 8.4 g을 얻었다(수율 65%, MS: [M+H]+= 328).
Figure pat00336
질소 분위기에서 화합물 subK-1(10 g, 30.5 mmol), 화합물 amine6(10.3 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-17 12.5 g을 얻었다(수율 67%, MS: [M+H]+= 614).
제조예 2-18: 화합물 2-18의 제조
Figure pat00337
질소 분위기에서 화합물 subK-1(10 g, 30.5 mmol), 화합물 amine14(11.9 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-18 14.2 g을 얻었다(수율 70%, MS: [M+H]+= 664)
제조예 2-19: 화합물 2-19의 제조
Figure pat00338
질소 분위기에서 화합물 L(10 g, 39.7 mmol), 화합물 sub33(6.2 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subL-1 6.5 g을 얻었다(수율 50%, MS: [M+H]+= 328).
Figure pat00339
질소 분위기에서 화합물 subL-1(10 g, 30.5 mmol), 화합물 amine15(12.7 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-19 13.9 g을 얻었다(수율 66%, MS: [M+H]+= 690).
제조예 2-20: 화합물 2-20의 제조
Figure pat00340
질소 분위기에서 화합물 M(10 g, 39.7 mmol), 화합물 sub34(9.3 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subM-1 11.1 g을 얻었다(수율 69%, MS: [M+H]+= 404).
Figure pat00341
질소 분위기에서 화합물 subM-1(10 g, 24.8 mmol), 화합물 amine16(7.7 g, 26 mmol), sodium tert-butoxide(4.8 g, 49.5 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-20 8.5 g을 얻었다(수율 52%, MS: [M+H]+= 664).
제조예 2-21: 화합물 2-21의 제조
Figure pat00342
질소 분위기에서 화합물 N(10 g, 39.7 mmol), 화합물 sub33(6.2 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subN-1 8.8 g을 얻었다(수율 68%, MS: [M+H]+= 328).
Figure pat00343
질소 분위기에서 화합물 subN-1(10 g, 30.5 mmol), 화합물 amine17(7.9 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-21 8.2 g을 얻었다(수율 50%, MS: [M+H]+= 538).
제조예 2-22: 화합물 2-22의 제조
Figure pat00344
질소 분위기에서 화합물 subN-1(10 g, 30.5 mmol), 화합물 amine18(10.7 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-22 13 g을 얻었다(수율 68%, MS: [M+H]+= 628).
제조예 2-23: 화합물 2-23의 제조
Figure pat00345
질소 분위기에서 화합물 O(10 g, 39.7 mmol), 화합물 sub35(8.2 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subO-1 9.6 g을 얻었다(수율 64%, MS: [M+H]+= 378).
Figure pat00346
질소 분위기에서 화합물 subO-1(10 g, 26.5 mmol), 화합물 amine4(8.9 g, 27.8 mmol), sodium tert-butoxide(5.1 g, 52.9 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-23 10.5 g을 얻었다(수율 60%, MS: [M+H]+= 664)
제조예 2-24: 화합물 2-24의 제조
Figure pat00347
질소 분위기에서 화합물 O(10 g, 39.7 mmol), 화합물 sub33(6.2 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subO-2 9 g을 얻었다(수율 69%, MS: [M+H]+= 328).
Figure pat00348
질소 분위기에서 화합물 subO-2(10 g, 30.5 mmol), 화합물 amine19(12.7 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-24 12.6 g을 얻었다(수율 60%, MS: [M+H]+= 690).
제조예 2-25: 화합물 2-25의 제조
Figure pat00349
질소 분위기에서 화합물 P(10 g, 39.7 mmol), 화합물 sub33(6.2 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subP-1 9.1 g을 얻었다(수율 70%, MS: [M+H]+= 328).
Figure pat00350
질소 분위기에서 화합물 subP-1(10 g, 30.5 mmol), 화합물 amine20(5.4 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-25 9.6 g을 얻었다(수율 68%, MS: [M+H]+= 462).
제조예 2-26: 화합물 2-26의 제조
Figure pat00351
질소 분위기에서 화합물 subP-1(10 g, 30.5 mmol), 화합물 amine6(10.3 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-26 12.9 g을 얻었다(수율 69%, MS: [M+H]+= 614).
제조예 2-27: 화합물 2-27의 제조
Figure pat00352
질소 분위기에서 화합물 subP-1(10 g, 30.5 mmol), 화합물 amine3(10.7 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-27 12.8 g을 얻었다(수율 67%, MS: [M+H]+= 628).
제조예 2-28: 화합물 2-28의 제조
Figure pat00353
질소 분위기에서 화합물 subP-1(10 g, 30.5 mmol), 화합물 amine21(11.7 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-28 13.4 g을 얻었다(수율 67%, MS: [M+H]+= 658).
제조예 2-29: 화합물 2-29의 제조
Figure pat00354
질소 분위기에서 화합물 P(10 g, 39.7 mmol), 화합물 sub36(9.3 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subP-2 9.1 g을 얻었다(수율 57%, MS: [M+H]+= 404).
Figure pat00355
질소 분위기에서 화합물 subP-2(10 g, 24.8 mmol), 화합물 amine22(8.7 g, 26 mmol), sodium tert-butoxide(4.8 g, 49.5 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-29 11.1 g을 얻었다(수율 64%, MS: [M+H]+= 704).
제조예 2-30: 화합물 2-30의 제조
Figure pat00356
질소 분위기에서 화합물 P(10 g, 39.7 mmol), 화합물 sub35(8.2 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subP-3 10 g을 얻었다(수율 67%, MS: [M+H]+= 378).
Figure pat00357
질소 분위기에서 화합물 subP-3(10 g, 26.5 mmol), 화합물 amine5(9.8 g, 27.8 mmol), sodium tert-butoxide(5.1 g, 52.9 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-30 10.5 g을 얻었다(수율 57%, MS: [M+H]+= 694).
제조예 2-31: 화합물 2-31의 제조
Figure pat00358
질소 분위기에서 화합물 Q(10 g, 39.7 mmol), 화합물 sub33(6.2 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subQ-1 9.1 g을 얻었다(수율 70%, MS: [M+H]+= 328).
Figure pat00359
질소 분위기에서 화합물 subQ-1(10 g, 30.5 mmol), 화합물 amine23(11.6 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-31 12.7 g을 얻었다(수율 64%, MS: [M+H]+= 654).
제조예 2-32: 화합물 2-32의 제조
Figure pat00360
