KR20210113454A - 도로 이상 검출 - Google Patents

도로 이상 검출 Download PDF

Info

Publication number
KR20210113454A
KR20210113454A KR1020217029101A KR20217029101A KR20210113454A KR 20210113454 A KR20210113454 A KR 20210113454A KR 1020217029101 A KR1020217029101 A KR 1020217029101A KR 20217029101 A KR20217029101 A KR 20217029101A KR 20210113454 A KR20210113454 A KR 20210113454A
Authority
KR
South Korea
Prior art keywords
sensors
autonomous vehicle
vehicle
sensor
road
Prior art date
Application number
KR1020217029101A
Other languages
English (en)
Other versions
KR102400649B1 (ko
Inventor
재커리 토마스 뱃츠
루동 선
키 우다드
치안 왕
이밍 자오
스테파니 리
린 자오
Original Assignee
모셔널 에이디 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 모셔널 에이디 엘엘씨 filed Critical 모셔널 에이디 엘엘씨
Priority to KR1020227016624A priority Critical patent/KR20220068275A/ko
Priority claimed from PCT/US2020/015372 external-priority patent/WO2020159961A1/en
Publication of KR20210113454A publication Critical patent/KR20210113454A/ko
Application granted granted Critical
Publication of KR102400649B1 publication Critical patent/KR102400649B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/068Road friction coefficient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/064Degree of grip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0025Planning or execution of driving tasks specially adapted for specific operations
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/01Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H1/00Removing undesirable matter from roads or like surfaces, with or without moistening of the surface
    • E01H1/02Brushing apparatus, e.g. with auxiliary instruments for mechanically loosening dirt
    • E01H1/05Brushing apparatus, e.g. with auxiliary instruments for mechanically loosening dirt with driven brushes
    • E01H1/053Brushing apparatus, e.g. with auxiliary instruments for mechanically loosening dirt with driven brushes having vertical axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/30Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • G01B5/207Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/28Measuring arrangements characterised by the use of mechanical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • G01C21/32Structuring or formatting of map data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3815Road data
    • G01C21/3822Road feature data, e.g. slope data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3848Data obtained from both position sensors and additional sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C7/00Tracing profiles
    • G01C7/02Tracing profiles of land surfaces
    • G01C7/04Tracing profiles of land surfaces involving a vehicle which moves along the profile to be traced
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/42Road-making materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/029Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks and expert systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0141Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/09626Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages where the origin of the information is within the own vehicle, e.g. a local storage device, digital map
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096725Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096775Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a central station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096791Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is another vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096805Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route
    • G08G1/096827Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed onboard
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096833Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route
    • G08G1/096844Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route where the complete route is dynamically recomputed based on new data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/165Anti-collision systems for passive traffic, e.g. including static obstacles, trees
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/20Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles
    • G08G1/202Dispatching vehicles on the basis of a location, e.g. taxi dispatching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0004In digital systems, e.g. discrete-time systems involving sampling
    • B60W2050/0005Processor details or data handling, e.g. memory registers or chip architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0026Lookup tables or parameter maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/20Road profile, i.e. the change in elevation or curvature of a plurality of continuous road segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/35Road bumpiness, e.g. potholes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/50Barriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/021Special mounting in general
    • G01N2201/0216Vehicle borne
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33027Artificial neural network controller
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Human Computer Interaction (AREA)
  • Theoretical Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Atmospheric Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)

Abstract

프로세싱 회로 및 차량에 연결된 복수의 센서를 포함하는 장치가 제공되며, 여기서 복수의 센서 중 적어도 하나는 차량의 하부 구조에 배치된다. 복수의 센서는 차량이 진행하고 있는 도로에서의 변동을 검출할 수 있다. 복수의 센서는 또한 도로의 변동에 대응하는 정보를 생성할 수 있다. 복수의 센서는 또한 도로에서의 변동에 대응하는 정보를 프로세싱 회로에 송신할 수 있다. 복수의 센서에 의해 수집된 정보는 그러면 차량의 운전 능력을 보강하는 데 사용될 수 있다.

Description

도로 이상 검출{DETECTING ROAD ANOMALIES}
관련 출원의 상호 참조
이 출원은 2019년 1월 28일에 출원된 미국 가특허 출원 제62/797,895호 및 2019년 2월 27일에 출원된 덴마크 특허 출원 제PA201970135호에 대한 우선권을 주장하며, 이들의 전체 내용은 참조에 의해 본원에 포함된다.
발명의 분야
이 설명은 자율 주행 차량(autonomous vehicle)에 의해 도로 이상을 검출하고 전달하기 위한 시스템 및 방법에 관한 것이다.
자율 주행 차량은 사람 및/또는 화물(예를 들면, 포장물, 물건, 또는 다른 물품)을 한 장소로부터 다른 장소로 운송하는 데 사용될 수 있다. 예로서, 자율 주행 차량은 사람의 위치로 운행하고, 사람이 자율 주행 차량을 탑승하기를 기다리며, 지정된 목적지(예를 들면, 사람에 의해 선택된 위치)로 운행할 수 있다. 다른 예로서, 자율 주행 차량은 화물의 위치로 운행하고, 화물이 자율 주행 차량에 적재되기를 기다리며, 지정된 목적지(예를 들면, 화물의 배달 위치)로 운행할 수 있다.
프로세싱 유닛 및 차량에 결합된 복수의 센서를 포함하는 장치에 대한 기술이 제공되며, 여기서 복수의 센서 중 적어도 하나는 차량의 하부 구조(undercarriage)에 배치된다. 복수의 센서는 차량이 진행하고 있는 운행 가능 표면의 변동을 검출하도록 구성될 수 있다. 복수의 센서는 또한 운행 가능 표면의 변동에 대응하는 정보를 생성하도록 구성될 수 있다. 복수의 센서는 또한 운행 가능 표면의 변동에 대응하는 정보를 프로세싱 유닛에 송신하도록 구성될 수 있다. 복수의 센서에 의해 수집된 정보는 차량의 운전 능력을 보강하기 위해 사용될 수 있다.
장치의 일부 구현예에서, 복수의 센서 중 적어도 하나는 운행 가능 표면과 접촉한다.
장치의 일부 구현예에서, 프로세싱 유닛은, 하나 이상의 머신 러닝 알고리즘을 사용하여, 복수의 센서로부터 수신되는 변동에 대응하는 정보를 프로세싱할 수 있다.
장치의 일부 구현예에서, 프로세싱 유닛은, 적어도 하나의 서포트 벡터 머신 알고리즘을 포함하는 하나 이상의 머신 러닝 알고리즘을 사용하여, 복수의 센서로부터 수신되는 변동에 대응하는 정보를 프로세싱할 수 있다.
장치의 일부 구현예에서, 프로세싱 유닛은, 적어도 하나의 신경 네트워크 알고리즘을 포함하는 하나 이상의 머신 러닝 알고리즘을 사용하여, 복수의 센서로부터 수신되는 변동에 대응하는 정보를 프로세싱할 수 있다.
장치의 일부 구현예에서, 프로세싱 유닛은 복수의 센서에 의해 수집된 정보를 원격 서버에 송신할 수 있다. 원격 서버는 원격 서버에 연결된 다른 차량과 정보를 교환할 수 있다.
장치의 일부 구현예에서, 프로세싱 유닛은 복수의 센서에 의해 수집된 정보를 복수의 센서에 대응하는 차량 인근에 있는 하나 이상의 다른 차량에 송신할 수 있다.
장치의 일부 구현예에서, 차량의 운전 능력을 보강하는 것은, 프로세싱 유닛을 사용하여, 운행 가능 표면이 임계치 미만인 트랙션 레벨(level of traction)을 갖는다고 결정하는 것을 포함할 수 있다. 그 결정에 응답하여, 제어 유닛은 차량의 속력을 감소시킬 수 있다.
장치의 일부 구현예에서, 차량의 운전 능력을 보강하는 것은, 프로세싱 유닛을 사용하여, 복수의 센서에 의해 수집된 정보에 따라 도로 상의 장애물을 검출하는 것을 포함할 수 있다. 그 검출에 응답하여, 제어 유닛은 장애물을 피하기 위해 차량의 조향을 조정할 수 있다.
장치의 일부 구현예에서, 프로세싱 유닛은 복수의 센서에 의해 수집된 정보에 따라 도로의 표면 상의 차선 경계(lane demarcation)를 검출하도록 구성될 수 있으며, 여기서 차선 경계는 복수의 센서에 의해 수집된 정보에 따라 운행 가능 표면으로부터 구별될 수 있다. 프로세싱 유닛은 또한 차선 경계를 사용하여 도로의 표면 상의 차선 라인(lane line)의 맵을 생성하도록 구성될 수 있다.
장치의 일부 구현예에서, 차량의 운전 능력을 보강하는 것은, 프로세싱 유닛을 사용하여, 운행 가능 표면의 변동이 주기적인 간격으로 발생한다고 결정하는 것을 포함할 수 있다. 그 결정에 응답하여, 제어 유닛은 도로의 표면 상의 변동으로부터 떨어진 도로의 섹션을 향한 방향으로 차량을 조향할 수 있다.
장치의 일부 구현예에서, 차량의 운전 능력을 보강하는 것은, 프로세싱 유닛을 사용하여, 운행 가능 표면의 변동이 주기적인 간격으로 발생한다고 결정하는 것을 포함할 수 있다. 그 결정에 응답하여, 제어 유닛은 차량의 속력을 감소시킬 수 있다.
장치의 일부 구현예에서, 차량의 운전 능력을 보강하는 것은, 복수의 센서에 의해 수집된 정보를 사용하여, 도로의 표면의 슬립률을 결정하는 것을 포함할 수 있다. 차량의 운전 능력을 보강하는 것은 그 결정에 응답하여 도로의 표면의 마찰 값을 추정하는 것을 또한 포함할 수 있다. 차량의 운전 능력을 보강하는 것은 추정된 마찰 값에 따라 차량의 운전 능력을 조정하는 것을 또한 포함할 수 있다.
장치의 일부 구현예에서, 차량의 운전 능력을 보강하는 것은, 복수의 센서에 의해 수집된 정보를 사용하여, 도로의 표면의 슬립률을 결정하는 것을 포함할 수 있다. 차량의 운전 능력을 보강하는 것은 그 결정에 응답하여 도로의 표면의 마찰 값을 추정하는 것을 또한 포함할 수 있다. 차량의 운전 능력을 보강하는 것은 추정된 마찰 값에 따라 차량의 운전 능력을 조정하는 것을 또한 포함할 수 있다. 차량의 운전 능력을 보강하는 것은, 추정된 마찰 값을 사용하여, 도로의 표면에 사용된 재료의 유형을 결정하는 것을 또한 포함할 수 있다. 차량의 운전 능력을 보강하는 것은 도로의 표면에 사용된 재료의 유형에 따라 차량의 속력을 조정하는 것을 또한 포함할 수 있다.
장치의 일부 구현예에서, 차량의 운전 능력을 보강하는 것은 복수의 센서에 의해 수집된 정보를 사용하여 마찰 테이블의 조회(look up)를 수행하는 것을 포함할 수 있다. 차량의 운전 능력을 보강하는 것은, 조회에 응답하여, 도로의 표면의 마찰 값을 추정하는 것을 또한 포함할 수 있다. 차량의 운전 능력을 보강하는 것은 추정된 마찰 값에 따라 차량의 운전 능력을 조정하는 것을 또한 포함할 수 있다.
장치의 일부 구현예에서, 복수의 센서는 제1 센서 및 제2 센서를 포함할 수 있다. 제1 센서는 제1 유형의 정보를 프로세싱할 수 있고, 제2 센서는 제1 유형과 상이한 제2 유형의 정보를 프로세싱할 수 있다.
장치의 일부 구현예에서, 프로세싱 유닛은, 복수의 센서에 의해 수집된 정보를 사용하여, 도로의 표면의 높이 맵을 생성할 수 있다.
장치의 일부 구현예에서, 프로세싱 유닛은, 복수의 센서에 의해 수집된 정보를 사용하여, 도로의 표면의 상태(condition)를 결정하도록 구성될 수 있다. 처리 유닛은 또한 도로의 표면의 결정된 상태를 눈, 얼음, 비 또는 장애물 중 하나 이상을 갖는 것으로 분류하도록 구성될 수 있다.
장치의 일부 구현예에서, 차량의 운전 능력을 보강하는 것은, 하나 이상의 이웃 차량으로부터, 운행 가능 표면의 변동에 관한 추가 정보를 수신하는 것을 포함할 수 있다. 차량의 운전 능력을 보강하는 것은 복수의 센서에 의해 수집된 정보를 하나 이상의 이웃 차량으로부터 수신된 추가 정보와 비교하는 것을 또한 포함할 수 있다. 차량의 운전 능력을 보강하는 것은 비교에 따라 복수의 센서에 의해 수집된 정보에 대한 신뢰도 척도(confidence measure)를 계산하는 것을 또한 포함할 수 있다.
장치의 일부 구현예에서, 복수의 센서는 센서 어레이를 포함할 수 있다. 센서 어레이는 하나 이상의 행으로 배치된 센서를 포함할 수 있다.
장치의 일부 구현예에서, 복수의 센서는 차량의 타이어 또는 차량의 서스펜션 중 적어도 하나에 임베딩된 하나 이상의 센서를 포함할 수 있다.
자율 주행 차량의 하측부(underside)에 배치된 적어도 하나의 센서 - 적어도 하나의 센서는 자율 주행 차량이 진행하고 있는 도로의 표면과 물리적으로 접촉함 - 포함하는 자율 주행 차량에 대한 기술이 제공된다. 자율 주행 차량은 제어기 회로를 또한 포함한다. 제어기 회로는 적어도 하나의 센서로부터 센서 데이터를 수신하도록 구성될 수 있다. 제어기 회로는 또한 센서 데이터에 기초하여 도로 상태를 검출하도록 구성될 수 있다. 제어기 회로는 또한 도로 상태에 응답하여 자율 주행 차량의 운전 기능을 조정할지 여부를 결정하도록 구성될 수 있다. 제어기 회로는 또한, 자율 주행 차량의 운전 기능을 조정하기로 하는 결정에 따라, 자율 주행 차량의 운전 기능을 조정하도록 구성될 수 있다.
장치를 사용하여 자율 주행 차량을 동작시키는 방법에 대한 기술이 제공된다. 장치는 프로세싱 유닛 및 차량에 결합된 복수의 센서를 포함할 수 있으며, 여기서 복수의 센서 중 적어도 하나는 차량의 하부 구조에 배치된다. 복수의 센서는 차량이 진행하고 있는 운행 가능 표면의 변동을 검출하도록 구성될 수 있다. 복수의 센서는 또한 운행 가능 표면의 변동에 대응하는 정보를 생성하도록 구성될 수 있다. 복수의 센서는 또한 운행 가능 표면의 변동에 대응하는 정보를 프로세싱 유닛에 송신하도록 구성될 수 있다. 복수의 센서에 의해 수집된 정보는 차량의 운전 능력을 보강하기 위해 사용될 수 있다.
차량, 차량에 결합된 복수의 센서, 및 하나 이상의 프로세서와 메모리를 갖는 제1 디바이스를 포함하는 시스템에 대한 기술이 제공된다. 제1 디바이스는 위에서 언급된 액션을 사용하여 도로 이상을 검출하고 차량의 운전 능력을 조정하기 위한 동작을 수행할 수 있다.
위에서 언급된 액션을 사용하여 데이터 프로세싱 장치로 하여금 도로 이상을 검출하고 차량의 운전 능력을 조정하게 하도록 동작 가능한 명령을 인코딩하는 비-일시적 컴퓨터 판독 가능 매체에 대한 기술이 제공된다.
일 양태에서, 자율 주행 차량을 동작시키는 방법은 자율 주행 차량의 진행 방향을 결정하는 단계; 프로세싱 회로로부터, 진행 방향에서의 운행 가능 표면의 섹션에 관한 정보를 수신하는 단계; 원격 시스템으로부터, 운행 가능 표면의 섹션의 변동에 관한 정보를 수신하는 단계 - 이 정보는 하나 이상의 다른 차량에 의해 이전에 수집되었음 -; 및 수신된 정보에 기초하여, 제어 회로를 사용하여, 자율 주행 차량의 동작을 조정하는 단계를 포함한다.
일 양태에서, 장치는 차량에 결합된 액추에이터 - 액추에이터는 제1 단부 및 제2 단부를 가지며, 제1 단부는 차량에 대해 피벗팅함 -; 액추에이터에 결합된 인장 디바이스; 액추에이터에 결합된 실드(shield); 액추에이터의 제2 단부에 결합된 브러시 헤드(brush head) - 브러시 헤드는 강모(bristle)를 포함함 -; 및 복수의 센서를 포함하며; 여기서 액추에이터는 강모를 운행 가능 표면과 접촉시키도록 구성되고; 여기서 하나 이상의 센서는 브러시 헤드가 운행 가능 표면과 접촉하게 된 후에 운행 가능 표면의 변동을 검출하도록 구성된다.
이들 및 다른 양태, 특징, 및 구현예는 기능을 수행하기 위한 방법, 장치, 시스템, 컴포넌트, 프로그램 제품, 수단 또는 단계로서, 및 다른 방식으로 표현될 수 있다.
이들 및 다른 양태, 특징, 및 구현은, 청구항을 포함하여, 이하의 설명으로부터 명백해질 것이다.
도 1은 자율 운전 능력을 갖는 자율 주행 차량의 일 예를 도시한다.
도 2는 예시적인 "클라우드" 컴퓨팅 환경을 예시한다.
도 3은 컴퓨터 시스템을 예시한다.
도 4는 자율 주행 차량에 대한 예시적인 아키텍처를 도시한다.
도 5는 인지 모듈에 의해 사용될 수 있는 입력 및 출력의 일 예를 도시한다.
도 6은 LiDAR 시스템의 일 예를 도시한다.
도 7은 동작 중인 LiDAR 시스템을 도시한다.
도 8은 LiDAR 시스템의 동작을 부가적으로 상세하게 도시한다.
도 9는 계획 모듈의 입력과 출력 사이의 관계의 블록 다이어그램을 도시한다.
도 10은 경로 계획에서 사용되는 방향 그래프를 도시한다.
도 11은 제어 모듈의 입력 및 출력의 블록 다이어그램을 도시한다.
도 12는 제어기의 입력, 출력, 및 컴포넌트의 블록 다이어그램을 도시한다.
도 13은 이상 검출 시스템의 일 예를 도시한다.
도 14는 자율 주행 차량에 결합된 이상 검출 시스템의 일 예를 도시한다.
도 15는 자율 주행 차량에 결합된 이상 검출 시스템의 일 예를 도시한다.
도 16a는 자율 주행 차량에 결합된 이상 검출 시스템의 정면도의 일 예를 도시한다.
도 16b는 자율 주행 차량에 결합된 이상 검출 시스템의 후면도의 일 예를 도시한다.
도 17은 자율 주행 차량 플릿의 동작을 제어하기 위한 컴퓨터 시스템의 예시적인 사용을 도시한다.
도 18은 자율 주행 차량을 상이한 경로로 라우팅하기 위한 컴퓨터 시스템의 예시적인 사용을 도시한다.
도 19는 이상 검출 시스템과 그의 서브시스템의 예시적인 블록 다이어그램을 도시한다.
도 20은 이상을 검출하고 자율 주행 차량의 운전 기능을 조정하기 위한 예시적인 프로세스를 도시하는 플로차트 다이어그램이다.
설명을 위한 이하의 기술에서는, 본 발명에 대한 완전한 이해를 제공하기 위해 다수의 특정 세부사항이 기재된다. 그렇지만, 본 발명이 이 특정 세부 사항 없이 실시될 수 있음이 명백할 것이다. 다른 예에서, 공지된 구조 및 디바이스는 본 발명을 불필요하게 모호하게 하는 것을 피하기 위하여 블록 다이어그램 형태로 도시된다.
도면에서, 설명을 용이하게 하기 위해, 디바이스, 모듈, 명령 블록 및 데이터 요소를 나타내는 것과 같은, 개략적 요소의 특정 배열 또는 순서가 도시된다. 그렇지만, 본 기술 분야의 통상의 기술자라면, 도면에서의 개략적 요소의 특정 순서 또는 배열이 프로세싱의 특정한 순서 또는 시퀀스, 또는 프로세스의 분리가 요구된다는 것을 암시하는 것을 의미하지는 않는다는 점을 이해할 것이다. 게다가, 도면에 개략적 요소를 포함시키는 것은, 그러한 요소가 모든 실시예에서 요구된다는 것을 암시하는 것을 의미하지 않거나, 또는 그러한 요소에 의해 표현된 특징이 일부 실시예에서 포함되지 않거나 또는 다른 요소와 조합되지 않을 수 있다는 점을 암시하는 것을 의미하지 않는다.
게다가, 도면에서, 2개 이상의 다른 개략적 요소 사이의 연결, 관계 또는 연관을 예시하기 위해 실선 또는 파선 또는 화살표와 같은 연결 요소가 사용되는 경우에, 임의의 그러한 연결 요소의 부재는 연결, 관계 또는 연관이 존재할 수 없다는 점을 암시하는 것을 의미하지 않는다. 환언하면, 요소들 사이의 일부 연결, 관계, 또는 연관은 본 개시를 모호하게 하지 않기 위해 도면에 도시되지 않는다. 그에 부가하여, 예시를 용이하게 하기 위해, 요소들 사이의 다수의 연결, 관계 또는 연관을 표현하기 위해 단일의 연결 요소가 사용된다. 예를 들어, 연결 요소가 신호, 데이터 또는 명령의 통신을 표현하는 경우, 본 기술 분야의 통상의 기술자라면, 그러한 요소가, 통신을 수행하기 위해 필요할 수 있는, 하나 또는 다수의 신호 경로(예를 들면, 버스)를 표현한다는 것을 이해할 것이다.
그 예가 첨부 도면에 예시되어 있는, 실시예가 이제 상세하게 언급될 것이다. 이하의 상세한 설명에서, 다양한 기술된 실시예에 대한 완전한 이해를 제공하기 위해 많은 특정 세부 사항이 기재된다. 그렇지만, 다양한 기술된 실시예가 이 특정 세부 사항 없이 실시될 수 있다는 것이 본 기술 분야의 통상의 기술자에게 명백할 것이다. 다른 예에서, 실시예의 양태를 불필요하게 모호하게 하지 않기 위해 공지된 방법, 절차, 컴포넌트, 회로, 및 네트워크는 상세하게 기술되지 않았다.
서로 독립적으로 또는 다른 특징들의 임의의 조합과 함께 각각 사용될 수 있는 여러 특징이 이하에서 기술된다. 그렇지만, 임의의 개별 특징은 위에서 논의된 문제들 중 임의의 것을 해결할 수 없거나 또는 위에서 논의된 문제들 중 단지 하나만을 해결할 수 있다. 위에서 논의된 문제들 중 일부는 본원에 기술된 특징들 중 임의의 것에 의해 완전히 해결되지는 않을 수 있다. 비록 여러 표제가 제공되어 있더라도, 특정 표제에 관련되지만 해당 표제를 갖는 섹션에서 발견되지 않은 정보가 본 설명의 다른 곳에서 발견될 수도 있다. 실시예는 이하의 개요에 따라 본원에 기술된다.
1. 일반적 개관
2. 하드웨어 개관
3. 자율 주행 차량 아키텍처
4. 자율 주행 차량 입력
5. 자율 주행 차량 계획
6. 자율 주행 차량 제어
7. 자율 주행 차량에 의한 이상 검출
8. 검출된 이상에 기초한 하나 이상의 자율 주행 차량의 동작 제어
9. 자율 주행 차량에 의한 이상 검출을 위한 예시적인 프로세스
일반적 개관
이상 검출 시스템은, 도로와 같은, 운행 가능 표면의 하나 이상의 변동을 검출하기 위해 하나 이상의 자율 주행 차량에 결합될 수 있다. 예를 들어, 이상 검출 시스템은 하나 이상의 센서를 사용하여 운행 가능 표면의 하나 이상의 변동을 검출한다. 운행 가능 표면의 이러한 검출된 변동은, 예를 들어, 하나 이상의 운행 가능 표면 상태(예를 들면, 표면 상의 물, 도로 상의 눈, 포트홀(pothole) 등)를 암시할 수 있다. 일부 예에서, 운행 가능 표면의 검출된 변동에 기초하여, 하나 이상의 자율 주행 차량의 동작이 수정될 수 있다. 일부 예에서, 운행 가능 표면의 검출된 변동에 기초하여, 하나 이상의 자율 주행 차량이 액세스할 수 있는 디지털 맵이 수정될 수 있고, 수정에 기초하여, 하나 이상의 자율 주행 차량의 경로(예를 들면, 도로 차선에서의 위치, 도로 차선, 도로 등)가 수정될 수 있고 그리고/또는 하나 이상의 자율 주행 차량의 동작이 수정될 수 있다.
일부 실시예에서, 이상 검출 시스템의 하나 이상의 센서의 출력(즉, 운행 가능 표면의 검출된 변동)은 하나 이상의 자율 주행 차량을 동적으로 제어하는 컴퓨터 시스템에 전송된다. 컴퓨터 시스템은, 센서의 출력에 기초하여, 하나 이상의 운행 가능 표면 상태를 결정할 수 있다. 일 예에서, 그 결정에 기초하여, 컴퓨터 시스템은 자율 주행 차량의 동작을 수정할 수 있다. 다른 예에서, 그 결정에 기초하여, 컴퓨터 시스템은 자율 주행 차량이 액세스할 수 있는 맵이 운행 가능 표면 상태를 포함하도록 그 맵을 업데이트한다. 컴퓨터 시스템은 이 업데이트된 맵을 다른 자율 주행 차량에 전달할 수 있다. 일부 실시예에서, 하나 이상의 센서의 출력은 자율 주행 차량에 결합된 컴퓨터 시스템에 전송된다. 일부 실시예에서, 하나 이상의 센서의 출력은, 통신 네트워크를 통해, 중앙집중식 컴퓨터 시스템에 전송된다.
본원에 기술된 주제는 여러 기술적 이점을 제공할 수 있다. 예를 들어, 일부 구현예는 자율 주행 차량 플릿 전체는 물론 개별 자율 주행 차량의 안전성, 효율성 및 유효성을 개선시킬 수 있다. 일 예로서, 검출된 운행 가능 표면 상태에 응답하여 자율 주행 차량의 동작을 수정함으로써, 예를 들어, 도로 상의 눈이 검출될 때 차량 속도를 낮추는 것에 의해, 차량이 사고에 연루될 가능성이 적고, 따라서 이 시스템은 차량과 그의 승객 및/또는 화물을 그의 목적지까지 안전하게 운송하는 데 더 효과적이다. 게다가, 이 시스템은 차량 플릿이 위험 요소를 피하기 위한 효과적이고 효율적인 기술을 제공한다. 예를 들어, 하나 이상의 위험 요소가 검출될 때, 자율 주행 차량이 하나 이상의 검출된 위험 요소를 갖는 도로/차선을 피하도록 자율 주행 차량의 경로가 수정될 수 있다. 따라서, 해당 차량에 가해질 가능성이 있는 손상이 적을수록, 해당 차량이 사고에 연루될 가능성이 더 적고 그의 목적지에 도착할 가능성이 더 높다. 또한, 하나 이상의 차량의 동작 및/또는 경로에 대한 수정은 자동화된 방식으로 수행될 수 있다.
시스템 개관
도 1은 자율 주행 능력을 갖는 자율 주행 차량(100)의 일 예를 도시한다.
본원에서 사용되는 바와 같이, 용어 "자율 주행 능력"은, 완전한 자율 주행 차량, 고도의 자율 주행 차량, 및 조건부 자율 주행 차량을 제한 없이 포함하는, 실시간 인간 개입 없이 차량이 부분적으로 또는 완전하게 동작될 수 있게 하는 기능, 특징, 또는 설비를 지칭한다.
본원에서 사용되는 바와 같이, 자율 주행 차량(AV)은 자율 주행 능력을 갖는 차량이다.
본원에서 사용되는 바와 같이, "차량"은 상품 또는 사람의 운송 수단을 포함한다. 예를 들어, 자동차, 버스, 기차, 비행기, 드론, 트럭, 보트, 선박, 잠수함, 비행선 등. 무인 자동차는 차량의 일 예이다.
본원에서 사용되는 바와 같이, "궤적"은 AV를 제1 시공간적 위치로부터 제2 시공간적 위치로 운행시키는 경로 또는 루트를 지칭한다. 일 실시예에서, 제1 시공간적 위치는 초기 또는 시작 위치라고 지칭되고 제2 시공간적 위치는 목적지, 최종 위치, 목표, 목표 위치, 또는 목표 장소라고 지칭된다. 일부 예에서, 궤적은 하나 이상의 세그먼트(예를 들면, 도로의 섹션)로 구성되고, 각각의 세그먼트는 하나 이상의 블록(예를 들면, 차선 또는 교차로의 부분)으로 구성된다. 일 실시예에서, 시공간적 위치는 현실 세계 위치에 대응한다. 예를 들어, 시공간적 위치는 사람을 태우거나 내려주고 또는 상품을 싣거나 내리는 픽업(pick up) 또는 드롭-오프(drop-off) 위치이다.
본원에서 사용되는 바와 같이, "센서(들)"는 센서를 둘러싼 환경에 관한 정보를 검출하는 하나 이상의 하드웨어 컴포넌트를 포함한다. 하드웨어 컴포넌트들 중 일부는 감지 컴포넌트(예를 들면, 이미지 센서, 생체측정 센서), 송신 및/또는 수신 컴포넌트(예를 들면, 레이저 또는 라디오 주파수 파 송신기 및 수신기), 아날로그 대 디지털 변환기와 같은 전자 컴포넌트, 데이터 저장 디바이스(예컨대, RAM 및/또는 비휘발성 스토리지), 소프트웨어 또는 펌웨어 컴포넌트, 및 ASIC(application-specific integrated circuit), 마이크로프로세서 및/또는 마이크로컨트롤러와 같은 데이터 프로세싱 컴포넌트를 포함할 수 있다.
본원에서 사용되는 바와 같이, "장면 묘사(scene description)"는 AV 차량 상의 하나 이상의 센서에 의해 검출되거나 AV 외부의 소스에 의해 제공되는 하나 이상의 분류된 또는 라벨링된 대상체를 포함하는 데이터 구조(예를 들면, 리스트) 또는 데이터 스트림이다.
본원에서 사용되는 바와 같이, "운행 가능 표면" 또는 "도로"는 차량에 의해 횡단될 수 있는 물리적 영역이고, 명명된 주요 도로(예를 들면, 도시 거리, 주간 고속도로 등)에 대응할 수 있거나, 또는 명명되지 않은 주요 도로(예를 들면, 주택 또는 사무실 건물 내의 사유 도로, 주차장 섹션, 공터 섹션, 시골 지역의 비포장 경로 등)에 대응할 수 있다. 일부 차량(예를 들면, 4륜 구동 픽업 트럭, 스포츠 유틸리티 차량 등)은 차량 진행에 특히 적합하지 않은 다양한 물리적 영역을 횡단할 수 있기 때문에, "도로" 또는 "운행 가능 표면"은 임의의 지자체 또는 다른 정부 또는 행정처에 의해 주요 도로로서 공식적으로 규정되지 않은 물리적 영역일 수 있다.
본원에서 사용되는 바와 같이, "차선"은 차량에 의해 횡단될 수 있는 도로의 한 부분이고, 차선 마킹들 사이의 공간의 대부분 또는 전부에 대응할 수 있거나, 또는 차선 마킹들 사이의 공간의 단지 일부(예를 들면, 50% 미만)에 대응할 수 있다. 예를 들어, 멀리 이격된 차선 마킹을 갖는 도로는 차선 마킹들 사이에 둘 이상의 차량을 수용할 수 있어서, 하나의 차량이 차선 마킹을 횡단하지 않으면서 다른 차량을 추월할 수 있고, 따라서 차선 마킹들 사이의 공간보다 좁은 차선을 갖거나 차선 마킹들 사이에 2개의 차선을 갖는 것으로 해석될 수 있다. 차선은 차선 마킹의 부재 시에도 해석될 수 있다. 예를 들어, 차선은 환경의 물리적 특징부, 예를 들어, 시골 지역에서의 주요 도로를 따라 있는 바위 및 나무에 기초하여 규정될 수 있다.
본원에서 사용되는 바와 같이, "도로 이상" 또는 "운행 가능 표면의 이상"은 임의의 검출된 도로 상태, 임의의 검출된 도로 손상 또는 공동, 또는 도로 내의 임의의 장애물의 임의의 검출이다. 도로 상태는, 예를 들어, 도로 상의 물/습기, 도로 상의 얼음, 및/또는 도로 상의 눈을 포함할 수 있다. 도로 손상 또는 공동은, 예를 들어, 포트홀 및/또는 럼블 스트립(rumble strip)을 포함할 수 있다.
본원에서 사용되는 바와 같이, 슬리퍼 라인(sleeper line), 경고 스트립(alert strip), 가청 라인(audible line), 슬리피 범프(sleepy bump), 웨이크 업 콜(wake up call), 그라울러(growler), 드리프트 라인(drift line) 및 드렁크 범프(drunk bump)라고도 알려져 있는 "럼블 스트립"은 일부 도로의 길어깨에서 그리고/또는 일부 도로의 도로 라인에서 보통 발견되는 도로 안전 시설물(road safety feature)이다.
본원에서 사용되는 바와 같이, 운행 가능 표면 또는 도로의 "양상"은 운행 가능 표면 또는 도로의 임의의 고유한 특징이다. 예를 들어, 도로의 일 양상은 이상적인/건조한 조건, 젖은 조건, 눈으로 덮여 있는 조건, 및/또는 결빙 조건에서의 도로의 마찰 값을 포함할 수 있다. 예를 들어, 도로의 양상은 도로가 만들어진 재료를 포함할 수 있다.
본원에서 사용되는 바와 같이, "원하는 운전 능력"은 자율 주행 차량의 제어를 조정하기 위한 임의의 명령이다. 그러한 제어 조정은, 예를 들어, 좌측으로 조향하는 것, 우측으로 조향하는 것, 스로틀을 해제(let off)하는 것, 스로틀을 개방하는 것, 제동, 차량의 ABS(anti-lock braking system)를 작동(engage)시키는 것, 및/또는 차량이 특정 루트를 추종하게 하는 것을 포함할 수 있다.
“하나 이상"은 기능이 하나의 요소에 의해 수행되는 것, 기능이 하나보다 많은 요소에 의해, 예를 들어, 분산 방식으로, 수행되는 것, 여러 기능이 하나의 요소에 의해 수행되는 것, 여러 기능이 여러 요소에 의해 수행되는 것, 또는 이들의 임의의 조합을 포함한다.
또한, 용어, 제1, 제2 등이, 일부 예에서, 다양한 요소를 기술하기 위해 본원에서 사용되었지만, 이러한 요소는 이러한 용어에 의해 제한되지 않아야 한다는 것이 이해될 것이다. 이들 용어는 하나의 요소를 다른 요소와 구별하는 데만 사용된다. 예를 들어, 기술된 다양한 실시예의 범위를 벗어나지 않으면서, 제1 접촉은 제2 접촉이라 지칭될 수 있고, 유사하게 제2 접촉은 제1 접촉이라 지칭될 수 있다. 제1 접촉과 제2 접촉 둘 모두가 접촉이지만, 동일한 접촉은 아니다.
본원에 기술된 다양한 실시예의 설명에서 사용된 용어는 단지 특정한 실시예를 기술하기 위한 것이며, 제한하는 것으로 의도되지 않는다. 기술된 다양한 실시예 및 첨부된 청구항의 설명에서 사용되는 바와 같이, 단수형은, 문맥이 달리 명시적으로 나타내지 않는 이상, 복수형도 포함하는 것으로 의도된다. 또한, 용어 "및/또는"이, 본원에서 사용되는 바와 같이, 열거된 연관 항목들 중 하나 이상의 항목의 임의의 그리고 모든 가능한 조합을 지칭하고 포함한다는 것이 이해될 것이다. 또한, 용어 "포함한다" 및/또는 "포함하는"이, 본 설명에서 사용될 때, 언급된 특징, 정수, 단계, 동작, 요소, 및/또는 컴포넌트의 존재를 명기하지만, 하나 이상의 다른 특징, 정수, 단계, 동작, 요소, 컴포넌트, 및/또는 그의 그룹의 존재 또는 추가를 배제하지 않는다는 것도 이해될 것이다.
본원에서 사용되는 바와 같이, 용어 "~ 경우"는 선택적으로 문맥에 따라 "~할 때", 또는 "~시에" 또는 "결정에 반응하여" 또는 "검출에 반응하여"를 의미하는 것으로 해석된다. 마찬가지로, 문구 "~라고 결정된다면" 또는 "[언급된 조건 또는 이벤트]가 검출되는 경우"는 선택적으로 문맥에 따라, "결정할 시에" 또는 "결정에 반응하여" 또는 "[언급된 조건 또는 이벤트]의 검출 시에" 또는 "[언급된 조건 또는 이벤트]의 검출에 반응하여"를 의미하는 것으로 해석된다.
본원에서 사용되는 바와 같이, AV 시스템은 AV의 동작을 지원하는, 하드웨어, 소프트웨어, 저장된 데이터, 및 실시간으로 생성된 데이터의 어레이와 함께 AV를 지칭한다. 일 실시예에서, AV 시스템은 AV 내에 포함된다. 일 실시예에서, AV 시스템은 여러 위치에 걸쳐 확산되어 있다. 예를 들어, AV 시스템의 소프트웨어 중 일부는 도 3와 관련하여 아래에서 기술되는 클라우드 컴퓨팅 환경(300)과 유사한 클라우드 컴퓨팅 환경 상에 구현된다.
본원에서 사용되는 바와 같이, 머신 러닝은 수학적 모델을 생성하는 데 사용되는 임의의 지도(supervised), 반지도(semi-supervised), 또는 비지도(unsupervised) 학습 알고리즘의 사용을 가리킨다. 일 실시예에서, 이상의 유형을 결정할 때, 예를 들어, 나이브 베이즈(naive Bayes), 서포트 벡터 머신, 및 신경 네트워크와 같은, 분류 유형 지도 학습 알고리즘이 사용된다. 일 실시예에서, 알고리즘으로부터 형성되는 수학적 모델은 예측 모델이다.
일반적으로, 본원은 완전한 자율 주행 차량, 고도의 자율 주행 차량, 및 조건부 자율 주행 차량, 예컨대, 제각기 소위 레벨 5 차량, 레벨 4 차량 및 레벨 3 차량을 포함하는 하나 이상의 자율 주행 능력을 갖는 임의의 차량에 적용 가능한 기술을 개시한다(차량의 자율성 레벨의 분류에 대한 세부 사항은 참조에 의해 그 전체가 포함된, SAE 국제 표준 J3016: 온로드 자동차 자동 운전 시스템에 관한 용어의 분류 및 정의(Taxonomy and Definitions for Terms Related to On-128-172020-02-28 Road Motor Vehicle Automated Driving Systems) 참조). 또한, 본원에서 개시된 기술은 부분적 자율 주행 차량 및 운전자 보조 차량, 예를 들어, 소위 레벨 2 및 레벨 1 차량에도 적용 가능하다(SAE 국제 표준 J3016: 온로드 자동차 자동 운전 시스템에 관한 용어의 분류 및 정의 참조). 일 실시예에서, 레벨 1, 레벨 2, 레벨 3, 레벨 4 및 레벨 5 차량 시스템 중 하나 이상은 센서 입력의 프로세싱에 기초하여 특정의 동작 조건 하에서 특정의 차량 동작(예를 들면, 조향, 제동, 및 맵 사용)을 자동화할 수 있다. 본원에서 개시된 기술은, 완전한 자율 주행 차량으로부터 인간-운전 차량에 이르는, 임의의 레벨에 있는 차량에 혜택을 줄 수 있다.
도 1을 참조하면, AV 시스템(120)은, 대상체(예를 들면, 자연 장애물(191), 차량(193), 보행자(192), 자전거 운전자, 및 다른 장애물)을 피하고 도로 법규(예를 들면, 동작 규칙 또는 운전 선호도)를 준수하면서, 환경(190)을 통과하여 궤적(198)을 따라 AV(100)를 목적지(199)(때때로 최종 위치라고 지칭됨)로 동작시킨다.
일 실시예에서, AV 시스템(120)은 컴퓨터 프로세서(146)로부터의 동작 커맨드를 수신하고 이에 따라 동작하도록 설비된 디바이스(101)를 포함한다. 일 실시예에서, 컴퓨팅 프로세서(146)는 도 3을 참조하여 아래에서 기술되는 프로세서(304)와 유사하다. 디바이스(101)의 예는 조향 제어(102), 브레이크(103), 기어, 가속기 페달 또는 다른 가속 제어 메커니즘, 앞유리 와이퍼, 사이드-도어 락, 윈도 제어, 및 방향 지시등을 포함한다.
일 실시예에서, AV 시스템(120)은 AV의 위치, 선속도와 각속도 및 선가속도와 각가속도, 및 헤딩(heading)(예를 들면, AV(100)의 선단의 배향)와 같은 AV(100)의 상태 또는 조건의 특성을 측정 또는 추론하기 위한 센서(121)를 포함한다. 센서(121)의 예는 GPS(Global Positioning System), 차량 선형 가속도 및 각속도(angular rate) 둘 모두를 측정하는 IMU(inertial measurement unit), 휠 슬립률(wheel slip ratio)을 측정 또는 추산하기 위한 휠 속력 센서, 휠 브레이크 압력 또는 제동 토크 센서, 엔진 토크 또는 휠 토크 센서, 및 조향각(steering angle) 및 각속도 센서이다.
일 실시예에서, 센서(121)는 AV의 환경의 특성을 감지 또는 측정하기 위한 센서를 또한 포함한다. 예를 들어, 가시광, 적외선 또는 열(또는 둘 모두) 스펙트럼식 단안 또는 스테레오 비디오 카메라(122), LiDAR(123), RADAR, 초음파 센서, TOF(time-of-flight) 심도 센서, 속력 센서, 온도 센서, 습도 센서, 및 강우 센서.
일 실시예에서, AV 시스템(120)은 컴퓨터 프로세서(146)와 연관된 머신 명령 또는 센서(121)에 의해 수집된 데이터를 저장하기 위한 데이터 저장 유닛(142) 및 메모리(144)를 포함한다. 일 실시예에서, 데이터 저장 유닛(142)은 도 3과 관련하여 아래에서 기술되는 ROM(308) 또는 저장 디바이스(310)와 유사하다. 일 실시예에서, 메모리(144)는 아래에서 기술되는 메인 메모리(306)와 유사하다. 일 실시예에서, 데이터 저장 유닛(142) 및 메모리(144)는 환경(190)에 관한 이력, 실시간, 및/또는 예측 정보를 저장한다. 일 실시예에서, 저장된 정보는 맵, 운전 성능, 교통 정체 업데이트 또는 기상 조건을 포함한다. 일 실시예에서, 환경(190)에 관한 데이터는 원격에 위치된 데이터베이스(134)로부터 통신 채널을 통해 AV(100)에 송신된다.
일 실시예에서, AV 시스템(120)은 다른 차량 상태 및 조건, 예컨대, 위치, 선속도와 각속도, 선가속도와 각가속도, 및 AV(100)를 향한 선형 헤딩과 각도 헤딩의 측정된 또는 추론된 특성을 통신하기 위한 통신 디바이스(140)를 포함한다. 이 디바이스는 V2V(Vehicle-to-Vehicle) 및 V2I(Vehicle-to-Infrastructure) 통신 디바이스 및 포인트-투-포인트(point-to-point) 또는 애드혹(ad hoc) 네트워크 또는 둘 모두를 통한 무선 통신을 위한 디바이스를 포함한다. 일 실시예에서, 통신 디바이스(140)는 (라디오 및 광학적 통신을 포함하는) 전자기 스펙트럼 또는 다른 매체(예를 들면, 공기 및 음향 매체)를 통해 통신한다. V2V(Vehicle-to-Vehicle), V2I(Vehicle-to-Infrastructure) 통신(및 일부 실시예에서 하나 이상의 다른 타입의 통신)의 조합이 때때로 V2X(Vehicle-to-Everything) 통신이라고 지칭된다. V2X 통신은 전형적으로, 자율 주행 차량과의 통신 및 자율 주행 차량들 간의 통신을 위한 하나 이상의 통신 표준에 따른다.
일 실시예에서, 통신 디바이스(140)는 통신 인터페이스를 포함한다. 예를 들어, 유선, 무선, WiMAX, Wi-Fi, 블루투스, 위성, 셀룰러, 광학, 근거리, 적외선, 또는 라디오 인터페이스. 통신 인터페이스는 원격에 위치된 데이터베이스(134)로부터 AV 시스템(120)으로 데이터를 송신한다. 일 실시예에서, 원격에 위치된 데이터베이스(134)는 도 2에 기술된 바와 같은 클라우드 컴퓨팅 환경(200)에 내장된다. 통신 디바이스의 통신 인터페이스(140)는 센서(121)로부터 수집된 데이터 또는 AV(100)의 동작에 관련된 다른 데이터를 원격에 위치된 데이터베이스(134)에 송신한다. 일 실시예에서, 통신 디바이스의 통신 인터페이스(140)는 원격 조작(teleoperation)에 관련되는 정보를 AV(100)에 송신한다. 일부 실시예에서, AV(100)는 다른 원격(예를 들면, "클라우드") 서버(136)와 통신한다.
일 실시예에서, 원격에 위치된 데이터베이스(134)는 또한 디지털 데이터를 저장 및 송신한다(예를 들면, 도로 및 거리 위치와 같은 데이터를 저장함). 그러한 데이터는 AV(100) 상의 메모리(144)에 저장되거나, 원격에 위치된 데이터베이스(134)로부터 통신 채널을 통해 AV(100)에 송신된다.
일 실시예에서, 원격에 위치된 데이터베이스(134)는 유사한 시각(time of day)에 궤적(198)을 따라 이전에 진행된 차량의 운전 특성(예를 들면, 속력 및 가속도 프로파일)에 관한 이력 정보를 저장 및 송신한다. 일 구현예에서, 그러한 데이터는 AV(100) 상의 메모리(144)에 저장될 수 있거나, 원격에 위치된 데이터베이스(134)로부터 통신 채널을 통해 AV(100)에 송신될 수 있다.
AV(100) 상에 위치된 컴퓨팅 프로세서(146)는 실시간 센서 데이터 및 이전 정보 둘 모두에 기초한 제어 액션을 알고리즘적으로 생성하여, AV 시스템(120)이 자율 주행 능력을 실행할 수 있게 한다.
일 실시예에서, AV 시스템(120)은 AV(100)의 사용자(예를 들면, 탑승자 또는 원격 사용자)에게 정보 및 경고를 제공하고 그로부터 입력을 수신하기 위해 컴퓨팅 프로세서(146)에 결합된 컴퓨터 주변기기(132)를 포함한다. 일 실시예에서, 주변기기(132)는 도 3을 참조하여 아래에서 논의되는 디스플레이(312), 입력 디바이스(314), 및 커서 제어기(316)와 유사하다. 결합은 무선 또는 유선이다. 인터페이스 디바이스들 중 임의의 둘 이상이 단일 디바이스에 통합될 수 있다.
도 2는 예시적인 "클라우드" 컴퓨팅 환경을 예시한다. 클라우드 컴퓨팅은 구성 가능한 컴퓨팅 리소스(예를 들면, 네트워크, 네트워크 대역폭, 서버, 프로세싱, 메모리, 스토리지, 애플리케이션, 가상 머신, 및 서비스)의 공유 풀에 대한 간편한 온-디맨드 네트워크 액세스를 가능하게 하기 위한 서비스 전달(service delivery)의 일 모델이다. 전형적인 클라우드 컴퓨팅 시스템에서는, 하나 이상의 대형 클라우드 데이터 센터가 클라우드에 의해 제공되는 서비스를 전달하는 데 사용되는 머신을 수용한다. 이제 도 2를 참조하면, 클라우드 컴퓨팅 환경(200)은 클라우드(202)를 통해 상호연결되는 클라우드 데이터 센터(204a, 204b, 및 204c)를 포함한다. 데이터 센터(204a, 204b, 및 204c)는 클라우드 컴퓨팅 서비스를 클라우드(202)에 연결된 컴퓨터 시스템(206a, 206b, 206c, 206d, 206e, 및 206f)에 제공한다.
클라우드 컴퓨팅 환경(200)은 하나 이상의 클라우드 데이터 센터를 포함한다. 일반적으로, 클라우드 데이터 센터, 예를 들어, 도 2에 도시된 클라우드 데이터 센터(204a)는 클라우드, 예를 들어, 도 2에 도시된 클라우드(202) 또는 클라우드의 특정한 부분을 구성하는 서버의 물리적 배열체를 지칭한다. 예를 들어, 서버는 클라우드 데이터 센터 내에 룸, 그룹, 로우(row), 및 랙(rack)으로 물리적으로 배열된다. 클라우드 데이터 센터는 하나 이상의 서버 룸을 포함하는 하나 이상의 구역을 갖는다. 각각의 룸은 하나 이상의 서버 로우를 가지며, 각각의 로우는 하나 이상의 랙을 포함한다. 각각의 랙은 하나 이상의 개별 서버 노드를 포함한다. 일부 구현예에서, 구역, 룸, 랙, 및/또는 로우 내의 서버는, 전력 요건, 에너지 요건, 열적 요건, 가열 요건, 및/또는 다른 요건을 포함하는, 데이터 센터 설비의 물리적 인프라스트럭처 요건에 기초하여 그룹으로 배열된다. 일 실시예에서, 서버 노드는 도 3에서 기술된 컴퓨터 시스템과 유사하다. 데이터 센터(204a)는 다수의 랙을 통해 분산된 다수의 컴퓨팅 시스템을 갖는다.
클라우드(202)는 클라우드 데이터 센터(204a, 204b, 및 204c)를 상호연결시키고 클라우드 컴퓨팅 서비스에 대한 컴퓨팅 시스템(206a 내지 206f)의 액세스를 용이하게 하는 것을 돕는 네트워크 및 네트워킹 리소스(예를 들어, 네트워킹 장비, 노드, 라우터, 스위치 및 네트워킹 케이블)와 함께 클라우드 데이터 센터(204a, 204b, 및 204c)를 포함한다. 일 실시예에서, 네트워크는 지상 또는 위성 연결을 사용하여 배치된 유선 또는 무선 링크를 사용하여 결합된 하나 이상의 로컬 네트워크, 광역 네트워크, 또는 인터네트워크의 임의의 조합을 나타낸다. 네트워크를 거쳐 교환되는 데이터는 IP(Internet Protocol), MPLS(Multiprotocol Label Switching), ATM(Asynchronous Transfer Mode), 및 프레임 릴레이 등과 같은 임의의 개수의 네트워크 계층 프로토콜을 사용하여 송신된다. 또한, 네트워크가 다수의 서브 네트워크의 조합을 나타내는 실시예에서, 상이한 네트워크 계층 프로토콜은 기저 서브 네트워크(underlying sub-network) 각각에서 사용된다. 일부 실시예에서, 네트워크는, 공중 인터넷과 같은, 하나 이상의 상호연결된 인터네트워크를 나타낸다.
컴퓨팅 시스템(206a 내지 206f) 또는 클라우드 컴퓨팅 서비스 소비자는 네트워크 링크 및 네트워크 어댑터를 통해 클라우드(202)에 연결된다. 일 실시예에서, 컴퓨팅 시스템(206a 내지 206f)은 다양한 컴퓨팅 디바이스, 예를 들어, 서버, 데스크톱, 랩톱, 태블릿, 스마트폰, IoT(Internet of Things) 디바이스, 자율 주행 차량(자동차, 드론, 셔틀, 기차, 버스 등을 포함함) 및 소비자 전자기기로서 구현된다. 일 실시예에서, 컴퓨팅 시스템(206a 내지 206f)은 다른 시스템 내에 또는 그 일부로서 구현된다.
도 3은 컴퓨터 시스템(300)을 도시한다. 일 구현예에서, 컴퓨터 시스템(300)은 특수 목적 컴퓨팅 디바이스이다. 특수 목적 컴퓨팅 디바이스는 기술을 수행하도록 고정-배선(hard-wired)되거나, 기술을 수행하도록 지속적으로 프로그래밍되는 하나 이상의 ASIC(application-specific integrated circuit) 또는 FPGA(field programmable gate array)와 같은 디지털 전자 디바이스를 포함하거나, 펌웨어, 메모리, 다른 스토리지 또는 조합 내의 프로그램 명령에 따라 기술을 수행하도록 프로그래밍되는 하나 이상의 범용 하드웨어 프로세서를 포함할 수 있다. 또한, 그러한 특수-목적 컴퓨팅 디바이스는 커스텀 고정-배선 로직, ASIC, 또는 FPGA를 커스텀 프로그래밍과 조합하여 기술을 실현할 수 있다. 다양한 실시예에서, 특수-목적 컴퓨팅 디바이스는 기술을 구현하기 위한 고정-배선 및/또는 프로그램 로직을 포함하는 데스크톱 컴퓨터 시스템, 포터블 컴퓨터 시스템, 휴대용 디바이스, 네트워크 디바이스, 또는 임의의 다른 디바이스이다.
일 실시예에서, 컴퓨터 시스템(300)은 정보를 통신하기 위한 버스(302) 또는 다른 통신 메커니즘, 및 정보를 프로세싱하기 위해 버스(302)와 결합된 하드웨어 프로세서(304)를 포함한다. 하드웨어 프로세서(304)는, 예를 들어, 범용 마이크로프로세서이다. 컴퓨터 시스템(300)은 버스(302)에 결합된, 프로세서(304)에 의해 실행될 명령 및 정보를 저장하기 위한, RAM(random access memory) 또는 다른 동적 저장 디바이스와 같은, 메인 메모리(306)를 또한 포함한다. 일 구현예에서, 메인 메모리(306)는 프로세서(304)에 의해 실행될 명령의 실행 동안 임시 변수 또는 다른 중간 정보를 저장하는 데 사용된다. 그러한 명령은, 프로세서(304)에 의해 액세스 가능한 비-일시적 저장 매체에 저장될 때, 컴퓨터 시스템(300)을 명령에서 특정된 동작을 수행하도록 커스터마이징된 특수-목적 머신으로 렌더링한다.
일 실시예에서, 컴퓨터 시스템(300)은, 프로세서(304)를 위한 정적 정보 및 명령을 저장하기 위해 버스(302)와 결합된 ROM(read only memory)(308) 또는 다른 정적 저장 디바이스를 추가로 포함한다. 자기 디스크, 광학 디스크, 솔리드-스테이트 드라이브, 또는 3차원 크로스 포인트 메모리와 같은, 저장 디바이스(310)가 제공되고 정보 및 명령을 저장하기 위해 버스(302)에 결합된다.
일 실시예에서, 컴퓨터 시스템(300)은 버스(302)를 통해, 정보를 컴퓨터 사용자에게 디스플레이하기 위한 CRT(cathode ray tube), LCD(liquid crystal display), 플라스마 디스플레이, LED(light emitting diode) 디스플레이, 또는 OLED(organic light emitting diode) 디스플레이와 같은 디스플레이(312)에 결합된다. 문자 숫자식 및 다른 키를 포함하는 입력 디바이스(314)는 정보 및 커맨드 선택을 프로세서(304)에 통신하기 위해 버스(302)에 결합된다. 다른 타입의 사용자 입력 디바이스는, 디스플레이(312) 상에서 커서 움직임을 제어하고 방향 정보 및 커맨드 선택을 프로세서(304)에 통신하기 위한, 마우스, 트랙볼, 터치식 디스플레이, 또는 커서 방향 키와 같은, 커서 제어기(316)이다. 이 입력 디바이스는 전형적으로, 디바이스가 평면에서 위치를 특정할 수 있게 하는 2개의 축, 즉 제1 축(예를 들면, x-축) 및 제2 축(예를 들면, y-축)에서의 2 자유도를 갖는다.
일 실시예에 따르면, 본원에서의 기술은 프로세서(304)가 메인 메모리(306)에 포함된 하나 이상의 명령의 하나 이상의 시퀀스를 실행하는 것에 반응하여 컴퓨터 시스템(300)에 의해 수행된다. 그러한 명령은, 저장 디바이스(310)와 같은, 다른 저장 매체로부터 메인 메모리(306) 내로 판독된다. 메인 메모리(306)에 포함된 명령의 시퀀스의 실행은 프로세서(304)로 하여금 본원에서 기술된 프로세스 단계를 수행하게 한다. 대안적인 실시예에서는, 소프트웨어 명령 대신에 또는 소프트웨어 명령과 조합하여 고정-배선 회로가 사용된다.
본원에서 사용되는 바와 같은 용어 "저장 매체"는 머신이 특정 방식으로 동작하게 하는 데이터 및/또는 명령을 저장하는 임의의 비-일시적 매체를 지칭한다. 그러한 저장 매체는 비휘발성 매체 및/또는 휘발성 매체를 포함한다. 비휘발성 매체는, 예를 들어, 광학 디스크, 자기 디스크, 솔리드-스테이트 드라이브, 또는 3차원 크로스 포인트 메모리, 예컨대, 저장 디바이스(310)를 포함한다. 휘발성 매체는 동적 메모리, 예컨대, 메인 메모리(306)를 포함한다. 저장 매체의 일반적인 형태는, 예를 들어, 플로피 디스크, 플렉서블 디스크, 하드 디스크, 솔리드-스테이트 드라이브, 자기 테이프, 또는 임의의 다른 자기 데이터 저장 매체, CD-ROM, 임의의 다른 광학 데이터 저장 매체, 홀 패턴을 갖는 임의의 물리적 매체, RAM, PROM, 및 EPROM, FLASH-EPROM, NV-RAM, 또는 임의의 다른 메모리 칩, 또는 카트리지를 포함한다.
저장 매체는 송신 매체와 별개이지만 송신 매체와 함께 사용될 수 있다. 송신 매체는 저장 매체들 간에 정보를 전달하는 데 참여한다. 예를 들어, 송신 매체는 버스(302)를 포함하는 와이어를 포함하여, 동축 케이블, 구리 와이어 및 광섬유를 포함한다. 또한, 송신 매체는 라디오 파 및 적외선 데이터 통신 동안 생성되는 것과 같은, 광파 또는 음향파의 형태를 취할 수 있다.
일 실시예에서, 실행을 위해 하나 이상의 명령의 하나 이상의 시퀀스를 프로세서(304)에 반송하는 데 다양한 형태의 매체가 수반된다. 예를 들어, 명령은 초기에 원격 컴퓨터의 자기 디스크 또는 솔리드-스테이트 드라이브에 보유된다. 원격 컴퓨터는 동적 메모리에 명령을 로딩하고 모뎀을 사용하여 전화선을 통해 명령을 전송한다. 컴퓨터 시스템(300)에 로컬인 모뎀은 전화선 상으로 데이터를 수신하고 적외선 송신기를 사용하여 데이터를 적외선 신호로 변환한다. 적외선 검출기는 적외선 신호로 반송되는 데이터를 수신하고 적절한 회로는 데이터를 버스(302)에 배치한다. 버스(302)는 데이터를 메인 메모리(306)로 반송하고, 프로세서(304)는 메인 메모리로부터 명령을 검색 및 실행한다. 메인 메모리(306)에 의해 수신된 명령은 프로세서(304)에 의해 실행되기 전이나 실행된 후에 선택적으로 저장 디바이스(310)에 저장될 수 있다.
컴퓨터 시스템(300)은 버스(302)와 결합된 통신 인터페이스(318)도 포함한다. 통신 인터페이스(318)는 로컬 네트워크(322)에 연결된 네트워크 링크(320)에 대한 2-웨이 데이터 통신(two-way data communication) 결합을 제공한다. 예를 들어, 통신 인터페이스(318)는 ISDN(integrated service digital network) 카드, 케이블 모뎀, 위성 모뎀, 또는 대응하는 타입의 전화선에 데이터 통신 연결을 제공하기 위한 모뎀이다. 다른 예로서, 통신 인터페이스(318)는 호환 가능한 LAN(local area network)에 데이터 통신 연결을 제공하기 위한 LAN 카드이다. 일부 구현예에서는, 무선 링크도 구현된다. 임의의 그러한 구현예에서, 통신 인터페이스(318)는 다양한 타입의 정보를 나타내는 디지털 데이터 스트림을 반송하는 전기 신호, 전자기 신호, 또는 광학 신호를 전송 및 수신한다.
네트워크 링크(320)는 전형적으로 하나 이상의 네트워크를 통한 다른 데이터 디바이스로의 데이터 통신을 제공한다. 예를 들어, 네트워크 링크(320)는 로컬 네트워크(322)를 통해 호스트 컴퓨터(324)로의 연결 또는 ISP(Internet Service Provider)(326)에 의해 운영되는 클라우드 데이터 센터 또는 장비로의 연결을 제공할 수 있다. ISP(326)는 차례로 지금은 "인터넷(328)"이라고 통칭되는 월드-와이드 패킷 데이터 통신 네트워크(world-wide packet data communication network)를 통해 데이터 통신 서비스를 제공한다. 로컬 네트워크(322) 및 인터넷(328) 둘 모두는 디지털 데이터 스트림을 반송하는 전기 신호, 전자기 신호, 또는 광학 신호를 사용한다. 다양한 네트워크를 통한 신호 및 컴퓨터 시스템(300)으로 그리고 컴퓨터 시스템(300)으로부터 디지털 데이터를 반송하는 통신 인터페이스(318)를 통한 네트워크 링크(320) 상의 신호는 송신 매체의 예시적인 형태이다. 일 실시예에서, 네트워크 링크(320)는 위에서 기술된 클라우드(202) 또는 클라우드(202)의 일부를 포함한다.
컴퓨터 시스템(300)은 네트워크(들), 네트워크 링크(320) 및 통신 인터페이스(318)를 통해 프로그램 코드를 포함하는 메시지 및 데이터를 전송 및 수신한다. 일 실시예에서, 컴퓨터 시스템(300)은 프로세싱하기 위한 코드를 수신한다. 수신된 코드는 수신될 때 프로세서(304)에 의해 실행되고 및/또는, 추후의 실행을 위해 저장 디바이스(310) 또는 다른 비휘발성 스토리지에 저장된다.
자율 주행 차량 아키텍처
도 4는 자율 주행 차량(예를 들면, 도 1에 도시된 AV(100))에 대한 예시적인 아키텍처(400)를 도시한다. 아키텍처(400)는 인지 모듈(402)(때때로 인지 회로라고 지칭됨), 계획 모듈(planning module)(404)(때때로 계획 회로라고 지칭됨), 제어 모듈(406)(때때로 제어 회로라고 지칭됨), 로컬화 모듈(localization module)(408)(때때로 로컬화 회로라고 지칭됨), 및 데이터베이스 모듈(410)(때때로 데이터베이스 회로라고 지칭됨)을 포함한다. 각각의 모듈은 AV(100)의 동작에서 소정의 역할을 한다. 다함께, 모듈(402, 404, 406, 408 및 410)은 도 1에 도시된 AV 시스템(120)의 일부일 수 있다. 일부 실시예에서, 모듈(402, 404, 406, 408, 및 410) 중 임의의 모듈은 컴퓨터 소프트웨어(예를 들면, 컴퓨터 판독 가능 매체 상에 저장된 실행 가능한 코드) 및 컴퓨터 하드웨어(예를 들면, 하나 이상의 마이크로프로세서, 마이크로컨트롤러, ASIC(application-specific integrated circuit), 하드웨어 메모리 디바이스, 다른 타입의 집적 회로, 다른 타입의 컴퓨터 하드웨어, 또는 이러한 것 중 임의의 것 또는 모든 것의 조합)의 조합이다.
사용 중에, 계획 모듈(404)은 목적지(412)를 나타내는 데이터를 수신하고 목적지(412)에 도달하기 위해(예를 들면, 도착하기 위해) AV(100)가 진행할 수 있는 궤적(414)(때때로 루트라고 지칭됨)을 나타내는 데이터를 결정한다. 계획 모듈(404)이 궤적(414)을 나타내는 데이터를 결정하기 위해, 계획 모듈(404)은 인지 모듈(402), 로컬화 모듈(408), 및 데이터베이스 모듈(410)로부터 데이터를 수신한다.
인지 모듈(402)은, 예를 들어, 도 1에도 도시된 바와 같이, 하나 이상의 센서(121)를 사용하여 인근의 물리적 대상체를 식별한다. 대상체는 분류되고(예를 들면, 보행자, 자전거, 자동차, 교통 표지판 등과 같은 타입으로 그룹화되고), 분류된 대상체(416)를 포함하는 장면 묘사는 계획 모듈(404)에 제공된다.
또한, 계획 모듈(404)은 로컬화 모듈(408)로부터 AV 위치(418)를 나타내는 데이터를 수신한다. 로컬화 모듈(408)은 위치를 계산하기 위해 센서(121)로부터의 데이터 및 데이터베이스 모듈(410)로부터의 데이터(예를 들면, 지리적 데이터)를 사용하여 AV 위치를 결정한다. 예를 들어, 로컬화 모듈(408)은 GNSS(Global Operation Satellite System) 센서로부터의 데이터 및 지리적 데이터를 사용하여 AV의 경도 및 위도를 계산한다. 일 실시예에서, 로컬화 모듈(408)에 의해 사용되는 데이터는 도로 기하학적 특성의 고-정밀 맵, 도로망 연결 특성을 기술하는 맵, 도로 물리적 특성(예컨대, 교통 속력, 교통량, 차량 및 자전거 운전자 교통 차선의 개수, 차선 폭, 차선 교통 방향, 또는 차선 마커 타입 및 위치, 또는 그 조합)을 기술하는 맵, 및 도로 특징부, 예를 들어, 횡단보도, 교통 표지판 또는 다양한 타입의 다른 진행 신호(travel signal)의 공간적 위치를 기술하는 맵을 포함한다.
제어 모듈(406)은 궤적(414)을 나타내는 데이터 및 AV 위치(418)를 나타내는 데이터를 수신하고, AV(100)로 하여금 목적지(412)를 향해 궤적(414)을 진행하게할 방식으로 AV의 제어 기능(420a 내지 420c)(예를 들면, 조향, 스로틀링, 제동, 점화)을 동작시킨다. 예를 들어, 궤적(414)이 좌회전을 포함하는 경우, 제어 모듈(406)은, 조향 기능의 조향각이 AV(100)로 하여금 좌측으로 회전하게 하고 스로틀링 및 제동이 AV(100)로 하여금 이러한 회전이 이루어지기 전에 통과하는 보행자 또는 차량을 위해 일시정지 및 대기하게 하는 방식으로 제어 기능(420a 내지 420c)을 동작시킬 것이다.
자율 주행 차량 입력
도 5는 인지 모듈(402)(도 4)에 의해 사용되는 입력(502a 내지 502d)(예를 들면, 도 1에 도시된 센서(121)) 및 출력(504a 내지 504d)(예를 들면, 센서 데이터)의 일 예를 도시한다. 하나의 입력(502a)은 LiDAR(Light Detection and Ranging) 시스템(예를 들면, 도 1에 도시된 LiDAR(123))이다. LiDAR는 그의 시선에 있는 물리적 대상체에 관한 데이터를 획득하기 위해 광(예를 들면, 적외선 광과 같은 광의 버스트)을 사용하는 기술이다. LiDAR 시스템은 출력(504a)으로서 LiDAR 데이터를 생성한다. 예를 들어, LiDAR 데이터는 환경(190)의 표현을 구성하는 데 사용되는 3D 또는 2D 포인트(포인트 클라우드라고도 알려져 있음)의 집합체이다.
다른 입력(502b)은 RADAR 시스템이다. RADAR는 인근의 물리적 대상체에 관한 데이터를 획득하기 위해 라디오 파를 사용하는 기술이다. RADAR는 LiDAR 시스템의 시선 내에 있지 않은 대상체에 관한 데이터를 획득할 수 있다. RADAR 시스템(502b)은 출력(504b)으로서 RADAR 데이터를 생성한다. 예를 들어, RADAR 데이터는 환경(190)의 표현을 구성하는 데 사용되는 하나 이상의 라디오 주파수 전자기 신호이다.
다른 입력(502c)은 카메라 시스템이다. 카메라 시스템은 인근의 물리적 대상체에 관한 정보를 획득하기 위해 하나 이상의 카메라(예를 들면, CCD(charge-coupled device)와 같은 광 센서를 사용하는 디지털 카메라)를 사용한다. 카메라 시스템은 출력(504c)으로서 카메라 데이터를 생성한다. 카메라 데이터는 종종 이미지 데이터(예를 들면, RAW, JPEG, PNG 등과 같은 이미지 데이터 형식의 데이터)의 형태를 취한다. 일부 예에서, 카메라 시스템은, 카메라 시스템이 심도를 인지할 수 있게 하는, 예를 들어, 입체시(stereopsis)(스테레오 비전)를 위한, 다수의 독립적인 카메라를 갖는다. 카메라 시스템에 의해 인지되는 대상체가 여기서 "인근"으로 기술되지만, 이것은 AV에 상대적인 것이다. 사용 중에, 카메라 시스템은 멀리 있는, 예를 들어, AV 전방으로 최대 1 킬로미터 이상에 있는 대상체를 "보도록" 구성될 수 있다. 따라서, 카메라 시스템은 멀리 떨어져 있는 대상체를 인지하기 위해 최적화되는 센서 및 렌즈와 같은 특징부를 가질 수 있다.
다른 입력(502d)은 TLD(traffic light detection) 시스템이다. TLD 시스템은 하나 이상의 카메라를 사용하여, 시각적 운행 정보를 제공하는 신호등, 거리 표지판, 및 다른 물리적 대상체에 관한 정보를 획득한다. TLD 시스템은 출력(504d)으로서 TLD 데이터를 생성한다. TLD 데이터는 종종 이미지 데이터(예를 들면, RAW, JPEG, PNG 등과 같은 이미지 데이터 형식의 데이터)의 형태를 취한다. TLD 시스템은, 시각적 운행 정보를 제공하는 가능한 한 많은 물리적 대상체에 관한 정보를 획득하기 위해 TLD 시스템이 넓은 시계를 갖는 카메라(예를 들면, 광각 렌즈 또는 어안 렌즈를 사용함)를 사용하여, AV(100)가 이러한 대상체에 의해 제공되는 모든 관련 운행 정보에 액세스한다는 점에서, 카메라를 포함하는 시스템과 상이하다. 예를 들어, TLD 시스템의 시야각은 약 120도 이상일 수 있다.
일부 실시예에서, 출력(504a 내지 504d)은 센서 융합 기술을 사용하여 조합된다. 따라서, 개별 출력(504a 내지 504d) 중 어느 하나가 AV(100)의 다른 시스템에 제공되거나(예를 들면, 도 4에 도시된 바와 같은 계획 모듈(404)에 제공되거나), 또는 조합된 출력이 동일한 타입(동일한 조합 기술을 사용하는 것 또는 동일한 출력을 조합하는 것 또는 둘 모두)의 단일 조합 출력 또는 다중 조합 출력의 형태 또는 상이한 타입(예를 들면, 상이한 각자의 조합 기술을 사용하는 것 또는 상이한 각자의 출력을 조합하는 것 또는 둘 모두)의 단일 조합 출력 또는 다중 조합 출력의 형태 중 어느 하나로 다른 시스템에 제공될 수 있다. 일부 실시예에서, 조기 융합(early fusion) 기술이 사용된다. 조기 융합 기술은 하나 이상의 데이터 프로세싱 단계가 조합 출력에 적용되기 전에 출력을 조합하는 것을 특징으로 한다. 일부 실시예에서, 늦은 융합(late fusion) 기술이 사용된다. 늦은 융합 기술은 하나 이상의 데이터 프로세싱 단계가 개별 출력에 적용된 후에 출력을 조합하는 것을 특징으로 한다.
도 6은 LiDAR 시스템(602)(예를 들면, 도 5에 도시된 입력(502a))의 일 예를 도시한다. LiDAR 시스템(602)은 광 이미터(606)(예를 들면, 레이저 송신기)로부터 광(604a 내지 604c)을 방출한다. LiDAR 시스템에 의해 방출되는 광은 전형적으로 가시 스펙트럼에 있지 않으며, 예를 들어, 적외선 광이 종종 사용된다. 방출되는 광(604b)의 일부는 물리적 대상체(608)(예를 들면, 차량)와 조우하고, LiDAR 시스템(602)으로 다시 반사된다. (LiDAR 시스템으로부터 방출되는 광은 전형적으로 물리적 대상체, 예를 들어, 고체 형태의 물리적 대상체를 관통하지 않는다). 또한, LiDAR 시스템(602)은 반사된 광을 검출하는 하나 이상의 광 검출기(610)를 갖는다. 일 실시예에서, LiDAR 시스템과 연관된 하나 이상의 데이터 프로세싱 시스템은 LiDAR 시스템의 시계(614)를 나타내는 이미지(612)를 생성한다. 이미지(612)는 물리적 대상체(608)의 경계(616)를 나타내는 정보를 포함한다. 이러한 방식으로, 이미지(612)는 AV 인근의 하나 이상의 물리적 대상체의 경계(616)를 결정하는 데 사용된다.
도 7은 동작 중인 LiDAR 시스템(602)을 도시한다. 이 도면에 도시된 시나리오에서, AV(100)는 이미지(702) 형태의 카메라 시스템 출력(504c) 및 LiDAR 데이터 포인트(704) 형태의 LiDAR 시스템 출력(504a) 둘 모두를 수신한다. 사용 중에, AV(100)의 데이터 프로세싱 시스템은 이미지(702)를 데이터 포인트(704)와 비교한다. 특히, 이미지(702)에서 식별된 물리적 대상체(706)가 데이터 포인트(704) 중에서도 식별된다. 이러한 방식으로, AV(100)는 데이터 포인트(704)의 윤곽 및 밀도에 기초하여 물리적 대상체의 경계를 인지한다.
도 8은 LiDAR 시스템(602)의 동작을 추가적으로 상세하게 도시한다. 위에서 기술된 바와 같이, AV(100)는 LiDAR 시스템(602)에 의해 검출되는 데이터 포인트의 특성에 기초하여 물리적 대상체의 경계를 검출한다. 도 8에 도시된 바와 같이, 지면(802)과 같은 평평한 대상체는 LiDAR 시스템(602)으로부터 방출되는 광(804a 내지 804d)을 일관된 방식으로 반사할 것이다. 달리 말하면, LiDAR 시스템(602)이 일관된 간격을 사용하여 광을 방출하기 때문에, 지면(802)은 광을 동일한 일관된 간격으로 다시 LiDAR 시스템(602)으로 반사할 것이다. AV(100)가 지면(802) 위에서 진행함에 따라, LiDAR 시스템(602)은 도로를 방해하는 것이 없는 경우 다음 유효 지면 포인트(806)에 의해 반사되는 광을 계속 검출할 것이다. 그렇지만, 대상체(808)가 도로를 방해하는 경우, LiDAR 시스템(602)에 의해 방출되는 광(804e 내지 804f)은 예상되는 일관된 방식과 불일치하는 방식으로 포인트(810a 내지 810b)로부터 반사될 것이다. 이 정보로부터, AV(100)는 대상체(808)가 존재한다고 결정할 수 있다.
경로 계획
도 9는 (예를 들면, 도 4에 도시된 바와 같은) 계획 모듈(404)의 입력과 출력 사이의 관계의 블록 다이어그램(900)을 도시한다. 일반적으로, 계획 모듈(404)의 출력은 시작 포인트(904)(예를 들면, 소스 위치 또는 초기 위치)로부터 종료 포인트(906)(예를 들면, 목적지 또는 최종 위치)까지의 루트(902)이다. 루트(902)는 전형적으로 하나 이상의 세그먼트에 의해 규정된다. 예를 들어, 세그먼트는 거리, 도로, 공도, 사유 도로, 또는 자동차 진행에 적절한 다른 물리적 영역의 적어도 일 부분에 걸쳐 진행되는 거리이다. 일부 예에서, 예를 들어, AV(100)가 4륜 구동(4WD) 또는 상시 4륜 구동(AWD) 자동차, SUV, 픽업 트럭 등과 같은 오프-로드 주행 가능 차량인 경우, 루트(902)는 비포장 경로 또는 탁트인 들판과 같은 "오프-로드" 세그먼트를 포함한다.
루트(902)에 추가하여, 계획 모듈은 차선-레벨 루트 계획 데이터(908)도 출력한다. 차선-레벨 루트 계획 데이터(908)는 특정한 시간에서의 세그먼트의 조건에 기초하여 루트(902)의 세그먼트를 횡단하는 데 사용된다. 예를 들어, 루트(902)가 다중 차선 공도를 포함하는 경우, 차선-레벨 루트 계획 데이터(908)는, 예를 들어, 출구가 다가오고 있는지, 차선 중 하나 이상이 다른 차량을 갖는지, 또는 수 분 이하 동안에 걸쳐 변화되는 다른 인자에 기초하여, AV(100)가 다중 차선 중 한 차선을 선택하는 데 사용할 수 있는 궤적 계획 데이터(910)를 포함한다. 유사하게, 일부 구현예에서, 차선-레벨 루트 계획 데이터(908)는 루트(902)의 세그먼트에 특정적인 속력 제약(912)을 포함한다. 예를 들어, 세그먼트가 보행자 또는 예상치 않은 교통상황(traffic)을 포함하는 경우, 속력 제약(912)은 AV(100)를 예상된 속력보다 더 느린 진행 속력, 예를 들어, 세그먼트에 대한 속력 제한 데이터에 기초한 속력으로 제한할 수 있다.
일 실시예에서, 계획 모듈(404)로의 입력은 (예를 들면, 도 4에 도시된 데이터베이스 모듈(410)로부터의) 데이터베이스 데이터(914), 현재 위치 데이터(916)(예를 들면, 도 4에 도시된 AV 위치(418)), (예를 들면, 도 4에 도시된 목적지(412)에 대한) 목적지 데이터(918), 및 대상체 데이터(920)(예를 들면, 도 4에 도시된 인지 모듈(402)에 의해 인지되는 분류된 대상체(416))를 포함한다. 일 실시예에서, 데이터베이스 데이터(914)는 계획에 사용되는 규칙을 포함한다. 규칙은 형식 언어를 사용하여, 예를 들어, 불리언 로직을 사용하여 특정된다. AV(100)와 조우하는 임의의 주어진 상황에서, 규칙 중 적어도 일부는 해당 상황에 적용될 것이다. 규칙이 AV(100)에 이용 가능한 정보, 예를 들어, 주위 환경에 관한 정보에 기초하여 충족되는 조건을 갖는 경우, 규칙이 주어진 상황에 적용된다. 규칙은 우선순위를 가질 수 있다. 예를 들어, "도로가 공도인 경우, 최좌측 차선으로 이동하라"로 되어 있는 규칙은, 출구가 1마일 내로 다가오고 있는 경우, 최우측 차선으로 이동하라"는 것보다 더 낮은 우선순위를 가질 수 있다.
도 10은, 예를 들어, 계획 모듈(404)(도 4)에 의해 경로 계획에 사용되는 방향 그래프(1000)를 도시한다. 일반적으로, 도 10에 도시된 것과 같은 방향 그래프(1000)는 임의의 시작 포인트(1002)와 종료 포인트(1004) 사이의 경로를 결정하는 데 사용된다. 현실 세계에서는, 시작 포인트(1002)와 종료 포인트(1004)를 분리하는 거리는 상대적으로 클 수 있거나(예를 들면, 2개의 상이한 대도시 지역 내) 또는 상대적으로 작을 수 있다(예를 들면, 도시 블록과 맞닿아 있는 2개의 교차로 또는 다중 차선 도로의 2개의 차선).
일 실시예에서, 방향 그래프(1000)는 AV(100)에 의해 점유될 수 있는 시작 포인트(1002)와 종료 포인트(1004) 사이의 상이한 위치를 나타내는 노드(1006a 내지 1006d)를 갖는다. 일부 예에서, 예를 들어, 시작 포인트(1002) 및 종료 포인트(1004)가 상이한 대도시 지역을 나타낼 때, 노드(1006a 내지 1006d)는 도로의 세그먼트를 나타낸다. 일부 예에서, 예를 들어, 시작 포인트(1002) 및 종료 포인트(1004)가 동일한 도로 상의 상이한 위치를 나타낼 때, 노드(1006a 내지 1006d)는 해당 도로 상의 상이한 위치를 나타낸다. 이러한 방식으로, 방향 그래프(1000)는 다양한 레벨의 입도(granularity)로 정보를 포함한다. 또한, 일 실시예에서, 높은 입도를 갖는 방향 그래프는 또한 더 큰 스케일을 갖는 다른 방향 그래프의 하위그래프이다. 예를 들어, 시작 포인트(1002) 및 종료 포인트(1004)가 멀리 떨어져 있는(예를 들면, 수 마일(many miles) 떨어져 있는) 방향 그래프는 그의 정보 대부분이 낮은 입도이고 저장된 데이터에 기초하지만, AV(100)의 시계 내의 물리적 위치를 나타내는 그래프의 부분에 대한 일부 높은 입도 정보도 포함한다.
노드(1006a 내지 1006d)는 노드와 중첩할 수 없는 대상체(1008a 내지 1008b)와 별개이다. 일 실시예에서, 입도가 낮을 때, 대상체(1008a 내지 1008b)는 자동차에 의해 횡단될 수 없는 구역, 예를 들어, 거리 또는 도로가 없는 영역을 나타낸다. 입도가 높을 때, 대상체(1008a 내지 1008b)는 AV(100)의 시계 내의 물리적 대상체, 예를 들어, 다른 자동차, 보행자, 또는 AV(100)가 물리적 공간을 공유할 수 없는 다른 엔티티를 나타낸다. 일 실시예에서, 대상체(1008a 내지 1008b)의 일부 또는 전부는 정적 대상체(예를 들면, 가로등 또는 전신주와 같은 위치를 변경하지 않는 대상체) 또는 동적 대상체(예를 들면, 보행자 또는 다른 자동차와 같은 위치를 변경할 수 있는 대상체)이다.
노드(1006a 내지 1006d)는 에지(1010a 내지 1010c)에 의해 연결된다. 2개의 노드(1006a 내지 1006b)가 에지(1010a)에 의해 연결되는 경우, AV(100)가, 예를 들어, 다른 노드(1006b)에 도착하기 전에 중간 노드로 진행할 필요 없이, 하나의 노드(1006a)와 다른 노드(1006b) 사이에서 진행하는 것이 가능하다. (노드 사이에서 진행하는 AV(100)를 언급할 때, AV(100)가 각자의 노드에 의해 표현되는 2개의 물리적 위치 사이에서 진행한다는 것을 의미한다.) 에지(1010a 내지 1010c)는, AV(100)가 제1 노드로부터 제2 노드로, 또는 제2 노드로부터 제1 노드로 진행한다는 의미에서 종종 양방향성이다. 일 실시예에서, 에지(1010a 내지 1010c)는, AV(100)가 제1 노드로부터 제2 노드로 진행할 수 있지만, AV(100)가 제2 노드로부터 제1 노드로 진행할 수 없다는 의미에서 단방향성이다. 에지(1010a 내지 1010c)는, 예를 들어, 일방통행로, 거리, 도로, 또는 공도의 개별 차선, 또는 법적 또는 물리적 제약으로 인해 일 방향으로만 횡단될 수 있는 다른 특징부를 나타낼 때 단방향성이다.
일 실시예에서, 계획 모듈(404)은 방향 그래프(1000)를 사용하여 시작 포인트(1002)와 종료 포인트(1004) 사이의 노드 및 에지로 이루어진 경로(1012)를 식별한다.
에지(1010a 내지 1010c)는 연관된 비용(1014a 내지 1014b)을 갖는다. 비용(1014a 내지 1014b)은 AV(100)가 해당 에지를 선택하는 경우 소비될 리소스를 나타내는 값이다. 전형적인 리소스는 시간이다. 예를 들어, 하나의 에지(1010a)가 다른 에지(1010b)의 물리적 거리의 2배인 물리적 거리를 나타내면, 제1 에지(1010a)의 연관된 비용(1014a)은 제2 에지(1010b)의 연관된 비용(1014b)의 2배일 수 있다. 시간에 영향을 미치는 다른 인자는 예상된 교통상황, 교차로의 개수, 속력 제한 등을 포함한다. 다른 전형적인 리소스는 연비이다. 2개의 에지(1010a 및 1010b)는 동일한 물리적 거리를 나타낼 수 있지만, 예를 들어, 도로 조건, 예상된 날씨 등으로 인해, 하나의 에지(1010a)는 다른 에지(1010b)보다 더 많은 연료를 요구할 수 있다.
계획 모듈(404)이 시작 포인트(1002)와 종료 포인트(1004) 사이의 경로(1012)를 식별할 때, 계획 모듈(404)은 전형적으로, 비용에 최적화된 경로, 예를 들어, 에지의 개별 비용이 함께 가산될 때 가장 적은 전체 비용을 갖는 경로를 선택한다.
자율 주행 차량 제어
도 11은 (예를 들면, 도 4에 도시된 바와 같은) 제어 모듈(406)의 입력 및 출력의 블록 다이어그램(1100)을 도시한다. 제어 모듈은, 예를 들어, 프로세서(304)와 유사한 하나 이상의 프로세서(예를 들면, 마이크로프로세서 또는 마이크로컨트롤러 또는 둘 모두와 같은 하나 이상의 컴퓨터 프로세서), 메인 메모리(306)와 유사한 단기 및/또는 장기 데이터 스토리지(예를 들면, 메모리 랜덤-액세스 메모리 또는 플래시 메모리 또는 둘 모두), ROM(1508), 및 저장 디바이스(210)를 포함하는 제어기(1102), 및 메모리 내에 저장된 명령에 따라 동작하는데, 상기 명령은 명령이 (예를 들면, 하나 이상의 프로세서에 의해) 실행될 때 제어기(1102)의 동작을 수행한다.
일 실시예에서, 제어기(1102)는 원하는 출력(1104)을 나타내는 데이터를 수신한다. 원하는 출력(1104)은 전형적으로 속도, 예를 들어, 속력 및 헤딩을 포함한다. 원하는 출력(1104)은, 예를 들어, (예를 들면, 도 4에 도시된 바와 같은) 계획 모듈(404)로부터 수신되는 데이터에 기초할 수 있다. 원하는 출력(1104)에 따라, 제어기(1102)는 스로틀 입력(1106) 및 조향 입력(1108)으로서 사용 가능한 데이터를 생성한다. 스로틀 입력(1106)은 원하는 출력(1104)을 달성하기 위해 조향 페달에 관여하거나 또는 다른 스로틀 제어에 관여함으로써, AV(100)의 스로틀(예를 들면, 가속도 제어)에 관여하는 정도를 나타낸다. 일부 예에서, 스로틀 입력(1106)은 AV(100)의 브레이크(예를 들면, 감속 제어)에 관여하는 데 사용 가능한 데이터를 또한 포함한다. 조향 입력(1108)은 조향각, 예를 들어, AV의 조향 제어(예를 들면, 조향 휠, 조향각 액추에이터, 또는 조향각을 제어하기 위한 다른 기능성)가 원하는 출력(1104)을 달성하도록 위치설정되어야 하는 각도를 나타낸다.
일 실시예에서, 제어기(1102)는 스로틀 및 조향에 제공되는 입력을 조정하는 데 사용되는 피드백을 수신한다. 예를 들어, AV(100)가 언덕과 같은 방해물(1110)과 조우하면, AV(100)의 측정된 속력(1112)은 원하는 출력 속력 아래로 낮아진다. 일 실시예에서, 임의의 측정된 출력(1114)은, 예를 들어, 측정된 속력과 원하는 출력 사이의 차분(1113)에 기초하여, 필요한 조정이 수행되도록 제어기(1102)에 제공된다. 측정된 출력(1114)은 측정된 위치(1116), 측정된 속도(1118)(속력 및 헤딩을 포함), 측정된 가속도(1120), 및 AV(100)의 센서에 의해 측정 가능한 다른 출력을 포함한다.
일 실시예에서, 방해물(1110)에 관한 정보는, 예를 들어, 카메라 또는 LiDAR 센서와 같은 센서에 의해 미리 검출되고, 예측 피드백 모듈(1122)에 제공된다. 이후, 예측 피드백 모듈(1122)은 정보를 제어기(1102)에 제공하며, 제어기(1102)는 이 정보를 사용하여 그에 따라 조정할 수 있다. 예를 들어, AV(100)의 센서가 언덕을 검출한("본") 경우, 이 정보는 상당한 감속을 방지하기 위해 적절한 시간에 스로틀에 관여할 준비를 하도록 제어기(1102)에 의해 사용될 수 있다.
도 12는 제어기(1102)의 입력, 출력, 및 컴포넌트의 블록 다이어그램(1200)을 도시한다. 제어기(1102)는 스로틀/브레이크 제어기(1204)의 동작에 영향을 미치는 속력 프로파일러(1202)를 갖는다. 예를 들어, 속력 프로파일러(1202)는, 예를 들어, 제어기(1102)에 의해 수신되고 속력 프로파일러(1202)에 의해 프로세싱되는 피드백에 따라 스로틀/브레이크(1206)를 사용하여 가속에 관여하거나 감속에 관여하도록 스로틀/브레이크 제어기(1204)에 명령한다.
또한, 제어기(1102)는 조향 제어기(1210)의 동작에 영향을 미치는 측방향 추적 제어기(1208)를 갖는다. 예를 들어, 측방향 추적 제어기(1208)는, 예를 들어, 제어기(1102)에 의해 수신되고 측방향 추적 제어기(1208)에 의해 프로세싱되는 피드백에 따라 조향 각도 액추에이터(1212)의 위치를 조정하도록 조향 제어기(1204)에 명령한다.
제어기(1102)는 스로틀/브레이크(1206) 및 조향각 액추에이터(1212)를 제어하는 방법을 결정하는 데 사용되는 여러 입력을 수신한다. 계획 모듈(404)은, 예를 들어, AV(100)가 동작을 시작할 때 헤딩을 선택하고 AV(100)가 교차로에 도달할 때 어느 도로 세그먼트를 횡단할지를 결정하기 위해, 제어기(1102)에 의해 사용되는 정보를 제공한다. 로컬화 모듈(408)은, 예를 들어, 스로틀/브레이크(1206) 및 조향각 액추에이터(1212)가 제어되고 있는 방식에 기초하여 예상되는 위치에 AV(100)가 있는지를 제어기(1102)가 결정할 수 있도록, AV(100)의 현재 위치를 기술하는 정보를 제어기(1102)에 제공한다. 일 실시예에서, 제어기(1102)는 다른 입력(1214)으로부터의 정보, 예를 들어, 데이터베이스, 컴퓨터 네트워크 등으로부터 수신된 정보를 수신한다.
자율 주행 차량에 의한 이상 검출
일부 실시예에서, 이상 검출 시스템은 하나 이상의 자율 주행 차량에 결합된다. 예를 들어, 일 실시예에서, 이상 검출 시스템은, 예를 들어, 도로와 같은 운행 가능 표면에서의 변동을 검출하는 복수의 센서를 포함한 하나 이상의 센서를 포함한다. 이상 검출 시스템은 하나 이상의 센서가 하나 이상의 자율 주행 차량의 하부 구조에 배치되도록 차량에 결합될 수 있다.
도 13은 제1 위치에 있는 예시적인 이상 검출 시스템(1300)을 예시한다. 도시된 바와 같이, 이상 검출 시스템(1300)은 액추에이터(1310), 강모(1330)가 접착제 층(1324)에 의해 결합되는 브러시 헤드(1320), 실드(1340), 인장 디바이스(1350), 마운트(1360), 및 센서 유닛(1370)을 포함한다.
마운트(1360)는 스토퍼(stopper)(1362), 제1 피벗(1366), 및 제2 피벗(1368)을 포함한다. 제1 피벗(1366)은 액추에이터(1310)를 지지하고 액추에이터(1310)가 제1 피벗(1366)을 중심으로 회전할 수 있게 한다. 그렇지만, 완충 패드(1364)를 포함하는 스토퍼(1362)는 일단 액추에이터(1310)가 스토퍼(1362)와 접촉하면 액추에이터(1310)가 시계 방향으로 회전하는 것을 방지한다. 제2 피벗(1368)은 인장 디바이스(1350)의 한쪽 단부를 지지하고 인장 디바이스(1350)가 제2 피벗(1368)을 중심으로 회전할 수 있게 한다. 인장 디바이스(1350)의 다른 쪽 단부는 액추에이터(1310)에 연결된다. 인장 디바이스(1350)와 액추에이터(1310) 사이의 연결은 제2 피벗(1368)을 중심으로 한 인장 디바이스(1350)의 회전을 제한한다. 마운트(1360)는 또한 센서 유닛(1370)을 수용할 수 있다.
완충 패드(1364)는 액추에이터(1310)와 스토퍼(1362) 사이에서 발생하는 충격을 흡수한다. 완충 패드(1364)는 다양한 재료로 제조된다. 그러한 재료는, 예를 들어, 천연 고무 또는 합성 고무와 같은 엘라스토머, 및 플라스틱을 포함한다. 완충 패드(1364)는 접착제 또는 기계적 수단을 통해 스토퍼(1362)에 결합된다.
일 실시예에서, 인장 디바이스(1350)는 스프링이다. 그렇지만, 다른 실시예에서, 인장 디바이스는 천연 고무 또는 합성 고무와 같은 엘라스토머로 제조된 밴드 또는 튜브이다. 인장 디바이스(1350)는, 예를 들어, 브래킷을 통해 액추에이터(1310)에 연결된다. 일부 실시예에서, 인장 디바이스(1350)와 액추에이터(1310) 사이의 연결은 피벗이다. 일부 실시예에서, 인장 디바이스(1350)는 액추에이터(1310)와 동일한 평면에 있다. 인장 디바이스(1350)는 액추에이터(1310)에 힘을 제공한다. 이 힘은 액추에이터(1310)를 제1 위치에, 즉 스토퍼(1362)와 접촉하게 유지하는 데 도움을 줄 수 있다. 이 힘은 액추에이터(1310)가 다양한 상황으로 인해 제1 위치로부터 멀어지게 이동한 후에, 예를 들면, 도로 상의 대상체가 실드(1340)와 접촉하게 되고 액추에이터(1310)가 스토퍼(1362)로부터 멀어지게 반시계 방향으로 회전하게 한 후에 액추에이터(1310)를 다시 그러한 위치로 가게 한다. 인장 디바이스(1350)는 또한 강모(1330)와, 도로와 같은, 운행 가능 표면 사이의 마찰력에 반대 힘을 제공함으로써 액추에이터(1310)의 새로운 위치를 안정화시키는 데 도움을 준다.
이 실시예에서, 액추에이터(1310)는 유압 실린더이다. 그렇지만, 다른 실시예에서, 액추에이터(1310)는 공압 액추에이터 또는 전기 기계식 액추에이터와 같은 상이한 유형의 선형 액추에이터이다. 일 실시예에서, 브러시 헤드(1320)가 연결되는 액추에이터(1310)는 연장되고 수축한다. 예를 들어, 액추에이터(1310)는 강모(1330)를 운행 가능 표면과 접촉하게 하기 위해 연장된다. 액추에이터(1310)는 제1 피벗(1366)을 중심으로 회전한다. 그렇지만, 액추에이터(1310)가 제1 위치에 있을 때, 즉 스토퍼(1362)와 접촉할 때, 액추에이터(1310)는 반시계 방향으로만 자유롭게 회전한다.
이 실시예에서, 실드(1340)는, 예를 들어, 브래킷을 통해 액추에이터(1310)에 결합된다. 실드(1340)는 액추에이터(1310)가 운행 가능 표면에 존재할 수 있고 브러시 헤드(1320) 아래를 통과할 수 없는 잔해물 또는 다른 대상체와 접촉하지 않도록 보호한다. 실드(1340)는 잔해물 또는 다른 대상체를 브러시 헤드(1320) 및 강모(1330) 아래로 보내도록 각져 있다. 이상적으로, 실드(1340)는, 주로 진행 방향을 향하도록, 자율 주행 차량의 전면을 향하는 액추에이터(1310)의 측면에 결합된다. 일 실시예에서, 실드(1340)는 금속으로 제조된다. 일 실시예에서, 실드(1340)는 플라스틱으로 제조된다.
이 실시예에서, 브러시 헤드(1320)는 액추에이터(1310)의 하부 부분에 연결된다. 일 실시예에서, 이 연결은 기계적지만; 다른 실시예에서, 이 연결은 접착제 연결 또는 자기 연결이다. 일 실시예에서, 브러시 헤드(1320)는 강모 스트레인/압력 센서(1322) 및 각각의 강모(1330)의 한쪽 단부가 배치되는 접착제 층(1324)을 포함한다. 이상적으로, 스트레인/압력 센서는 브러시 헤드(1320)와 강모(1330) 사이에 배치된다. 강모(1330)가 운행 가능 표면과 접촉할 때 이것은 효과적으로 강모(1330) 및/또는 브러시 헤드(1320)를 마찰 센서로 만든다. 비록 이 실시예에서, 강모(1330)가 접착제 층(1324)을 통해 브러시 헤드(1320)에 결합되지만, 다른 실시예에서 강모(1330)는 다른 수단을 통해, 예컨대, 기계적 연결을 통해 결합된다. 일 실시예에서, 강모(1330)를 브러시 헤드(1320)와 결합시키는 것 외에도, 강모가 서로 떨어져 퍼지고 일부 실시예에서 줄지어 배열되도록 접착제 층은 강모가 고정될 수 있게 한다.
이 실시예에서, 강모(1330)는 하나 이상의 강모 센서(1322)에서 끝난다. 강모 센서(1332)는, 예를 들어, 수분 센서 및/또는 온도 센서를 포함한다. 일부 실시예에서, 강모 센서(1332)는 온도 및 수분 둘 모두를 측정할 수 있는 습도 센서이다. 비록 각각의 강모가 센서에서 끝나는 것으로 묘사되어 있지만, 그럴 필요는 없다. 일부 실시예에서, 강모(1330) 중 하나의 강모만이 센서에서 끝난다. 다른 실시예에서, 강모(1330) 중 하나 초과의 강모가 센서에서 끝난다. 일 실시예에서, 강모(1330) 중 하나 이상은 하나 이상의 와이어(도시되지 않음)가 강모를 통해 지나가서 하나 이상의 센서에 연결될 수 있도록 중공형(hollow)일 수 있다. 일 실시예에서, 센서에서 끝나는 하나 이상의 강모는 절연된 와이어이다. 일 실시예에서, 센서에서 끝나는 강모(1330) 중 적어도 하나 이상의 강모의 단부는 하나 이상의 센서가 운행 가능 표면과 접촉할 때 이들을 손상으로부터 보호하기 위해 보호 층으로 코팅된다. 일 실시예에서, 온도 센서로 끝나는 강모의 단부에는 수분 및/또는 습도 센서로 끝나는 것과는 상이한 보호 층이 사용된다. 그러한 경우에, 수분 센서 및/또는 습도 센서로 끝나는 강모의 단부를 위한 보호 층은 수분의 검출을 가능하게 하기 위해 물이 침투 가능하다. 반대로, 온도 센서로 끝나는 강모의 단부를 위한 보호 층은 온도 센서를 더 잘 보호하기 위해 비-침투성이다.
이 실시예에서, 이상 검출 시스템(1300)은 운행 가능 표면에서의 변동을 검출하는 데 도움을 주기 위한 다수의 센서를 포함한다. 이러한 센서는, 예를 들어, 강모 스트레인/압력 센서(1322) 및 하나 이상의 강모 센서(1322)를 포함한다. 위에서 논의된 바와 같이, 일 실시예에서, 강모 스트레인/압력 센서(1322)는 강모(1330)와 브러시 헤드(1320) 사이에 배치된다. 도시된 바와 같이, 강모 스트레인/압력 센서는 접착제로 브러시 헤드(1320)에 본딩된다. 일 실시예에서, 강모 스트레인/압력 센서(1322)는 도 19에 도시된 바와 같이 스트레인/압력 센서(들)(1928)로 구성되거나 그 일부이다. 일 실시예에서, 강모 스트레인/압력 센서(1322)는 스트레인 게이지이다. 일 실시예에서, 강모 스트레인/압력 센서(1322)는 압전 저항기이다. 강모 스트레인/압력 센서는 브러시 헤드(1320) 및/또는 강모(1330)에 가해지는 압력, 힘 및/또는 장력을 검출한다. 일 실시예에서, 브러시 헤드(1320) 및/또는 강모(1330)에 가해지는 스트레인/압력은 강모(1330)와 운행 가능 표면 사이의 마찰력에 기인한다. 강모 스트레인/압력 센서(1322)의 출력은 운행 가능 표면의 마찰 계수를 결정하는 데 사용되며, 이 마찰 계수는, 차례로, 운행 가능 표면에 물, 얼음, 및/또는 눈이 있는지를 결정하는 데 사용된다. 강모 스트레인/압력 센서(1322)의 출력은 또한, 포트홀 또는 럼블 스트립과 같은, 임의의 공동이 운행 가능 표면에 있는지를 결정하는 데 사용될 수 있다.
위에서 논의된 바와 같이, 강모 센서(1332)는 하나 이상의 온도 센서, 하나 이상의 수분 센서 및/또는 하나 이상의 습도 센서이다. 일 실시예에서, 강모 센서(1332)는 도 1 및 도 4에 도시된 바와 같은 센서(121) 중 하나 이상이다. 하나 이상의 온도 센서는 운행 가능 표면의 온도, 운행 가능 표면 근처의 온도, 운행 가능 표면의 온도 변화, 및/또는 운행 가능 표면 근처의 온도 변화를 검출한다. 일 실시예에서, 하나 이상의 온도 센서의 출력은 운행 가능 표면이 얼음 층이 그 표면에 형성되거나 눈 층이 그 표면에 모일 수 있을 정도로 충분히 차가운지를 결정하는 데 사용된다. 일 실시예에서, 하나 이상의 온도 센서의 출력은 얼음 또는 눈이 운행 가능 표면에 이미 존재하는지를 결정하는 데 사용된다. 추가적으로, 일 실시예에서, 하나 이상의 온도 센서의 출력은 자율 주행 차량 상의 또는 자율 주행 차량에 장착된 임의의 스트레인/압력 센서의 열 팽창을 결정하고, 따라서 열 팽창으로 인한 스트레인/압력 센서의 출력의 크기(extent)를 결정하는 데 도움을 주기 위해 사용된다. 하나 이상의 수분 센서는 운행 가능 표면 상에 또는 그 근처에 수분이 있는지를 검출한다. 일 실시예에서, 하나 이상의 수분 센서의 출력은 물이 운행 가능 표면 상에 존재하는지를 결정하는 데 사용된다. 일 실시예에서, 하나 이상의 수분 센서의 출력은 운행 가능 표면 상에 얼음 또는 눈이 존재하는지를 결정하는 데 도움을 준다. 일 실시예에서, 하나 이상의 습도 센서의 출력은 하나 이상의 온도 센서 및 하나 이상의 수분 센서 둘 모두와 유사한 방식으로 사용된다.
일부 실시예에서, 이상 검출 시스템(1300)은 다른 센서를 포함한다. 이러한 다른 센서는, 예를 들어, 도 19에 도시된 바와 같은 회전 위치 센서(1930) 및/또는 스트레인/압력 센서를 포함할 수 있다. 일 실시예에서, 스트레인/압력 센서는 강모 스트레인/압력 센서(1322)에 추가하여 또는 그 대신에 있고, 일 실시예에서, 도 19에 도시된 바와 같은 스트레인/압력 센서(들)(1928)를 구성하거나 그 일부이다. 일 실시예에서, 스트레인/압력 센서는 인장 디바이스(1350)와 액추에이터(1310) 사이에 배치되어, 사실상 힘 게이지를 형성한다. 다른 실시예에서, 스트레인/압력 센서는 인장 디바이스(1350)와 피벗(1368) 사이에 배치되어, 사실상 힘 게이지를 형성한다. 스트레인/압력 센서는 인장 디바이스(1350)에 가해지는/인장 디바이스(1350)에 의해 가해지는 힘, 압력 및/또는 장력을 검출한다. 인장 디바이스(1350)에 가해지는/인장 디바이스(1350)에 의해 가해지는 힘, 압력 및/또는 장력이 강모(1330) 및/또는 브러시 헤드(1320)에 가해지는 힘, 압력 및/또는 장력과 관련이 있기 때문에, 스트레인/압력 센서의 출력은, 일 실시예에서, 강모 스트레인/압력 센서(1322)의 출력과 유사한 방식으로 활용된다. 즉, 스트레인/압력 센서의 출력은 운행 가능 표면의 마찰 계수를 결정하는 데 사용되며, 이 마찰 계수는, 차례로, 운행 가능 표면에 물, 얼음, 및/또는 눈이 있는지를 결정하는 데 사용된다. 일 실시예에서, 스트레인/압력 센서의 출력은, 포트홀 또는 럼블 스트립과 같은, 임의의 공동이 운행 가능 표면에 있는지를 결정하는 데 사용된다.
위에서 논의된 바와 같이, 일부 실시예에서, 이상 검출 시스템(1300)은 도 19에 도시된 바와 같은 회전 위치 센서(1930)를 포함한다. 일 실시예에서, 회전 위치 센서(1930)는 임의의 스트레인/압력 센서에 추가하여 또는 그 대신에 사용된다. 액추에이터(1310)가 회전할 때, 회전 위치 센서(1930)의 전부 또는 일부도 회전하도록, 회전 위치 센서(1930)의 적어도 일부는 피벗(1366) 상에 배치된다. 일부 실시예에서, 회전 위치 센서(1930)는, 광학 회전 인코더 또는 자기 회전 인코더와 같은, 회전 인코더이다. 일부 실시예에서, 회전 위치 센서(1930)는 홀 효과 회전 센서이다. 일부 실시예에서, 회전 위치 센서(1930)는 전위차계이다. 회전 위치 센서(1930)는 액추에이터(1310)의 각도 및/또는 각도 변화를 검출한다. 액추에이터(1310)의 각도 및/또는 각도 변화가 인장 디바이스(1350)에 가해지는/인장 디바이스(1350)에 의해 가해지는 힘, 압력 및/또는 장력과 관련이 있기 때문에, 그리고 인장 디바이스(1350)에 가해지는/인장 디바이스(1350)에 의해 가해지는 힘, 압력 및/또는 장력이 강모(1330) 및/또는 브러시 헤드(1320)에 가해지는 힘, 압력 및/또는 장력과 관련이 있기 때문에, 액추에이터(1310)의 각도 및/또는 각도 변화는 강모(1330) 및/또는 브러시 헤드(1320)에 가해지는 힘, 압력 및/또는 장력과 관련이 있다. 이에 따라, 일 실시예에서, 회전 위치 센서(1930)의 출력은 강모 스트레인/압력 센서(1322)의 출력과 유사한 방식으로 활용된다. 즉, 회전 위치 센서(1930)의 출력은 운행 가능 표면의 마찰 계수를 결정하는 데 사용되며, 이 마찰 계수는, 차례로, 운행 가능 표면에 물, 얼음, 및/또는 눈이 있는지를 결정하는 데 사용된다. 회전 위치 센서(1930)의 출력은 또한, 포트홀 또는 럼블 스트립과 같은, 임의의 공동이 운행 가능 표면에 있는지를 결정하는 데 사용될 수 있다.
일 실시예에서, 회전 위치 센서(1930)의 출력은 또한 본원에 기술된 바와 같이 사용된다. 인장 디바이스(1350)에 가해지는/인장 디바이스(1350)에 의해 가해지는 힘, 압력 및/또는 장력이 또한 실드(1340)에 가해지는 힘, 압력 및/또는 장력과 관련이 있기 때문에, 액추에이터(1310)의 각도 및/또는 각도 변화는 실드(1340)에 가해지는 힘, 압력 및/또는 장력과 관련이 있다. 이에 따라, 일 실시예에서, 회전 위치 센서(1930)의 출력은 도로에 상당한 장애물, 즉 실드(1340)와 접촉할 정도로 충분히 큰 장애물이 있는지를 결정하는 데 활용된다. 일 실시예에서, 실드(1340)가 상당한 장애물과 접촉할 때 강모 스트레인/압력 센서(1322)는 마찰 저하를 검출하는 데 도움이 될 것인데 그 이유는 더 적은 강모(1330)가 운행 가능 표면과 접촉하기 때문이다. 그렇지만, 마찰 저하는 또한, 젖은 포장 도로, 눈, 포트홀 등과 같은 다수의 다른 도로 이상을 나타낼 수 있다. 이에 따라, 회전 위치 센서(1930)는 유사한 센서 출력을 생성할 수 있는 다양한 도로 이상을 구별하는 데 도움을 준다. 예를 들어, 강모 스트레인/압력 센서(1322)에 의해 검출된 마찰 저하가 있지만 액추에이터(1310)와 스토퍼(1362) 사이의 각도가 커진 경우, 상당한 장애물이 실드(1340)와 접촉한다는 유력한 징후가 있다. 또한, 차량의 속력을 고려할 때 확대된 각도가 검출되는 시간 기간이 상대적으로 작다고 결정될 때 상당한 장애물의 징후가 있다. 이러한 이유는 상당한 장애물과의 접촉 시간, 따라서 확대된 각도가 검출되는 시간 기간이 상대적으로 짧아, 장애물이 이상 검출 시스템(1300) 아래 또는 주변을 통과할 때까지만 지속되기 때문이다. 확대된 각도가 검출되는 상대적으로 긴 시간 기간은 운행 가능 표면의 다수의 대상체 또는 융기된 부분이 이상 검출 시스템(1300)의 실드(1340)와 자주 접촉하는 오프로드 유형 조건에서 차량이 진행하고 있음을 나타낼 수 있다. 추가적으로, 일 실시예에서, 회전 위치 센서(1930)의 출력은 적어도 자율 주행 차량의 속력 및 검출된 각도에서 인장 디바이스(1350)에 의해 가해지는 힘을 고려함으로써 상당한 대상체의 질량(mass)을 결정하는 데 활용된다.
이 실시예에서, 마운트(1360)는 센서 유닛(1370)을 수용한다. 일 실시예에서, 센서 유닛은, 예를 들어, 도 19에 도시된 바와 같은 GPS(1922), 도 19에 도시된 바와 같은 가속도계(1924), 및 도 19에 도시된 바와 같은 자이로스코프(1926)를 포함한다. 일 실시예에서, GPS(1922)는 도 1 및 도 4에 도시된 바와 같은 센서(121) 중 하나이다. 일 실시예에서, 가속도계(1924)는 도 1 및 도 4에 도시된 바와 같은 센서(121) 중 하나이다. 일 실시예에서, 자이로스코프(1926)는 도 1 및 도 4에 도시된 바와 같은 센서(121) 중 하나이다. 일 실시예에서, 가속도계(1924) 및 자이로스코프(1926)는 차량 선가속도 및 각속도 둘 다를 측정하는 관성 측정 유닛(IMU)을 형성한다. GPS(1922)는 자율 주행 차량의 위치를 검출한다. 일 실시예에서, GPS(1922)의 출력은 자율 주행 차량이 포트홀과 같은 운행 가능 표면의 이상과 접촉했을 때 자율 주행 차량의 위치를 결정하는 데 사용된다. 일 실시예에서, 센서 유닛(1370)은 MEMS 가속도계, MEMS IMU, MEMS 자이로스코프 등과 같은 다른 MEMS(microelectromechanical system)를 포함한다. 일 실시예에서, 센서 유닛(1370)은 나노전자기계 시스템(nanoelectromechanical system)을 포함한다.
일 실시예에서, 가속도계(1924)는 자율 주행 차량의 가속도를 검출한다. 자이로스코프(1926)는 차량의 배향을 검출하고, 일부 예에서, 차량의 각속도를 결정하는 데 도움을 준다. 일 실시예에서, 자이로스코프(1926)의 출력은 이상 검출 시스템(1300)에 작용하는 중력 벡터를 결정하는 데 사용되며, 중력 벡터는, 차례로, 중력에 의해 강모(1330), 브러시 헤드(1320), 및/또는 인장 디바이스(1350)에 가해지는 힘의 크기를 결정하는 데 사용된다. 이 정보는 마찰로 인해 강모(1330) 및/또는 브러시 헤드(1320)에 작용하는 힘의 크기를 결정함으로써 마찰 계수를 계산하는 데 도움이 된다. 일 실시예에서, 가속도계(1924)의 출력은 자율 주행 차량의 가속도로 인해 이상 검출 시스템(1300)에 작용하는 힘 벡터를 결정하는 데 사용되며, 힘 벡터는, 차례로, 자율 주행 차량의 가속도에 의해 강모(1330), 브러시 헤드(1320), 및/또는 인장 디바이스(1350)에 가해지는 힘의 크기를 결정하는 데 사용된다. 이 정보는 마찰로 인해 강모(1330) 및/또는 브러시 헤드(1320)에 작용하는 힘의 크기를 결정함으로써 마찰 계수를 계산하는 데 도움이 된다. 이에 따라, 자이로스코프(1926) 및 가속도계(1924)의 출력은 마찰로 인해 강모(1330) 및/또는 브러시 헤드(1320)에 작용하는 힘을 격리하기 위해 함께 사용된다. IMU의 출력은 자이로스코프(1926) 및 가속도계(1924) 둘 모두의 출력과 유사한 방식으로 사용된다.
도 14는 전방 서스펜션(1412)과 후방 서스펜션(1416) 사이의 자율 주행 차량(1410)의 하부 구조 상에 배치된 이상 검출 시스템(1300)을 갖는 자율 주행 차량(1410)을 예시한다. 이상 검출 시스템(1300) 외에도, 일 실시예에서, 자율 주행 차량(1410)은 스트레인/압력 센서(1414) 및 스트레인/압력 센서(1418)와 같은 추가적인 검출 디바이스를 또한 포함한다.
이 실시예에서, 스트레인/압력 센서(1414) 및 스트레인/압력 센서(1418)는, 제각기, 자율 주행 차량(1410)의 전방 서스펜션(1412) 및 후방 서스펜션(1416)에 장착된다. 다른 실시예에서, 추가적인 스트레인/압력 센서는 자율 주행 차량(1410)의 타이어에 장착된다. 다른 실시예에서, 스트레인/압력 센서(1414) 및 스트레인/압력 센서(1418)는 자율 주행 차량(1410)의 타이어에 장착된다. 일 실시예에서, 스트레인/압력 센서(1414) 및 스트레인/압력 센서(1418)는 스트레인 게이지이다. 일 실시예에서, 스트레인/압력 센서(1414) 및 스트레인/압력 센서(1418)는 압전 저항기이다.
스트레인/압력 센서(1414) 및 스트레인/압력 센서(1418)는, 제각기, 자율 주행 차량(1410)의 전방 서스펜션(1412) 및 후방 서스펜션(1416)에 가해지는 압력, 힘 및/또는 장력을 검출한다. 스트레인/압력 센서(1414) 및 스트레인/압력 센서(1418)의 출력은, 포트홀 또는 럼블 스트립과 같은, 임의의 공동이 운행 가능 표면에 있는지 여부를 결정하는 데 사용된다. 예를 들어, 차량(1410)이 도로에 있는 포트홀(1420)과 접촉할 때, 자율 주행 차량의(1410)의 전방 서스펜션(1412)에 추가적인 스트레인이 가해진다. 스트레인/압력 센서(1414)는 추가적인 스트레인을 검출할 것이다. 일 실시예에서, 스트레인/압력 센서(1414)의 출력의 분석은 출력을 이전 측정치 또는 미리 결정된 추정된 출력과 비교함으로써 이상이 실제로 포트홀이었다고 결정한다. 일 실시예에서, 스트레인/압력 센서(1414)의 출력의 분석은 출력을 이전 측정치 또는 미리 결정된 추정된 출력과 비교함으로써 이상이 실제로 작은 포트홀이었다고 결정한다. 일 실시예에서, 스트레인/압력 센서(1414)의 출력의 분석은 출력을 이전 측정치 또는 미리 결정된 추정된 출력과 비교함으로써 이상이 실제로 포트홀이었고, 예를 들어, 럼블 스트립이 아니었다고 결정한다.
도 14에 도시된 바와 같이, 일 실시예에서, 이상 검출 시스템(1300)은 전방 서스펜션(1412)과 후방 서스펜션(1416) 사이에서 자율 주행 차량(1410)의 하부 구조에 배치된다. 이 실시예에서, 이상 검출 시스템(1300)은 물 웅덩이(1322)를 포함한 큰 포트홀(1430)을 방금 조우하였다. 강모(1330)는 부분적으로 도로와 접촉하고 부분적으로 웅덩이(1322)로부터의 물과 접촉한다. 강모(1330)가 포트홀(1430) 내로 떨어지기 시작함에 따라, 마찰로 인한 강모(1330) 및/또는 브러시 헤드(1320)에 대한 힘이 감소된다. 이것은, 차례로, 인장 디바이스(1350)에 대한 힘을 감소시키고, 액추에이터(1310)의 위치가 강모(1330)가 포트홀(1430)과 조우하기 전에 액추에이터(1310)가 스토퍼(1362)와 접촉하지 않도록 되어 있다면, 액추에이터(1310)와 스토퍼(1362) 사이의 각도가 감소된다. 이에 따라, 강모 스트레인/압력 센서의 출력은 강모(1330) 및/또는 브러시 헤드(1320)에 대한 압력, 힘 및/또는 장력의 저하를 나타낼 것이다. 인장 디바이스(1350)에 결합된 스트레인/압력 센서의 출력은 인장 디바이스(1350)에 가해지는/인장 디바이스(1350)에 의해 가해지는 힘, 압력 및/또는 장력의 저하를 나타낼 것이다. 액추에이터(1310)의 위치가 강모(1330)가 포트홀과 조우하기 전에 액추에이터(1310)가 스토퍼(1362)와 접촉하지 않도록 되어 있다면, 피벗(1366)에 결합된 도 19에 도시된 바와 같은 임의의 회전 위치 센서(들)(1930)의 출력은 액추에이터(1310)와 스토퍼(1362) 사이의 각도의 감소를 나타낼 것이다. 강모(1330)가 웅덩이(1322)와 접촉할 때 강모 센서(1332)의 수분 또는 습도 센서 중 임의의 것은 운행 가능 표면 상의 수분의 존재를 검출할 것이다. 그렇지만, 일 실시예에서, 하나 이상의 수분 및/또는 습도 센서의 출력의 분석은 (자율 주행 차량(1410)이 도로를 따라 이동함에 따라 강모가 곧 웅덩이로부터 들어올려질 것이기 때문에) 운행 가능 표면 상에서 짧은 시간 기간 동안만 수분이 검출되었다는 것과, 자율 주행 차량(1410) 및/또는 다른 자율 주행 차량이, 예를 들어, 포트홀을 알아채는 동안 수분 검출을 무시할 것임을 보여줄 것이다.
차량(1410)이 운행 가능 표면을 따라 계속 이동함에 따라, 강모(1330)는 강모(1330) 및/또는 브러시 헤드(1320)에 대한 마찰력이 가장 낮은 포트홀(1430)에 완전히 들어갈 것이다. 나중에, 강모(1330)는 포트홀(1430)의 제2 에지에서 운행 가능 표면과 다시 조우할 것이다. 이 시점에서, 마찰로 인한 강모(1330) 및/또는 브러시 헤드(1320)에 대한 힘이 증가한다. 이것은, 차례로, 인장 디바이스(1350)에 대한 힘을 증가시키고, 이러한 힘 증가가 인장 디바이스(1350)를 늘어나게 하기에 충분하다면, 액추에이터(1310)와 스토퍼(1362) 사이의 각도가 증가된다. 이에 따라, 강모 스트레인/압력 센서의 출력은 강모(1330) 및/또는 브러시 헤드(1320)에 대한 압력, 힘 및/또는 장력의 증가를 나타낼 것이다. 인장 디바이스(1350)에 결합된 스트레인/압력 센서의 출력은 인장 디바이스(1350)에 가해지는/인장 디바이스(1350)에 의해 가해지는 힘, 압력 및/또는 장력의 증가를 나타낼 것이다. 이러한 힘 증가가 인장 디바이스(1350)를 늘어나게 하기에 충분하다면, 피벗(1366)에 결합된 도 19에 도시된 바와 같은 임의의 회전 위치 센서(들)(1930)의 출력은 액추에이터(1310)와 스토퍼(1362) 사이의 각도의 증가를 나타낼 것이다. 강모 센서(1332)의 수분 또는 습도 센서 중 임의의 것은 강모(1330)가 웅덩이(1322)로부터 벗어날 때 운행 가능 표면 상의 수분의 존재를 검출하는 것을 중지할 것이다.
도 15는 전방 서스펜션(1512) 및 후방 서스펜션(1516) 둘 모두 뒤에서, 자율 주행 차량(1510)의 후면에/그로부터 떨어져 배치된 이상 검출 시스템(1300)을 갖는 자율 주행 차량(1510)을 예시한다. 이상 검출 시스템(1300) 외에도, 일 실시예에서, 자율 주행 차량(1510)은 스트레인/압력 센서(1514) 및 스트레인/압력 센서(1518)와 같은 추가적인 검출 디바이스를 또한 포함한다.
일 실시예에서, 도 14에서 보는 바와 같이 이상 검출 시스템(1300)을 배치하는 것에 대한 대안으로서, 이상 검출 시스템(1300)이 자율 주행 차량(1510)의 후면에/그로부터 떨어져 배치된다. 이 실시예에서, 차량의 후면에 장착된 이상 검출 시스템(1300)은 도 14에서 보는 바와 같은 위치에 이상 검출 시스템을 장착하는 것에 비해 차량에 대한 더 적은 수정을 필요로 한다. 차량의 후면에 이상 검출 시스템을 장착하는 것은 이상 시스템이 차량의 전체 폭으로 또는 차량의 전체 폭을 넘어서 확장될 수 있게 하며; 따라서 시스템이 더 적은 추월 및/또는 더 적은 차량을 갖는 운행 가능 표면을 더 많이 검출할 수 있게 한다. 이 실시예에서, 이상 검출 시스템(1300)이 결합되는 자율 주행 차량보다 더 넓은 이상 검출 시스템(1300)은, 예를 들어, 도로 차선이 차량보다 넓기 때문에, 때로는 상당히 그렇기 때문에 도로의 각각의 차선에 대한 더 명확한 상황(picture)을 제공한다.
도 16a는 자율 주행 차량의 하부 구조에 배치된 이상 검출 시스템(1300)의 정면도를 예시한다. 이 실시예에서, 이상 검출 시스템(1300)은 차량의 폭을 따라 다수의 서브파트(1300a 내지 1300e)를 갖는다. 이 실시예에서, 정면도로부터, 서브파트(1300a 내지 1300e)의 실드 및 각각의 서브파트의 강모만이 보인다.
이 실시예에서, 서브파트(1300a 내지 1300e) 각각은 자체 액추에이터, 브러시 헤드, 강모 세트, 인장 디바이스 및 스토퍼를 갖는다. 일 실시예에서, 서브파트(1300a 내지 1300e) 각각은 마운트들 중 하나가 센서 유닛을 수용하는 자체 마운트를 갖는다. 일 실시예에서, 서브파트(1300a 내지 1300e)는 마운트를 공유한다. 일 실시예에서, 서브파트(1300a 내지 1300e)는 서브파트(1300a)로부터 서브파트(1300e)까지 걸쳐 있는 하나의 실드를 공유한다. 일 실시예에서, 서브파트(1300a 내지 1300e)는 서브파트(1300a)로부터 서브파트(1300b)까지 걸쳐있는 단일 브러시 헤드 및 강모 세트를 공유한다. 비록 5개의 서브파트가 도시되어 있지만, 다른 실시예에서 더 많거나 더 적은 수의 서브파트가 가능하다. 일부 실시예에서, 이상 검출 시스템(1300)은 어떠한 서브파트도 갖지 않는다.
도 16a에 도시된 바와 같이, 이 실시예에서, 스트레인/압력 센서(1602) 및 스트레인/압력 센서(1604)와 같은 다수의 센서가 타이어 근처의 전방 서스펜션 상의 다양한 위치에 결합된다. 일 실시예에서, 스트레인/압력 센서(1602) 및 스트레인/압력 센서(1604)는 스트레인 게이지이다. 일 실시예에서, 스트레인/압력 센서(1602) 및 스트레인/압력 센서(1604)는 압전 저항기이다. 일 실시예에서, 스트레인/압력 센서(1602) 및 스트레인/압력 센서(1604)는 도 14에 도시된 바와 같은 스트레인/압력 센서(1414)이다. 다른 실시예에서, 스트레인/압력 센서(1602) 및 스트레인/압력 센서(1604)는 도 15에 도시된 바와 같은 스트레인/압력 센서(1514)이다. 자율 주행 차량의 서스펜션 및/또는 타이어 상에 스트레인을 검출하는 스트레인/압력 센서(1602) 및 스트레인/압력 센서(1604)를 갖는 것은, 적어도 이 실시예에서, 더 넓은 이상 검출 영역을 제공한다. 예를 들어, 자율 주행 차량의 우측 전방 타이어만이 포트홀과 접촉하는 경우, 즉 이상 검출 시스템(1300)의 어떤 부분도 포트홀과 접촉하지 않는 경우, 스트레인/압력 센서(1602)의 출력은 그렇지 않았으면 검출되지 않았을 포트홀의 존재를 나타낸다.
도 16b는 자율 주행 차량의 하부 구조에 배치된 이상 검출 시스템(1300)의 후면도를 예시한다. 이 실시예에서, 이상 검출 시스템(1300)은 차량의 폭을 따라 다수의 서브파트(1300a 내지 1300e)를 갖는다. 이 실시예에서, 후면도로부터, 각각의 서브파트의 실드, 액추에이터, 브러시 헤드 및 강모가 보인다.
이 실시예에서, 서브파트(1300a 내지 1300e) 각각은 자체 액추에이터, 브러시 헤드, 강모 세트, 인장 디바이스 및 스토퍼를 갖는다. 일 실시예에서, 서브파트(1300a 내지 1300e) 각각은 마운트들 중 하나가 센서 유닛을 수용하는 자체 마운트를 갖는다. 일 실시예에서, 서브파트(1300a 내지 1300e)는 마운트를 공유한다. 일 실시예에서, 서브파트(1300a 내지 1300e)는 서브파트(1300a)로부터 서브파트(1300e)까지 걸쳐 있는 하나의 실드를 공유한다. 일 실시예에서, 서브파트(1300a 내지 1300e)는 서브파트(1300a)로부터 서브파트(1300e)까지 걸쳐있는 단일 브러시 헤드 및 강모 세트를 공유한다. 비록 5개의 서브파트가 도시되어 있지만, 다른 실시예에서 더 많거나 더 적은 수의 서브파트가 가능하다. 일부 실시예에서, 이상 검출 시스템(1300)은 어떠한 서브파트도 갖지 않는다.
일 실시예에서, 도 16b에 도시된 바와 같이, 스트레인/압력 센서(1606) 및 스트레인/압력 센서(1608)와 같은 다수의 센서가 타이어 근처의 후방 서스펜션 상의 다양한 위치에 결합된다. 일 실시예에서, 스트레인/압력 센서(1606) 및 스트레인/압력 센서(1608)는 스트레인 게이지이다. 일 실시예에서, 스트레인/압력 센서(1606) 및 스트레인/압력 센서(1608)는 압전 저항기이다. 일 실시예에서, 스트레인/압력 센서(1606) 및 스트레인/압력 센서(1608)는 도 14에 도시된 바와 같은 스트레인/압력 센서(1418)이다. 다른 실시예에서, 스트레인/압력 센서(1606) 및 스트레인/압력 센서(1608)는 도 15에 도시된 바와 같은 스트레인/압력 센서(1518)이다. 자율 주행 차량의 서스펜션 및/또는 타이어 상에 스트레인을 검출하는 스트레인/압력 센서(1606) 및 스트레인/압력 센서(1608)를 갖는 것은, 적어도 이 예에서, 더 넓은 이상 검출 영역을 제공한다. 예를 들어, 자율 주행 차량의 우측 전방 타이어만이 포트홀과 접촉하는 경우, 즉 이상 검출 시스템(1300)의 어떤 부분도 포트홀과 접촉하지 않는 경우, 스트레인/압력 센서(1608)의 출력은 그렇지 않았으면 검출되지 않았을 포트홀의 존재를 나타낸다.
검출된 이상에 기초한 하나 이상의 자율 주행 차량의 동작 제어
일부 실시예에서, 컴퓨터 시스템은 하나 이상의 자율 주행 차량의 동작을 제어한다. 예를 들어, 컴퓨터 시스템은 자율 주행 차량을 하나 이상의 위치 또는 영역으로 전개하고, 자율 주행 차량 각각에 운송 작업을 할당하며(예를 들면, 승객을 픽업 및 운송하는 것, 화물을 픽업 및 운송하는 것 등), 자율 주행 차량 각각에 유지 보수 작업을 할당하고(예를 들면, 충전 스테이션에서 배터리를 충전하는 것, 서비스 스테이션에서 수리를 받는 것 등), 그리고/또는 자율 주행 차량 각각에 다른 작업을 할당한다.
도 17은 자율 주행 차량(1702a 내지 1702d)의 플릿의 동작을 제어하기 위한 컴퓨터 시스템(1700)을 도시한다. 이 실시예에서, 컴퓨터 시스템(1700)은 자율 주행 차량(1702a 내지 1702d) 각각으로부터 떨어져 있고, (예를 들면, 무선 통신 네트워크를 통해) 자율 주행 차량(1702a 내지 1702d)과 통신한다. 일부 실시예에서, 컴퓨터 시스템(1700)은 도 1과 관련하여 기술된 원격 서버(136) 및/또는 도 1 및 도 3과 관련하여 기술된 클라우드 컴퓨팅 환경(300)과 유사한 방식으로 구현된다. 일부 실시예에서, 자율 주행 차량(1702a 내지 1702d) 중 하나 이상은 도 1a와 관련하여 기술된 자율 주행 차량(100)과 유사한 방식으로 구현된다.
자율 주행 차량(1702a 내지 1702d) 각각은 지리적 영역(1704)에 위치한다. 지리적 영역(1704)은 특정 정치적 영역(예를 들면, 특정 국가, 주, 카운티, 지방(province), 도시, 타운, 자치구(borough) 또는 다른 정치적 영역), 특정 미리 정의된 영역(예를 들면, 소프트웨어로 결정된 지오펜싱된 영역(geo-fenced area)과 같은 특정 미리 정의된 경계를 갖는 영역), 일시적으로 정의된 영역(예를 들면, 과밀 교통의 영향을 받는 거리 그룹과 같은 동적 경계를 갖는 영역), 또는 임의의 다른 영역에 대응한다.
이 실시예에서, 위치 "A"에 위치한 사용자(1706)는 자율 주행 차량을 타고 위치 "B"로 이동하기를 원한다. 사용을 위해 자율 주행 차량을 요청하기 위해, 사용자(1706)는 (예를 들면, 스마트 폰, 태블릿 컴퓨터 또는 웨어러블 컴퓨팅 디바이스와 같은, 모바일 디바이스(1710)를 통해) 요청(1708)을 컴퓨터 시스템(1700)에 송신한다. 일부 실시예에서, 요청(1708)은 사용자의 원하는 픽업 위치(예를 들면, 사용자의 현재 위치 또는 사용자에 의해 지정된 다른 픽업 위치), 원하는 픽업 시간, 및/또는 원하는 목적지 위치(예를 들면, 사용자에 의해 지정된 목적지 위치)를 나타내는 하나 이상의 데이터 항목을 포함한다.
요청(1708)에 응답하여, 컴퓨터 시스템(1700)은 요청을 이행하기 위해 자율 주행 차량(1702a 내지 1702d) 중 하나를 선택한다. 컴퓨터 시스템(1700)은 자율 주행 차량을 선택할 때 하나 이상의 상이한 기준을 고려한다. 예를 들어, 컴퓨터 시스템(1700)은 자율 주행 차량 중 어느 것이 현재 이용 가능한지(예를 들면, 승객 및/또는 화물을 운송하도록 현재 할당되어 있지 않고 그리고/또는 승객 및/또는 화물을 능동적으로 운송하고 있지 않은지)를 결정하고 사용자(1706)에게 할당하기 위해 이용 가능한 자율 주행 차량 중 하나를 선택한다. 다른 예로서, 컴퓨터 시스템(1700)은 또한 자율 주행 차량이 현재는 이용 불가능하지만 미래에 이용 가능할 것으로 예상되는지(예를 들면, 자율 주행 차량이 현재 다른 작업에 할당되어 있지만 사용자(1706)에 대한 후속 할당 및 원하는 시간에 사용자의 원하는 픽업 위치에 도착하기에 충분한 시간 내에 그의 작업을 완료할 것으로 예상되는지) 여부를 고려한다. 일부 실시예에서, 컴퓨터 시스템(1700)은 (예를 들면, 사용자(1706)에 대한 자율 주행 차량의 근접성, 사용자(1706)에 대한 자율 주행 차량의 배향 또는 헤딩, 자율 주행 차량이 사용자(1706)에 도달할 수 있는 시간 및/또는 용이성, 자율 주행 차량이 교통 흐름에 최소한의 영향을 주면서 사용자에게로 운행할 수 있는 것, 자율 주행 차량이 운행 가능 표면의 검출된 이상을 고려하면서 사용자에게로 운행할 수 있는 것에 기초하여) 선택을 위한 특정 자율 주행 차량을 다른 것보다 우선순위화한다.
자율 주행 차량(1702a 내지 1702d)의 경로는 자율 주행 차량(1702a 내지 1702d) 자체에 의해 및/또는 컴퓨터 시스템(1700)에 의해 결정된다. 일부 실시예에서, 그러한 결정은 도 19에 도시된 바와 같은 매핑 모듈(1960)에 의해 이루어진다. 예를 들어, 일 실시예에서, 자율 주행 차량(1702a 내지 1702d)은 그의 현재 위치, 검출된 이상, 및 그의 목표 위치(예를 들면, 지정된 픽업 위치 및/또는 지정된 목적지 위치)에 기초하여 진행 경로를 결정한다. 일 실시예에서, 컴퓨터 시스템(1700)은 자율 주행 차량(1702a 내지 1702d)에 대한 진행 경로를 결정하고 결정된 경로를 (예를 들면, 커맨드 신호 또는 어떤 다른 데이터 송신에서) 자율 주행 차량(1702a 내지 1702d)에 송신한다. 일 실시예에서, 도 19에 도시된 바와 같은 이상 검출 모듈(1962)은 자율 주행 차량이 루트를 변경하는 원하는 운전 능력을 결정한다. 그렇게 할 때, 도 19에 도시된 바와 같은 매핑 모듈(1960)은 이상 검출 모듈(1962)로부터 그러한 원하는 운전 능력을 수신하고 이어서 새로 선택된 루트를 반영하기 위해 자율 주행 차량의 맵을 업데이트한다.
컴퓨터 시스템(1700)의 동작은 다양한 기술적 이점을 제공할 수 있다. 일 예로서, 일 실시예에서, 컴퓨터 시스템(1700)은 자율 주행 차량 플릿의 자동 동작을 용이하게 하여, 자율 주행 차량이 인간 개입 없이 자동화된 방식으로 요청을 이행할 수 있게 한다. 게다가, 일 실시예에서, 컴퓨터 시스템은 (예를 들면, 자율 주행 차량이 유휴인 시간을 감소시키는 것, 요청이 이행되는 속도를 증가시키는 것, 차량이 많은 수의 검출된 이상을 갖는 도로를 피하게 함으로써 차량의 마손을 감소시키는 것, 검출된 이상을 피하고 이상과 조우할 가능성이 더 적은 루트를 선택함으로써 승객의 안전성을 증가시키는 것, 및 검출된 이상에 대응하여 자율 주행 차량의 운전 기능을 조정함으로써 승객의 안전성을 증가시키는 것에 의해) 요청이 효율적이고 효과적인 방식으로 이행되도록 자율 주행 차량 플릿의 동작을 자동으로 제어한다
일 예로서, 도 18에 도시된 바와 같이, 2개의 자율 주행 차량(1702a 및 1702b)이 유사한 위치에(예를 들면, 픽업 위치 A에 근접하여) 위치하고 유사한 목적지 위치로(예를 들면, 지정된 위치 B로) 이동하도록 할당받았다. 도로 혼잡을 완화시키기 위해, 컴퓨터 시스템(1700)은 경로 P1을 따라 목적지 위치로 운행하라는 명령을 포함하는 제1 커맨드 신호(1800a)를 제1 자율 주행 차량(1702a)에 송신하고, 경로 P2를 따라 목적지 위치로 운행하라는 명령을 포함하는 제2 커맨드 신호(1800b)를 제2 자율 주행 차량(1702b)에 송신한다. 경로 P1과 경로 P2는 서로 상이하고, 적어도 약간 서로 상이한 도로를 활용한다. 그에 따라, 자율 주행 차량의 교통 흐름 및 루트 상태에 대한 영향이, 단일 루트에 집중되기보다는, 상이한 루트 간에 분산된다. 유사하게, 일 실시예에서, 경로 P1을 따라 검출된 이상의 유형 및/또는 수에 기초하여, 도 19에 도시된 바와 같은 매핑 모듈(1960) 및/또는 이상 검출 모듈(1962)은 경로 P2가 경로 P1보다 안전한 경로라고 결정한다. 예를 들어, 얼음이 경로 P1의 큰 섹션에서 검출되었지만 경로 P2에서는 검출되지 않았다. 검출된 이상에 기초하여, 자율 주행 차량(1702b)은 경로 P2를 따라 계속가도록 허용될 것이다. 검출된 이상에 기초하여, 자율 주행 차량(1702a)은 방향을 바꾸어 경로 P1 대신에 경로 P2를 취하도록 지시받을 것이다.
일부 실시예에서, 컴퓨터 시스템(1700)은 자율 주행 차량의 사용에 대한 미래 수요를 추정하고, 추정된 수요를 더 잘 충족시키기 위해 선제적으로 자율 주행 차량을 특정 위치로 보낸다. 예를 들어, 일 실시예에서, 컴퓨터 시스템(1700)은, 특정 위치와 연관된 사용자로부터 아직 요청을 수신하지 않았더라도, 자율 주행 차량을 해당 위치로 보낸다. 일부 실시예에서, 컴퓨터 시스템(1700)은 특정 위치에서 자율 주행 차량에 대한 상대적으로 더 높은 미래 수요를 추정하고, 상대적으로 더 낮은 현재 및/또는 추정된 미래 수요를 갖는 위치로부터 해당 위치로 자율 주행 차량을 보낸다. 유사하게, 일부 실시예에서, 컴퓨터 시스템(1700)은 운행 가능 표면의 미래 상태를 추정하고, 선제적으로 자율 주행 차량의 운전 기능을 조정한다. 예를 들어, 1년 중 이 시기 동안 도로에 얼음이 훨씬 더 많이 존재한다는 과거 데이터에 기초하여, 컴퓨터 시스템(1700)은 자율 주행 차량이 속력 제한에 따라 시속 5 마일로 속도를 줄이게 한다.
도 19는 이상 검출 시스템(1300)의 단순화된 블록 다이어그램이다. 이 실시예에서 도시된 바와 같이, 이상 검출 시스템(1300)은 브러시 시스템(1910), 센서 시스템(1920), 통신 시스템(1940), 계산 시스템(1950), 매핑 모듈(1960), 및 이상 검출 모듈(1962)을 포함한다. 다른 실시예에서, 이상 검출 시스템(1300)은 더 많은, 더 적은, 또는 상이한 시스템을 포함하고, 일부 실시예에서 각각의 시스템은 더 많은, 더 적은, 또는 상이한 컴포넌트를 포함한다.
브러시 시스템(1910)은 하나 이상의 센서와 결합되도록 그리고 이러한 센서가 운행 가능 표면에 관한 정보를 검출할 수 있게 하도록 구성된다. 일 실시예에서, 브러시 시스템(1910)은 하나 이상의 자율 주행 차량의 하부 구조에 장착된다. 도시된 바와 같이, 브러시 시스템(1910)은 하나 이상의 실드(1340), 하나 이상의 인장 디바이스(1350), 하나 이상의 액추에이터(1310), 하나 이상의 마운트(1360), 하나 이상의 브러시 헤드(1320), 및 강모(1330)를 포함한다. 다른 실시예에서, 브러시 시스템(1910)은 더 많은, 더 적은, 또한 상이한 컴포넌트를 포함할 수 있다.
하나 이상의 실드(1340) 각각은 각자의 하나 이상의 액추에이터(1310)를 운행 가능 표면 상에 존재할 수 있는 잔해물 또는 다른 대상체와 접촉하는 것으로부터 보호하도록 그리고 잔해물을 하나 이상의 브러시 헤드(1320) 및 강모(1330) 아래로 안내하도록 구성된다. 하나 이상의 실드(1340) 각각은 하나 이상의 액추에이터(1310)의 각자의 액추에이터에 결합된다. 일 실시예에서, 하나 이상의 실드(1340)는 또한 하나 이상의 브러시 헤드(1320)를 운행 가능 표면에 존재할 수 있는 잔해물 또는 다른 대상체와 접촉하는 것으로부터 보호하도록 구성된다. 일 실시예에서, 하나 이상의 실드(1340) 각각은 고체 재료로 형성된다. 일 실시예에서, 하나 이상의 실드(1340)는 플라스틱으로 제조된다. 일 실시예에서, 하나 이상의 실드(1340)는 금속으로 제조된다.
하나 이상의 인장 디바이스(1350)는 일반적으로 하나 이상의 스토퍼(1362)를 향하는 방향으로 하나 이상의 액추에이터(1310)에 장력을 제공하도록 구성된다. 일 실시예에서, 하나 이상의 인장 디바이스는 하나 이상의 액추에이터(1310) 및 하나 이상의 마운트(1360)에 결합된다. 일 실시예에서, 하나 이상의 인장 디바이스(1350)는 스프링이다. 일 실시예에서, 하나 이상의 인장 디바이스(1350)는 천연 고무 또는 합성 고무를 포함하지만 이에 제한되지 않는 엘라스토머로 제조된 밴드이다. 일 실시예에서, 하나 이상의 인장 디바이스(1350)는 천연 고무 또는 합성 고무를 포함하지만 이에 제한되지 않는 엘라스토머로 제조된 튜브이다. 일 실시예에서, 하나 이상의 스트레인/압력 센서(1928) 중 하나 이상의 스트레인/압력 센서는 하나 이상의 인장 디바이스(1350)와 하나 이상의 액추에이터(1310) 사이에 장착된다. 일 실시예에서, 하나 이상의 스트레인/압력 센서(1928) 중 하나 이상의 스트레인/압력 센서는 하나 이상의 인장 디바이스(1350)와 하나 이상의 마운트(1360) 사이에 장착된다.
하나 이상의 액추에이터(1310) 각각은 하나 이상의 브러시 헤드(1320)의 각자의 브러시 헤드를 하강 및 상승시키도록 그리고 강모(1330)를 운행 가능 표면과 접촉시키도록 구성된다. 하나 이상의 액추에이터(1310)는 하나 이상의 브러시 헤드(1320)에 연결된다. 하나 이상의 액추에이터(1310)는 하나 이상의 피벗(1366)을 통해 하나 이상의 마운트(1360)에 결합된다. 일 실시예에서, 하나 이상의 액추에이터(1310)는 유압 실린더이다. 일 실시예에서, 하나 이상의 액추에이터(1310)는 공압 액추에이터이다. 일 실시예에서, 하나 이상의 액추에이터(1310)는 전기 기계식 액추에이터이다. 일 실시예에서, 하나 이상의 회전 위치 센서(1930)는 하나 이상의 액추에이터(1310)가 하나 이상의 마운트(1360)에 결합되는 하나 이상의 피벗에 장착된다.
하나 이상의 마운트(1360)는 브러시 시스템(1910)을 자율 주행 차량에 연결시키도록 구성된다. 하나 이상의 마운트(1360)는 일단 하나 이상의 액추에이터(1310)가 하나 이상의 스토퍼(1362)와 접촉하면 하나 이상의 액추에이터(1310)가 시계 방향으로 이동하는 것을 방지하도록 구성된 하나 이상의 스토퍼(1362)를 포함한다. 하나 이상의 마운트(1360)는 피벗(1366)을 통해 하나 이상의 액추에이터(1310)에 결합된다. 일 실시예에서, 하나 이상의 마운트(1360)는 피벗(1368)을 통해 하나 이상의 인장 디바이스(1350)에 결합된다. 일 실시예에서, 하나 이상의 마운트(1360) 중 하나는 센서 유닛(1370)을 수용한다.
하나 이상의 브러시 헤드(1320)는 강모(1330) 및 하나 이상의 스트레인/압력 센서(1928) 중 하나 이상의 스트레인/압력 센서를 유지하도록 구성된다. 하나 이상의 브러시 헤드(1320)는 하나 이상의 액추에이터(1310)의 하부 단부에 연결된다. 하나 이상의 스트레인/압력 센서(1928) 중 하나 이상의 스트레인/압력 센서는 하나 이상의 브러시 헤드(1320)와 강모(1330) 사이에 유지된다. 일 실시예에서, 하나 이상의 브러시 헤드(1320)는 접착제를 통해 강모(1330)를 유지한다. 일 실시예에서, 하나 이상의 브러시 헤드(1320)는 기계적 연결을 통해 강모(1330)를 유지한다.
강모(1330)는 운행 가능 표면과 접촉하고, 하나 이상의 온도 센서(1934)를 유지 또는 수용하며, 하나 이상의 수분 센서(1932)를 유지 또는 수용하도록 구성된다. 강모(1330)의 각각의 강모의 한쪽 단부는 하나 이상의 브러시 헤드(1320)에 연결된다. 일 실시예에서, 강모(1330)의 각각의 강모는 온도 센서 및/또는 수분 센서에서 끝난다. 일 실시예에서, 강모(1330) 중 전부보다 적은 강모가 온도 센서 및/또는 수분 센서에서 끝난다. 일 실시예에서, 강모(1330) 중 적어도 일부는 합성 재료로 형성된다. 일 실시예에서, 하나 이상의 온도 및/또는 수분 센서에서 끝나는 강모(1330) 중 하나 이상의 강모는 하나 이상의 와이어가 강모를 통해 지나가서 하나 이상의 센서에 연결될 수 있게 하기 위해 중공형이다. 일 실시예에서, 하나 이상의 온도 및/또는 수분 센서에서 끝나는 강모(1330) 중 하나 이상의 강모는 절연된 와이어로 형성된다.
센서 시스템(1920)은 자율 주행 차량이 진행하는 운행 가능 표면에 관한 정보를 감지하도록 구성된 다수의 센서를 포함한다. 도시된 바와 같이, 센서 시스템(1920)은 센서 유닛(1370), 하나 이상의 스트레인/압력 센서(1928), 하나 이상의 회전 위치 센서(1930), 하나 이상의 수분 센서(1932), 및 하나 이상의 온도 센서(1934)를 포함한다. 다른 실시예에서, 센서 시스템(1920)은 더 많은, 더 적은, 또는 상이한 컴포넌트를 포함한다.
센서 유닛(1370)은 자율 주행 차량의 위치를 결정하고, 자율 주행 차량의 선가속도를 결정하며, 자율 주행 차량의 각도를 결정하도록 구성된 다수의 센서를 포함한다. 센서 유닛(1370)은 GPS(global positioning system)(1922), 가속도계(1924), 및 자이로스코프를 포함한다. 일 실시예에서, 센서 유닛은 자율 주행 차량의 각속도를 결정하도록 구성된 하나 이상의 센서를 또한 포함한다. 일 실시예에서, 센서 유닛(1370)은 브러시 시스템(1910)의 하나 이상의 마운트(1360) 중 하나에 수용된다.
GPS(1922)는 지구에 대한 자율 주행 차량의 추정된 위치를 검출하도록 구성된다. 일 실시예에서, GPS(1922)는 자율 주행 차량의 속력을 검출하도록 구성된다. 일 실시예에서, GPS(1922)는 자율 주행 차량의 진행 방향을 검출하도록 구성된다. 일 실시예에서, GPS(1922)는 자율 주행 차량의 시간 정보를 검출하도록 구성된다. 일 실시예에서, GPS(1922)는 도 1 및 도 4에 도시된 바와 같은 센서(121) 중 하나이다.
가속도계(1924) 및 자이로스코프(1926)는 자율 주행 차량의 선가속도 및 자율 주행 차량의 각도를 결정하도록 구성된다. 일 실시예에서, 가속도계(1924) 및 자이로스코프(1926)는 자율 주행 차량의 각속도를 결정하도록 구성된다. 일 실시예에서, 가속도계(1924) 및 자이로스코프(1926)는 또한 자율 주행 차량의 배향 변화를 결정하도록 구성된다. 일 실시예에서, 가속도계(1924) 및 자이로스코프(1926)는 관성 측정 유닛(IMU)을 형성한다. 일 실시예에서, 자이로스코프(1926) 및/또는 가속도계(1924)는 도 1 및 도 4에 도시된 바와 같은 센서(121) 중 하나이다.
하나 이상의 스트레인/압력 센서(1928)는 이상 검출 시스템(1300) 및/또는 자율 주행 차량의 일부에 가해지는 압력, 힘 및/또는 장력을 검출하도록 구성된다. 하나 이상의 스트레인/압력 센서(1928)는 자율 주행 차량 및/또는 이상 검출 시스템(1300)의 일부가 운행 가능 표면과 접촉하는 것으로 인한 압력, 힘 및/또는 장력을 감지하도록 배치된다. 일 실시예에서, 하나 이상의 스트레인/압력 센서(1928) 중 하나 이상은 스트레인 게이지이다. 일 실시예에서, 하나 이상의 스트레인/압력 센서(1928) 중 하나 이상은 압전 저항기이다. 일 실시예에서, 하나 이상의 스트레인/압력 센서(1928) 중 하나는 브러시 헤드(1320)와 강모(1330) 사이에 배치된다. 그러한 것이 강모 스트레인/압력 센서(1322)를 갖는 도 13에 도시된 실시예에 도시되어 있다. 일 실시예에서, 하나 이상의 스트레인/압력 센서(1928)는 자율 주행 차량의 서스펜션에 결합된 스트레인/압력 센서를 포함한다. 그러한 것이 스트레인/압력 센서(1414 및 1418)를 갖는 도 14에 도시되어 있다. 그러한 것이 또한 스트레인/압력 센서(1514 및 1518)를 갖는 도 15에 도시되어 있다. 그러한 것이 또한 스트레인/압력 센서(1602 및 1604)를 갖는 도 16a에 도시되어 있다. 그러한 것이 또한 스트레인/압력 센서(1606 및 1608)를 갖는 도 16b에 도시되어 있다.
하나 이상의 회전 위치 센서(1930)는 하나 이상의 스토퍼(1362)에 대한 하나 이상의 액추에이터(1310)의 각도 및/또는 각도 변화를 검출하도록 구성된다. 하나 이상의 회전 위치 센서(1930)의 적어도 일부는 하나 이상의 액추에이터(1310)가 하나 이상의 마운트(1360)에 결합되는 하나 이상의 피벗에 배치된다. 일 실시예에서, 하나 이상의 회전 위치 센서(1930) 중 하나 이상은, 광학 회전 인코더 또는 자기 회전 인코더와 같은, 회전 인코더이다. 일 실시예에서, 하나 이상의 회전 위치 센서(1930) 중 하나 이상은 홀 효과 회전 센서이다. 일 실시예에서, 하나 이상의 회전 위치 센서(1930) 중 하나 이상은 전위차계이다.
하나 이상의 수분 센서(1932)는 운행 가능 표면 상에 또는 그 근처에 수분이 있는지를 검출하도록 구성된다. 하나 이상의 온도 센서(1934)는 운행 가능 표면의 온도, 운행 가능 표면 근처의 온도, 운행 가능 표면의 온도 변화, 및/또는 운행 가능 표면 근처의 온도 변화를 검출하도록 구성된다. 일 실시예에서, 하나 이상의 수분 센서(1932) 및 하나 이상의 온도 센서(1934)는 습도 센서의 형태로 조합된다. 일 실시예에서, 하나 이상의 수분 센서(1932)는 도 13에 도시된 바와 같은 강모 센서(1332)의 적어도 일부를 구성한다. 일 실시예에서, 하나 이상의 온도 센서(1934)는 도 13에 도시된 바와 같은 강모 센서(1332)의 적어도 일부를 구성한다.
통신 시스템(1940)은 이상 검출 시스템(1300)을 하나 이상의 다른 자율 주행 차량, 이상 검출 시스템(1300) 외부의 하나 이상의 센서, 및/또는 중앙집중식 컴퓨터 시스템에 무선으로 결합시키도록 구성된다. 통신 시스템(1940)이 이상 검출 시스템(1300)을 하나 이상의 다른 자율 주행 차량 및/또는 이상 검출 시스템(1300) 외부의 하나 이상의 센서에 무선으로 결합시키도록 구성되는 경우, 그러한 통신은 V2V(Vehicle-to-Vehicle), V2I(Vehicle-to-Infrastructure), 포인트-투-포인트 네트워크, 및/또는 애드혹 네트워크를 통해 이루어질 수 있다. 일 실시예에서, 통신은 전자기 스펙트럼(라디오 및 광학 통신을 포함함) 또는 다른 매체(예를 들면, 공기 및 음향 매체)를 통해 이루어진다. 통신 시스템(1940)이 이상 검출 시스템(1300)을 중앙집중식 컴퓨터 시스템에 무선으로 결합시키도록 구성되는 경우, 통신은 네트워크를 통해 이루어질 수 있다. 네트워크를 통해 교환되는 정보는 IP(Internet Protocol), MPLS(Multiprotocol Label Switching), ATM(Asynchronous Transfer Mode), 및 프레임 릴레이 등과 같은 임의의 수의 네트워크 계층 프로토콜을 사용하여 전송된다. 게다가, 네트워크가 다수의 서브 네트워크의 조합을 나타내는 실시예에서, 상이한 네트워크 계층 프로토콜은 기저 서브 네트워크(underlying sub-network) 각각에서 사용된다. 일부 실시예에서, 네트워크는, 공중 인터넷과 같은, 하나 이상의 상호연결된 인터네트워크를 나타낸다. 일 실시예에서, 중앙집중식 컴퓨터 시스템은 도 2에 기술된 바와 같은 클라우드 컴퓨팅 환경(200)과 같은 클라우드 컴퓨팅 환경에 임베딩된다. 일 실시예에서, 통신 시스템(1940)은 통신 인터페이스를 포함한다. 예를 들어, 무선, WiMAX, Wi-Fi, 블루투스, 위성, 셀룰러, 광학, 근거리, 적외선, 또는 라디오 인터페이스. 도시된 바와 같이, 통신 시스템(1940)은 수신기(1942) 및 송신기(1944)를 포함한다. 다른 실시예에서, 통신 시스템(1940)은 더 많은, 더 적은, 또는 상이한 컴포넌트를 포함한다.
수신기(1942)는 하나 이상의 다른 자율 주행 차량, 이상 검출 시스템(1300) 외부의 하나 이상의 센서(예를 들면, 휠 슬립률을 측정 또는 추정하기 위한 휠 속력 센서), 및/또는 중앙집중식 컴퓨터 시스템으로부터 정보를 수신하고 그러한 정보를 계산 시스템(1950)에 제공하도록 구성된다. 일 실시예에서, 수신기(1942)는 레이저 또는 라디오 주파수 파 수신기이다. 일 실시예에서, 수신기(1942)는 다른 차량의 상태 및 조건, 예컨대, 위치, 선속도와 각속도, 선가속도와 각가속도, 및 선형 헤딩과 각도 헤딩의 측정된 또는 추론된 속성을 수신한다. 일 실시예에서, 수신기(1942)는 다른 자율 주행 차량 및/또는 중앙집중식 컴퓨터 시스템으로부터 검출된 도로 이상에 관한 정보를 수신한다. 그러한 정보는 검출된 도로 이상의 유형, 검출 시간, 및 검출 위치를 포함할 수 있다. 일 실시예에서, 수신기(1942)는 자율 주행 차량에 의해 이용 가능한 현재 매핑 정보와 비교할 때 추가적인, 더 적은, 또는 상이한 도로 이상을 포함하지만 이에 제한되지 않는, 업데이트된 매핑 정보를 수신한다. 그러한 업데이트된 매핑 정보는 하나 이상의 다른 차량 및/또는 중앙집중식 컴퓨터 시스템에 의해 제공된다. 일 실시예에서, 수신기(1942)는 도 1 및 도 4에 도시된 바와 같은 센서(121)로부터 정보를 수신한다. 수신기(1942)는 다양한 실시예에서 네트워크를 통해 그러한 정보를 수신한다. 일 실시예에서, 수신기(1942)는 도 1에 도시된 바와 같은 통신 디바이스(140) 중 하나이다.
송신기(1944)는 계산 시스템(1950)에 따라 이상 검출 시스템(1300)으로부터의 정보를 (예를 들면, 도 4에 도시된 바와 같은) 제어 모듈(406), 하나 이상의 다른 자율 주행 차량, 및/또는 중앙집중식 컴퓨터 시스템에 송신하도록 구성된다. 일 실시예에서, 송신기(1944)는 레이저 또는 라디오 주파수 파 송신기이다. 일 실시예에서, 송신기(1944)는 이상 검출 시스템(1300)의 하나 이상의 센서 출력을 (예를 들면, 도 4에 도시된 바와 같은) 제어 모듈(406), 하나 이상의 다른 자율 주행 차량, 및/또는 중앙집중식 컴퓨터 시스템에 송신한다. 일 실시예에서, 송신기(1944)는 이상 검출 모듈(1962)의 출력(들)을 (예를 들면, 도 4에 도시된 바와 같은) 제어 모듈(406), 하나 이상의 다른 자율 주행 차량, 및/또는 중앙집중식 컴퓨터 시스템에 송신한다. 일 실시예에서, 송신기(1944)는 매핑 모듈(1960)의 출력(들)을 (예를 들면, 도 4에 도시된 바와 같은) 제어 모듈(406), 하나 이상의 다른 자율 주행 차량, 및/또는 중앙집중식 컴퓨터 시스템에 송신한다. 일 실시예에서, 송신기(1944)는 다양한 실시예에서 네트워크를 통해 그러한 정보를 제공한다. 일 실시예에서, 송신기(1944)는 도 1에 도시된 바와 같은 통신 디바이스(140) 중 하나이다.
계산 시스템(1950)은 브러시 시스템(1910), 센서 시스템(1920), 및 통신 시스템(1940) 중 하나 이상으로 데이터를 송신하고, 그로부터 데이터를 수신하며, 그와 상호작용하고, 그리고/또는 그를 제어하도록 구성된다. 도시된 바와 같이, 계산 시스템(1950)은 프로세서(1952) 및 데이터 스토리지(1954)를 포함한다. 데이터 스토리지(1954)는 명령(1956)을 저장하도록 구성된다. 일 실시예에서, 계산 시스템은 도 3에 도시된 바와 같은 컴퓨터 시스템(300)이다. 그러한 실시예에서, 프로세서(1952)는 도 3에 도시된 바와 같은 프로세서(304)이다. 그러한 실시예에서, 데이터 스토리지(1954)는 메인 메모리(306), ROM(308), 및/또는 저장 디바이스(310)로 구성된다. 다른 실시예에서, 계산 시스템(1950)은 더 많은, 더 적은, 또한 상이한 컴포넌트를 포함할 수 있다.
매핑 모듈(1960)은 다른 차량으로부터 운행 가능 표면의 검출된 이상 및 양상을 입력으로서 수신하도록 구성되고, 그러한 정보를 자율 주행 차량의 맵과 연관시켜 해당 정보를 이상 검출 모듈(1962)에 출력하도록 구성된다. 매핑 모듈(1960)은 또한 이상 검출 모듈(1962)에 의해 결정되는 운행 가능 표면의 검출된 이상 및 양상을 입력하도록 구성되고, 해당 정보를 다른 차량 및/또는 중앙집중식 컴퓨터 시스템에 출력하도록 구성된다. 운행 가능 표면의 양상은, 예를 들어, 운행 가능 표면의 섹션을 이루고 있는 재료, 이상적인 조건에서의 운행 가능 표면의 섹션의 예상된 마찰 값, 젖은 조건에서의 운행 가능 표면의 섹션의 예상된 마찰 값, 결빙되고 및/또는 눈으로 덮여 있는 조건에서의 운행 가능 표면의 섹션의 예상된 마찰 값 등을 포함한다. 일 실시예에서, 매핑 모듈(1960)은 자율 주행 차량에서 계산 시스템(1950)에 의해 수행되고 계산 시스템(1950)에 의해 통신 시스템(1940)을 통해 다른 차량 및/또는 중앙집중식 컴퓨터 시스템에 정보를 출력한다. 다른 실시예에서, 매핑 모듈은 통신 시스템(1940)을 통해 자율 주행 차량과 통신하는 중앙집중식 컴퓨터 시스템에서 수행된다.
매핑 모듈(1960)은 이상 검출 모듈(1962) 및/또는 다른 자율 주행 차량으로부터 결정된 운행 가능 표면의 검출된 이상 및 양상을 자율 주행 차량의 맵 상에 배치할 수 있다. 적어도 이상 검출 모듈(1962) 및/또는 다른 자율 주행 차량으로부터 검출된 이상은 그와 연관된 특정 시간, 위치 및 유형을 가질 것이다. 일 실시예에서, 운행 가능 표면의 양상은 그와 연관된 위치 및 유형을 가질 것이지만, 그와 연관된 시간을 가질 필요는 없다. 검출된 이상의 특정 위치는 그 검출된 이상을 맵 상에 배치하는 데 도움을 줄 것이다. 예를 들어, 검출된 도로 이상에 관한 수신된 정보에 기초하여, 매핑 모듈(1960)은 1 마일 내에 자율 주행 차량이 진행하고 있는 운행 가능 표면의 우측 차선에 포트홀이 있고 운행 가능 표면이 다음 10 마일에 대해 젖어 있어 예상보다 낮은 마찰 값을 갖는다고 결정한다. 특정 시간이 검출된 이상을 얼마나 가중/신뢰할 것인지를 결정할 때 및/또는 이전에 검출된 이상을 소거할지, 숨길지, 또는 출력하지 않기로 선택할지를 결정할 때 매핑 모듈(1960)에 의해 사용된다. 일 실시예에서, 운행 가능 표면의 양상의 특정 위치가 운행 가능 표면의 어떤 섹션이 해당 양상을 갖는지를 결정하고 이어서 해당 양상을 맵 상의 운행 가능 표면의 해당 섹션과 연관시키기 위해 매핑 모듈(1960)에 의해 사용된다. 예를 들어, 운행 가능 표면에 관한 수신된 양상 정보에 기초하여, 매핑 모듈(1960)은 자율 주행 차량이 진행하고 있는 도로의 다음 2 마일 섹션이 아스팔트로 이루어져 있고 이상적인 조건에서 0.9의 정지 마찰 값을 갖는다고 결정한다.
이전에 검출된 이상(은 물론 운행 가능 표면의 양상과 같은 다른 정보)을 소거하거나, 숨기거나 또는 출력하지 않기로 선택할지를 결정할 때, 매핑 모듈(1960)은 정보가 검출된 이후 경과한 시간의 양을 조사할 것이다. 검출된 이상 또는 다른 정보가 특정 노후 정도(age)(예를 들면, 1 시간, 2 시간, 6 시간, 1 일, 1 주일, 1 개월, 1 년 등)에 도달한 후에, 검출된 이상 또는 다른 정보가 매핑 모듈(1960)에 의해 소거되거나, 숨겨지거나, 또는 결코 출력되지 않을 것이다. 그러한 액션 또는 무액션(inaction)을 트리거하는 데 필요한 노후 정도는 정보의 유형/이상의 유형에 의존할 수 있다. 예를 들어, 포트홀이 보수되기 전에 도로가 건조하게 될 것이라고 가정하는 것이 합리적이기 때문에 운행 가능 표면 상의 수분의 검출은 말하자면 포트홀의 검출보다 적은 양의 시간 내에 소거되거나 숨겨질 수 있다. 일 실시예에서, 운행 가능 표면을 이루고 있는 재료 또는 이상적인 조건에서의 그의 예상된 마찰 값과 같은, 운행 가능 표면의 양상은 결코 숨겨지거나 소거되어서는 안된다. 일 실시예에서, 운행 가능 표면의 양상은 상당한 시간 기간(예를 들면, 1 년 등) 이후에만 숨겨지거나 소거되어야 한다. 일 실시예에서, 운행 가능 표면의 양상은 차량 각각으로부터의 운행 가능 표면의 계산된 양상을 평균함으로써 결정된다.
이상 검출 모듈(1962)은 이상 검출 시스템(1300)의 다수의 센서의 출력을 입력으로서 수신하고, 이상 검출 시스템(1300) 외부의 하나 이상의 센서(예를 들면, 휠 슬립률을 측정 또는 추정하기 위한 휠 속력 센서)의 출력을 입력으로서 수신하며, 매핑 모듈(1960)로부터 출력된 정보를 입력으로서 수신하도록 구성된다. 이상 검출 모듈(1962)은 또한 자율 주행 차량이 진행하고 있는 운행 가능 표면의 하나 이상의 이상을 출력으로서 결정하고 원하는 운전 능력을 출력으로서 결정하도록 구성된다. 운행 가능 표면의 결정된 하나 이상의 이상은 매핑 모듈(1960)에 전송된다. 이상 검출 모듈(1962)의 결정된 원하는 운전 능력은 자율 주행 차량의 (예를 들면, 도 4에 도시된 바와 같은) 제어 모듈(406)에 전송된다. 일 실시예에서, 이상 검출 모듈(1962)은 자율 주행 차량에서 계산 시스템(1950)에 의해 수행된다. 다른 실시예에서, 이상 검출 모듈은 통신 시스템(1940)을 통해 자율 주행 차량과 통신하는 중앙집중식 컴퓨터 시스템에서 수행된다.
다양한 센서의 출력에 기초하여, 이상 검출 모듈(1962)은 자율 주행 차량이 진행하고 있는 운행 가능 표면의 하나 이상의 이상을 결정한다. 이러한 이상은, 예를 들어, 운행 가능 표면의 예상보다 낮은 마찰 값, 운행 가능 표면 상의 또는 그 근처의 물 또는 수분, 운행 가능 표면 상의 눈 또는 얼음, 포트홀, 럼블 스트립, 도로에 있는 장애물 등을 포함한다. 일 실시예에서, 운행 가능 표면의 하나 이상의 이상을 결정할 때, 이상 검출 모듈(1962)은 또한 운행 가능 표면의 하나 이상의 양상을 결정한다. 이러한 양상은, 예를 들어, 운행 가능 표면을 이루고 있는 재료의 유형, 운행 가능 표면의 슬립률, 운행 가능 표면의 마찰 값 등을 포함할 수 있다. 일 실시예에서, 운행 가능 표면을 이루고 있는 재료의 유형 또는 다양한 조건에서의 운행 가능 표면의 예상된 마찰 값과 같은, 운행 가능 표면의 특정 양상은 이미 알려져 있으며 운행 가능 표면의 특정 섹션과 연관된다. 이상적인 조건, 젖은 조건, 결빙 조건 및/또는 눈으로 덮여 있는 조건에 대한 운행 가능 표면의 특정 섹션의 예상된 마찰을 결정하기 위해 재료의 유형의 결정 또는 조회가 사용될 수 있다. 일 실시예에서, 알려진 양상 정보는 원격 데이터베이스에 또는 자율 주행 차량의 데이터 스토리지(1954)에 저장된다. 알려진 양상 정보는 자율 주행 차량 및/또는 다른 차량의 이전 계산을 통해 생성된다. 일 실시예에서, 알려진 양상 정보는 운행 가능 표면의 알려진 재료에 기초하여 추정되고 운행 가능 표면의 조건과 연관된다. 예를 들어, 원격 데이터베이스 및/또는 데이터 스토리지(1954)는 운행 가능 표면의 재료가 아스팔트인 경우, 운행 가능 표면이 건조할 때는 예상된 정지 마찰 값이 0.9이고, 운행 가능 표면이 젖었을 때는 0.5이며, 운행 가능 표면이 결빙되거나 눈으로 덮여 있을 때는 0.25라는 것을 나타내는 테이블을 저장할 수 있다. 일 실시예에서, 다양한 운행 가능 표면 재료에 대한 운동 마찰 값의 저장된 테이블이 또한 있다.
자율 주행 차량이 진행하고 있는 운행 가능 표면의 하나 이상의 이상을 결정할 때, 이상 검출 모듈(1962)은 머신 러닝 알고리즘을 사용한다. 그러한 알고리즘은, 예를 들어, 나이브 베이즈, 서포트 벡터 머신, 및/또는 신경 네트워크와 같은, 분류 유형 지도 학습 알고리즘을 포함하지만 이에 제한되지는 않는다. (베이즈 정리에 기초한) 나이브 베이즈로부터 생성된 예측 모델은 계산적으로 효율적이며, 각각의 어트리뷰트/입력이 최종 결정(예를 들면, 분류)에 똑같이 그리고 다른 어트리뷰트/입력과 독립적으로 기여할 수 있게 한다. 서포트 벡터 머신으로부터 생성된 예측 모델은 더 많은 계산을 요구하며, 새로운 예를 카테고리화하는 최적의 초평면(hyperplane) - 2차원 공간에서, 이 초평면은 평면을 두 부분으로 나누는 라인임 -을 출력한다. 예를 들어, 트레이닝 예제 세트가 주어지면, 이 모델은, 제1 분류는 분할의 한쪽에 있고 제2 분류는 분할의 다른 쪽에 있도록, 트레이닝된 예제를 플로팅(plot)한 다음에 이를 분리시킨다. 이어서, 새로운 예가 동일한 공간에 매핑되고 그 예가 분할의 어느쪽에 속하는지에 따라 분류된다. 신경 네트워크로부터 생성된 예측 모델은 입력(예를 들면, 센서 출력)과 출력(예를 들면, 분류) 사이의 복잡한 관계의 표현을 가능하게 한다. 신경 네트워크는 입력에 함수를 적용한 다음 결과적인 출력을 다음 계층에 전달함으로써 입력 벡터를 어떤 출력으로 변환하는 여러 계층으로 배열된 유닛으로 구성된다. 그러한 알고리즘은, 예를 들어, 과거 및/또는 실시간 데이터에 의존한다. 과거 데이터는, 예를 들어, 자율 주행 차량 또는 다른 차량의 센서의 이전 출력, 이상 검출 모듈(1962) 또는, 일부 실시예에서, 다른 차량의 이상 검출 모듈의 이전 출력 등을 포함한다. 실시간 데이터는, 예를 들어, 차량의 속력, 센서의 현재 출력, 차량의 배향 등을 포함한다. 일 실시예에서, 예측 모델은 실시간 데이터를 과거 데이터와 비교하여 이상을 검출한다.
실시예에서, 운행 가능 표면의 마찰을 결정할 때, 이상 검출 모듈(1962)은 하나 이상의 스트레인/압력 센서(1928), 하나 이상의 회전 위치 센서(1930), GPS(1922), 가속도계(1924), 및/또는 자이로스코프(1926)로부터의 출력을 입력한다. 일 실시예에서, 이상 검출 모듈(1962)은 또한 운행 가능 표면의 마찰 값을 결정하는 것을 돕고 그리고/또는 운행 가능 표면의 계산된 마찰 값을 검증하기 위해 결정된 슬립률을 입력한다. 일 실시예에서, 이상 검출 모듈(1962)은 또한 운행 가능 표면의 마찰 값을 결정하고 그리고/또는 운행 가능 표면의 계산된 마찰 값을 검증하기 위해 하나 이상의 온도 센서(1934) 및 수분 센서(1932)의 출력을 입력한다. 일 실시예에서, 이상 검출 모듈(1962)은 또한 운행 가능 표면의 이전에 결정된 마찰 값에 관한 매핑 모듈(1960)로부터의 정보를 입력한다. 그러한 마찰 값은 자율 주행 차량이 현재 진행하고 있는 운행 가능 표면의 섹션에서 이전에 진행했던 다른 차량에 의해 결정된 마찰 값을 포함할 수 있다. 일 실시예에서, 그러한 마찰 값의 입력은 시간상 가까운(예를 들면, 1 시간, 30 분, 15 분 등) 계산된 해당 마찰 값으로 제한된다. 어느 값이 시간상 가까운지의 결정은 매핑 모듈(1960)에 의해 처리될 수 있다. 그러한 실시예에서, 매핑 모듈(1960)은 운행 가능 표면의 현재 마찰 값의 결정을 위해 시간상 가까운 운행 가능 표면의 검출된 마찰 값만을 이상 검출 모듈(1962)에 제공할 것이다. 이상 검출 모듈(1962)은 결정된 마찰 값, 해당 마찰 값이 결정된 위치, 및 마찰 값이 결정된 시간을 매핑 모듈(1960)에 출력한다.
일 실시예에서, 운행 가능 표면의 슬립률을 결정할 때, 이상 검출 모듈(1962)은 휠 슬립률을 측정하거나 추정하기 위한 임의의 휠 속력 센서 및 GPS(1922)로부터의 출력을 입력한다. 그러한 추정된 휠 슬립률은 운행 가능 표면의 현재 마찰 및/또는 운행 가능 표면의 예상된 마찰을 결정하는 데 사용될 수 있다. 휠 슬립률에 기초하여, 이상 검출 모듈(1962)은 원하는 운전 능력을 결정한다. 일 실시예에서, 슬립이 존재할 때, 원하는 운전 능력은 차량의 속력을 낮추기로 하는 결정을 포함한다. 일 실시예에서, 슬립이 존재할 때, 원하는 운전 능력은 스로틀을 해제하기로 하는 결정을 포함한다. 일 실시예에서, 슬립이 존재할 때, 원하는 운전 능력은 (예를 들면, 도 1에 도시된 바와 같이) 브레이크(103)를 관여시키기로 하는 결정을 포함한다. 일 실시예에서, 슬립이 존재할 때, 원하는 운전 능력은 자율 주행 차량의 ABS(anti-lock braking system)를 적용하기로 하는 결정을 포함한다.
일 실시예에서, 운행 가능 표면의 예상된 마찰 값을 결정할 때, 이상 검출 모듈은 휠 슬립률을 측정하거나 추정하기 위한 임의의 휠 속력 센서로부터의 출력, 하나 이상의 온도 센서(1934) 및 수분 센서(1932)의 출력, GPS(1922)의 출력, 운행 가능 표면의 이전에 결정된 양상 정보에 관한 매핑 모듈(1960)로부터의 정보, 및/또는 이미 알려진 양상 정보에 관한 원격 데이터베이스 또는 데이터 스토리지(1954)로부터의 정보를 입력한다. 그러한 양상 정보는, 예를 들어, 다양한 조건에서 자율 주행 차량이 진행하고 있는 운행 가능 표면의 특정 섹션의 예상된 마찰 값을 포함할 것이다. 일 실시예에서, 슬립이 검출되면, 이상 검출 모듈(1962)은 예상된 마찰 값을 결정하기 위해 운동 마찰 값을 참조할 것이다. 예를 들어, 슬립이 검출되면, 이상 검출 모듈(1962)은 자율 주행 차량이 진행하고 있는 운행 가능 표면의 현재 섹션을 이루고 있는 재료의 유형에 대해 저장된 운동 마찰 테이블을 참조한다. 그러한 실시예에서, 슬립이 검출되지 않으면, 이상 검출 모듈(1962)은 예상된 마찰 값을 결정하기 위해 정지 마찰 값을 참조할 것이다. 예를 들어, 슬립이 검출되지 않으면, 이상 검출 모듈(1962)은 자율 주행 차량이 진행하고 있는 운행 가능 표면의 현재 섹션을 이루고 있는 재료의 유형에 대해 저장된 정지 마찰 테이블을 참조한다. 일 실시예에서, 이상 검출 모듈(1962)은 자율 주행 차량이 진행하고 있는 운행 가능 표면의 현재 섹션을 이루고 있는 재료의 유형에 대해 검출된 슬립률의 테이블 및/또는 그래프를 참조할 것이다.
일 실시예에서, 일단 테이블 및/또는 그래프가 결정되면, 이상 검출 모듈은 도로의 현재 상태를 결정하고 현재 상태에 기초하여 테이블 및/또는 그래프로부터 예상된 마찰 값을 조회하기 위해 하나 이상의 온도 센서(1934) 및 수분 센서(1932)를 사용한다. 예를 들어, 하나 이상의 수분 센서(1932)가 수분을 검출하고 하나 이상의 온도 센서(1934)가 온도가 영상(above freezing)임을 검출하면, 이상 검출 모듈(1962)은 자율 주행 차량이 진행하고 있는 운행 가능 표면의 현재 섹션을 이루고 있는 재료의 유형에 대해 젖은 조건에 대한 예상된 마찰 값을 참조한다. 그러한 조건이 매핑 모듈(1960)에 출력된다. 그러한 조건은, 도로 상에서 얼음이 검출되면 차량의 속력을 낮추기로 하는 결정과 같은, 원하는 운전 능력을 결정하기 위해 이상 검출 모듈(1962)을 트리거할 수 있다. 일 실시예에서, 이상 검출 모듈(1962)은 예상된 마찰 값을 결정하기 위해 이전에 결정된 조건을 사용할 것이다. 예를 들어, 다른 차량이 10분 전에 전방의 운행 가능 표면에 수분이 있다고 결정한 경우, 이상 검출 모듈(1962)은 수분이 검출된 운행 가능 표면의 섹션을 이루고 있는 재료의 유형에 대해 젖은 조건에 대한 예상된 마찰 값을 참조할 수 있다. 일 실시예에서, 예상된 정지 마찰 값만이 결정된다. 그러한 실시예에서, 비록 휠 속력 센서에 의한 슬립의 검출이 원하는 운전 능력을 결정하기 위해 이상 검출 모듈(1962)에 의해 사용될 수 있지만, 예상된 마찰 값을 결정하는 데 휠 속력 센서를 사용할 필요는 없다.
일 실시예에서, 검출된 마찰 값이 자율 주행 차량이 진행하고 있는 운행 가능 표면의 예상된 마찰 값보다 낮은지 여부를 결정할 때, 이상 검출 모듈(1962)은 결정된 마찰 값을 예상된 마찰 값과 비교한다. 결정된 마찰 값이 예상된 마찰 값보다 작은 경우, 이상 검출 모듈(1962)은 원하는 운전 능력을 결정할 것이다. 일 실시예에서, 결정된 마찰 값이 예상된 마찰 값보다 작을 때, 원하는 운전 능력은 차량의 속력을 낮추기로 하는 결정을 포함한다. 일 실시예에서, 결정된 마찰 값이 예상된 마찰 값보다 작을 때, 원하는 운전 능력은 스로틀을 해제하기로 하는 결정을 포함한다. 일 실시예에서, 결정된 마찰 값이 예상된 마찰 값보다 작을 때, 원하는 운전 능력은 (예를 들면, 도 1에 도시된 바와 같은) 브레이크(103)를 관여시키기로 하는 결정을 포함한다. 일 실시예에서, 이상 검출 모듈(1962)은 예상된 마찰 값보다 낮은 마찰 값의 검출을 매핑 모듈(1960)에 출력한다. 그러한 검출은, 예를 들어, 운행 가능 표면 상의 오일 및/또는 얼음을 나타낸다.
일 실시예에서, 운행 가능 표면의 재료를 결정할 때, 이상 검출 모듈(1962)은 휠 슬립률을 측정하거나 추정하기 위한 임의의 휠 속력 센서 및 이상 검출 시스템(1300)의 임의의 센서로부터의 출력을 입력한다. 검출된 슬립률에 기초하여, 이상 검출 모듈(1962)은 운행 가능 표면의 검출된 마찰과 함께 검출된 슬립률을 사용하여 운행 가능 표면의 가능한 재료 및/또는 가능한 조건의 리스트를 좁힌다. 이상 검출 모듈(1962)은 이어서 하나 이상의 온도 센서(1934) 및 수분 센서(1932)를 사용하여 운행 가능 표면의 현재 상태를 결정하고, 따라서 운행 가능 표면의 해당 섹션의 재료를 결정한다. 일부 실시예에서, 그러한 정보가 매핑 모듈(1960)에 제공된다.
일 실시예에서, 포트홀이 검출되었는지 여부를 결정할 때, 이상 검출 모듈(1962)은 하나 이상의 스트레인/압력 센서(1928), 자율 주행 차량의 서스펜션에 장착된 임의의 스트레인/압력 센서, 하나 이상의 회전 위치 센서(1930), 및 GPS(1922)의 출력을 입력한다. 일부 실시예에서, 이상 검출 모듈(1962)은 또한 포트홀이 검출되었는지 여부를 결정하기 위해 가속도계(1924) 및/또는 자이로스코프(1926)의 출력을 입력한다. 일부 실시예에서, 이상 검출 모듈(1962)은 또한 포트홀이 검출되었는지 여부를 결정하기 위해 임의의 휠 속력 센서의 출력을 입력한다. 포트홀이 검출된 경우, 검출 시간, 검출 위치, 및, 일부 실시예에서, 포트홀의 사이즈가 매핑 모듈(1960)에 전송된다.
일 실시예에서, 럼블 스트립이 검출되었는지 여부를 결정할 때, 이상 검출 모듈(1962)은 하나 이상의 스트레인/압력 센서(1928), 자율 주행 차량의 서스펜션에 장착된 임의의 스트레인/압력 센서, 하나 이상의 회전 위치 센서(1930), 및 GPS(1922)의 출력을 입력한다. 일부 실시예에서, 이상 검출 모듈(1962)은 또한 럼블 스트립이 검출되었는지 여부를 결정하기 위해 가속도계(1924) 및/또는 자이로스코프(1926)의 출력을 입력한다. 일부 실시예에서, 이상 검출 모듈(1962)은 또한 럼블 스트립이 검출되었는지 여부를 결정하기 위해 임의의 휠 속력 센서의 출력을 입력한다. 포트홀과 럼블 스트립을 구별할 때, 이상 검출 모듈(1962)은 센서 출력의 크기(magnitude)를 조사할 수 있으며, 예를 들면, 럼블 스트립 공동으로부터의 스트레인/압력 센서에 대한 힘은 보통 포트홀 공동의 힘보다 더 작을 것이다. 추가적으로, 이상 검출 모듈(1962)은 공동 검출의 빈도를 조사할 수 있다. 예를 들어, 다수의 작은 공동이 연달아 검출되면, 이상 검출 시스템은 이상이 일련의 포트홀이 아니라 럼블 스트립이라고 결정할 것이다. 럼블 스트립의 검출에 기초하여, 이상 검출 모듈(1962)은 원하는 운전 능력을 결정한다. 일 실시예에서, 럼블 스트립이 차량의 우측에 위치된 센서에 의해 검출될 때, 원하는 운전 능력은 차량을 좌측으로 조향하기로 하는 결정을 포함한다. 해당 실시예에서, 럼블 스트립이 차량의 좌측에 위치된 센서에 의해 검출될 때, 원하는 운전 능력은 차량을 우측으로 조향하기로 하는 결정을 포함한다.
일 실시예에서, 장애물이 검출되었는지 여부를 결정할 때, 이상 검출 모듈(1962)은 하나 이상의 스트레인/압력 센서(1928), 자율 주행 차량의 서스펜션에 장착된 임의의 스트레인/압력 센서, 하나 이상의 회전 위치 센서(1930), 및 GPS(1922)의 출력을 입력한다. 일부 실시예에서, 이상 검출 모듈(1962)은 또한 장애물이 검출되었는지 여부를 결정하기 위해 가속도계(1924) 및/또는 자이로스코프(1926)의 출력을 입력한다. 가속도계(1924) 및/또는 자이로스코프(1926)는 장애물의 사이즈 및/또는 질량을 결정할 때 도움을 주는 데 유용할 것이다. 장애물이 검출된 경우, 검출 시간, 검출 위치, 및, 일부 실시예에서, 장애물의 사이즈 및/또는 질량이 매핑 모듈(1960)에 전송된다.
원하는 운전 능력을 결정할 때, 이상 검출 모듈(1962)은 과거 정보, 실시간 정보, 및/또는 예측 정보에 의존한다. 과거 정보는 자율 주행 차량 또는 다른 차량으로부터 이전에 획득된 정보를 포함할 수 있다. 과거 정보는 이전에 결정된 운전 능력의 세트를 또한 포함할 수 있다. 그러한 이전에 결정된 운전 능력은 시간, 위치, 도로의 자산에 관한 정보, 결정 시의 도로의 검출된 이상/조건에 관한 정보, 및 결정된 운전 능력이 실행될 때 안전하고 및/또는 효과적인 결과를 갖는지 여부에 대한 정보와 연관될 수 있다. 원하는 운전 능력을 결정할 때, 이상 검출 모듈(1962)은 운행 가능 표면의 예상된 및/또는 검출된 조건/이상을 실행될 때 안전하고 및/또는 효과적인 결과를 갖는 이전에 결정된 운전 능력과 연관된 것과 매칭시키려고 시도할 수 있다. 이상 검출 모듈(1962)은 또한 머신 러닝 알고리즘을 사용할 수 있다. 그러한 알고리즘은 나이브 베이즈, 서포트 벡터 머신, 및/또는 신경 네트워크를 포함하지만 이에 제한되지는 않는다. 그러한 머신 러닝 알고리즘은 과거 및/또는 실시간 데이터에 의존할 수 있다. 예를 들어, 머신 러닝 알고리즘은 차량 속력, 차량 텔레메트리 데이터, 차량 및/또는 하나 이상의 다른 차량에 의해 검출된 도로 상태, 차량 위치 및, 일부 예에서, 차량이 위치된 도로의 관련 속력 제한, 차량 및/또는 다른 차량으로부터의 과거 데이터, 및 계산 시스템(1950) 및/또는 중앙집중식 컴퓨터 시스템에 의해 수집된 임의의 다른 정보에 기초하여 생성될 수 있다.
원하는 운전 능력을 결정할 때, 이상 검출 모듈(1962)은 먼저, 다른 차량으로부터의 이상 검출 정보와 같은, 이전에 획득된 정보를 조사한다. 이전에 획득된 정보에 기초하여, 이상 검출 모듈(1962)은 자율 주행 차량이 진행할 것으로 예상되는 운행 가능 표면의 다가오는 섹션 - 즉 운행 가능 표면의 다가오는 섹션은 자율 주행 차량의 현재 루트에 해당됨 - 에 대한 원하는 운전 능력을 결정할 것이다. 그러한 결정된 원하는 운전 능력은, 예를 들어, 전방의 운행 가능 표면에서 물, 눈 및/또는 얼음이 검출된 경우 차량의 속력을 낮추는 것, 운행 가능 표면의 다가오는 섹션의 예상된 마찰 값이 현재 마찰 값보다 작은 경우 차량의 속력을 낮추는 것, 운행 가능 표면의 다가오는 섹션의 예상된 마찰 값이 현재 마찰 값보다 큰 경우 차량의 속력을 높이는 것, 운행 가능 표면에서 물, 눈 및/또는 얼음이 현재 검출되지만 전방의 운행 가능 표면의 섹션에서는 검출되지 않은 경우 차량의 속력을 높이는 것, 자율 주행 차량의 현재 차선에서 전방에 장애물이 검출될 때 자율 주행 차량을 다른 차선으로 조향하는 것, 자율 주행 차량의 현재 차선에서 전방에 포트홀이 검출될 때 자율 주행 차량을 다른 차선으로 조향하는 것 등을 포함할 수 있다. 차량의 속력을 낮추기로 하는 결정은 스로틀을 해제하기로 하는 결정 및/또는 (예를 들면, 도 1에 도시된 바와 같은) 브레이크(103)를 걸기로 하는 결정을 포함할 수 있다. 차량의 속력을 높이기로 하는 결정은 스로틀을 개방하기로 하는 결정을 포함할 수 있다. 일 실시예에서, 이전에 획득된 정보에 기초하여 결정된 원하는 운전 능력은 자율 주행 차량이 이전에 획득된 정보와 연관된 운행 가능 표면의 섹션에 도달하기 직전에 실행되기 위해 (예를 들면, 도 4에 도시된 바와 같은) 제어 모듈(406)에 전송된다. 일 실시예에서, 원하는 운전 능력을 결정하는 것은 자율 주행 차량이 진행할 새로운 루트를 선택하는 것을 또한 포함한다. 다른 결정된 원하는 운전 능력과 달리, 새로운 루트를 선택하는 것을 수반하는 결정된 원하는 운전 능력은 실행되기 위해 매핑 모듈(1960)에 전송된다. 일 실시예에서, 이전에 획득된 정보에 기초하고 차량의 속력을 높이는 것을 수반하는 결정된 원하는 운전 능력은 이상 검출 시스템(1300) 또는 자율 주행 차량 상의 다른 센서가 이전에 획득된 정보를 확증할 때까지 실행되기 위해 (예를 들면, 도 4에 도시된 바와 같은) 제어 모듈(406)에 전송되지 않는다.
원하는 운전 능력을 결정할 때, 이상 검출 모듈(1962)은 또한 이상 검출 시스템(1300) 및/또는 자율 주행 차량에 존재하는 다른 센서에 의해 실시간으로 검출된 운행 가능 표면의 상태 및/또는 이상을 조사한다. 이러한 실시간 정보에 기초하여, 이상 검출 모듈(1962)은 원하는 운전 능력을 결정하고 그리고/또는 이전에 결정된 원하는 운전 능력을 조정할 것이다. 그러한 결정된 원하는 운전 능력은, 예를 들어, 운행 가능 표면에서 물, 눈 및/또는 얼음이 검출된 경우 차량의 속력을 낮추는 것, 운행 가능 표면의 결정된 마찰 값이 예상된 마찰 값보다 작으면 차량의 속력을 낮추는 것, 운행 가능 표면의 결정된 마찰 값이 예상된 마찰 값보다 크면 차량의 속력을 높이는 것, 운행 가능 표면에서 물, 눈 및/또는 얼음이 현재 검출되지 않지만 검출될 것으로 예상되는 경우 차량의 속력을 높이는 것, 자율 주행 차량의 우측에서 럼블 스트립이 검출될 때 자율 주행 차량을 좌측으로 조향하는 것, 자율 주행 차량의 좌측에서 럼블 스트립이 검출될 때 자율 주행 차량을 우측으로 조향하는 것 등을 포함할 수 있다. 차량의 속력을 낮추기로 하는 결정은 스로틀을 해제하기로 하는 결정 및/또는 (예를 들면, 도 1에 도시된 바와 같은) 브레이크(103)를 걸기로 하는 결정을 포함할 수 있다. 차량의 속력을 높이기로 하는 결정은 스로틀을 개방하기로 하는 결정을 포함할 수 있다.
자율 주행 차량에 의한 이상 검출을 위한 예시적인 프로세스
도 20은 이상을 검출하고 자율 주행 차량의 운전 기능을 조정하기 위한 예시적인 프로세스(2000)를 도시한다. 프로세스(2000)는, 적어도 부분적으로, 본원에 기술된 시스템 중 하나 이상을 사용하여(예를 들면, 하나 이상의 컴퓨터 시스템, AV 시스템, 자율 주행 차량 등을 사용하여) 수행될 수 있다.
프로세스(2000)에서, 컴퓨터 시스템은 자율 주행 차량의 하측부에 배치된 적어도 하나의 센서 - 센서는 도로의 표면과 물리적으로 접촉함 - 로부터 센서 데이터를 수신한다(단계(2010)). 도로의 표면과 물리적으로 접촉하는 센서로부터의 센서 데이터는 자율 주행 차량이 진행하고 있는 도로에 관한 정보를 나타낼 수 있다. 그러한 센서 데이터의 다양한 예가 본원에 기술되어 있다. 일 예로서, 그러한 센서 데이터는 도로의 표면의 마찰 계수의 표시, 따라서 물, 얼음 및/또는 눈이 도로의 표면에 존재하는지 여부를 포함할 수 있다. 다른 예로서, 그러한 센서 데이터는 도로의 표면의 온도의 표시, 따라서 얼음 또는 눈이 도로의 표면에 형성될/모일 가능성이 있는지 여부를 포함할 수 있다. 다른 예로서, 그러한 센서 데이터는 도로의 표면 상의 수분의 표시를 포함할 수 있다. 다른 예로서, 그러한 센서 데이터는 도로의 표면에 있는 공동의 표시를 포함할 수 있다.
이어서 컴퓨터 시스템은 센서 데이터에 기초하여 도로 상태를 검출한다(단계(2020)). 사용자 프로파일 데이터의 다양한 예가 본원에 기술되어 있다. 예로서, 검출된 도로 상태는 포트홀의 표시, 럼블 스트립의 표시, 도로 상의 물의 표시, 도로 상의 얼음의 표시, 및/또는 도로 상의 눈의 표시를 포함할 수 있다.
컴퓨터 시스템은 도로 상태에 응답하여 자율 주행 차량의 운전 기능을 조정할지 여부를 결정한다(단계(2030)). 차량의 운전 기능을 조정할지 여부를 결정하기 위한 다양한 기술이 본원에 기술되어 있다. 예를 들어, 그러한 결정은 하나 이상의 자율 주행 차량이 검출된 도로 상태를 고려하여 취하는 가장 적절한 운전 액션의 모델을 사용하여 이루어질 수 있다. 이것은, 예를 들어, 베이지안 모델, 신경 네트워크 알고리즘, 및/또는 서포트 벡터 알고리즘과 같은, 통계 모델 및/또는 알고리즘일 수 있다. 머신 러닝 알고리즘은 차량 속력, 차량 텔레메트리 데이터, 차량 또는 하나 이상의 다른 차량에 의해 검출된 도로 상태, 차량 위치 및, 일부 예에서, 차량이 위치된 도로의 관련 속력 제한, 및 컴퓨터 시스템에 의해 수집된 임의의 다른 정보에 기초하여 생성될 수 있다. 일부 실시예에서, 취해야 할 운전 액션을 결정하기 위해 차량 또는 하나 이상의 다른 차량에 의한 하나 이상의 검출된 도로 상태를 고려한 차량의 속력, 차량의 텔레메트리 데이터, 및/또는 차량 위치가 이전에 실행된 운전 기능과 연관된 유사한 정보와 비교될 수 있다.
컴퓨터는, 자율 주행 차량의 운전 기능을 조정하기로 하는 결정에 따라, 자율 주행 차량의 운전 기능을 조정한다(단계(2040)). 운전 기능의 다양한 예시적인 조정이 본원에 기술되어 있다. 예로서, 운전 기능의 조정은 차량의 속력을 조정하는 것, 차량을 빠르게 가속시키는 것, 차량을 빠르게 감속시키는 것, 차량을 좌측으로 또는 우측으로 이동시키는 것, 차량의 새로운 경로를 선택하는 것, 및 차량을 정지시키는 것을 포함할 수 있다.
전술한 설명에서, 본 발명의 실시예는 구현마다 달라질 수 있는 다수의 특정 세부 사항을 참조하여 기술되었다. 따라서, 상세한 설명 및 도면은 제한적인 관점보다는 예시적인 관점에서 보아야 한다. 본 발명의 범위의 유일한 독점적인 지표, 및 출원인이 본 발명의 범위가 되도록 의도한 것은, 본 출원에서 특정 형태로 나오는 청구항 세트의 문언적 등가 범위이며, 그러한 청구항이 나오는 특정 형태는 임의의 후속 보정을 포함한다. 그러한 청구항에 포함된 용어에 대한 본원에서 명시적으로 기재된 임의의 정의는 청구항에서 사용되는 그러한 용어의 의미를 결정한다. 추가적으로, 전술한 설명 및 이하의 청구항에서 용어 "추가로 포함하는"이 사용될 때, 이 문구에 뒤따르는 것은 추가적인 단계 또는 엔티티, 또는 이전에 언급된 단계 또는 엔티티의 서브-단계/서브-엔티티일 수 있다.

Claims (23)

  1. 완전한 자율 주행 차량(fully autonomous vehicle)(AV)(100, 1410)으로서,
    프로세싱 회로(146)
    를 포함하고; 상기 완전한 자율 주행 차량은:
    상기 AV(100, 1410)에 결합된 복수의 센서(1332, 1414, 1418)를 포함하고, 상기 복수의 센서(1332, 1414, 1418) 중 적어도 하나의 센서는 상기 AV(100, 1410)의 하부 구조에 배치되고, 상기 복수의 센서는:
    상기 AV(100, 1410)가 진행하고 있는 운행 가능 표면의 변동을 검출하고;
    상기 운행 가능 표면의 변동에 대응하는 정보를 생성하며;
    상기 운행 가능 표면의 변동에 대응하는 정보를 상기 프로세싱 회로(146)에 송신하도록 구성되며, 상기 복수의 센서에 의해 수집된 정보는 상기 AV(100, 1410)의 제어를 조정함으로써 상기 AV(100, 1410)의 운전 능력을 보강하도록 구성되고, 상기 복수의 센서(1332, 1414, 1418) 중 적어도 하나의 센서는 상기 운행 가능 표면과 접촉하는 강모(bristle) 센서이고, 상기 강모 센서는 온도 센서, 수분 센서 및 습도 센서 중 적어도 하나인 것을 특징으로 하는, 완전한 자율 주행 차량.
  2. 제1항에 있어서, 상기 프로세싱 회로는, 하나 이상의 머신 러닝 알고리즘을 사용하여, 상기 복수의 센서(1332, 1414, 1418)로부터 수신되는 변동에 대응하는 정보를 프로세싱하는 것인, 완전한 자율 주행 차량.
  3. 제2항에 있어서, 상기 하나 이상의 머신 러닝 알고리즘은 적어도 하나의 서포트 벡터 머신 알고리즘을 포함하는 것인, 완전한 자율 주행 차량.
  4. 제2항 또는 제3항에 있어서, 상기 하나 이상의 머신 러닝 알고리즘은 적어도 하나의 신경 네트워크 알고리즘을 포함하는 것인, 완전한 자율 주행 차량.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 프로세싱 회로는 상기 복수의 센서(1332, 1414, 1418)에 의해 수집된 정보를 원격 서버(136)에 송신하고, 상기 원격 서버는 상기 원격 서버에 연결된 다른 차량과 정보를 교환하는 것인, 완전한 자율 주행 차량.
  6. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 프로세싱 회로(146)는 상기 복수의 센서(1332, 1414, 1418)에 의해 수집된 정보를 상기 복수의 센서(1332, 1414, 1418)에 대응하는 상기 AV 인근에 있는 하나 이상의 다른 차량에 송신하는 것인, 완전한 자율 주행 차량.
  7. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 AV의 운전 능력을 보강하는 것은:
    상기 프로세싱 회로(146)를 사용하여, 상기 운행 가능 표면이 임계치 미만인 트랙션 레벨(level of traction)을 갖는다고 결정하는 것; 및
    상기 결정에 응답하여, 제어 회로를 사용하여, 상기 AV (100, 1410)의 속력을 감소시키는 것
    을 더 포함하는 것인, 완전한 자율 주행 차량.
  8. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 AV (100, 1410)의 운전 능력을 보강하는 것은:
    상기 프로세싱 회로(146)를 사용하여, 상기 복수의 센서(1332, 1414, 1418)에 의해 수집된 정보에 따라 도로 상의 장애물을 검출하는 것; 및
    상기 검출하는 것에 응답하여, 제어 회로를 사용하여, 상기 장애물을 피하기 위해 상기 AV (100, 1410)의 조향을 조정하는 것을 포함하는 것인, 완전한 자율 주행 차량.
  9. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 프로세싱 회로(146)는:
    상기 복수의 센서에 의해 수집된 정보에 따라 도로의 표면 상의 차선 경계를 검출하고 - 상기 차선 경계는 상기 복수의 센서(1332, 1414, 1418)에 의해 수집된 정보에 따라 상기 운행 가능 표면으로부터 구별될 수 있음 -; 및
    상기 차선 경계를 사용하여 상기 도로의 표면 상의 차선 라인의 맵을 생성하도록 구성되는 것인, 완전한 자율 주행 차량.
  10. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 AV의 운전 능력을 보강하는 것은:
    상기 프로세싱 회로(146)를 사용하여, 상기 운행 가능 표면의 변동이 주기적인 간격으로 발생한다고 결정하는 것; 및
    상기 결정에 응답하여, 제어 회로를 사용하여, 상기 AV를 도로의 표면 상의 변동으로부터 떨어진 상기 도로의 섹션을 향하는 방향으로 조향하는 것을 포함하는 것인, 완전한 자율 주행 차량.
  11. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 AV (100, 1410)의 운전 능력을 보강하는 것은:
    상기 프로세싱 회로(146)를 사용하여, 상기 운행 가능 표면의 변동이 주기적인 간격으로 발생한다고 결정하는 것; 및
    상기 결정에 응답하여, 상기 AV (100, 1410)의 속력을 감소시키는 것
    을 포함하는 것인, 완전한 자율 주행 차량.
  12. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 AV (100, 1410)의 운전 능력을 보강하는 것은:
    상기 복수의 센서(1332, 1414, 1418)에 의해 수집된 정보를 사용하여, 도로의 표면의 슬립률(slip ratio)을 결정하는 것;
    상기 결정에 응답하여, 상기 도로의 표면의 마찰 값을 추정하는 것; 및
    상기 추정된 마찰 값에 따라 상기 AV (100, 1410)의 운전 능력을 조정하는 것
    을 포함하는 것인, 완전한 자율 주행 차량.
  13. 제12항에 있어서, 상기 AV (100, 1410)의 운전 능력을 보강하는 것은:
    상기 추정된 마찰 값을 사용하여, 도로의 표면에 사용되는 재료의 유형을 결정하는 것; 및
    상기 도로의 표면에 사용되는 재료의 유형에 따라 상기 AV (100, 1410)의 속력을 조정하는 것
    을 더 포함하는 것인, 완전한 자율 주행 차량.
  14. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 AV (100, 1410)의 운전 능력을 보강하는 것은:
    상기 복수의 센서(1332, 1414, 1418)에 의해 수집된 정보를 사용하여 마찰 테이블의 조회를 수행하는 것;
    상기 조회에 응답하여, 도로의 표면의 마찰 값을 추정하는 것; 및
    상기 추정된 마찰 값에 따라 상기 AV (100, 1410)의 운전 능력을 조정하는 것
    을 포함하는 것인, 완전한 자율 주행 차량.
  15. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 복수의 센서(1332, 1414, 1418)는:
    제1 센서(1414); 및
    제2 센서(1418)
    를 포함하고,
    상기 제1 센서는 제1 유형의 정보를 프로세싱하고, 상기 제2 센서는 상기 제1 유형과 상이한 제2 유형의 정보를 프로세싱하는 것인, 완전한 자율 주행 차량.
  16. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 프로세싱 회로(146)는, 상기 복수의 센서(1332, 1414, 1418)에 의해 수집된 정보를 사용하여, 도로의 표면의 높이 맵을 생성하는 것인, 완전한 자율 주행 차량.
  17. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 프로세싱 회로(146)는:
    상기 복수의 센서(1332, 1414, 1418)에 의해 수집된 정보를 사용하여, 도로의 표면의 상태를 결정하고;
    상기 도로의 표면의 상기 결정된 상태를 눈, 얼음, 비 또는 장애물 중 하나 이상을 갖는 것으로 분류하도록 구성되는 것인, 완전한 자율 주행 차량.
  18. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 AV (100, 1410)의 운전 능력을 보강하는 것은:
    하나 이상의 이웃 차량으로부터, 상기 운행 가능 표면의 변동에 관한 추가 정보를 수신하는 것;
    상기 복수의 센서(1332, 1414, 1418)에 의해 수집된 정보를 상기 하나 이상의 이웃 차량으로부터 수신된 상기 추가 정보와 비교하는 것; 및
    상기 비교에 따라 상기 복수의 센서(1332, 1414, 1418)에 의해 수집된 정보에 대한 신뢰도 척도(confidence measure)를 계산하는 것
    을 포함하는 것인, 완전한 자율 주행 차량.
  19. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 복수의 센서(1332, 1414, 1418)는 센서 어레이를 포함하고, 상기 센서 어레이는 하나 이상의 행으로 배치된 센서들을 포함하는 것인, 완전한 자율 주행 차량.
  20. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 복수의 센서(1332, 1414, 1418)는 상기 AV (100, 1410)의 타이어 또는 상기 AV (100, 1410)의 서스펜션 중 적어도 하나에 임베딩된 하나 이상의 센서를 포함하는 것인, 완전한 자율 주행 차량.
  21. 제1항 내지 제3항 중 어느 한 항의 완전한 자율 주행 차량(100, 1410)을 사용하여 완전한 자율 주행 차량을 동작시키는 방법.
  22. 시스템으로서,
    완전한 자율 주행 차량(AV)(100, 1410)
    을 포함하고; 상기 시스템은:
    상기 AV(100, 1410)에 결합된 복수의 센서; 및
    하나 이상의 프로세서(146) 및 메모리(144)를 갖는 제1 디바이스
    를 포함하며,
    상기 제1 디바이스는 제1항 내지 제3항 중 어느 한 항의 동작을 사용하여 도로 이상(anomaly)을 검출하고 상기 AV (100, 1410)의 운전 능력을 조정하기 위한 동작을 수행하는 것을 특징으로 하는, 시스템.
  23. 데이터 프로세싱 장치로 하여금 제1항 내지 제3항 중 어느 한 항의 동작을 사용하여 도로 이상을 검출하고 완전한 자율 주행 차량(100, 1410)의 운전 능력을 조정하게 하도록 동작 가능한 명령어를 인코딩하는 컴퓨터 판독가능 비일시적 매체.
KR1020217029101A 2019-01-28 2020-01-28 도로 이상 검출 KR102400649B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227016624A KR20220068275A (ko) 2019-01-28 2020-01-28 도로 이상 검출

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201962797895P 2019-01-28 2019-01-28
US62/797,895 2019-01-28
DKPA201970135 2019-02-27
DKPA201970135A DK180407B1 (en) 2019-01-28 2019-02-27 Detecting road anomalies
PCT/US2020/015372 WO2020159961A1 (en) 2019-01-28 2020-01-28 Detecting road anomalies
KR1020207030802A KR20200127262A (ko) 2019-01-28 2020-01-28 도로 이상 검출

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020207030802A Division KR20200127262A (ko) 2019-01-28 2020-01-28 도로 이상 검출

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020227016624A Division KR20220068275A (ko) 2019-01-28 2020-01-28 도로 이상 검출

Publications (2)

Publication Number Publication Date
KR20210113454A true KR20210113454A (ko) 2021-09-15
KR102400649B1 KR102400649B1 (ko) 2022-05-23

Family

ID=71898690

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020207030802A KR20200127262A (ko) 2019-01-28 2020-01-28 도로 이상 검출
KR1020227016624A KR20220068275A (ko) 2019-01-28 2020-01-28 도로 이상 검출
KR1020217029101A KR102400649B1 (ko) 2019-01-28 2020-01-28 도로 이상 검출

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020207030802A KR20200127262A (ko) 2019-01-28 2020-01-28 도로 이상 검출
KR1020227016624A KR20220068275A (ko) 2019-01-28 2020-01-28 도로 이상 검출

Country Status (6)

Country Link
US (2) US11305777B2 (ko)
KR (3) KR20200127262A (ko)
CN (2) CN116080660A (ko)
DE (1) DE112020000542T5 (ko)
DK (1) DK180407B1 (ko)
GB (2) GB2614818B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230076713A (ko) * 2021-11-23 2023-05-31 모셔널 에이디 엘엘씨 도로 표면 위험 요소들에 기초한 모션 플래너 제약 생성

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3536574A1 (en) * 2018-03-06 2019-09-11 Pablo Alvarez Troncoso Vehicle control system
US11295615B2 (en) 2018-10-29 2022-04-05 Here Global B.V. Slowdown events
US11142209B2 (en) * 2019-02-12 2021-10-12 Ford Global Technologies, Llc Vehicle road friction control
KR20200109118A (ko) * 2019-03-12 2020-09-22 현대자동차주식회사 차량의 추락 방지 장치 및 그 방법
US11100794B2 (en) * 2019-04-15 2021-08-24 Here Global B.V. Autonomous driving and slowdown patterns
US11623657B2 (en) * 2019-10-16 2023-04-11 Nuro, Inc. Remote startup of autonomous vehicles
JP7211350B2 (ja) * 2019-11-29 2023-01-24 トヨタ自動車株式会社 路面損傷検出装置、路面損傷検出方法、プログラム
US10969232B1 (en) 2019-12-06 2021-04-06 Ushr Inc. Alignment of standard-definition and High-Definition maps
JP7380718B2 (ja) * 2020-02-07 2023-11-15 日本電信電話株式会社 路面推定装置、路面推定方法およびプログラム
WO2021182137A1 (ja) * 2020-03-09 2021-09-16 本田技研工業株式会社 情報提供システム、情報提供方法、およびプログラム
CN113494920A (zh) * 2020-03-20 2021-10-12 深圳市超捷通讯有限公司 导航路线规划方法、装置及存储介质
US11702105B2 (en) * 2020-06-27 2023-07-18 Intel Corporation Technology to generalize safe driving experiences for automated vehicle behavior prediction
US11492006B2 (en) * 2020-07-31 2022-11-08 GM Global Technology Operations LLC Apparatus and methodology of road condition classification using sensor data
KR102401945B1 (ko) * 2020-08-11 2022-05-26 주식회사 스카이솔루션 드론을 이용한 도로시설물 안전진단장치
DE102020210616A1 (de) * 2020-08-20 2022-02-24 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Kommunikation zwischen mindestens zwei hintereinanderfahrenden Fahrzeugen sowie Fahrzeug mit mindestens einer Kommunikationsvorrichtung
EP3967565B1 (en) * 2020-09-14 2022-09-28 Bayerische Motoren Werke Aktiengesellschaft Methods and apparatuses for estimating an environmental condition
CN112267361B (zh) * 2020-10-15 2022-04-19 魏强 一种道路施工用路面水平检测装置
US11866051B2 (en) * 2020-10-26 2024-01-09 Volvo Car Corporation Systems and methods for fusing road friction to enhance vehicle maneuvering
EP4012338A1 (en) * 2020-12-09 2022-06-15 Valeo Internal Automotive Software Egypt, a limited liability company Guiding a motor vehicle based on a camera image and a navigational command
US11708066B2 (en) 2021-01-21 2023-07-25 Motional Ad Llc Road surface condition guided decision making and prediction
IT202100019016A1 (it) * 2021-07-19 2023-01-19 Bridgestone Europe Nv Sa Metodo e sistema per rilevare e localizzare ostacoli/elementi sulla pavimentazione stradale che sono pericolosi o potenzialmente pericolosi per l'integrita' degli pneumatici e/o dei veicoli
CN113588557A (zh) * 2021-08-03 2021-11-02 江西源策工程检测有限公司 一种基于公路工程的路面破损检测装置
US20230085098A1 (en) * 2021-09-10 2023-03-16 Transportation Ip Holdings, Llc Vehicle Network Monitoring System
US11821744B2 (en) * 2021-10-08 2023-11-21 Ford Global Technologies, Llc Recommending an alternative off-road track to a driver of a vehicle
KR102390205B1 (ko) * 2021-10-08 2022-04-25 (주)삼문이엔아이 구조물 변형상태 인공지능 분석 및 전송시스템
KR102390204B1 (ko) * 2021-10-08 2022-04-25 (주)삼문이엔아이 철도 구조물 변형상태 검출용 차상 시스템
CN114413832B (zh) * 2021-12-02 2023-12-15 中国通信建设第三工程局有限公司 一种基于光纤传感的道路监测系统及方法
KR20230093834A (ko) * 2021-12-20 2023-06-27 현대자동차주식회사 자율 주행 차량, 그와 정보를 공유하는 관제 시스템 및 그 방법
CN114353713B (zh) * 2021-12-29 2023-09-05 山东省交通科学研究院 具有清理杂物功能的低功耗桥梁表面裂缝检测装置及方法
US20230386327A1 (en) * 2022-05-25 2023-11-30 Chengdu Qinchuan Iot Technology Co., Ltd. Methods and internet of things systems for managing traffic road cleaning in smart city
WO2024086589A1 (en) * 2022-10-18 2024-04-25 ClearMotion, Inc. Systems and methods for controlling interactions between a vehicle and a road surface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020124629A1 (en) * 1995-03-13 2002-09-12 Hurson James Kevin Method and apparatus for continuous monitoring of road surface friction
KR100733873B1 (ko) * 2005-07-27 2007-07-02 전일중 도로의 평탄성 측정장치
JP2007292231A (ja) * 2006-04-26 2007-11-08 Ntn Corp センサ付車輪用軸受
KR20090047249A (ko) * 2007-11-07 2009-05-12 현대자동차주식회사 노면 상태 검출을 통한 차량 안전제어방법

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195250B2 (en) 2000-03-27 2007-03-27 Bose Corporation Surface vehicle vertical trajectory planning
US7102539B2 (en) * 2004-03-29 2006-09-05 Nissan Technical Center North America, Inc. Rumble strip responsive systems
US8285447B2 (en) 2007-03-20 2012-10-09 Enpulz, L.L.C. Look ahead vehicle suspension system
US20090164063A1 (en) * 2007-12-20 2009-06-25 International Business Machines Corporation Vehicle-mounted tool for monitoring road surface defects
NO20083543L (no) * 2008-08-14 2010-02-15 Modulprodukter As System for automatisk varsling og/eller nedbremsing ved glatt kjorebane
US20120203428A1 (en) 2011-02-08 2012-08-09 Honda Motor Co., Ltd Road profile scanning method and vehicle using side facing sensors
DE102012018122A1 (de) * 2012-09-13 2013-03-14 Daimler Ag Autonomes Führen eines Kraftfahrzeugs auf einem Fahrweg unter Umgehung von Unebenheiten
US9988047B2 (en) * 2013-12-12 2018-06-05 Magna Electronics Inc. Vehicle control system with traffic driving control
EP2921363A1 (en) 2014-03-18 2015-09-23 Volvo Car Corporation Vehicle, vehicle system and method for increasing safety and/or comfort during autonomous driving
DE102015007670A1 (de) 2015-06-16 2016-12-22 Audi Ag Verfahren zum effizienten Übertragen eines Straßenhöhenprofils
US9285805B1 (en) * 2015-07-02 2016-03-15 Geodigital International Inc. Attributed roadway trajectories for self-driving vehicles
KR20170028126A (ko) 2015-09-03 2017-03-13 엘지전자 주식회사 차량 운전 보조 장치 및 차량
US9916703B2 (en) * 2015-11-04 2018-03-13 Zoox, Inc. Calibration for autonomous vehicle operation
US9891628B2 (en) * 2016-06-06 2018-02-13 GM Global Technology Operations LLC Sensor-based association of traffic control devices to traffic lanes for autonomous vehicle navigation
US20180164119A1 (en) * 2016-07-29 2018-06-14 Faraday&Future Inc. System and method for generating an environmental condition database using automotive sensors
US10183677B2 (en) * 2016-09-20 2019-01-22 Ford Global Technologies, Llc Ice and snow detection systems and methods
US10248129B2 (en) 2017-04-19 2019-04-02 GM Global Technology Operations LLC Pitch compensation for autonomous vehicles
US10635109B2 (en) * 2017-10-17 2020-04-28 Nio Usa, Inc. Vehicle path-planner monitor and controller
US11022971B2 (en) * 2018-01-16 2021-06-01 Nio Usa, Inc. Event data recordation to identify and resolve anomalies associated with control of driverless vehicles
KR102127662B1 (ko) * 2018-07-25 2020-06-29 한국타이어앤테크놀로지 주식회사 다점 시스템화되어 구성된 타이어용 센서 및 이를 구비한 타이어
US11427223B2 (en) * 2018-09-14 2022-08-30 Uatc, Llc Driving surface friction estimations for autonomous vehicles
US10901862B2 (en) * 2018-11-13 2021-01-26 Micron Technology, Inc. High-reliability non-volatile memory using a voting mechanism
US11928959B2 (en) * 2019-01-11 2024-03-12 Toyota Jidosha Kabushiki Kaisha On-demand formation of stationary vehicular micro clouds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020124629A1 (en) * 1995-03-13 2002-09-12 Hurson James Kevin Method and apparatus for continuous monitoring of road surface friction
KR100733873B1 (ko) * 2005-07-27 2007-07-02 전일중 도로의 평탄성 측정장치
JP2007292231A (ja) * 2006-04-26 2007-11-08 Ntn Corp センサ付車輪用軸受
KR20090047249A (ko) * 2007-11-07 2009-05-12 현대자동차주식회사 노면 상태 검출을 통한 차량 안전제어방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230076713A (ko) * 2021-11-23 2023-05-31 모셔널 에이디 엘엘씨 도로 표면 위험 요소들에 기초한 모션 플래너 제약 생성

Also Published As

Publication number Publication date
GB2587510B (en) 2023-02-15
KR20220068275A (ko) 2022-05-25
US11305777B2 (en) 2022-04-19
US20200238999A1 (en) 2020-07-30
KR20200127262A (ko) 2020-11-10
GB2614818A (en) 2023-07-19
CN113614309A (zh) 2021-11-05
DK201970135A1 (en) 2020-08-04
CN116080660A (zh) 2023-05-09
US20220315007A1 (en) 2022-10-06
CN113614309B (zh) 2023-01-10
KR102400649B1 (ko) 2022-05-23
DK180407B1 (en) 2021-04-21
GB2614818B (en) 2023-11-29
DE112020000542T5 (de) 2021-11-25
GB2587510A (en) 2021-03-31
GB202219854D0 (en) 2023-02-15
GB202016691D0 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
KR102400649B1 (ko) 도로 이상 검출
KR102506647B1 (ko) 조향각 캘리브레이션
US20200216064A1 (en) Classifying perceived objects based on activity
GB2586302A (en) Systems and methods for implementing an autonomous vehicle response to sensor failure
US11325592B2 (en) Operation of a vehicle using multiple motion constraints
WO2020159961A1 (en) Detecting road anomalies
GB2606043A (en) Planning with dynamic state a trajectory of an autonomous vehicle
US11708066B2 (en) Road surface condition guided decision making and prediction
GB2602392A (en) Predictive analytics for vehicle health
GB2598410A (en) Conditional motion predictions
EP3648021A1 (en) Generation of optimal trajectories for navigation of vehicles
KR102619281B1 (ko) 전동 조향 토크 보상
GB2616739A (en) Traffic light estimation
GB2605858A (en) Techniques for navigating an autonomous vehicle based on perceived risk
GB2616372A (en) Classifying perceived objects based on activity

Legal Events

Date Code Title Description
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant