KR20210066016A - 후면 코팅을 갖는 극자외선 마스크 - Google Patents

후면 코팅을 갖는 극자외선 마스크 Download PDF

Info

Publication number
KR20210066016A
KR20210066016A KR1020217015652A KR20217015652A KR20210066016A KR 20210066016 A KR20210066016 A KR 20210066016A KR 1020217015652 A KR1020217015652 A KR 1020217015652A KR 20217015652 A KR20217015652 A KR 20217015652A KR 20210066016 A KR20210066016 A KR 20210066016A
Authority
KR
South Korea
Prior art keywords
tantalum
nickel
layer
alloy
extreme ultraviolet
Prior art date
Application number
KR1020217015652A
Other languages
English (en)
Inventor
비부 진달
마드하비 알. 찬드라후드
비카쉬 반티아
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20210066016A publication Critical patent/KR20210066016A/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/22Exposing sequentially with the same light pattern different positions of the same surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • G03F1/58Absorbers, e.g. of opaque materials having two or more different absorber layers, e.g. stacked multilayer absorbers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/092Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by backside coating or layers, by lubricating-slip layers or means, by oxygen barrier layers or by stripping-release layers or means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

극자외선(EUV) 마스크 블랭크들, 이의 제작 방법들 및 이를 위한 생산 시스템들이 개시된다. EUV 마스크 블랭크들은 제1 측면 및 제2 측면을 갖는 기판; 기판의 제1 측면 상의 탄탈과 니켈의 합금을 포함하는 후면 코팅층; 기판의 제2 측면 상의 반사층들의 다층 스택으로서, 반사층들의 다층 스택은 반사층 쌍들을 포함하는 복수의 반사층들을 포함하는 반사층들의 다층 스택; 반사층들의 다층 스택 상의 캡핑층; 및 캡핑층 상의 흡수체 층을 포함한다.

Description

후면 코팅을 갖는 극자외선 마스크
[0001] 본 개시는 일반적으로, 극자외선 리소그래피, 및 보다 구체적으로, 탄탈과 니켈의 합금을 포함하는 후면 코팅층을 갖는 극자외선 마스크 블랭크들, 및 제작 방법들에 관한 것이다.
[0002] 소프트 x-선 투영 리소그래피로도 알려진 극자외선(EUV) 리소그래피는 0.0135 마이크론 이하의 최소 피쳐 크기 반도체 소자들을 제작하는 데 이용된다. 그러나, 일반적으로 5 내지 100 나노미터 파장 범위인 극자외선 광은 거의 모든 재료들에서 강하게 흡수된다. 그러한 이유로, 극자외선 시스템들은 광의 전달보다는 반사에 의해 작동한다. 비-반사 흡수체 마스크 패턴으로 코팅된, 일련의 거울들, 또는 렌즈 요소들, 및 반사 요소, 또는 마스크 블랭크의 이용을 통해, 패턴화된 화학광은 레지스트-코팅된 반도체 기판 상에서 반사된다.
[0003] 극자외선 리소그래피 시스템들의 렌즈 요소들 및 마스크 블랭크들은 몰리브덴 및 규소와 같은 재료들의 반사성 다층 코팅들로 코팅된다. 렌즈 요소, 또는 마스크 블랭크 당 대략 65%의 반사 값들은 극히 좁은 자외선 통과대역, 예를 들어, 13.5 나노미터 자외선 광에 대해 12.5 내지 14.5 나노미터 통과대역 내에서 광을 강하게 반사시키는 다층 코팅들로 코팅된 기판들을 사용함으로써 획득하였다.
[0004] 도 1은 브래그 간섭에 의해 마스킹되지 않은 부분들에서 EUV 방사선을 반사시키는, 기판(14) 상에 반사 다층 스택(12)을 포함하는, EUV 마스크 블랭크로부터 형성된 통상적인 EUV 반사 마스크(10)를 도시한 것이다. 통상적인 EUV 반사 마스크(10)의 마스킹된(비-반사) 영역들(16)은 버퍼층(18) 및 흡수층(20)을 에칭함으로써 형성된다. 흡수층은 통상적으로, 51 nm 내지 77 nm 범위의 두께를 갖는다. 캡핑층(22)은 반사 다층 스택(12) 위에 형성되고, 에칭 공정 동안 반사 다층 스택(12)을 보호한다. EUV 마스크 블랭크들은 다층들, 캡핑층 및 흡수층으로 코팅된 저 열팽창 재료 기판 상에서 제조되고, 이후에, 에칭되어 마스킹된(비-반사) 영역들(16) 및 반사 영역들(24)을 제공한다.
[0005] 도 1에 도시된 바와 같이, 기판(14)의 반대측 상에 통상적으로 크롬 니트라이드(CrN)의 코팅인 후면 코팅층(26)이 제공된다. 후면층은 저항률, 적절한 마찰 계수, 적절한 경도, 적절한 거칠기, 적절한 광학 밀도, 결함들의 결여, 및 불균일성을 제공해야 한다. 현재 해법, 즉, CrN 후면 코팅층은 처킹(chucking) 동안 원하는 것보다 더 높은 결함률을 야기시킨다. CrN은 또한, CrN의 비교적 낮은 전도성으로 인해, 원하는 두께보다 더 높은 두께가 필요하다. 감소된 두께를 제공하기 위해 티탄 붕소 합금들이 제안되었지만, 이러한 후면 코팅층들은 에칭 공정 동안 낮은 내구성을 나타내는 것으로 확인되었다. EUV 리소그래피가 진화함에 따라, 개선된 성질들을 지닌 후면층을 갖는 EUV 마스크 블랭크를 제공할 필요성이 대두되고 있다.
[0006] 본 개시의 하나 이상의 구체예들은 제1 측면 및 제2 측면을 갖는 기판, 기판의 제1 측면 상에 탄탈과 니켈의 합금을 포함하는 후면 코팅층, 기판의 제2 측면 상의 반사층들의 다층 스택으로서, 반사층 쌍들을 포함하는 복수의 반사층들을 포함하는 반사층들의 다층 스택, 반사층들의 다층 스택 상의 캡핑층, 및 캡핑층 상의 흡수체 층을 포함하는, 극자외선(EUV) 마스크 블랭크에 관한 것이다.
[0007] 본 개시의 추가 구체예들은 제1 측면 및 제2 측면을 갖는 기판을 제공하는 단계, 기판의 제1 측면 상에 탄탈과 니켈의 합금을 포함하는 후면 코팅층을 형성하는 단계, 기판의 제2 측면 상에 반사층들의 다층 스택을 형성하는 단계로서, 반사층들의 다층 스택은 복수의 반사층 쌍들을 포함하는 단계, 반사층들의 다층 스택 상에 캡핑층을 형성하는 단계, 및 캡핑층 상에 흡수체 층을 형성하는 단계를 포함하는, 극자외선(EUV) 마스크 블랭크를 제작하는 방법에 관한 것이다.
[0008] 본 개시의 추가 구체예들은 극자외선 광원, 및 제1 측면 및 제2 측면을 갖는 기판, 기판의 제1 측면 상의 탄탈과 니켈의 합금을 포함하는 후면 코팅층, 기판의 제2 측면 상의 다층 스택 및 다층 스택 위의 흡수체 층을 포함하는 80 nm 미만의 두께 및 13.5 nm의 파장에서 극자외선(EUV) 광의 2% 미만의 반사율을 갖는 레티클(reticle)로서, 후면 코팅층은 탄탈과 니켈의 합금을 포함하는 레티클을 포함하는, 극자외선(EUV) 리소그래피 시스템에 관한 것이다.
[0009] 본 개시의 상기 열거된 특징들이 상세히 이해될 수 있는 방식으로, 앞서 간략히 요약된 본 개시의 보다 구체적인 설명이 구체예들을 참조로 하여 이루어질 수 있는데, 이러한 구체예들의 일부는 첨부된 도면들에 예시되어 있다. 그러나 첨부된 도면들은 본 개시의 단지 전형적인 구체예들을 예시하는 것이므로 본 개시의 범위를 제한하는 것으로 간주되지 않아야 한다는 것이 주목되어야 하는데, 이는 본 개시가 다른 균등하게 유효한 구체예들을 허용할 수 있기 때문이다.
[0010] 도 1은 통상적인 후면 재료(CrN)를 이용하는 배경 기술 EUV 반사 마스크를 개략적으로 예시한 것이다.
[0011] 도 2는 EUV 리소그래피 시스템의 일 구체예를 개략적으로 예시한 것이다.
[0012] 도 3은 EUV 반사 요소 생산 시스템의 일 구체예를 예시한 것이다.
[0013] 도 4는 EUV 마스크 블랭크와 같은 EUV 반사 요소의 일 구체예를 예시한 것이다.
[0014] 도 5는 EUV 마스크 블랭크와 같은 EUV 반사 요소의 일 구체예를 예시한 것이다.
[0015] 도 6은 다중-캐소드 물리적 증착 챔버의 일 구체예를 예시한 것이다.
[0016] 본 개시의 여러 예시적인 구체예들을 기술하기 전에, 본 개시가 하기 설명에 기술되는 구성 또는 공정 단계들의 세부사항들로 제한되지 않는 것으로 이해되어야 한다. 본 개시는 다른 구체예들일 수 있고, 다양한 방식들로 실행되거나 수행될 수 있다.
[0017] 본원에서 사용되는 용어 "수평"은 이의 방향과는 무관하게, 마스크 블랭크의 면(plane) 또는 표면에 대해 평행한 면으로 정의된다. 용어 "수직"은 방금 정의된 바와 같은 수평에 대해 수직 방향을 지칭한다. "위," "아래," "하부," "상부," "측면"("측벽"에서와 같이), "높은," "낮은," "위," "위로(over)," 및 "아래"와 같은 용어들은 도면들에 도시된 바와 같이, 수평면에 대해 정의된다.
[0018] 용어 "...상(on)"은 요소들 간에 직접 접촉함을 나타내는 것이다. 용어 "... 상에 직접적으로"는 중간 요소들 없이 요소들 간에 직접 접촉함을 나타내는 것이다.
[0019] 하나 이상의 구체예들에 따른 본 명세서에서 사용되는 용어들 "전구체," "반응물," "반응성 가스," 등은 기판 표면과 반응하는 임의의 가스상 종(species)을 지칭하는 것으로 상호 교환 가능하게 사용된다.
[0020] 당업자는 공정 영역들을 기술하기 위해 "제1" 및 "제2"와 같은 서수들의 사용이 처리 챔버 내에서의 특정 위치, 또는 처리 챔버 내에서의 노출 순서를 의미하지 않는 것으로 이해할 것이다.
[0021] 본 명세서 및 첨부된 청구범위에서 사용되는 용어 "기판"은 표면, 또는 표면의 일부를 지칭하며, 이러한 표면에서 공정이 작용한다. 또한, 문맥이 달리 명확하게 명시하지 않는 한, 당업자는 기판에 대한 언급이 기판의 일부만을 지칭하는 것으로 이해할 것이다. 추가적으로, 기판 상의 증착에 대한 언급은 베어 기판(bare substrate), 및 그 위에 증착되거나 형성된 하나 이상의 막들 또는 피쳐들을 갖는 기판 둘 모두를 의미한다.
[0022] 도 2를 참조하면, 극자외선 리소그래피 시스템(100)의 예시적인 구체예가 도시되어 있다. 극자외선 리소그래피 시스템(100)은 극자외선 광(112)을 생성하기 위한 극자외선 광원(102), 한 세트의 반사 요소들, 및 타겟 웨이퍼(110)를 포함한다. 반사 요소들은 콘덴서(104), EUV 반사 마스크(106), 광학 축소 어셈블리(optical reduction assembly)(108), 마스크 블랭크, 거울, 또는 이들의 조합을 포함한다.
[0023] 극자외선 광원(102)은 극자외선 광(112)을 발생시킨다. 극자외선 광(112)은 5 내지 50 nm 범위의 파장을 갖는 전자기 방사선이다. 예를 들어, 극자외선 광원(102)은 레이저, 레이저 생성 플라즈마, 방전 생성 플라즈마, 자유 전자 레이저, 싱크로트론 방사선(synchroton radiation), 또는 이들의 조합을 포함한다.
[0024] 극자외선 광원(102)은 다양한 특징들을 갖는 극자외선 광(112)을 발생시킨다. 극자외선 광원(102)은 소정 범위의 파장들에 걸친 광대역 극자외선 방사선을 생성한다. 예를 들어, 극자외선 광원(102)은 5 내지 50 nm 범위의 파장들을 갖는 극자외선 광(112)을 발생시킨다.
[0025] 하나 이상의 구체예들에서, 극자외선 광원(102)은 협대역폭을 갖는 극자외선 광(112)을 생성한다. 예를 들어, 극자외선 광원(102)은 13.5 nm의 극자외선 광(112)을 발생시킨다. 파장 피크의 중심은 13.5 nm이다.
[0026] 콘덴서(104)는 극자외선 광(112)을 반사시키고 포커싱하기 위한 광학 유닛이다. 콘덴서(104)는 EUV 반사 마스크(106)를 비추기 위해 극자외선 광원(102)으로부터의 극자외선 광(112)을 반사시키고 집중시킨다.
[0027] 콘덴서(104)가 단일 요소로서 도시되어 있지만, 일부 구체예들에서 콘덴서(104)가 극자외선 광(112)을 반사시키고 집중시키기 위한, 오목 거울들, 볼록 거울들, 평면 거울들, 또는 이들의 조합과 같은 하나 이상의 반사 요소들을 포함하는 것으로 이해된다. 예를 들어, 일부 구체예들에서 콘덴서(104)는 단일 오목 거울, 또는 볼록, 오목, 및 평면 광학 요소들을 갖는 광학 어셈블리이다.
[0028] EUV 반사 마스크(106)는 마스크 패턴(114)을 갖는 극자외선 반사 요소이다. EUV 반사 마스크(106)는 타겟 웨이퍼(110) 상에 형성되는 회로 레이아웃(circuitry layout)을 형성하기 위해 리소그래피 패턴을 생성시킨다. EUV 반사 마스크(106)는 극자외선 광(112)을 반사시킨다. 마스크 패턴(114)은 회로 레이아웃의 일부를 규정한다.
[0029] 광학 축소 어셈블리(108)는 마스크 패턴(114)의 이미지를 축소시키기 위한 광학 유닛이다. EUV 반사 마스크(106)로부터의 극자외선 광(112)의 반사는 광학 축소 어셈블리(108)에 의해 줄고, 타겟 웨이퍼(110) 상으로 반사된다. 일부 구체예들에서, 광학 축소 어셈블리(108)는 거울들 및 마스크 패턴(114)의 이미지 크기를 축소시키기 위한 다른 광학 요소들을 포함한다. 예를 들어, 광학 축소 어셈블리(108)는 극자외선 광(112)을 반사시키고 포커싱시키기 위한 오목 거울들을 포함한다.
[0030] 광학 축소 어셈블리(108)는 타겟 웨이퍼(110) 상의 마스크 패턴(114)의 이미지 크기를 축소시킨다. 예를 들어, 일부 구체예들에서, 마스크 패턴(114)은 타겟 웨이퍼(110) 상에 마스크 패턴(114)으로 표현되는 회로를 형성하기 위해 타겟 웨이퍼(110) 상에 광학 축소 어셈블리(108)에 의해 4:1 비로 이미지화된다. 극자외선 광(112)은 타겟 웨이퍼(110) 상에 마스크 패턴(114)을 형성하기 위해 타겟 웨이퍼(110)와 동시에 EUV 반사 마스크(106)를 스캔한다.
[0031] 도 3을 참조하면, 극자외선 반사 요소 생산 시스템(200)의 일 구체예가 도시되어 있다. 극자외선 반사 요소는 EUV 마스크 블랭크(204), 극자외선 거울(205), 또는 다른 반사 요소, 예를 들어, EUV 반사 마스크(106)를 포함한다.
[0032] 극자외선 반사 요소 생산 시스템(200)은 도 2의 극자외선 광(112)을 반사시키는 마스크 블랭크들, 거울들, 또는 다른 요소들을 생산한다. 극자외선 반사 요소 생산 시스템(200)은 얇은 코팅들을 소스 기판들(203)에 적용함으로써 반사 요소들을 제작한다.
[0033] 도 3을 참조하면, EUV 마스크 블랭크(204)는 도 2의 EUV 반사 마스크(106)를 형성하기 위한 다층 구조이다. 일부 구체예들에서, EUV 마스크 블랭크(204)는 반도체 제작 기술들을 이용하여 형성된다. EUV 반사 마스크(106)는 에칭 및 다른 공정들에 의해 EUV 마스크 블랭크(204) 상에 형성된 도 2의 마스크 패턴(114)을 갖는다.
[0034] 극자외선 거울(205)은 소정 범위의 극자외선 광을 반사시키는 다층 구조이다. 일부 구체예들에서, 극자외선 거울(205)은 반도체 제작 기술들을 이용하여 형성된다. EUV 마스크 블랭크(204) 및 극자외선 거울(205)은 일부 구체예들에서 각 요소 상에 형성된 층들에 대해 유사한 구조들이지만, 극자외선 거울(205)은 마스크 패턴(114)을 가지지 않는다.
[0035] 반사 요소들은 극자외선 광(112)의 효율적인 반사체들이다. 일 구체예에서, EUV 마스크 블랭크(204) 및 극자외선 거울(205)은 60% 초과의 극자외선 반사율을 갖는다. 반사 요소들은 일반적으로 이러한 것들이 극자외선 광(112)을 60% 넘게 반사하는 경우에 효율적인 것으로 사료된다.
[0036] 극자외선 반사 요소 생산 시스템(200)은 웨이퍼 로딩 및 캐리어 조작 시스템(202)을 포함하는데, 이러한 웨이퍼 로딩 및 캐리어 조작 시스템(202)에 소스 기판들(203)이 로딩되고 이로부터 반사 요소들이 언로딩된다. 대기 조작 시스템(206)은 웨이퍼 조작 진공 챔버(208)로의 접근을 제공한다. 웨이퍼 로딩 및 캐리어 조작 시스템(202)은 일부 구체예들에서 기판 수송 박스들, 로드록들, 및 기판을 대기로부터 시스템 내측의 진공으로 전달하기 위한 다른 부품들을 포함한다. EUV 마스크 블랭크(204)가 매우 작은 스케일의 소자들을 형성하기 위해 사용되기 때문에, 소스 기판들(203) 및 EUV 마스크 블랭크(204)는 오염 및 다른 결함들을 방지하기 위해 진공 시스템에서 처리된다.
[0037] 일부 구체예들에서 웨이퍼 조작 진공 챔버(208)는 2개의 진공 챔버들, 제1 진공 챔버(210) 및 제2 진공 챔버(212)를 포함한다. 제1 진공 챔버(210)는 제1 웨이퍼 조작 시스템(214)을 포함하며, 제2 진공 챔버(212)는 제2 웨이퍼 조작 시스템(216)을 포함한다. 웨이퍼 조작 진공 챔버(208)가 2개의 진공 챔버들을 갖는 것으로 기술되어 있지만, 하나 이상의 구체예들의 시스템이 임의의 수의 진공 챔버들을 갖는 것으로 이해된다.
[0038] 웨이퍼 조작 진공 챔버(208)는 일부 구체예들에서 다양한 다른 시스템들의 부착을 위한 복수의 포트들을 챔버의 원주 둘레에 갖는다. 제1 진공 챔버(210)는 탈기 시스템(218), 제1 물리 기상 증착 시스템(220), 제2 물리 기상 증착 시스템(222), 및 전-세정 시스템(224)을 갖는다. 탈기 시스템(218)은 기판들로부터 수분을 열적으로 탈착시키기 위한 것이다. 전-세정 시스템(224)은 웨이퍼들, 마스크 블랭크들, 거울들, 또는 다른 광학 부품들의 표면들을 세정하기 위한 것이다.
[0039] 물리 기상 증착 시스템들, 예를 들어, 제1 물리 기상 증착 시스템(220) 및 제2 물리 기상 증착 시스템(222)은 일부 구체예들에서, 소스 기판들(203) 상에 전도성 재료들의 얇은 막들을 형성하기 위해 사용된다. 예를 들어, 일부 구체예들에서 물리 기상 증착 시스템들은 진공 증착 시스템, 예를 들어, 마그네트론 스퍼터링 시스템들, 이온 스퍼터링 시스템들, 펄스 레이저 증착, 캐소드 아크 증착, 또는 이들의 조합을 포함한다. 물리 기상 증착 시스템들, 예를 들어, 마그네트론 스퍼터링 시스템은 규소, 금속들, 합금들, 화합물들, 또는 이들의 조합의 층들을 포함하는 소스 기판들(203) 상에 얇은 층들을 형성한다.
[0040] 물리 기상 증착 시스템은 반사층들, 캡핑층들, 및 흡수체 층들을 형성한다. 예를 들어, 일부 구체예들의 물리 기상 증착 시스템들은 규소, 몰리브덴, 티탄 옥사이드, 티탄 디옥사이드, 루테늄 옥사이드, 니오븀 옥사이드, 루테늄 텅스텐, 루테늄 몰리브덴, 루테늄 니오븀, 크롬, 탄탈, 니트라이드들, 화합물들, 또는 이들의 조합의 층들을 형성한다. 일부 화합물들이 옥사이드로서 기술되었지만, 일부 구체예들의 화합물들이 옥사이드들, 디옥사이드들, 산소 원자들을 갖는 원자 혼합물들 또는 이들의 조합을 포함하는 것으로 이해된다.
[0041] 제2 진공 챔버(212)는 여기에 연결된 제1 다중-캐소드 소스(226), 화학 기상 증착 시스템(228), 경화 챔버(230), 및 초-평활 증착 챔버(ultra-smooth deposition chamber)(232)를 갖는다. 예를 들어, 일부 구체예들의 화학 기상 증착 시스템(228)은 유동성 화학 기상 증착 시스템(flowable chemical vapor deposition system; FCVD), 플라즈마 보조((plasma assisted) 화학 기상 증착 시스템(CVD), 에어로졸 보조 CVD, 핫 필라멘트 CVD 시스템, 또는 유사한 시스템을 포함한다. 다른 예에서, 화학 기상 증착 시스템(228), 경화 챔버(230), 및 초-평활 증착 챔버(232)는 일부 구체예들에서 극자외선 반사 요소 생산 시스템(200)으로부터 별도의 시스템에 있다.
[0042] 일부 구체예들의 화학 기상 증착 시스템(228)은 소스 기판들(203) 상에 재료의 얇은 막들을 형성한다. 예를 들어, 일부 구체예들에서 화학 기상 증착 시스템(228)은 단결정질 층들, 다결정질 층들, 비정질 층들, 에피택셜 층들, 또는 이들의 조합을 포함하는 소스 기판들(203) 상에 재료들의 층들을 형성하기 위해 사용된다. 일부 구체예들의 화학 기상 증착 시스템(228)은 규소, 규소 옥사이드들, 규소 옥시카바이드, 탄소, 텅스텐, 규소 카바이드, 규소 니트라이드, 티탄 니트라이드, 금속들, 합금들, 및 화학 기상 증착을 위해 적합한 다른 재료들의 층들을 형성한다. 예를 들어, 일부 구체예들의 화학 기상 증착 시스템은 평탄화 층들을 형성한다.
[0043] 제1 웨이퍼 조작 시스템(214)은 대기 조작 시스템(206)과 연속 진공 중에서의 제1 진공 챔버(210)의 원주 둘레의 다양한 시스템들 사이로 소스 기판들(203)을 이동시킬 수 있다. 제2 웨이퍼 조작 시스템(216)은 연속 진공 중에서 소스 기판들(203)을 유지시키면서 제2 진공 챔버(212) 둘레로 소스 기판들(203)을 이동시킬 수 있다. 일부 구체예들의 극자외선 반사 요소 생산 시스템(200)은 연속 진공 중에서 제1 웨이퍼 조작 시스템(214), 제2 웨이퍼 조작 시스템(216) 사이로 소스 기판들(203) 및 EUV 마스크 블랭크(204)를 전달한다.
[0044] 도 4를 참조하면, 극자외선 반사 요소(302)의 구체예가 도시된다. 하나 이상의 구체예들에서, 극자외선 반사 요소(302)는 도 3의 EUV 마스크 블랭크(204) 또는 도 3의 극자외선 거울(205)이다. EUV 마스크 블랭크(204) 및 극자외선 거울(205)은 도 2의 극자외선 광(112)을 반사시키기 위한 구조들이다. 일부 구체예들에서 EUV 마스크 블랭크(204)는 도 2에 도시된 EUV 반사 마스크(106)를 형성하기 위해 사용된다.
[0045] 극자외선 반사 요소(302)는 기판(304), 반사층들의 다층 스택(306), 및 캡핑층(308)을 포함한다. 하나 이상의 구체예들에서, 극자외선 거울(205)은 도 2의 콘덴서(104) 또는 도 2의 광학 축소 어셈블리(108)에서 사용하기 위한 반사 구조들을 형성하기 위해 사용된다.
[0046] 일부 구체예들에서 EUV 마스크 블랭크(204)인 극자외선 반사 요소(302)는 기판(304), 반사층들의 다층 스택(306), 캡핑층(308), 및 흡수체 층(310)을 포함한다. 극자외선 반사 요소(302)는 일부 구체예들에서 EUV 마스크 블랭크(204)이며, 이는 요망되는 회로의 레이아웃으로 흡수체 층(310)을 패턴화함으로써 도 2의 EUV 반사 마스크(106)를 형성하기 위해 사용된다. 흡수체 층은 특정 구체예들에서 예를 들어, 탄탈 옥시니트라이드 및 탄탈 붕소 옥사이드로부터 선택된 반사방지 코팅과 같은 반사방지 코팅(미도시됨)으로 코팅된다.
[0047] 하기 섹션들에서, EUV 마스크 블랭크(204)에 대한 용어는 단순화를 위해 극자외선 거울(205)의 용어와 상호 교환 가능하게 사용된다. 하나 이상의 구체예들에서, EUV 마스크 블랭크(204)는 도 2의 마스크 패턴(114)을 형성하기 위해 추가로 부가된 흡수체 층(310)과 함께 극자외선 거울(205)의 부품들을 포함한다.
[0048] EUV 마스크 블랭크(204)는 집적 회로의 처리층을 나타내는, 마스크 패턴(114)을 갖는 EUV 반사 마스크(106)를 형성하기 위해 사용되는 광학적으로 평평한 구조이다. 반사 마스크(106)는 일단 완전히 처리되면, 일부 구체예들에서 레티클로서 지칭된다. 하나 이상의 구체예들에서, EUV 마스크 블랭크(204)의 반사 표면은 도 2의 극자외선 광(112)과 같은, 입사광을 반사시키기 위한 평평한 초점면을 형성한다.
[0049] 도 4를 참조하면, 기판(304)은 극자외선 반사 요소(302)에 구조 지지체를 제공하기 위한 요소이다. 하나 이상의 구체예들에서, 기판(304)은 온도 변화 동안 안정성을 제공하기 위해 낮은 열팽창 계수(CTE)를 갖는 재료로 제조된다. 하나 이상의 구체예들에서, 기판(304)은 기계적 사이클링에 대한 안정성, 열 사이클링, 결정 형성, 또는 이들의 조합과 같은 특성들을 갖는다. 하나 이상의 구체예들에 따른 기판(304)은 예를 들어, 규소, 유리, 옥사이드들, 세라믹들, 유리 세라믹들, 또는 이들의 조합과 같은 재료로 형성된다.
[0050] 다층 스택(306)은 극자외선 광(112)에 대해 반사성인 구조이다. 다층 스택(306)은 제1 반사층(312) 및 제2 반사층(314)의 교번 반사층들을 포함한다. 제1 반사층(312) 및 제2 반사층(314)은 도 4의 반사 쌍(316)을 형성한다. 비제한적인 구체예에서, 다층 스택(306)은 총 최대 120개의 반사층들의 경우에 20 내지 60개 범위의 반사 쌍들(316)을 포함한다.
[0051] 제1 반사층(312) 및 제2 반사층(314)은 일부 구체예들에서 다양한 재료들로 형성된다. 일 구체예에서, 제1 반사층(312) 및 제2 반사층(314)은 각각 규소 및 몰리브덴으로 형성된다. 층들이 규소 및 몰리브덴으로서 나타나지만, 교번 층들이 일부 구체예들에서 다른 재료들로 형성되거나 다른 내부 구조들을 갖는 것으로 이해된다.
[0052] 제1 반사층(312) 및 제2 반사층(314)은 다양한 구체예들에 따른 다양한 구조들을 갖는다. 일 구체예에서, 제1 반사층(312) 및 제2 반사층(314) 둘 모두는 단일층, 다중 층들, 분할 층 구조, 불균일 구조들, 또는 이들의 조합으로 형성된다.
[0053] 대부분의 재료들이 극자외선 파장들의 광을 흡수하기 때문에, 사용된 광학 요소들은 다른 리소그래피 시스템들에서 사용되는 바와 같이 투과형이기 보다는 반사형이다. 다층 스택(306)은 브래그 반사체 또는 거울을 생성하기 위해 상이한 광학적 특성들을 갖는 재료들의 얇은 교번 층들을 가짐으로써 반사 구조를 형성한다.
[0054] 일 구체예에서, 교번 층들 각각은 극자외선 광(112)에 대한 유사하지 않은 광학 상수들을 갖는다. 교번 층들은 교번 층들의 두께의 주기(period)가 극자외선 광(112)의 파장의 절반일 때 공명 반사율을 제공한다. 일 구체예에서, 13 nm의 파장의 극자외선 광(112)에 대해, 교번 층들은 약 6.5 nm 두께를 갖는다. 제공된 크기들 및 치수들이 통상적인 요소들에 대한 일반적인 엔지니어링 허용 오차들 내에 있는 것으로 이해된다.
[0055] 일부 구체예들에서 다층 스택(306)은 다양한 방식들로 형성된다. 일 구체예에서, 제1 반사층(312) 및 제2 반사층(314)은 마그네트론 스퍼터링, 이온 스퍼터링 시스템들, 펄스 레이저 증착, 캐소드 아크 증착, 또는 이들의 조합으로 형성된다.
[0056] 예시적인 구체예에서, 다층 스택(306)은 물리 기상 증착 기술, 예를 들어, 마그네트론 스퍼터링을 이용하여 형성된다. 일 구체예에서, 다층 스택(306)의 제1 반사층(312) 및 제2 반사층(314)은 정밀한 두께, 낮은 거칠기, 및 층들 사이의 깨끗한 계면들을 포함하는 마그네트론 스퍼터링 기술에 의해 형성되는 특징들을 갖는다. 일 구체예에서, 다층 스택(306)의 제1 반사층(312) 및 제2 반사층(314)은 정밀한 두께, 낮은 거칠기, 및 층들 사이의 깨끗한 계면들을 포함하는 물리 기상 증착에 의해 형성되는 특징들을 갖는다.
[0057] 일부 구체예들에서 물리 기상 증착 기술을 이용하여 형성된 다층 스택(306)의 층들의 물리적 치수들은 반사율을 증가시키기 위해 정밀하게 제어된다. 일 구체예에서, 제1 반사층(312), 예를 들어, 규소 층은 4.1 nm의 두께를 갖는다. 제2 반사층(314), 예를 들어, 몰리브덴 층은 2.8 nm의 두께를 갖는다. 층들의 두께는 극자외선 반사 요소의 피크 반사율 파장에 영향을 준다. 층들의 두께가 부정확한 경우, 일부 구체예들에서 13.5 nm의 요망되는 파장에서의 반사율이 감소된다.
[0058] 일 구체예에서, 다층 스택(306)은 60% 초과의 반사율을 갖는다. 일 구체예에서, 물리 기상 증착을 이용하여 형성된 다층 스택(306)은 66% 내지 67% 범위의 반사율을 갖는다. 하나 이상의 구체예들에서, 더 경질의 재료들로 형성된 다층 스택(306) 위에 캡핑층(308)을 형성하는 것은 반사율을 개선한다. 일부 구체예들에서, 70% 초과의 반사율은 낮은 거칠기 층들, 층들 사이의 깨끗한 계면들, 개선된 층 재료들, 또는 이들의 조합을 이용하여 달성된다.
[0059] 하나 이상의 구체예들에서, 캡핑층(308)은 극자외선 광(112)을 투과시킬 수 있는 보호층이다. 일 구체예에서, 캡핑층(308)은 다층 스택(306) 바로 위에 형성된다. 하나 이상의 구체예들에서, 캡핑층(308)은 다층 스택(306)을 오염물들 및 기계적 손상으로부터 보호한다. 일 구체예에서, 다층 스택(306)은 산소, 탄소, 탄화수소들, 또는 이들의 조합에 의한 오염에 대해 민감하다. 일 구체예에 따른 캡핑층(308)은 오염물들과 상호작용하여 이러한 것들을 중화시킨다.
[0060] 하나 이상의 구체예들에서, 캡핑층(308)은 극자외선 광(112)에 대해 투명한 광학적으로 균일한 구조이다. 극자외선 광(112)은 캡핑층(308)으로 통과하여 다층 스택(306)에서 반사된다. 하나 이상의 구체예들에서, 캡핑층(308)은 1% 내지 2%의 총 반사율 손실을 갖는다. 하나 이상의 구체예들에서, 상이한 재료들 각각은 두께에 따라 상이한 반사율 손실을 가지지만, 이러한 것들 모두는 1% 내지 2%의 범위일 것이다.
[0061] 하나 이상의 구체예들에서, 캡핑층(308)은 매끄러운 표면을 갖는다. 예를 들어, 캡핑층(308)의 표면은 0.2 nm 미만 RMS(평균 제곱근 측정치)(root mean square measure))의 거칠기를 갖는다. 다른 예에서, 캡핑층(308)의 표면은 1/100 nm 내지 1/1 ㎛ 범위의 길이에 대해 0.08 nm RMS의 거칠기를 갖는다. RMS 거칠기는 측정되는 범위에 따라 달라질 것이다. 100 nm 내지 1 마이크론의 특정 범위에 대해, 거칠기는 0.08 nm 이하이다. 범위가 클수록, 거칠기는 증가할 것이다.
[0062] 일부 구체예들에서 캡핑층(308)은 다양한 방법들로 형성된다. 일 구체예에서, 캡핑층(308)은 마그네트론 스퍼터링, 이온 스퍼터링 시스템들, 이온 빔 증발, 전자 빔 증착, 무선 주파수(RF) 스퍼터링, 원자층 증착(ALD), 펄스 레이저 증착, 캐소드 아크 증착, 또는 이들의 조합을 이용하여 다층 스택(306) 상에 형성되거나 다층 스택(306) 바로 위에 형성된다. 하나 이상의 구체예들에서, 캡핑층(308)은 정밀한 두께, 낮은 거칠기, 및 층들 사이의 깨끗한 계면들을 포함하는, 마그네트론 스퍼터링 기술에 의해 형성되는 물리적 특징들을 갖는다. 일 구체예에서, 캡핑층(308)은 정밀한 두께, 낮은 거칠기, 및 층들 사이의 깨끗한 계면들을 포함하는, 물리 기상 증착에 의해 형성되는 물리적 특징들을 갖는다.
[0063] 하나 이상의 구체예들에서, 캡핑층(308)은 세정 동안 부식에 저항하기에 충분한 경도를 갖는 다양한 재료들로 형성된다. 일 구체예에서, 루테늄은 양호한 에칭 스톱(stop)이고 작업 조건들 하에서 비교적 불활성이기 때문에, 캡핑층 재료로서 사용된다. 그러나, 일부 구체예들에서, 다른 재료들이 캡핑층(308)을 형성하기 위해 사용되는 것으로 이해된다. 특정 구체예들에서, 캡핑층(308)은 2.5 내지 5.0 nm 범위의 두께를 갖는다.
[0064] 하나 이상의 구체예들에서, 흡수체 층(310)은 극자외선 광(112)을 흡수하는 층이다. 일 구체예에서, 흡수체 층(310)은 극자외선 광(112)을 반사시키지 않는 영역들을 제공함으로써 EUV 반사 마스크(106) 상에 패턴을 형성하기 위해 사용된다. 흡수체 층(310)은, 하나 이상의 구체예들에 따르면, 약 13.5 nm와 같은, 극자외선 광(112)의 특정 주파수에 대한 높은 흡수 계수를 갖는 재료를 포함한다. 일 구체예에서, 흡수체 층(310)은 캡핑층(308) 바로 위에 형성되며, 흡수체 층(310)은 EUV 반사 마스크(106)의 패턴을 형성하기 위해 포토리소그래피 공정을 이용하여 에칭된다.
[0065] 하나 이상의 구체예들에 따르면, 극자외선 반사 요소(302), 예를 들어, 극자외선 거울(205)은 기판(304), 다층 스택(306), 및 캡핑층(308)으로 형성된다. 극자외선 거울(205)은 광학적으로 평평한 표면을 가지고, 극자외선 광(112)을 효율적이고 균일하게 반사시킬 수 있다.
[0066] 하나 이상의 구체예들에 따르면, 극자외선 반사 요소(302), 예를 들어, EUV 마스크 블랭크(204)는 후면 코팅층(318), 기판(304), 다층 스택(306), 캡핑층(308), 및 흡수체 층(310)으로 형성된다. 마스크 블랭크(204)는 광학적으로 평평한 표면을 가지고, 극자외선 광(112)을 효율적이고 균일하게 반사시킬 수 있다. 일 구체예에서, 마스크 패턴(114)은 EUV 마스크 블랭크(204)의 흡수체 층(310)으로 형성된다.
[0067] 하나 이상의 구체예들에 따르면, 캡핑층(308) 위에 흡수체 층(310)의 형성은 EUV 반사 마스크(106)의 신뢰성을 증가시킨다. 캡핑층(308)은 흡수체 층(310)을 위한 에칭 스톱층으로서 작용한다. 도 2의 마스크 패턴(114)이 흡수체 층(310)으로 에칭될 때, 흡수체 층(310) 아래 캡핑층(308)은 다층 스택(306)을 보호하기 위해 에칭 작용을 중지시킨다. 하나 이상의 구체예들에서, 흡수체 층(310)은 캡핑층(308)에 대해 에칭 선택적이다. 일부 구체예들에서, 캡핑층(308)은 루테늄을 포함하며, 흡수체 층(310)은 루테늄에 대해 에칭 선택적이다. 일 예로서, 흡수체 층(310)은 탄탈 니트라이드를 포함한다. 하나 이상의 구체예들에서, 흡수체 층은 물리적 증착 챔버에서 동시-스퍼터링된다. 다른 구체예들에서, 흡수체 층은 제1 재료 및 제2 재료의 라미네이트로서 층별로 증착된다.
[0068] 기판(304)의 하부면에는 후면 코팅층(318)이 제공되며, 후면 코팅층(318)은 탄탈과 니켈의 합금을 포함한다. 일 구체예에서, 후면 코팅층(318)은 비정질 막이다.
[0069] 후면 코팅층(318)에 포함된, 탄탈과 니켈의 합금은 다른 재료들을 포함한 후면 코팅층들보다 비교적 더 얇은 두께 모두에서 적합한 마찰 계수(μ) 및 저항률을 유지하면서 내구성을 개선시키기 위한 경도를 제공한다. 본 발명의 탄탈과 니켈의 합금은 또한, 후면 코팅층에 포함될 때, 기존에 후면 코팅층들로서 사용된 CrN 및 다른 재료들에 비해 장점들을 제공하는 경도, 거칠기, 및 광학 밀도를 제공한다. 유사하게, 본 발명의 탄탈과 니켈의 합금은 결함들에 덜 취약하고 적합한 불균일성을 갖는 후면 코팅층을 형성한다.
[0070] 일 구체예에서, 후면 코팅층(26)은 0.1 nm 내지 약 50 nm, 또는 약 0.1 내지 약 40 nm, 또는 약 0.1 내지 약 30 nm, 또는 약 0.1 내지 약 25 nm, 또는 약 0.1 내지 약 20 nm 범위의 두께를 포함한다. 주지된 바와 같이, 특정 구체예들에서, 탄탈과 니켈의 합금은 이러한 다른 재료들과 적어도 실질적으로 유사한 성능, 또는 이에 비해 우수한 성능을 유지하면서, 다른 재료들을 포함한 후면 코팅층들과 비교하여, 더 얇은 두께들로 후면 코팅층을 제공할 수 있다.
[0071] 하나 이상의 구체예들에서, 탄탈과 니켈의 합금은 약 70 중량% 내지 약 85 중량% 탄탈 및 약 15 중량% 내지 약 30 중량% 니켈을 갖는 합금, 약 45 중량% 내지 약 55 중량% 탄탈 및 약 45 중량% 내지 약 55 중량% 니켈을 갖는 합금, 및 약 30 중량% 내지 약 45 중량% 탄탈 및 약 55 중량% 내지 약 70 중량% 니켈을 갖는 합금으로부터 선택되며, 모든 중량 퍼센트(중량%)는 합금의 총 중량을 기준으로 한 것이다.
[0072] 다른 구체예들에서, 탄탈과 니켈의 합금은 약 70 중량% 내지 약 75 중량% 탄탈 및 약 25 중량% 내지 약 30 중량% 니켈을 갖는 합금, 약 48 중량% 내지 약 55 중량% 탄탈 및 약 45 중량% 내지 약 52 중량% 니켈을 갖는 합금, 및 약 35 중량% 내지 약 45 중량% 탄탈 및 약 55 중량% 내지 약 65 중량% 니켈을 갖는 합금으로부터 선택되며, 모든 중량 퍼센트(중량%)는 합금의 총 중량을 기준으로 한 것이다.
[0073] 특정 구체예에서, 탄탈과 니켈의 합금은 탄탈 풍부 합금이다. 본원에서 사용되는 용어 "탄탈 풍부"는 합금에서 탄탈의 양이 니켈보다 더 큰 것을 의미한다. 예를 들어, 특정 구체예에서, 탄탈과 니켈의 합금은 약 70 중량% 내지 약 85 중량% 탄탈 및 약 15 중량% 내지 약 30 중량% 니켈을 갖는 합금이다. 다른 특정 구체예에서, 탄탈과 니켈의 합금은 약 70 중량% 내지 약 75 중량% 탄탈 및 약 25 중량% 내지 약 30 중량% 니켈을 갖는 합금이다.
[0074] 다른 특정 구체예에서, 탄탈과 니켈의 합금은 동일 비율 합금이다. 본원에서 사용되는 용어 "동일 비율"은 합금에 중량 기준으로 대략 동일한 양의 탄탈 및 니켈이 존재하는 것을 의미한다. 예를 들어, 구체예에서, 탄탈과 니켈의 합금은 약 45 중량% 내지 약 55 중량% 탄탈 및 약 45 중량% 내지 약 55 중량% 니켈을 갖는 합금이다. 다른 구체예에서, 탄탈과 니켈의 합금은 약 48 중량% 내지 약 55 중량% 탄탈 및 약 45 중량% 내지 약 52 중량% 니켈을 갖는 합금이다.
[0075] 또 다른 특정 구체예에서, 탄탈과 니켈의 합금은 니켈 풍부 합금이다. 본원에서 사용되는 용어 "니켈 풍부"는 합금에서 니켈의 양이 탄탈보다 더 큰 것을 의미한다. 예를 들어, 일 구체예에서, 탄탈과 니켈의 합금은 약 30 중량% 내지 약 45 중량% 탄탈 및 약 55 중량% 내지 약 70 중량% 니켈을 갖는 합금이다. 다른 구체예에서, 탄탈과 니켈의 합금은 약 35 중량% 내지 약 45 중량% 탄탈 및 약 55 중량% 내지 약 65 중량% 니켈을 갖는 합금이다.
[0076] 하나 이상의 구체예들에서, 탄탈과 니켈의 합금은 도펀트를 포함한다. 도펀트는 붕소, 질소 또는 산소 중 하나 이상으로부터 선택될 수 있다. 일 구체예에서, 도펀트는 산소를 포함한다. 대안적인 구체예에서, 도펀트는 질소를 포함한다. 대안적인 구체예에서, 도펀트는 붕소를 포함한다. 일 구체예에서, 도펀트는 붕소, 질소 및 산소 중 하나 이상의 조합물을 포함한다(예를 들어, 붕소 및 질소, 붕소 및 산소, 산소 및 질소, 질소 및 붕소).
[0077] 일 구체예에서, 도펀트는 합금의 중량을 기준으로 약 0.1 중량% 내지 약 10 중량% 범위의 양으로 합금에 존재한다. 다른 구체예들에서, 도펀트는 합금에 약 0.1 중량%, 0.2 중량%, 0.3 중량%, 0.4 중량%, 0.5 중량%, 0.6 중량%, 0.7 중량%. 0.8 중량%, 0.9 중량%, 1.0 중량%, 1.1 중량%, 1.2 중량%, 1.3 중량%, 1.4 중량%, 1.5 중량%, 1.6 중량%, 1.7 중량%. 1.8 중량%, 1.9 중량%, 2.0 중량%, 2.1 중량%, 2.2 중량%, 2.3 중량%, 2.4 중량%, 2.5 중량%, 2.6 중량%, 2.7 중량%. 2.8 중량%, 2.9 중량%, 3.0 중량%, 3.1 중량%, 3.2 중량%, 3.3 중량%, 3.4 중량%, 3.5 중량%, 3.6 중량%, 3.7 중량%. 3.8 중량%, 3.9 중량%, 4.0 중량%, 4.1 중량%, 4.2 중량%, 4.3 중량%, 4.4 중량%, 4.5 중량%, 4.6 중량%, 4.7 중량%. 4.8 중량%, 4.9 중량%, 5.0 중량%, 5.1 중량%, 5.2 중량%, 5.3 중량%, 5.4 중량%, 5.5 중량%, 5.6 중량%, 5.7 중량%, 5.8 중량%, 5.9 중량%, 6.0 중량%, 6.1 중량%, 6.2 중량%, 6.3 중량%, 6.4 중량%, 6.5 중량%, 6.6 중량%, 6.7 중량%, 6.8 중량%, 6.9 중량%, 7.0 중량%, 7.1 중량%, 7.2 중량%, 7.3 중량%, 7.4 중량%, 7.5 중량%, 7.6 중량%, 7.7 중량%, 7.8 중량%, 7.9 중량%, 8.0 중량%, 8.1 중량%, 8.2 중량%, 8.3 중량%, 8.4 중량%, 8.5 중량%, 8.6 중량%, 8.7 중량%, 8.8 중량%, 8.9 중량%, 9.0 중량%, 9.1 중량%, 9.2 중량%, 9.3 중량%, 9.4 중량%, 9.5 중량%, 9.6 중량%, 9.7 중량%, 9.8 중량%, 9.9 중량%, 또는 10.0 중량%의 양으로 존재한다.
[0078] 하나 이상의 구체예들에서, 후면 코팅층의 합금은 훨씬 더 얇은 후면 코팅층 두께(예를 들어, 30 nm 미만)를 제공하는, 물리적 증착 챔버에서 형성된 동시-스퍼터링된 합금이다. 하나 이상의 구체예들에서, 후면 코팅층의 합금은 아르곤(Ar), 산소(O2), 또는 질소(N2) 중 하나 이상으로부터 선택된 가스들에 의해 동시-스퍼터링된다. 일 구체예에서, 후면 코팅층의 합금은 아르곤 가스와 산소 가스의 혼합물(Ar + O2)에 의해 동시-스퍼터링된다. 일부 구체예들에서, 아르곤과 산소의 혼합물에 의한 동시-스퍼터링은 니켈 옥사이드 및/또는 탄탈 옥사이드를 형성한다. 다른 구체예들에서, 아르곤과 산소의 혼합물에 의한 동시-스퍼터링은 니켈 또는 탄탈의 옥사이드를 형성하지 않는다. 일 구체예에서, 후면 코팅층의 합금은 아르곤 가스와 질소 가스의 혼합물(Ar + N2)에 의해 동시-스퍼터링된다. 일부 구체예들에서, 아르곤과 질소의 혼합물에 의한 동시-스퍼터링은 니켈 니트라이드 및/또는 탄탈 니트라이드를 형성한다. 다른 구체예들에서, 아르곤과 질소의 혼합물에 의한 동시-스퍼터링은 니켈 또는 탄탈의 니트라이드를 형성하지 않는다. 일 구체예에서, 후면 코팅층의 합금은 아르곤 및 산소 및 질소 가스들의 혼합물(Ar + O2 + N2)에 의해 동시-스퍼터링된다. 일부 구체예들에서, 아르곤 및 산소 및 질소의 혼합물에 의한 동시-스퍼터링은 니켈의 옥사이드 및/또는 니트라이드 및/또는 탄탈의 옥사이드 및/또는 니트라이드를 형성한다. 다른 구체예들에서, 아르곤 및 산소 및 질소의 혼합물에 의한 동시-스퍼터링은 니켈 또는 탄탈의 옥사이드 또는 니트라이드를 형성하지 않는다. 일 구체예에서, 후면 코팅층의 에칭 특성들 및/또는 다른 특성들은 상기에 논의된 바와 같이, 합금 백분율(들)을 제어함으로써 사양에 맞게 조정된다. 일 구체예에서, 합금 백분율(들)은 물리 기상 증착 챔버의 전압, 압력, 흐름, 등과 같은 작업 파라미터들에 의해 정밀하게 제어된다. 일 구체예에서, 공정 가스는 재료 특성들을 추가로 개질시키기 위해 사용되며, 예를 들어, N2 가스가 탄탈과 니켈의 니트라이드들을 형성하기 위해 사용된다.
[0079] 하나 이상의 구체예들에서, 본원에서 사용되는 "동시-스퍼터링"은 2개의 타겟들, 즉, 니켈을 포함하는 하나의 타겟 및 탄탈을 포함하는 제2 타겟이 탄탈과 니켈의 합금을 포함하는 후면 코팅층을 증착/형성하기 위해 아르곤(Ar), 산소(O2), 또는 질소(N2)로부터 선택된 하나 이상의 가스를 사용하여 동시에 스퍼터링됨을 의미한다.
[0080] 다른 구체예들에서, 탄탈과 니켈의 합금은 아르곤(Ar), 산소(O2), 또는 질소(N2) 중 하나 이상으로부터 선택된 가스들을 사용하여 탄탈과 니켈 층들의 라미네이트로서 층별로 증착된다. 일 구체예에서, 탄탈과 니켈은 아르곤 및 산소 가스들의 혼합물(Ar + O2)을 사용하여 탄탈과 니켈 층들의 라미네이트로서 층별로 증착된다. 일부 구체예들에서, 아르곤과 산소의 혼합물을 사용한 층별 증착은 니켈의 옥사이드 및/또는 탄탈의 옥사이드를 형성한다. 다른 구체예들에서, 아르곤 및 산소의 혼합물을 사용한 층별 증착은 니켈 또는 탄탈의 옥사이드를 형성하지 않는다. 일 구체예에서, 후면 코팅층의 합금은 아르곤과 질소 가스들의 혼합물(Ar + N2)을 사용하여 탄탈과 니켈 층들의 라미네이트로서 층별로 증착된다. 일부 구체예들에서, 아르곤 및 질소의 혼합물을 사용한 층별 증착은 니켈의 니트라이드 및/또는 탄탈의 니트라이드를 형성한다. 다른 구체예들에서, 아르곤과 질소의 혼합물을 사용한 층별 증착은 니켈 또는 탄탈의 니트라이드를 형성하지 않는다. 일 구체예에서, 후면 코팅층의 합금은 아르곤 및 산소 및 질소 가스들의 혼합물(Ar + O2 + N2)을 사용하여 탄탈과 니켈 층들의 라미네이트로서 층별로 증착된다. 일부 구체예들에서, 아르곤 및 산소 및 질소의 혼합물을 사용한 층별 증착은 니켈의 옥사이드 및/또는 니트라이드 및/또는 탄탈의 옥사이드 및/또는 니트라이드를 형성한다. 다른 구체예들에서, 아르곤 및 산소 및 질소의 혼합물을 사용한 층별 증착은 니켈 또는 탄탈의 옥사이드 또는 니트라이드를 형성하지 않는다.
[0081] 하나 이상의 구체예들에서, 본원에 기술된 합금 조성물들의 벌크 타겟들이 제조될 수 있으며, 이는 아르곤(Ar), 산소(O2), 또는 질소(N2) 중 하나 이상으로부터 선택된 가스들을 사용하여 정상 스퍼터링에 의해 스퍼터링된다. 하나 이상의 구체예들에서, 탄탈과 니켈의 합금은 합금과 동일한 조성을 갖는 벌크 타겟을 사용하여 증착되고, 후면 코팅층을 형성하기 위해 아르곤(Ar), 산소(O2), 또는 질소(N2) 중 하나 이상으로부터 선택된 가스를 사용하여 스퍼터링된다. 일 구체예에서, 후면 코팅층의 합금은 합금과 동일한 조성을 갖는 벌크 타겟을 사용하여 증착되고, 아르곤 및 산소 가스들의 혼합물(Ar + O2)을 사용하여 스퍼터링된다. 일부 구체예들에서, 아르곤 및 산소의 혼합물을 사용한 벌크 타겟 증착은 니켈의 옥사이드 및/또는 탄탈의 옥사이드를 형성한다. 다른 구체예들에서, 아르곤 및 산소의 혼합물을 사용한 벌크 타겟 증착은 니켈 또는 탄탈의 옥사이드를 형성하지 않는다. 일 구체예에서, 후면 코팅층의 합금은 합금과 동일한 조성을 갖는 벌크 타겟을 사용하여 증착되고, 아르곤과 질소 가스들의 혼합물(Ar + N2)을 사용하여 스퍼터링된다. 일부 구체예들에서, 아르곤과 질소의 혼합물을 사용한 벌크 타겟 증착은 니켈의 니트라이드 및/또는 탄탈의 니트라이드를 형성한다. 다른 구체예들에서, 아르곤과 질소의 혼합물을 사용한 벌크 타겟 증착은 니켈 또는 탄탈의 니트라이드를 형성하지 않는다. 일 구체예에서, 후면 코팅층의 합금은 합금과 동일한 조성을 갖는 벌크 타겟을 사용하여 증착되고, 아르곤 및 산소 및 질소 가스들의 혼합물(Ar + O2 + N2)을 사용하여 스퍼터링된다. 일부 구체예들에서, 아르곤 및 산소 및 질소의 혼합물을 사용한 벌크 타겟 증착은 니켈의 옥사이드 및/또는 니트라이드 및/또는 탄탈의 옥사이드 및/또는 니트라이드를 형성한다. 다른 구체예들에서, 아르곤 및 산소 및 질소의 혼합물을 사용한 벌크 타겟 증착은 니켈 또는 탄탈의 옥사이드 또는 니트라이드를 형성하지 않는다.
[0082] 이제 도 5를 참조하면, 극자외선 마스크 블랭크(400)는 후면 코팅층(424), 기판(414), 및 기판(414) 상의 반사층들의 다층 스택(412)을 포함하는 것으로서 도시되어 있으며, 반사층들의 다층 스택(412)은 복수의 반사층 쌍들을 포함한다. 하나 이상의 구체예들에서, 복수의 반사층 쌍들은 몰리브덴(Mo) 함유 재료 및 규소(Si) 함유 재료로부터 선택된 재료로 제조된다. 일부 구체예들에서, 복수의 반사층 쌍들은 몰리브덴 및 규소의 교번 층들을 포함한다. 극자외선 마스크 블랭크(400)는 반사층들의 다층 스택(412) 상에 캡핑층(422)을 추가로 포함하며, 캡핑층(422) 상에 흡수체 층들의 다층 스택(420)이 존재한다. 하나 이상의 구체예에서, 복수의 반사층들(412)은 몰리브덴(Mo) 함유 재료 및 규소(Si) 함유 재료로부터 선택되며, 캡핑층(422)은 루테늄을 포함한다. 복수의 흡수체 층 쌍들(420a, 420b, 420c, 420d, 420e, 420f)을 포함하는 흡수체 층들의 다층 스택(420)이 또한 제공된다. 후면 코팅층(424)은 탄탈과 니켈의 합금을 포함하고, 일부 구체예들에서, 본원에 개시된 합금 조성물들 중 어느 하나를 포함한다.
[0083] 하나 이상의 구체예들에 따르면, 흡수체 층들의 상이한 흡수체 재료들 및 두께는 극자외선 광이 흡광도로 인해 및 반사층들의 다층 스택으로부터의 광을 상쇄 간섭시킴으로써 야기된 상 변화로 인해 흡수되도록 선택된다. 도 5에 도시된 구체예가 3개의 흡수체 층 쌍들(420a/420b, 420c/420d 및 420e/420f)을 나타내었지만, 본 개시는 특정 수의 흡수체 층 쌍들로 제한되지 않아야 한다. 하나 이상의 구체예들에 따르면, EUV 마스크 블랭크(400)는 5 내지 60개의 흡수체 층 쌍들의 범위, 또는 10 내지 40개의 흡수체 층 쌍들의 범위를 포함한다.
[0084] 하나 이상의 구체예들에 따르면, 흡수체 층(들)은 2% 미만의 반사율 및 다른 에칭 특성들을 제공하는 두께를 갖는다. 공급 가스는 일부 구체예들에서 흡수체 층(들)의 재료 특성들을 추가로 개질시키기 위해 사용되며, 예를 들어, 질소(N2) 가스는 상기에 제공된 재료들의 니트라이드들을 형성하기 위해 사용된다. 하나 이상의 구체예들에 따른 흡수체 층(들)의 다층 스택은, EUV 광이 흡광도로 인해서 뿐만 아니라 다층 흡수체 스택에 의해 야기된 상 변화에 의해 흡수되도록 하는 개별 두께의 상이한 재료들의 반복 패턴이며, 이는 더 양호한 콘트라스트를 제공하기 위해 반사성 재료들의 다층 스택으로부터의 광을 상쇄 간섭할 것이다.
[0085] 본 개시의 다른 양태는 제1 측면 및 제2 측면을 갖는 기판을 제공하는 단계, 기판의 제1 측면 상에 후면 코팅층을 형성하는 단계, 기판의 제2 측면 상에 반사층들의 다층 스택을 형성하는 단계로서, 다층 스택은 복수의 반사층 쌍들을 포함하는 단계, 반사층들의 다층 스택 상에 캡핑층을 형성하는 단계, 및 캡핑층 상에 흡수체 층을 형성하는 단계를 포함하며, 후면 코팅층은 탄탈과 니켈의 합금, 예를 들어, 본원에 기술된 합금들 중 어느 하나를 포함하는, 극자외선(EUV) 마스크 블랭크를 제작하는 방법에 관한 것이다.
[0086] 하나 이상의 구체예들의 EUV 마스크 블랭크는 도 4 및 도 5와 관련하여 상기에 기술된 구체예들의 특징들 중 임의의 특징을 가지며, 일부 구체예들에서 방법은 도 3과 관련하여 기술된 시스템에서 수행된다.
[0087] 이제 도 6을 참조하면, 다중-캐소드 소스 챔버(500)의 상부 부분은 하나의 특정 구체예에 따라 도시되어 있다. 다중-캐소드 챔버(500)는 상부 어댑터(504)에 의해 캡핑된 실린더형 바디 부분(502)을 갖는 베이스 구조(501)를 포함한다. 상부 어댑터(504)는 상부 어댑터(504) 둘레에 캐소드 소스들(506, 508, 510, 512, 및 514)과 같은 다수의 캐소드 소스들이 정위되도록 제공된다.
[0088] 일부 구체예들에서 다중-캐소드 소스 챔버(500)는 도 3에 도시된 시스템의 일부이다. 일 구체예에서, 극자외선(EUV) 마스크 블랭크 생산 시스템은 진공을 생성시키기 위한 기판 조작 진공 챔버, 진공 중에서 기판 조작 진공 챔버에 로딩된 기판을 수송하기 위한 기판 조작 플랫폼, 및 기판 상에 반사층들의 다층 스택을 포함하는, EUV 마스크 블랭크를 형성하기 위한, 기판 조작 플랫폼에 의해 접근된 다수의 서브-챔버들을 포함하며, 다층 스택은 복수의 반사층 쌍들, 반사층들의 다층 스택 상의 캡핑층, 및 캡핑층 상의 흡수체 층을 포함하며, 후면 코팅층은 탄탈과 니켈의 합금을 포함한다. 일부 구체예들에서 시스템은 도 4 또는 도 5와 관련하여 도시된 EUV 마스크 블랭크들을 제조하고 도 4 또는 도 5와 관련하여 상기 기술된 EUV 마스크 블랭크들과 관련하여 기술된 특성들 중 임의의 특성을 갖기 위해 사용된다.
[0089] 본 명세서 전반에 걸쳐 "일 구체예," "특정 구체예들," "하나 이상의 구체예들" 또는 "구체예"에 대한 언급은 구체예와 관련하여 기술된 특정 특징, 구조, 재료, 또는 특성이 본 개시의 적어도 하나의 구체예에 포함됨을 의미한다. 이에 따라, 본 명세서 전반에 걸쳐 다양한 곳들에서 "하나 이상의 구체예들에서," "특정 구체예들에서," "일 구체예에서" 또는 "구체예에서"와 같은 어구들의 출현들은 반드시 본 개시의 동일한 구체예를 지칭하는 것은 아니다. 또한, 특정 특징들, 구조들, 재료들, 또는 특성들은 하나 이상의 구체예들에서 임의의 적합한 방식으로 조합될 수 있다.
[0090] 본원의 개시가 특정 구체예들을 참조하여 기술되었지만, 이러한 구체예들이 단지 본 개시의 원리들 및 적용들을 예시하는 것으로 이해될 것이다. 본 개시의 사상 및 범위를 벗어나지 않고, 본 개시의 방법 및 장치에 대해 다양한 수정들 및 변형들이 행해질 수 있다는 것이 당업자들에게 자명할 것이다. 이에 따라, 본 개시는 첨부된 청구항들 및 이들의 균등물들의 범위 내에 속하는 수정들 및 변형들을 포함한다는 것이 의도된다.

Claims (15)

  1. 제1 측면 및 제2 측면을 갖는 기판;
    상기 기판의 상기 제1 측면 상의, 탄탈과 니켈의 합금을 포함하는 후면 코팅층;
    상기 기판의 상기 제2 측면 상의 반사층들의 다층 스택으로서, 상기 반사층들의 다층 스택은 반사층 쌍들을 포함하는 복수의 반사층들을 포함하는, 반사층들의 다층 스택;
    상기 반사층들의 다층 스택 상의 캡핑층; 및
    상기 캡핑층 상의 흡수체 층을 포함하는, 극자외선(EUV) 마스크 블랭크.
  2. 제1항에 있어서, 탄탈과 니켈의 합금이 약 70 내지 약 85 중량% 탄탈 및 약 15 내지 약 30 중량% 니켈을 포함하는, 극자외선(EUV) 마스크 블랭크.
  3. 제1항에 있어서, 탄탈과 니켈의 합금이 약 45 내지 약 55 중량% 탄탈 및 약 45 내지 약 55 중량% 니켈을 포함하는, 극자외선(EUV) 마스크 블랭크.
  4. 제1항에 있어서, 탄탈과 니켈의 합금이 약 30 내지 약 45 중량% 탄탈 및 약 55 내지 약 70 중량% 니켈을 포함하는, 극자외선(EUV) 마스크 블랭크.
  5. 제1항에 있어서, 후면 코팅층이 0.1 중량% 내지 약 10 중량%의, 붕소, 질소 또는 산소 중 하나 이상으로부터 선택된 도펀트를 추가로 포함하는, 극자외선(EUV) 마스크 블랭크.
  6. 제1항에 있어서, 후면 코팅층이 0.1 nm 내지 50 nm의 범위, 또는 약 0.1 nm 내지 25 nm 범위의 두께를 포함하는, 극자외선(EUV) 마스크 블랭크.
  7. 극자외선(EUV) 마스크 블랭크를 제작하는 방법으로서,
    제1 측면 및 제2 측면을 갖는 기판을 제공하는 단계;
    상기 기판의 상기 제1 측면 상에 탄탈과 니켈의 합금을 포함하는 후면 코팅층을 형성하는 단계;
    상기 기판의 상기 제2 측면 상에 반사층들의 다층 스택을 형성하는 단계로서, 상기 반사층들의 다층 스택은 복수의 반사층 쌍들을 포함하는 단계;
    상기 반사층들의 다층 스택 상에 캡핑층을 형성하는 단계; 및
    상기 캡핑층 상에 흡수체 층을 형성하는 단계를 포함하는, 방법.
  8. 제8항에 있어서, 탄탈과 니켈의 합금이 약 70 내지 약 85 중량% 탄탈 및 약 15 내지 약 30 중량% 니켈을 포함하는, 방법.
  9. 제8항에 있어서, 탄탈과 니켈의 합금이 약 45 내지 약 55 중량% 탄탈 및 약 45 내지 약 55 중량% 니켈을 포함하는, 방법.
  10. 제8항에 있어서, 탄탈과 니켈의 합금이 약 30 내지 약 45 중량% 탄탈 및 약 55 내지 약 70 중량% 니켈을 포함하는, 방법.
  11. 제6항에 있어서, 탄탈과 니켈의 합금이 아르곤(Ar), 산소(O2), 또는 질소(N2) 중 하나 이상으로부터 선택된 가스에 의해 동시-스퍼터링되어 후면 코팅층을 형성하는, 방법.
  12. 제8항에 있어서, 탄탈과 니켈의 합금이 탄탈과 니켈의 합금과 동일한 조성을 갖는 벌크 타겟을 사용하여 증착되고, 아르곤(Ar), 산소(O2), 또는 질소(N2) 중 하나 이상으로부터 선택된 가스를 사용하여 스퍼터링되어 후면 코팅층을 형성하는, 방법.
  13. 제8항에 있어서, 후면 코팅층이 0.1 nm 내지 50 nm 범위 또는 0.1 nm 내지 25 nm 범위의 두께를 포함하는, 방법.
  14. 극자외선 광원; 및
    80 nm 미만의 두께 및 13.5 nm의 파장에서 극자외선(EUV) 광의 2% 미만의 반사율을 갖는, 제1 측면 및 제2 측면을 갖는 기판; 상기 기판의 상기 제1 측면 상의, 탄탈과 니켈의 합금을 포함하는 후면 코팅층; 상기 기판의 상기 제2 측면 상의 다층 스택; 및 상기 다층 스택 위의 흡수체 층을 포함하는 레티클(reticle)로서, 상기 레티클은 집적 회로의 처리층을 나타내는 패턴을 가지며, 상기 후면 코팅층은 탄탈과 니켈의 합금을 포함하는, 레티클을 포함하는,
    극자외선(EUV) 리소그래피 시스템.
  15. 제14항에 있어서, 다층 스택을 보호하기 위해, 다층 스택과 흡수체 층 사이에 캡핑층을 추가로 포함하는, 극자외선(EUV) 리소그래피 시스템.
KR1020217015652A 2018-10-26 2019-10-25 후면 코팅을 갖는 극자외선 마스크 KR20210066016A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862751239P 2018-10-26 2018-10-26
US62/751,239 2018-10-26
US16/662,742 US11249386B2 (en) 2018-10-26 2019-10-24 Extreme ultraviolet mask with backside coating
US16/662,742 2019-10-24
PCT/US2019/058012 WO2020086932A1 (en) 2018-10-26 2019-10-25 Extreme ultraviolet mask with backside coating

Publications (1)

Publication Number Publication Date
KR20210066016A true KR20210066016A (ko) 2021-06-04

Family

ID=70328323

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217015652A KR20210066016A (ko) 2018-10-26 2019-10-25 후면 코팅을 갖는 극자외선 마스크

Country Status (6)

Country Link
US (1) US11249386B2 (ko)
JP (1) JP7288959B2 (ko)
KR (1) KR20210066016A (ko)
SG (1) SG11202103168TA (ko)
TW (1) TWI835896B (ko)
WO (1) WO2020086932A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220121101A1 (en) * 2020-10-16 2022-04-21 Taiwan Semiconductor Manufacturing Co., Ltd. Absorber materials for extreme ultraviolet mask
WO2023171583A1 (ja) * 2022-03-08 2023-09-14 Agc株式会社 反射型マスクブランク並びに反射型マスク及びその製造方法
WO2024091683A1 (en) * 2022-10-28 2024-05-02 Applied Materials, Inc. Optical coating for eliminating ghost images in optical metrology tools

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737201B2 (en) 2000-11-22 2004-05-18 Hoya Corporation Substrate with multilayer film, reflection type mask blank for exposure, reflection type mask for exposure and production method thereof as well as production method of semiconductor device
JP2002299228A (ja) * 2001-04-03 2002-10-11 Nikon Corp レチクル、それを用いた露光装置及び露光方法
KR100630728B1 (ko) * 2004-12-29 2006-10-02 삼성전자주식회사 반사 포토마스크 및 그 제조 방법
KR100604938B1 (ko) * 2005-05-27 2006-07-28 삼성전자주식회사 극자외선 노광용 반사마스크 및 그 제조방법
WO2007013313A1 (ja) * 2005-07-26 2007-02-01 Sharp Kabushiki Kaisha 透過型液晶表示装置
JP2007335625A (ja) * 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd 太陽電池
KR101585696B1 (ko) 2006-12-15 2016-01-14 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사형 마스크 블랭크, 및 그 마스크 블랭크용의 기능막이 형성된 기판
JP6125772B2 (ja) * 2011-09-28 2017-05-10 Hoya株式会社 反射型マスクブランク、反射型マスクおよび反射型マスクの製造方法
JP2015018918A (ja) * 2013-07-10 2015-01-29 キヤノン株式会社 反射型原版、露光方法及びデバイス製造方法
KR101567057B1 (ko) * 2013-11-15 2015-11-09 주식회사 에스앤에스텍 극자외선용 블랭크 마스크 및 이를 이용한 포토마스크
JP6361283B2 (ja) * 2014-05-23 2018-07-25 凸版印刷株式会社 反射型マスクブランクおよび反射型マスク
JP2016009744A (ja) * 2014-06-24 2016-01-18 凸版印刷株式会社 反射型マスクおよび反射型マスクブランク
US9612522B2 (en) * 2014-07-11 2017-04-04 Applied Materials, Inc. Extreme ultraviolet mask blank production system with thin absorber and manufacturing system therefor
KR20160016098A (ko) * 2014-08-04 2016-02-15 주식회사 에스앤에스텍 극자외선용 블랭크 마스크 및 이를 이용한 포토마스크
US9766536B2 (en) * 2015-07-17 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Mask with multilayer structure and manufacturing method by using the same
JP6743505B2 (ja) * 2016-06-17 2020-08-19 凸版印刷株式会社 反射型マスクブランクおよび反射型マスク
TWI730139B (zh) * 2016-07-27 2021-06-11 美商應用材料股份有限公司 具多層吸收劑的極紫外遮罩坯料及製造方法
TWI763686B (zh) * 2016-07-27 2022-05-11 美商應用材料股份有限公司 具有合金吸收劑的極紫外線遮罩坯料、製造極紫外線遮罩坯料的方法以及極紫外線遮罩坯料生產系統
TWI712849B (zh) * 2017-02-17 2020-12-11 聯華電子股份有限公司 一種極紫外線光罩
JP6861095B2 (ja) 2017-03-03 2021-04-21 Hoya株式会社 反射型マスクブランク、反射型マスク及び半導体装置の製造方法
KR102402767B1 (ko) * 2017-12-21 2022-05-26 삼성전자주식회사 극자외선 마스크 블랭크, 극자외선 마스크 블랭크를 이용하여 제조된 포토마스크, 포토마스크를 이용한 리소그래피 장치 및 포토마스크를 이용한 반도체 장치 제조 방법
TW202008073A (zh) * 2018-07-19 2020-02-16 美商應用材料股份有限公司 極紫外光遮罩吸收劑材料

Also Published As

Publication number Publication date
TWI835896B (zh) 2024-03-21
WO2020086932A1 (en) 2020-04-30
US11249386B2 (en) 2022-02-15
TW202026752A (zh) 2020-07-16
JP7288959B2 (ja) 2023-06-08
US20200133114A1 (en) 2020-04-30
SG11202103168TA (en) 2021-05-28
JP2022505688A (ja) 2022-01-14

Similar Documents

Publication Publication Date Title
US20200371429A1 (en) Extreme ultraviolet mask absorber materials
KR102537308B1 (ko) 극자외선 마스크 흡수체 물질들
US11249388B2 (en) Extreme ultraviolet mask absorber materials
KR102647715B1 (ko) 극자외선 마스크 흡수체용 ta-cu 합금 재료
US11249390B2 (en) Extreme ultraviolet mask absorber materials
KR20220130786A (ko) 극자외선 마스크 블랭크 하드 마스크 재료들
US11249386B2 (en) Extreme ultraviolet mask with backside coating
US11644741B2 (en) Extreme ultraviolet mask absorber materials
US11630385B2 (en) Extreme ultraviolet mask absorber materials
WO2020160354A1 (en) Extreme ultraviolet mask absorber materials
US11300872B2 (en) Extreme ultraviolet mask absorber materials
US11275304B2 (en) Extreme ultraviolet mask absorber matertals
TWI845677B (zh) 極紫外光遮罩吸收材料
US11275302B2 (en) Extreme ultraviolet mask absorber materials
US20200371427A1 (en) Extreme ultraviolet mask absorber materials
US20200371423A1 (en) Extreme ultraviolet mask absorber materials

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application