질소 분위기에서 화합물 subQ-1(10 g, 30.5 mmol), 화합물 amine24(10.7 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-32 11.3 g을 얻었다(수율 59%, MS: [M+H]+= 628).
제조예 2-33: 화합물 2-33의 제조
Figure pat00361
질소 분위기에서 화합물 subQ-1(10 g, 30.5 mmol), 화합물 amine25(11.3 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-33 9.8 g을 얻었다(수율 50%, MS: [M+H]+= 644)
제조예 2-34: 화합물 2-34의 제조
Figure pat00362
질소 분위기에서 화합물 R(10 g, 39.7 mmol), 화합물 sub33(6.2 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subR-1 6.8 g을 얻었다(수율 52%, MS: [M+H]+= 328)
Figure pat00363
질소 분위기에서 화합물 subR-1(10 g, 30.5 mmol), 화합물 amine26(12.7 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-34 14.3 g을 얻었다(수율 68%, MS: [M+H]+= 690).
제조예 2-35: 화합물 2-35의 제조
Figure pat00364
질소 분위기에서 화합물 R(10 g, 39.7 mmol), 화합물 sub37(9.3 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subR-2 8.5 g을 얻었다(수율 53%, MS: [M+H]+= 404).
Figure pat00365
질소 분위기에서 화합물 subR-2(10 g, 24.8 mmol), 화합물 amine3(8.7 g, 26 mmol), sodium tert-butoxide(4.8 g, 49.5 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-35 10.6 g을 얻었다(수율 61%, MS: [M+H]+= 704).
제조예 2-36: 화합물 2-36의 제조
Figure pat00366
질소 분위기에서 화합물 S(10 g, 39.7 mmol), 화합물 sub33(6.2 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subS-1 8.6 g을 얻었다(수율 66%, MS: [M+H]+= 328).
Figure pat00367
질소 분위기에서 화합물 subS-1(10 g, 30.5 mmol), 화합물 amine6(10.3 g, 32 mmol), sodium tert-butoxide(5.9 g, 61 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-36 10.5 g을 얻었다(수율 56%, MS: [M+H]+= 614).
제조예 2-37: 화합물 2-37의 제조
Figure pat00368
질소 분위기에서 화합물 S(10 g, 39.7 mmol), 화합물 sub35(8.2 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subS-2 7.5 g을 얻었다(수율 50%, MS: [M+H]+= 378).
Figure pat00369
질소 분위기에서 화합물 subS-2(10 g, 26.5 mmol), 화합물 amine27(8.9 g, 27.8 mmol), sodium tert-butoxide(5.1 g, 52.9 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-37 10.7 g을 얻었다(수율 61%, MS: [M+H]+= 664).
제조예 2-38: 화합물 2-38의 제조
Figure pat00370
질소 분위기에서 화합물 T(10 g, 39.7 mmol), 화합물 sub35(8.2 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subT-1 8.4 g을 얻었다(수율 56%, MS: [M+H]+= 378).
Figure pat00371
질소 분위기에서 화합물 subT-1(10 g, 26.5 mmol), 화합물 amine9(9.7 g, 27.8 mmol), sodium tert-butoxide(5.1 g, 52.9 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-38 12.6 g을 얻었다(수율 69%, MS: [M+H]+= 692).
제조예 2-39: 화합물 2-39의 제조
Figure pat00372
질소 분위기에서 화합물 U(10 g, 39.7 mmol), 화합물 sub35(8.2 g, 39.7 mmol), sodium tert-butoxide(7.6 g, 79.5 mmol)을 toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subU-1 7.6 g을 얻었다(수율 51%, MS: [M+H]+= 378).
Figure pat00373
질소 분위기에서 화합물 subU-1(10 g, 26.5 mmol), 화합물 amine13(10 g, 27.8 mmol), sodium tert-butoxide(5.1 g, 52.9 mmol)을 xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-39 11.2 g을 얻었다(수율 60%, MS: [M+H]+= 704).
제조예 2-40: 화합물 2-40의 제조
Figure pat00374
질소 분위기에서 화합물 subE-1(15 g, 45.8 mmol)와 화합물 amine28(21.9 g, 48 mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19 g, 137.3 mmol)를 물 57ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-40를 20.9 g 제조하였다(수율 65%, MS: [M+H]+= 703).
제조예 2-41: 화합물 2-41의 제조
Figure pat00375
질소 분위기에서 화합물 V(10 g, 39.7 mmol), 화합물 sub33(6.9 g, 43.7 mmol), sodium tert-butoxide(11.5 g, 119.2 mmol)을 Toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.4 g, 0.8 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subV-1 6.5 g을 얻었다(수율 50%, MS: [M+H]+= 328)
Figure pat00376
질소 분위기에서 화합물 subV-1(15 g, 45.8 mmol)와 화합물 amine29(22.6 g, 48 mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19 g, 137.3 mmol)를 물 57ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-41를 23 g 제조하였다(수율 70%, MS: [M+H]+= 719).
제조예 2-42: 화합물 2-42의 제조
Figure pat00377
질소 분위기에서 화합물 subJ-1(15 g, 45.8 mmol)와 화합물 amine30(17.5 g, 48 mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19 g, 137.3 mmol)를 물 57ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-42를 19.6 g 제조하였다(수율 70%, MS: [M+H]+= 613).
제조예 2-43: 화합물 2-43의 제조
Figure pat00378
질소 분위기에서 화합물 subK-1(15 g, 45.8 mmol)와 화합물 amine31(17.5 g, 48 mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19 g, 137.3 mmol)를 물 57ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-43를 19.6 g 제조하였다(수율 70%, MS: [M+H]+= 613).
제조예 2-44: 화합물 2-44의 제조
Figure pat00379
질소 분위기에서 화합물 subP-1(15 g, 45.8 mmol)와 화합물 amine32(21.2 g, 48 mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19 g, 137.3 mmol)를 물 57ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-44를 19.5 g 제조하였다(수율 62%, MS: [M+H]+= 689).
제조예 2-45: 화합물 2-45의 제조
Figure pat00380
질소 분위기에서 화합물 subP-1(15 g, 45.8 mmol)와 화합물 amine33(21.9 g, 48 mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19 g, 137.3 mmol)를 물 57ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-45를 23.5 g 제조하였다(수율 73%, MS: [M+H]+= 703).
제조예 2-46: 화합물 2-46의 제조
Figure pat00381
질소 분위기에서 화합물 U(10 g, 39.7 mmol), 화합물 sub33(6.9 g, 43.7 mmol), sodium tert-butoxide(11.5 g, 119.2 mmol)을 Toluene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.4 g, 0.8 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subU-2 8.1 g을 얻었다(수율 62%, MS: [M+H]+= 328).
Figure pat00382
질소 분위기에서 화합물 subU-2(15 g, 45.8 mmol)와 화합물 amine34(22.6 g, 48 mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19 g, 137.3 mmol)를 물 57ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-46를 21 g 제조하였다(수율 64%, MS: [M+H]+= 719).
[실시예]
실시예 1
ITO(indium tin oxide)가 1000 Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척했다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용했다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10 분간 진행했다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5 분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 화합물 HI-1을 1150 Å의 두께로 형성하되 하기 화합물 A-1을 1.5 중량% 농도로 p-doping 했다. 상기 정공주입층 위에 하기 화합물 HT-1을 진공 증착하여 막 두께 800 Å의 정공수송층을 형성했다. 이어서, 상기 정공수송층 위에 막 두께 150 Å으로 하기 화합물 EB-1 화합물을 진공 증착하여 전자차단층을 형성했다. 이어서, 상기 EB-1 증착막 위에 호스트로 앞서 제조한 화합물 1-3, 화합물 2-1과 도판트로 화합물 Dp-7을 49:49:2의 중량비로 진공 증착하여 400 Å 두께의 적색 발광층을 형성했다. 상기 발광층 위에 막 두께 30 Å으로 하기 화합물 HB-1을 진공 증착하여 정공저지층을 형성했다. 이어서, 상기 정공저지층 위에 하기 화합물 ET-1과 하기 화합물 LiQ을 2:1의 중량비로 진공 증착하여 300 Å의 두께로 전자 주입 및 수송층을 형성했다. 상기 전자 주입 및 수송층 위에 순차적으로 12 Å 두께로 리튬플로라이드(LiF)와 1000 Å 두께로 알루미늄을 증착하여 음극을 형성했다.
Figure pat00383
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2 * 10-7 ~ 5 * 10-6 torr를 유지하여, 유기 발광 소자를 제조했다.
실시예 2 내지 실시예 145
유기 발광 소자의 호스트로 표 1에 기재된 제1 호스트와 제2 호스트를 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조했다.
비교예 1 내지 비교예 60
유기 발광 소자의 호스트로 표 2에 기재된 제1 호스트와 제2 호스트를 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조했다. 표 2의 화합물 B-1 내지 B-12는 아래와 같다.
Figure pat00384
비교예 61 내지 비교예 108
유기 발광 소자의 호스트로 표 3에 기재된 제1 호스트와 제2 호스트를 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조했다. 표 3의 화합물 C-1 내지 C-6은 아래와 같다.
Figure pat00385
[실험예]
상기 실시예 1 내지 실시예 145 및 비교예 1 내지 비교예 108에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율을 측정(15 mA/cm2 기준)하고 그 결과를 하기 표 1 내지 표 3에 나타냈다. 수명 T95는 휘도가 초기 휘도(6,000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.
구분 제1호스트 제2호스트 구동전압
(V)
효율
(cd/A)
수명 T95
(hr)
발광색
실시예 1 화합물1-3 화합물2-1 3.93 18.18 184 적색
실시예 2 화합물1-3 화합물2-15 3.95 17.03 182 적색
실시예 3 화합물1-3 화합물2-26 3.95 18.07 184 적색
실시예 4 화합물1-3 화합물2-34 3.98 18.44 189 적색
실시예 5 화합물1-3 화합물2-41 3.92 17.20 193 적색
실시예 6 화합물1-6 화합물2-2 3.94 17.61 180 적색
실시예 7 화합물1-6 화합물2-18 3.96 17.96 194 적색
실시예 8 화합물1-6 화합물2-27 3.92 17.50 200 적색
실시예 9 화합물1-6 화합물2-35 3.98 17.81 198 적색
실시예 10 화합물1-6 화합물2-42 3.95 18.00 191 적색
실시예 11 화합물1-8 화합물2-5 3.97 17.64 195 적색
실시예 12 화합물1-8 화합물2-19 3.97 17.19 198 적색
실시예 13 화합물1-8 화합물2-29 3.93 17.87 191 적색
실시예 14 화합물1-8 화합물2-38 3.93 17.97 200 적색
실시예 15 화합물1-8 화합물2-43 3.92 17.07 195 적색
실시예 16 화합물1-9 화합물2-8 3.98 17.12 200 적색
실시예 17 화합물1-9 화합물2-21 3.99 17.56 200 적색
실시예 18 화합물1-9 화합물2-30 3.94 17.06 191 적색
실시예 19 화합물1-9 화합물2-39 3.98 18.08 183 적색
실시예 20 화합물1-9 화합물2-44 3.92 18.44 185 적색
실시예 21 화합물1-10 화합물2-12 3.82 19.12 217 적색
실시예 22 화합물1-10 화합물2-13 3.85 18.96 225 적색
실시예 23 화합물1-10 화합물2-23 3.85 18.35 243 적색
실시예 24 화합물1-10 화합물2-31 3.86 18.90 227 적색
실시예 25 화합물1-10 화합물2-46 3.83 19.03 223 적색
실시예 26 화합물1-12 화합물2-1 3.88 18.01 222 적색
실시예 27 화합물1-12 화합물2-15 3.88 18.77 244 적색
실시예 28 화합물1-12 화합물2-26 3.85 18.61 244 적색
실시예 29 화합물1-12 화합물2-34 3.88 19.19 225 적색
실시예 30 화합물1-12 화합물2-41 3.76 19.23 225 적색
실시예 31 화합물1-15 화합물2-2 3.84 18.61 228 적색
실시예 32 화합물1-15 화합물2-18 3.81 19.33 236 적색
실시예 33 화합물1-15 화합물2-27 3.89 19.06 243 적색
실시예 34 화합물1-15 화합물2-35 3.77 18.85 229 적색
실시예 35 화합물1-15 화합물2-42 3.87 19.42 245 적색
실시예 36 화합물1-16 화합물2-5 3.83 18.31 249 적색
실시예 37 화합물1-16 화합물2-19 3.79 18.77 217 적색
실시예 38 화합물1-16 화합물2-29 3.89 19.23 226 적색
실시예 39 화합물1-16 화합물2-38 3.76 18.33 230 적색
실시예 40 화합물1-16 화합물2-43 3.77 19.26 232 적색
실시예 41 화합물1-17 화합물2-8 3.89 18.93 214 적색
실시예 42 화합물1-17 화합물2-21 3.77 18.40 210 적색
실시예 43 화합물1-17 화합물2-30 3.87 18.87 248 적색
실시예 44 화합물1-17 화합물2-39 3.83 18.24 235 적색
실시예 45 화합물1-17 화합물2-44 3.84 18.00 233 적색
실시예 46 화합물1-18 화합물2-12 3.63 17.69 180 적색
실시예 47 화합물1-18 화합물2-13 3.60 17.28 199 적색
실시예 48 화합물1-18 화합물2-23 3.63 18.28 190 적색
실시예 49 화합물1-18 화합물2-31 3.65 18.07 200 적색
실시예 50 화합물1-18 화합물2-46 3.59 17.40 199 적색
실시예 51 화합물1-26 화합물2-1 3.78 20.30 265 적색
실시예 52 화합물1-26 화합물2-15 3.77 20.10 269 적색
실시예 53 화합물1-26 화합물2-26 3.72 19.65 258 적색
실시예 54 화합물1-26 화합물2-34 3.67 19.65 272 적색
실시예 55 화합물1-26 화합물2-41 3.73 19.80 275 적색
실시예 56 화합물1-27 화합물2-2 3.74 20.27 279 적색
실시예 57 화합물1-27 화합물2-18 3.65 20.39 265 적색
실시예 58 화합물1-27 화합물2-27 3.72 20.39 251 적색
실시예 59 화합물1-27 화합물2-35 3.73 20.22 240 적색
실시예 60 화합물1-27 화합물2-42 3.66 19.98 271 적색
실시예 61 화합물1-28 화합물2-5 3.65 17.86 293 적색
실시예 62 화합물1-28 화합물2-19 3.64 17.37 308 적색
실시예 63 화합물1-28 화합물2-29 3.63 18.40 283 적색
실시예 64 화합물1-28 화합물2-38 3.66 18.03 277 적색
실시예 65 화합물1-28 화합물2-43 3.64 18.44 289 적색
실시예 66 화합물1-30 화합물2-8 3.65 20.88 285 적색
실시예 67 화합물1-30 화합물2-21 3.55 20.41 283 적색
실시예 68 화합물1-30 화합물2-30 3.56 19.55 270 적색
실시예 69 화합물1-30 화합물2-39 3.63 20.27 273 적색
실시예 70 화합물1-30 화합물2-44 3.60 19.59 302 적색
실시예 71 화합물1-31 화합물2-12 3.60 22.32 290 적색
실시예 72 화합물1-31 화합물2-13 3.55 21.44 282 적색
실시예 73 화합물1-31 화합물2-23 3.63 22.92 286 적색
실시예 74 화합물1-31 화합물2-31 3.56 20.93 278 적색
실시예 75 화합물1-31 화합물2-46 3.62 21.72 288 적색
실시예 76 화합물1-32 화합물2-1 3.59 19.84 308 적색
실시예 77 화합물1-32 화합물2-15 3.63 21.04 286 적색
실시예 78 화합물1-32 화합물2-26 3.58 22.66 291 적색
실시예 79 화합물1-32 화합물2-34 3.57 22.44 271 적색
실시예 80 화합물1-32 화합물2-41 3.65 21.55 275 적색
실시예 81 화합물1-33 화합물2-2 3.61 21.81 302 적색
실시예 82 화합물1-33 화합물2-18 3.59 22.92 308 적색
실시예 83 화합물1-33 화합물2-27 3.63 21.51 275 적색
실시예 84 화합물1-33 화합물2-35 3.64 22.43 273 적색
실시예 85 화합물1-33 화합물2-42 3.61 22.41 270 적색
실시예 86 화합물1-36 화합물2-5 3.60 22.68 288 적색
실시예 87 화합물1-36 화합물2-19 3.65 22.27 307 적색
실시예 88 화합물1-36 화합물2-29 3.59 20.24 271 적색
실시예 89 화합물1-36 화합물2-38 3.58 20.69 296 적색
실시예 90 화합물1-36 화합물2-43 3.56 20.45 284 적색
실시예 91 화합물1-37 화합물2-8 3.62 22.43 300 적색
실시예 92 화합물1-37 화합물2-21 3.59 19.57 305 적색
실시예 93 화합물1-37 화합물2-30 3.62 20.97 305 적색
실시예 94 화합물1-37 화합물2-39 3.64 22.35 283 적색
실시예 95 화합물1-37 화합물2-44 3.61 22.11 275 적색
실시예 96 화합물1-42 화합물2-12 3.79 20.49 270 적색
실시예 97 화합물1-42 화합물2-13 3.75 19.35 256 적색
실시예 98 화합물1-42 화합물2-23 3.73 19.26 254 적색
실시예 99 화합물1-42 화합물2-31 3.69 19.02 272 적색
실시예 100 화합물1-42 화합물2-46 3.73 19.96 250 적색
실시예 101 화합물1-44 화합물2-1 3.76 19.49 248 적색
실시예 102 화합물1-44 화합물2-15 3.70 19.91 267 적색
실시예 103 화합물1-44 화합물2-26 3.75 19.18 244 적색
실시예 104 화합물1-44 화합물2-34 3.72 19.08 244 적색
실시예 105 화합물1-44 화합물2-41 3.66 20.00 246 적색
실시예 106 화합물1-47 화합물2-2 3.60 17.14 285 적색
실시예 107 화합물1-47 화합물2-18 3.60 17.98 293 적색
실시예 108 화합물1-47 화합물2-27 3.68 18.06 304 적색
실시예 109 화합물1-47 화합물2-35 3.65 17.45 291 적색
실시예 110 화합물1-47 화합물2-42 3.67 18.45 298 적색
실시예 111 화합물1-49 화합물2-5 3.76 18.44 243 적색
실시예 112 화합물1-49 화합물2-19 3.77 18.59 211 적색
실시예 113 화합물1-49 화합물2-29 3.85 18.18 239 적색
실시예 114 화합물1-49 화합물2-38 3.79 18.96 219 적색
실시예 115 화합물1-49 화합물2-43 3.75 18.21 230 적색
실시예 116 화합물1-52 화합물2-8 3.80 19.46 228 적색
실시예 117 화합물1-52 화합물2-21 3.76 19.23 216 적색
실시예 118 화합물1-52 화합물2-30 3.89 18.46 228 적색
실시예 119 화합물1-52 화합물2-39 3.81 18.21 225 적색
실시예 120 화합물1-52 화합물2-44 3.87 18.79 227 적색
실시예 121 화합물1-53 화합물2-12 3.76 18.44 243 적색
실시예 122 화합물1-53 화합물2-13 3.77 18.59 211 적색
실시예 123 화합물1-53 화합물2-23 3.85 18.18 239 적색
실시예 124 화합물1-53 화합물2-31 3.79 18.96 219 적색
실시예 125 화합물1-53 화합물2-46 3.75 18.21 230 적색
실시예 126 화합물1-54 화합물2-1 3.84 18.16 247 적색
실시예 127 화합물1-54 화합물2-15 3.86 19.25 239 적색
실시예 128 화합물1-54 화합물2-26 3.83 18.78 215 적색
실시예 129 화합물1-54 화합물2-34 3.75 18.02 238 적색
실시예 130 화합물1-54 화합물2-41 3.80 18.99 218 적색
실시예 131 화합물1-56 화합물2-2 3.79 19.02 221 적색
실시예 132 화합물1-56 화합물2-18 3.88 18.06 220 적색
실시예 133 화합물1-56 화합물2-27 3.87 18.90 233 적색
실시예 134 화합물1-56 화합물2-35 3.81 18.96 220 적색
실시예 135 화합물1-56 화합물2-42 3.85 18.49 239 적색
실시예 136 화합물1-59 화합물2-5 3.70 19.15 266 적색
실시예 137 화합물1-59 화합물2-19 3.67 19.65 247 적색
실시예 138 화합물1-59 화합물2-29 3.71 20.34 261 적색
실시예 139 화합물1-59 화합물2-38 3.65 20.00 256 적색
실시예 140 화합물1-59 화합물2-43 3.68 20.32 249 적색
실시예 141 화합물1-60 화합물2-8 3.66 19.19 279 적색
실시예 142 화합물1-60 화합물2-21 3.73 19.10 261 적색
실시예 143 화합물1-60 화합물2-30 3.79 19.43 255 적색
실시예 144 화합물1-60 화합물2-39 3.79 20.12 253 적색
실시예 145 화합물1-60 화합물2-44 3.79 19.82 256 적색
구분 제1호스트 제2호스트 구동전압
(V)
효율
(cd/A)
수명 T95
(hr)
발광색
비교예 1 화합물B-1 화합물2-1 4.14 17.61 170 적색
비교예 2 화합물B-1 화합물2-15 4.05 17.87 167 적색
비교예 3 화합물B-1 화합물2-26 4.01 17.54 167 적색
비교예 4 화합물B-1 화합물2-34 4.10 17.81 148 적색
비교예 5 화합물B-1 화합물2-41 4.13 18.03 160 적색
비교예 6 화합물B-2 화합물2-2 4.12 18.17 156 적색
비교예 7 화합물B-2 화합물2-18 4.02 17.75 169 적색
비교예 8 화합물B-2 화합물2-27 4.15 17.93 164 적색
비교예 9 화합물B-2 화합물2-35 4.07 18.03 158 적색
비교예 10 화합물B-2 화합물2-42 4.10 17.67 155 적색
비교예 11 화합물B-3 화합물2-5 4.21 18.16 157 적색
비교예 12 화합물B-3 화합물2-19 4.08 17.84 150 적색
비교예 13 화합물B-3 화합물2-29 4.08 17.37 168 적색
비교예 14 화합물B-3 화합물2-38 4.05 18.16 165 적색
비교예 15 화합물B-3 화합물2-43 4.08 17.71 162 적색
비교예 16 화합물B-4 화합물2-8 4.01 18.14 167 적색
비교예 17 화합물B-4 화합물2-21 4.15 17.05 163 적색
비교예 18 화합물B-4 화합물2-30 4.02 18.13 167 적색
비교예 19 화합물B-4 화합물2-39 4.10 18.03 167 적색
비교예 20 화합물B-4 화합물2-44 4.05 17.02 156 적색
비교예 21 화합물B-5 화합물2-12 4.30 16.77 131 적색
비교예 22 화합물B-5 화합물2-13 4.30 16.36 130 적색
비교예 23 화합물B-5 화합물2-23 4.21 15.75 113 적색
비교예 24 화합물B-5 화합물2-31 4.26 15.82 131 적색
비교예 25 화합물B-5 화합물2-46 4.22 16.15 125 적색
비교예 26 화합물B-6 화합물2-1 4.21 16.66 114 적색
비교예 27 화합물B-6 화합물2-15 4.27 16.71 111 적색
비교예 28 화합물B-6 화합물2-26 4.24 16.88 130 적색
비교예 29 화합물B-6 화합물2-34 4.21 16.70 126 적색
비교예 30 화합물B-6 화합물2-41 4.21 15.89 109 적색
비교예 31 화합물B-7 화합물2-2 4.21 17.33 167 적색
비교예 32 화합물B-7 화합물2-18 4.11 18.00 169 적색
비교예 33 화합물B-7 화합물2-27 4.11 17.31 162 적색
비교예 34 화합물B-7 화합물2-35 4.06 17.99 161 적색
비교예 35 화합물B-7 화합물2-42 4.14 17.64 158 적색
비교예 36 화합물B-8 화합물2-5 4.05 17.88 166 적색
비교예 37 화합물B-8 화합물2-19 4.03 17.61 168 적색
비교예 38 화합물B-8 화합물2-29 4.06 17.92 158 적색
비교예 39 화합물B-8 화합물2-38 4.12 17.10 159 적색
비교예 40 화합물B-8 화합물2-43 4.10 17.72 150 적색
비교예 41 화합물B-9 화합물2-8 4.14 16.87 142 적색
비교예 42 화합물B-9 화합물2-21 4.11 16.29 153 적색
비교예 43 화합물B-9 화합물2-30 4.08 17.07 146 적색
비교예 44 화합물B-9 화합물2-39 4.04 16.14 134 적색
비교예 45 화합물B-9 화합물2-44 4.15 16.90 131 적색
비교예 46 화합물B-10 화합물2-12 4.10 17.03 129 적색
비교예 47 화합물B-10 화합물2-13 4.08 17.16 128 적색
비교예 48 화합물B-10 화합물2-23 4.01 17.48 149 적색
비교예 49 화합물B-10 화합물2-31 4.01 16.04 140 적색
비교예 50 화합물B-10 화합물2-46 4.11 16.71 138 적색
비교예 51 화합물B-11 화합물2-1 4.16 18.16 167 적색
비교예 52 화합물B-11 화합물2-15 4.02 17.30 164 적색
비교예 53 화합물B-11 화합물2-26 4.08 17.07 162 적색
비교예 54 화합물B-11 화합물2-34 4.11 17.01 154 적색
비교예 55 화합물B-11 화합물2-41 4.09 17.90 165 적색
비교예 56 화합물B-12 화합물2-2 4.14 17.07 162 적색
비교예 57 화합물B-12 화합물2-18 4.13 17.65 156 적색
비교예 58 화합물B-12 화합물2-27 4.10 17.15 159 적색
비교예 59 화합물B-12 화합물2-35 4.14 18.18 158 적색
비교예 60 화합물B-12 화합물2-42 4.15 17.03 153 적색
구분 제1호스트 제2호스트 구동전압
(V)
효율
(cd/A)
수명 T95
(hr)
발광색
비교예 61 화합물1-3 화합물C-1 4.23 16.85 133 적색
비교예 62 화합물1-12 화합물C-1 4.21 16.78 110 적색
비교예 63 화합물1-26 화합물C-1 4.35 15.56 117 적색
비교예 64 화합물1-31 화합물C-1 4.24 15.63 111 적색
비교예 65 화합물1-33 화합물C-1 4.30 16.29 113 적색
비교예 66 화합물1-42 화합물C-1 4.21 16.97 122 적색
비교예 67 화합물1-49 화합물C-1 4.35 15.60 126 적색
비교예 68 화합물1-54 화합물C-1 4.32 15.84 116 적색
비교예 69 화합물1-6 화합물C-2 4.08 16.14 132 적색
비교예 70 화합물1-15 화합물C-2 4.08 16.90 142 적색
비교예 71 화합물1-27 화합물C-2 4.04 16.29 140 적색
비교예 72 화합물1-30 화합물C-2 4.09 16.75 146 적색
비교예 73 화합물1-37 화합물C-2 4.11 16.54 145 적색
비교예 74 화합물1-44 화합물C-2 4.15 17.11 138 적색
비교예 75 화합물1-53 화합물C-2 4.14 17.07 132 적색
비교예 76 화합물1-56 화합물C-2 4.09 16.51 133 적색
비교예 77 화합물1-8 화합물C-3 4.14 17.83 168 적색
비교예 78 화합물1-17 화합물C-3 4.01 17.08 163 적색
비교예 79 화합물1-28 화합물C-3 4.02 17.43 155 적색
비교예 80 화합물1-32 화합물C-3 4.01 17.09 162 적색
비교예 81 화합물1-36 화합물C-3 4.10 17.19 154 적색
비교예 82 화합물1-47 화합물C-3 4.08 17.59 166 적색
비교예 83 화합물1-53 화합물C-3 4.13 17.62 166 적색
비교예 84 화합물1-60 화합물C-3 4.03 17.30 161 적색
비교예 85 화합물1-3 화합물C-4 4.24 17.02 170 적색
비교예 86 화합물1-12 화합물C-4 4.03 17.11 156 적색
비교예 87 화합물1-26 화합물C-4 4.14 17.55 168 적색
비교예 88 화합물1-31 화합물C-4 4.02 18.11 152 적색
비교예 89 화합물1-33 화합물C-4 4.02 17.39 156 적색
비교예 90 화합물1-42 화합물C-4 4.01 17.10 162 적색
비교예 91 화합물1-49 화합물C-4 4.13 17.00 158 적색
비교예 92 화합물1-54 화합물C-4 4.12 17.10 152 적색
비교예 93 화합물1-6 화합물C-5 4.10 17.05 155 적색
비교예 94 화합물1-15 화합물C-5 4.02 18.12 162 적색
비교예 95 화합물1-27 화합물C-5 4.06 17.28 150 적색
비교예 96 화합물1-30 화합물C-5 4.08 17.35 166 적색
비교예 97 화합물1-37 화합물C-5 4.06 17.28 149 적색
비교예 98 화합물1-44 화합물C-5 4.04 17.73 169 적색
비교예 99 화합물1-53 화합물C-5 4.01 17.36 158 적색
비교예 100 화합물1-56 화합물C-5 4.02 17.49 160 적색
비교예 101 화합물1-8 화합물C-6 4.05 17.35 154 적색
비교예 102 화합물1-17 화합물C-6 4.05 17.49 140 적색
비교예 103 화합물1-28 화합물C-6 4.07 16.54 148 적색
비교예 104 화합물1-32 화합물C-6 4.11 16.57 146 적색
비교예 105 화합물1-36 화합물C-6 4.08 16.84 138 적색
비교예 106 화합물1-47 화합물C-6 4.04 17.28 150 적색
비교예 107 화합물1-53 화합물C-6 4.15 17.04 150 적색
비교예 108 화합물1-60 화합물C-6 4.14 17.22 129 적색
실시예 1 내지 145 및 비교예 1 내지 108에 의해 제조된 유기 발광 소자에 전류를 인가하여 상기 표 1 내지 표 3의 결과를 얻었다.
본 발명의 일 실시예에서, 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물을 공증착하여 적색 발광층으로 사용했을 때 표 1과 같이 비교예 대비 구동 전압이 감소하고 효율 및 수명이 증가하는 것을 확인하였다. 또한 표 2에서와 같이 비교예 화합물 B-1 내지 B-12와 본 발명의 화학식 2로 표시되는 화합물을 공증착하여 적색 발광층으로 사용했을 때, 본 발명의 조합보다 대체적으로 구동전압은 상승하고 효율과 수명이 떨어 지는 결과를 보였다. 표 3에서와 같이 비교예 화합물 C-1 내지 C-6과 본 발명의 화학식 1로 표시되는 화합물을 같이 공증착하여 적색 발광층으로 사용한 경우에도 구동전압은 상승하고 효율과 수명이 떨어지는 결과를 나타냈다.
상기 결과들로 미루어, 본 발명의 일 실시예와 같이 제1 호스트인 화학식 1로 표시되는 화합물과 제2 호스트인 화학식 2로 표시되는 화합물의 조합을 적색 발광층 내의 호스트로 사용하는 경우 도판트로의 에너지 전달이 잘 이루어진다는 것을 확인하였다. 이것은 결국 비교 화합물과의 조합 보다 본 발명의 화학식 1과 화학식 2의 조합이 발광층 내에 더 안정적인 균형을 야기하기 때문으로 유추할 수 있다. 따라서 본 발명 일 실시예의 유기 발광 소자 내 전자와 정공이 결합하여 엑시톤을 형성할 때 효율과 수명이 보다 상승하는 것을 확인 할 수 있었다.
결론적으로 본 발명의 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물을 조합하고 공증착하여 발광층의 호스트로 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있음을 확인하였다.
1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 전자차단층 8: 정공저지층
9: 전자수송층 10: 전자주입층

Claims (14)

  1. 양극;
    음극; 및
    상기 양극과 음극 사이의 발광층을 포함하고,
    상기 발광층은 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하는,
    유기 발광 소자:
    [화학식 1]
    Figure pat00386

    상기 화학식 1에서,
    Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
    L1 내지 L3는 각각 독립적으로, 단일결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고,
    R1은 수소; 중수소; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
    Ar1, Ar2 및 R1 중 적어도 하나는 나프틸, 페닐 나프틸, 나프틸 페닐, 페난트레닐, 플루오란테닐, 디벤조퓨라닐, 디벤조티오페닐, 벤조나프토퓨라닐, 또는 벤조나프토티오페닐이고,
    a은 0 내지 7의 정수이고,
    [화학식 2]
    Figure pat00387

    상기 화학식 1에서,
    A는 인접한 고리와 융합된 나프탈렌 고리이고,
    Ar3 및 Ar4는 각각 독립적으로, 치환 또는 비치환된 C1-60 알킬; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
    Ar5는 치환 또는 비치환된 C1-60 알킬; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
    L4 내지 L6는 각각 독립적으로, 단일결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고,
    L7은 단일결합; 또는 치환 또는 비치환된 C6-60 아릴렌이다.
  2. 제1항에 있어서,
    화학식 1로 표시되는 화합물은 하기 화학식 1-1 내지 화학식 1-3 중 어느 하나로 표시되는,
    유기 발광 소자:
    [화학식 1-1]
    Figure pat00388

    [화학식 1-2]
    Figure pat00389

    [화학식 1-3]
    Figure pat00390

    상기 화학식 1-1 내지 1-3에서,
    Ar1, Ar2, L1 내지 L3 및 R1은 제1항에서 정의한 바와 같다.
  3. 제1항에 있어서,
    Ar1 및 Ar2는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 디벤조퓨라닐, 또는 디벤조티오페닐인,
    유기 발광 소자.
  4. 제1항에 있어서,
    L1 내지 L3는 각각 독립적으로, 단일결합 또는 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure pat00391
    .
  5. 제1항에 있어서,
    R1은 각각 독립적으로, 수소, 중수소, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 트리페닐레닐, 나프틸 페닐, 페닐 나프틸, 플루오란테닐, 디벤조퓨라닐, 디벤조티오페닐, 벤조나프토퓨라닐, 또는 벤조나프토티오페닐인,
    유기 발광 소자.
  6. 제1항에 있어서,
    a는 0 또는 1인,
    유기 발광 소자.
  7. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure pat00392

    Figure pat00393

    Figure pat00394

    Figure pat00395

    Figure pat00396

    Figure pat00397

    Figure pat00398

    Figure pat00399

    Figure pat00400

    Figure pat00401

    Figure pat00402

    Figure pat00403

    Figure pat00404

    Figure pat00405

    Figure pat00406

    Figure pat00407

    Figure pat00408

    Figure pat00409

    Figure pat00410

    Figure pat00411

    Figure pat00412

    Figure pat00413

    Figure pat00414

    Figure pat00415

    Figure pat00416

    Figure pat00417

    Figure pat00418

    Figure pat00419

    Figure pat00420

    Figure pat00421

    Figure pat00422

    Figure pat00423

    Figure pat00424

    Figure pat00425

    Figure pat00426

    Figure pat00427

    Figure pat00428

    Figure pat00429

    Figure pat00430

    Figure pat00431

    Figure pat00432

    Figure pat00433

    Figure pat00434

    Figure pat00435

    Figure pat00436

    Figure pat00437

    Figure pat00438

    Figure pat00439

    Figure pat00440

    Figure pat00441

    Figure pat00442

    Figure pat00443

    Figure pat00444

    Figure pat00445

    Figure pat00446

    Figure pat00447

    Figure pat00448

    Figure pat00449

    Figure pat00450

    Figure pat00451

    Figure pat00452

    Figure pat00453

    Figure pat00454

    Figure pat00455

    Figure pat00456

    Figure pat00457

    Figure pat00458

    Figure pat00459

    Figure pat00460

    Figure pat00461

    Figure pat00462

    Figure pat00463

    Figure pat00464

    Figure pat00465

    Figure pat00466

    Figure pat00467

    Figure pat00468

    Figure pat00469

    Figure pat00470

    Figure pat00471

    Figure pat00472

    Figure pat00473

    Figure pat00474

    Figure pat00475

    Figure pat00476

    Figure pat00477

    Figure pat00478

    Figure pat00479

    Figure pat00480

    Figure pat00481

    Figure pat00482

    Figure pat00483

    Figure pat00484

    Figure pat00485

    Figure pat00486

    Figure pat00487

    Figure pat00488

    Figure pat00489

    Figure pat00490

    Figure pat00491

    Figure pat00492

    Figure pat00493

    Figure pat00494

    Figure pat00495

    Figure pat00496

    Figure pat00497

    Figure pat00498

    Figure pat00499

    Figure pat00500

    Figure pat00501

    Figure pat00502

    Figure pat00503

    Figure pat00504

    Figure pat00505

    Figure pat00506

    Figure pat00507

    Figure pat00508

    Figure pat00509

    Figure pat00510

    Figure pat00511

    Figure pat00512

    Figure pat00513

    Figure pat00514

    Figure pat00515

    Figure pat00516

    Figure pat00517

    Figure pat00518

    Figure pat00519

    Figure pat00520

    Figure pat00521

    Figure pat00522

    Figure pat00523

    Figure pat00524

    Figure pat00525

    Figure pat00526

    Figure pat00527

    Figure pat00528

    Figure pat00529

    Figure pat00530

    Figure pat00531

    Figure pat00532

    Figure pat00533

    Figure pat00534

    Figure pat00535

    Figure pat00536

    Figure pat00537

    Figure pat00538

    Figure pat00539
    .
  8. 제1항에 있어서,
    화학식 2로 표시되는 화합물은 하기 화학식 2-1 내지 화학식 2-3 중 어느 하나로 표시되는,
    유기 발광 소자:
    [화학식 2-1]
    Figure pat00540

    [화학식 2-2]
    Figure pat00541

    [화학식 2-3]
    Figure pat00542

    상기 화학식 2-1 내지 2-3에서,
    Ar3 내지 Ar5 및 L4 내지 L7은 제1항에서 정의한 바와 같다.
  9. 제1항에 있어서,
    Ar3 및 Ar4는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 아다만틸, 터트뷰틸 페닐, 나프틸 페닐, 페닐 나프틸, 디메틸플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 또는 벤조나프토퓨라닐인,
    유기 발광 소자.
  10. 제1항에 있어서,
    Ar3 및 Ar4는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure pat00543

    Figure pat00544
    .
  11. 제1항에 있어서,
    Ar5는 페닐, 비페닐릴, 터페닐릴, 나프틸, 터트뷰틸 페닐, 또는 아다만틸인,
    유기 발광 소자.
  12. 제1항에 있어서,
    L4 내지 L6는 각각 독립적으로, 단일결합 또는 페닐렌인,
    유기 발광 소자.
  13. 제1항에 있어서,
    L7은 단일결합 또는 페닐렌인,
    유기 발광 소자.
  14. 제1항에 있어서,
    상기 화학식 2로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    화합물:
    Figure pat00545

    Figure pat00546

    Figure pat00547

    Figure pat00548

    Figure pat00549

    Figure pat00550

    Figure pat00551

    Figure pat00552

    Figure pat00553

    Figure pat00554

    Figure pat00555

    Figure pat00556

    Figure pat00557

    Figure pat00558

    Figure pat00559

    Figure pat00560

    Figure pat00561

    Figure pat00562

    Figure pat00563

    Figure pat00564

    Figure pat00565

    Figure pat00566

    Figure pat00567

    Figure pat00568

    Figure pat00569

    Figure pat00570

    Figure pat00571

    Figure pat00572

    Figure pat00573

    Figure pat00574

    Figure pat00575

    Figure pat00576

    Figure pat00577

    Figure pat00578

    Figure pat00579

    Figure pat00580

    Figure pat00581

    Figure pat00582

    Figure pat00583

    Figure pat00584

    Figure pat00585

    Figure pat00586

    Figure pat00587
    .
KR1020210062250A 2020-05-14 2021-05-13 유기 발광 소자 KR102545207B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180013215.5A CN115066761A (zh) 2020-05-14 2021-05-14 有机发光器件
PCT/KR2021/006089 WO2021230714A1 (ko) 2020-05-14 2021-05-14 유기 발광 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200057861 2020-05-14
KR1020200057861 2020-05-14

Publications (2)

Publication Number Publication Date
KR20210141402A true KR20210141402A (ko) 2021-11-23
KR102545207B1 KR102545207B1 (ko) 2023-06-20

Family

ID=78695323

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210062250A KR102545207B1 (ko) 2020-05-14 2021-05-13 유기 발광 소자

Country Status (1)

Country Link
KR (1) KR102545207B1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (ko) 1999-01-27 2000-08-16 성재갑 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자
WO2017115608A1 (ja) * 2015-12-28 2017-07-06 コニカミノルタ株式会社 π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、電荷輸送材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR20190118392A (ko) * 2018-04-10 2019-10-18 삼성에스디아이 주식회사 조성물, 유기 광전자 소자 및 표시 장치
KR20190127554A (ko) * 2018-05-04 2019-11-13 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20200018229A (ko) * 2018-08-09 2020-02-19 덕산네오룩스 주식회사 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
WO2020045981A1 (en) * 2018-08-29 2020-03-05 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent device comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (ko) 1999-01-27 2000-08-16 성재갑 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자
WO2017115608A1 (ja) * 2015-12-28 2017-07-06 コニカミノルタ株式会社 π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、電荷輸送材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR20190118392A (ko) * 2018-04-10 2019-10-18 삼성에스디아이 주식회사 조성물, 유기 광전자 소자 및 표시 장치
KR20190127554A (ko) * 2018-05-04 2019-11-13 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20200018229A (ko) * 2018-08-09 2020-02-19 덕산네오룩스 주식회사 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
WO2020045981A1 (en) * 2018-08-29 2020-03-05 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent device comprising the same

Also Published As

Publication number Publication date
KR102545207B1 (ko) 2023-06-20

Similar Documents

Publication Publication Date Title
KR102469107B1 (ko) 유기 발광 소자
KR102360903B1 (ko) 유기 발광 소자
KR20220053509A (ko) 유기 발광 소자
KR20220000856A (ko) 유기 발광 소자
KR20210133891A (ko) 유기 발광 소자
KR102550644B1 (ko) 유기 발광 소자
KR20220118960A (ko) 유기 발광 소자
KR102441472B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20210125940A (ko) 유기 발광 소자
KR20210098390A (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR102545207B1 (ko) 유기 발광 소자
KR102664889B1 (ko) 유기 발광 소자
KR102549461B1 (ko) 유기 발광 소자
KR102636597B1 (ko) 유기 발광 소자
KR102645016B1 (ko) 유기 발광 소자
KR102623895B1 (ko) 유기 발광 소자
KR102648796B1 (ko) 유기 발광 소자
KR102636113B1 (ko) 유기 발광 소자
KR102636112B1 (ko) 유기 발광 소자
KR102427163B1 (ko) 유기 발광 소자
KR20220138356A (ko) 유기 발광 소자
KR20220138357A (ko) 유기 발광 소자
KR20220053508A (ko) 유기 발광 소자
KR20230071754A (ko) 유기 발광 소자
KR20210125939A (ko) 유기 발광 소자

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant