KR20210065311A - 폴리에틸렌 중합용 촉매, 이의 제조방법 및 이를 이용하여 제조된 폴리에틸렌 - Google Patents

폴리에틸렌 중합용 촉매, 이의 제조방법 및 이를 이용하여 제조된 폴리에틸렌 Download PDF

Info

Publication number
KR20210065311A
KR20210065311A KR1020190153901A KR20190153901A KR20210065311A KR 20210065311 A KR20210065311 A KR 20210065311A KR 1020190153901 A KR1020190153901 A KR 1020190153901A KR 20190153901 A KR20190153901 A KR 20190153901A KR 20210065311 A KR20210065311 A KR 20210065311A
Authority
KR
South Korea
Prior art keywords
group
formula
polyethylene
catalyst
cyclopentadienyl
Prior art date
Application number
KR1020190153901A
Other languages
English (en)
Inventor
이원효
황혜인
김화규
윤승웅
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to KR1020190153901A priority Critical patent/KR20210065311A/ko
Publication of KR20210065311A publication Critical patent/KR20210065311A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65904Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with another component of C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 메탈로센 화합물 및 핵제를 포함하는 폴리에틸렌 중합용 촉매에 관한 것이다. 본 발명에 따르면 적은 양의 핵제 사용으로도 기계적 물성 및 내환경응력균열저항(ESCR) 특성이 우수한 폴리에틸렌을 제조할 수 있다.

Description

폴리에틸렌 중합용 촉매, 이의 제조방법 및 이를 이용하여 제조된 폴리에틸렌{CATALYST FOR POLYETHYLENE POLYMERIZATION, PREPARING METHOD THEREOF AND POLYETHYLENE PREPARED USING SAME}
본 발명은 폴리에틸렌 중합용 촉매, 이의 제조방법 및 이를 이용하여 제조된 폴리에틸렌에 관한 것이다.
PE-RT(polyethylene raised temperature)는 기존의 폴리에틸렌이 지닌 내후성, 성형성, 위생성 등의 장점을 유지하면서 고온 장기내구성을 크게 강화시켜 50년 이상의 고 수명을 갖는 소재를 말한다. PE-RT는 주로 난방용 파이프 소재로 사용되며, 파이프를 설치하는 과정에서 스크래치가 발생해도 고온 고압의 조건을 장시간 견뎌야 하는 특징이 있다.
일반적으로 파이프의 균열양상은 연성파괴(ductile failure)와 취성파괴(brittle failure)로 나뉘어진다. 연성파괴의 경우 높은 수준의 응력이 가해졌을 때 발생하며 시료의 결정영역 파괴로 인해 진행되기 때문에 기계적 물성(항복강도)이 좋을수록 이에 대한 저항성이 증가하는 특성을 보인다. 취성파괴의 경우 낮은 수준의 응력이 지속적으로 가해졌을 때 발생하며 시료의 결정영역은 그대로 유지되지만, 결정과 결정 사이에 존재하는 entanglement 및 tie-molecule의 파괴로 인해 균열이 진행되어 내환경응력균열저항(ESCR, Environmental Stress Cracking Resistance) 특성이 우수할수록 이에 대한 저항성이 높아진다.
기계적 물성이 우수한 고밀도 폴리에틸렌의 경우 고온 고압 조건에서도 쉽게 변형되지 않지만 내환경응력균열저항 특성이 취약하여 장기간 사용시 취성파괴가 진행되는 특성이 있으며, 저밀도 폴리에틸렌은 내환경응력균열저항 특성이 우수한 반면 기계적 물성이 취약하여 고온 고압 조건에서 사용할 수 없는 문제점이 있다.
내환경응력균열저항에 영향을 미치는 분자량, 단쇄분지(short chain branch, SCB) 함량 등의 특성을 유지하면서도 밀도를 향상시킬 수 있는 방법으로 중합체에 핵제를 첨가하여 사용하는 방법이 알려져 있다. 핵제를 첨가할 경우 중합체의 분자량 및 단쇄분지 함량이 그대로 유지되므로 내환경응력균열저항 특성의 변화는 최소화되지만 결정화도 및 결정의 균일도가 증가하여 기계적 물성이 향상되는 효과가 있다. 특히 바이모달(bimodal) 형태의 분자량 분포를 갖는 중합체의 경우 고분자 영역과 저분자 영역의 밀도 차이가 존재하면 균일한 형태의 결정을 형성하기 어렵기 때문에 핵제를 사용하여 결정성을 개선시키는 방법이 제시되어 있다.
하지만 중합체에 고상의 핵제를 직접 첨가하여 블렌더로 교반할 경우 핵제를 중합체에 고르게 분산시키는데 한계가 있으며, 핵제의 효과가 적절히 발휘되지 못하여 다량의 핵제를 사용해야 하므로 제품의 가격이 높아지는 문제가 있다.
일본공개특허 제2006-328121호
본 발명의 목적은 핵제의 효과를 극대화하여 적은 양의 핵제 사용으로도 기계적 물성 및 내환경응력균열저항(ESCR) 특성이 우수한 폴리에틸렌을 제조하는 것이다.
본 발명의 일 실시예에 따르면, 메탈로센 화합물 및 핵제를 포함하는 폴리에틸렌 중합용 촉매가 제공된다.
본 발명의 다른 실시예에 따르면, 메탈로센 화합물을 담체에 담지시키는 단계 및 담지된 메탈로센 화합물에 핵제를 투입하는 단계를 포함하는 폴리에틸렌 중합용 촉매 제조방법이 제공된다.
본 발명의 또 다른 실시예에 따르면, 상기 촉매 존재 하에서 에틸렌 단량체의 중합에 의해 형성된 폴리에틸렌이 제공된다.
본 발명에 따르면 촉매 제조 과정에서 핵제를 투입함으로써 핵제가 중합체 내에 고르게 분산되어 적은 양의 핵제 사용으로도 기계적 물성 및 내환경응력균열저항(ESCR) 특성이 우수한 폴리에틸렌을 제조할 수 있다.
이하, 본 발명의 바람직한 실시 형태를 설명한다. 그러나 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.
본 발명은 적은 양의 핵제를 사용하면서도 기계적 강도와 내환경응력균열저항 특성이 우수한 폴리에틸렌 중합용 촉매, 상기 촉매 제조방법 및 상기 촉매를 이용한 폴리에틸렌 제조방법을 제공한다.
일 실시예에서 폴리에틸렌 중합용 촉매는 메탈로센 화합물 및 핵제를 포함한다. 상기 메탈로센 화합물은 하기 화학식 1로 표시되는 적어도 1종의 제1 전이금속 화합물 및 하기 화학식 2로 표시되는 적어도 1종의 제2 전이금속 화합물을 포함하는 혼성담지 촉매일 수 있다.
Figure pat00001
Figure pat00002
상기 화학식 1 및 화학식 2에서,
M1 및 M2는 각각 독립적으로 주기율표 상의 3족 내지 10족 원소로 이루어진 군에서 선택되고,
X1 및 X2는 각각 독립적으로 할로겐기, 아민기, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C1-C20)알킬실릴기, 실릴(C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬(C6-C20)아릴기, (C6-C20)아릴실릴기, 실릴(C6-C20)아릴기, (C1-C20)알콕시기, (C1-C20)알킬실록시기 및 (C6-C20)아릴옥시기로 이루어진 군에서 선택되고,
Ar1, Ar2, Ar3 및 Ar4는 서로 동일하거나 상이하며, 각각 독립적으로 시클로펜타디에닐 골격을 갖는 리간드이고,
B는 전이금속 M2에 직접 배위하지 않고 리간드 Ar3와 Ar4를 연결하는 성분으로서, 탄소(C), 규소(Si), 게르마늄(Ge), 질소(N) 및 인(P)으로 이루어진 군에서 선택되는 원소를 포함하고,
L은 수소, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C1-C20)알킬실릴기, 실릴(C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬(C6-C20)아릴기, (C6-C20)아릴실릴기 및 실릴(C6-C20)아릴기로 이루어진 군에서 선택되고,
n은 1 내지 5의 정수이고,
m은 1 내지 5의 정수이고,
p는 1 또는 2이다.
본 발명에 기재된 용어 「알킬」은 탄소 및 수소 원자만으로 구성된 1가의 직쇄 또는 분쇄 포화 탄화수소 라디칼을 의미하는 것으로, 이러한 알킬 라디칼의 예는 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, t-부틸, 펜틸, 헥실, 옥틸, 도데실 등을 포함하지만 이에 한정되지는 않는다.
또, 본 발명에 기재된 용어 「시클로알킬」은 하나의 고리로 구성된 1가의 지환족 알킬 라디칼을 의미하는 것으로, 시클로알킬의 예는 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 시클로헵틸, 시클로옥틸, 시클로노닐, 시클로데실 등을 포함하지만 이에 한정되지는 않는다.
또한, 본 발명에 기재된 용어 「알케닐」은 하나 이상의 탄소-탄소 이중 결합을 함유하는 직쇄 또는 분지쇄의 탄화수소 라디칼을 의미하는 것으로, 에테닐, 프로페닐, 부테닐, 펜테닐 등을 포함하지만, 이에 한정되지는 않는다.
또한, 본 발명에 기재된 용어 「아릴」은 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디칼로, 단일 또는 융합고리계를 포함한다. 구체적인 예로 페닐, 나프틸, 비페닐, 안트릴, 플루오레닐, 페난트릴, 트라이페닐레닐, 피렌일, 페릴렌일, 크라이세닐, 나프타세닐, 플루오란텐일 등을 포함하지만, 이에 한정되지 않는다.
또한, 본 발명에 기재된 용어 「알콕시」는 -O-알킬 라디칼을 의미하는 것으로, 여기서 '알킬'은 상기 정의한 바와 같다. 이러한 알콕시 라디칼의 예는 메톡시, 에톡시, 이소프로폭시, 부톡시, 이소부톡시, t-부톡시 등을 포함하지만 이에 한정되지는 않는다.
또한, 본 발명에 기재된 용어 「아릴옥시」는 -O-아릴 라디칼을 의미하는 것으로, 여기서 '아릴'은 상기 정의한 바와 같다. 이러한 아릴옥시 라디칼의 예는 페녹시, 바이페녹시, 나프톡시 등을 포함하지만 이에 한정되지는 않는다.
또한, 본 발명에 기재된 용어 「실릴」은 실란(silane)으로부터 유도된 -SiH3 라디칼을 의미하며, 상기 실릴기 내 수소 원자 중 적어도 하나가 알킬, 할로겐 등의 다양한 유기기로 치환될 수 있으며, 구체적으로 트리메틸실릴, 트리에틸실릴, t-부틸디메틸실릴, 비닐디메틸실릴, 프로필디메틸실릴, 트리페닐실릴, 디페닐실릴, 페닐실릴, 트리메톡시실릴, 메틸디메록시실릴, 에틸디에톡시실릴, 트리에톡시실릴, 비닐디메톡시실릴, 트리페녹시실릴 등을 포함하지만 이에 한정되지는 않는다.
또한, 본 발명에 기재된 용어 「할로겐」은 불소, 염소, 브롬 또는 요오드 원자를 의미한다.
또한, 본 발명에 기재된 용어 「Cn」은 탄소수가 n개인 것을 의미한다.
일 실시예에서 제1 전이금속 화합물의 구체적인 예로는, 비스(1-부틸-3-메틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(시클로펜타디에닐)지르코늄 디클로라이드, 비스(메틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(테트라메틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(이소프로필시클로펜타디에닐)지르코늄 디클로라이드, 비스(펜타메틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(n-부틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(t-부틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(시클로펜타디에닐)티타늄 디클로라이드, 비스(시클로펜타디에닐)하프늄 디클로라이드 등을 들 수 있으며, 이들 중 단독으로 또는 2 이상 혼합하여 사용할 수 있고, 바람직하게는 비스(1-부틸-3-메틸시클로펜타디에닐)지르코늄 디클로라이드를 사용할 수 있다.
일 실시예에서 제2 전이금속 화합물의 구체적인 예로는, rac-에틸렌비스(테트라하이드로인데닐)지르코늄 디클로라이드, 디페닐메틸리덴(n-부틸-시클로펜타디에닐)(2,7-디-tert-부틸-9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)지르코늄 디클로라이드, 디톨릴메틸리덴(시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)지르코늄 디클로라이드, 디메틸실릴렌(2-메틸-4-(4'-tert-부틸페닐)인데닐)(테트라메틸시클로펜타디에닐)지르코늄 디클로라이드, rac-에틸렌비스(테트라하이드로인데닐)지르코늄 디클로라이드, rac-에틸렌비스(1-인데닐)지르코늄 디클로라이드, rac-에틸렌비스(1-인데닐)하프늄 디클로라이드, rac-에틸렌비스(1-테트라하이드로인데닐)지르코늄 디클로라이드, rac-에틸렌비스(1-테트라하이드로인데닐)하프늄 디클로라이드, rac-디메틸실란디일비스(2-메틸-테트라하이드로벤즈인데닐)지르코늄 디클로라이드, rac-디메틸실란디일비스(2-메틸-테트라하이드로벤즈인데닐)하프늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-테트라하이드로벤즈인데닐)지르코늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-테트라하이드로벤즈인데닐)하프늄 디클로라이드, rac-디메틸실란디일비스(2-메틸-4,5-벤즈인데닐)지르코늄 디클로라이드, rac-디메틸실란디일비스(2-메틸-4,5-벤즈인데닐)하프늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-4,5-벤즈인데닐)지르코늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-4,5-벤즈인데닐)하프늄 디클로라이드, rac-디메틸실란디일비스(2-메틸-5,6-시클로펜타디에닐인데닐)지르코늄 디클로라이드, rac-디메틸실란디일비스 (2-메틸-5,6-시클로펜타디에닐인데닐)하프늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-5,6-시클로펜타디에닐인데닐)지르코늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-5,6-시클로펜타디에닐인데닐)하프늄 디클로라이드, rac-디메틸실릴비스(2-메틸-4-페닐인데닐)지르코늄 디클로라이드, rac-디메틸실릴비스(2-메틸-4-페닐인데닐)하프늄 디클로라이드, rac-디페닐실릴비스(2-메틸-4-페닐인데닐)지르코늄 디클로라이드, rac-디페닐실릴비스(2-메틸-4-페닐인데닐)하프늄 디클로라이드, 이소-프로필리덴(시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소-프로필리덴(시클로펜타디에닐)(9-플루오레닐)하프늄 디클로라이드, 디페닐메틸리덴(시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(시클로펜타디에닐)(9-플루오레닐)하프늄 디클로라이드, 이소-프로필리덴(3-메틸시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소-프로필리덴(3-메틸시클로펜타디에닐)(9-플루오레닐)하프늄 디클로라이드, 디페닐메틸리덴(3-메틸시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(3-메틸시클로펜타디에닐)(9-플루오레닐)하프늄 디클로라이드, 디페닐실릴(시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐실릴(시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(3-tert-부틸시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)지르코늄 디클로라이드, 디페닐메틸리덴(3-tert-부틸시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(3-tert-부틸-5-메틸시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)지르코늄 디클로라이드, 디페닐메틸리덴(3-tert-부틸-5-메틸시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 1,2-에틸렌비스(9-플루오레닐)지르코늄 디클로라이드, 1,2-에틸렌비스(9-플루오레닐)하프늄 디클로라이드, rac-[1,2-비스(9-플루오레닐)-1-페닐-에탄]지르코늄 디클로라이드, rac-[1,2-비스(9-플루오레닐)-1-페닐-에탄]하프늄 디클로라이드, [1-(9-플루오레닐)-2-(5,6-시클로펜타-2-메틸-1-인데닐)에탄]지르코늄 디클로라이드, [1-(9-플루오레닐)-2-(5,6-시클로펜타-2-메틸-1-인데닐)에탄]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-페닐-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-페닐-테트라하이드로펜타렌]하프늄 디클로라이드, 이소-프로필리덴(2-페닐-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소-프로필리덴(2-페닐-시클로펜타디에닐)(9-플루오레닐)하프늄 디클로라이드, 디페닐메틸리덴(2-페닐-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-페닐-시클로펜타디에닐)(9-플루오레닐)하프늄 디클로라이드, 이소프로필리덴(2-페닐-시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)지르코늄 디클로라이드, 이소프로필리덴(2-페닐-시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-페닐-시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)지르코늄 디클로라이드, 디페닐메틸리덴(2-페닐-시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(p-톨릴)-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(p-톨릴)테트라하이드로펜타렌]하프늄 디클로라이드, [이소프로필리덴-(2-(p-톨릴)시클로펜타디에닐)-(9-플루오레닐)]지르코늄 디클로라이드, [이소프로필리덴-(2-(p-톨릴)시클로펜타디에닐)-(9-플루오레닐)]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(m-톨릴)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(m-톨릴)테트라하이드로펜타렌]하프늄 디클로라이드, [이소프로필리덴(2-(m-톨릴) 시클로펜타디에닐)-(9-플루오레닐)]지르코늄 디클로라이드, [이소프로필리덴(2-(m-톨릴)시클로펜타디에닐)-(9-플루오레닐)]하프늄 디클로라이드, [디페닐메틸리덴(2-(m-톨릴)시클로펜타디에닐)-(9-플루오레닐)]지르코늄 디클로라이드, [디페닐메틸리덴(2-(m-톨릴)시클로펜타디에닐)-(9-플루오레닐)]하프늄 디클로라이드, [이소프로필리덴(2-(m-톨릴)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]지르코늄 디클로라이드, [이소프로필리덴(2-(m-톨릴)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]하프늄 디클로라이드, [디페닐메틸리덴(2-(m-톨릴)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]지르코늄 디클로라이드, [디페닐메틸리덴(2-(m-톨릴)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(o-톨릴)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(o-톨릴)테트라하이드로펜타렌]하프늄 디클로라이드, [이소프로필리덴(2-(o-톨릴)시클로펜타디에닐)(9-플루오레닐)]지르코늄 디클로라이드, [이소프로필리덴(2-(o-톨릴)시클로펜타디에닐)(9-플루오레닐)]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,3-디메틸페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,3-디메틸페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,4-디메틸페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,4-디메틸페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [이소프로필리덴(2-(2,3-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)]지르코늄 디클로라이드, [이소프로필리덴(2-(2,3-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)]하프늄 디클로라이드, [이소프로필리덴(2-(2,4-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)]지르코늄 디클로라이드, [이소프로필리덴(2-(2,3-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)]하프늄 디클로라이드, [디페닐메틸리덴(2-(2,3-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)]지르코늄 디클로라이드, [디페닐메틸리덴(2-(2,3-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)]하프늄 디클로라이드, [디페닐메틸리덴(2-(2,4-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)]지르코늄 디클로라이드, [디페닐메틸리덴(2-(2,4-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)]하프늄 디클로라이드, [이소프로필리덴(2-(2,3-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]지르코늄 디클로라이드, [이소프로필리덴(2-(2,3-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]하프늄 디클로라이드, [이소프로필리덴(2-(2,4-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]지르코늄 디클로라이드, [이소프로필리덴(2-(2,4-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]하프늄 디클로라이드, [디페닐메틸리덴(2-(2,3-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]지르코늄 디클로라이드, [디페닐메틸리덴(2-(2,3-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]하프늄 디클로라이드, [디페닐메틸리덴(2-(2,4-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]지르코늄 디클로라이드, [디페닐메틸리덴(2-(2,4-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,6-디메틸페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,6-디메틸페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디메틸페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디메틸페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-테트라메틸페닐-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-테트라메틸페닐-테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,4-디메톡시페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,4-디메톡시페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디메톡시페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디메톡시페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(클로로페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(클로로페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(플루오로페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(플루오로페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(디플루오로페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(디플루오로페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(펜타플루오로페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(디플루오로페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(tert-부틸페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-트리플루오로메틸-페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-트리플루오로메틸-페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디-tert-부틸페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디-tert-부틸페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(비페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(비페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-나프틸-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-나프틸-테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디페닐-페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디페닐-페닐)테트라하이드로펜타렌]하프늄 디클로라이드, 이소프로필리덴(2-테트라메틸페닐-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(2,6-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(3,5-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(2,4-디메톡시페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(3,5-디메톡시페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(2,3-디메톡시페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(2,6-디메톡시페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(클로로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(디클로로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(트리클로로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(플루오로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(디플루오로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(펜타플루오로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(3,5-트리플루오로메틸-페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(tert-부틸페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(3,5-디-tert-부틸페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(비페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(3,5-디페닐-페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-나프틸-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-테트라메틸페닐-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(2,6-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디메틸페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(2,4-디메톡시페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디메톡시페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(2,3-디메톡시페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(2,6-디메톡시페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(클로로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(디클로로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(트리클로로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(플루오로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(디플루오로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(펜타플루오로페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(3,5-트리플루오로메틸-페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-tert-부틸페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디-tert-부틸페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(비페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디페닐-페닐)시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-나프틸-시클로펜타디에닐)(9-플루오레닐)지르코늄디클로라이드, 이소프로필리덴(2-테트라메틸페닐-시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(2,6-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(3,5-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(2,4-디메톡시페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(3,5-디메톡시페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(2,3-디메톡시페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(2,6-디메톡시페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(클로로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(디클로로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(트리클로로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(플루오로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(디플루오로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(펜타플루오로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(3,5-트리플루오로메틸-페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(tert-부틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(3,5-디-tert-부틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(비페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(3,5-디페닐-페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-나프틸-시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-테트라메틸페닐-시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(2,6-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디메틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(2,4-디메톡시페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디메톡시페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(2,3-디메톡시페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(2,6-디메톡시페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(클로로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(디클로로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(트리클로로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(플루오로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(디플루오로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(펜타플루오로페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(3,5-트리플루오로메틸-페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(tert-부틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디-tert-부틸페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(비페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디페닐-페닐)시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-나프틸-시클로펜타디에닐)(2,7-디-tert-부틸플루오렌-9-일)하프늄 디클로라이드 등을 들 수 있으며, 이들 중 단독으로 또는 2 이상 혼합하여 사용할 수 있고 바람직하게는 rac-에틸렌비스(테트라하이드로인데닐)지르코늄 디클로라이드 를 사용할 수 있다.
상기 제1 전이금속 화합물과 제2 전이금속 화합물의 몰비는 1:1 내지 50:1일 수 있으며, 상기 몰비가 1:1 미만이면 흐름성이 좋지 않아 성형성이 나빠지고, 50:1을 초과하면 분자량이 낮아 내환경응력균열저항 특성이 저하되므로 바람직하지 않다.
또한 일 실시예에서 상기 혼성담지 촉매는 조촉매 화합물을 더 포함할 수 있으며, 상기 조촉매 화합물은 하기 화학식 3으로 표시되는 단위를 포함하는 화합물, 하기 화학식 4로 표시되는 화합물 및 하기 화학식 5로 표시되는 화합물로 이루어진 군에서 선택되는 1 또는 2 이상일 수 있다.
Figure pat00003
상기 화학식 3에서,
q는 2 이상의 정수이고,
Al은 알루미늄이며,
O는 산소이고,
Ra는 할로겐; 또는 할로겐으로 치환 또는 비치환된 (C1-C20)하이드로카르빌기이며,
Figure pat00004
상기 화학식 4에서,
Q는 알루미늄 또는 보론이고,
Rb는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐; 또는 할로겐으로 치환 또는 비치환된 (C1-C20)하이드로카르빌기이며,
Figure pat00005
상기 화학식 5에서,
[W]+는 양이온성 루이스 산; 또는 수소 원자가 결합한 양이온성 루이스 산이고,
Z는 13족 원소이고,
Rc는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, (C1-C20)하이드로카르빌기, 알콕시기 및 페녹시기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환된 (C6-C20)아릴기; 할로겐, (C1-C20)하이드로카르빌기, 알콕시기 및 페녹시기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환된 (C1-C20 )알킬기이다.
상기 조촉매 화합물은 상기 화학식 1 또는 화학식 2로 표시되는 전이금속 화합물과 함께 촉매에 포함되어 상기 전이금속 화합물을 활성화시키는 역할을 한다. 구체적으로, 상기 전이금속 화합물이 올레핀 중합에 사용되는 활성 촉매 성분이 되기 위하여, 전이금속 화합물 중의 리간드를 추출하여 중심금속(M1 또는 M2)을 양이온화 시키면서 약한 결합력을 가진 반대이온, 즉 음이온으로 작용할 수 있는 상기 화학식 3으로 표시되는 단위를 포함하는 화합물, 화학식 4로 표시되는 화합물 및 화학식 5로 표시되는 화합물이 조촉매로서 함께 작용한다.
상기 화학식 3으로 표시되는 '단위'는 화합물 내에서 [ ] 내의 구조가 q개 연결되는 구조로, 화학식 3으로 표시되는 단위를 포함하는 경우라면 화합물 내의 다른 구조는 특별히 한정하지 않으며, 화학식 3의 반복 단위가 서로 연결된 클러스터형 예컨대, 구상의 화합물일 수 있다.
화학식 3으로 표시되는 단위를 포함하는 화합물은 특별히 한정되지 않으며, 알킬알루미녹산인 것이 바람직하다. 비제한적인 예로, 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있다. 상기 전이금속 화합물의 활성을 고려할 때 메틸알루미녹산이 바람직하게 사용될 수 있다.
또한 상기 화학식 4로 표시되는 화합물은 알킬 금속 화합물로서 특별히 한정되지 않으며, 이의 비제한적인 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등이 있다. 상기 전이금속 화합물의 활성을 고려할 때, 트리메틸알루미늄, 트리에틸알루미늄 및 트리이소부틸알루미늄로 이루어진 군에서 선택된 1종 또는 2종 이상이 바람직하게 사용될 수 있다.
화학식 5로 표시되는 화합물은 상기 전이금속 화합물의 활성을 고려할 때, 상기 [W]+가 수소 원자가 결합한 양이온성 루이스 산인 경우, 디메틸아닐리늄 양이온이고, [W]+가 양이온성 루이스 산인 경우, [(C6H5)3C]+이고, 상기 [Z(Rc)4]-는 [B(C6F5)4]-인 것이 바람직하게 사용될 수 있다.
화학식 5로 표시되는 화합물은 특별히 한정되지 않으나, [W]+가 수소 원자가 결합한 양이온성 루이스산인 경우의 비제한적인 예로는 트리에틸암모니움테트라키스페닐보레이트, 트리부틸암모니움테트라키스페닐보레이트, 트리메틸암모니움테트라키스페닐보레이트, 트리프로필암모니움테트라키스페닐보레이트, 트리메틸암모니움테트라키스(p-톨릴)보레이트, 트리프로필암모니움테트라키스(p-톨릴)보레이트, 트리메틸암모니움테트라키스(o,p-디메틸페닐)보레이트, 트리에틸암모니움테트라키스(o,p-디메틸페닐)보레이트, 트리부틸암모니움테트라키스(p-트리플루오로메틸페닐)보레이트, 트리메틸암모니움테트라키스(p-트리플루오로메틸페닐)보레이트, 트리부틸암모니움테트라키스펜타플루오로페닐보레이트, 아닐리니움 테트라키스페닐보레이트, 아닐리니움 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리니움 테트라키스(펜타플루오로페닐)보레이트, N,N-디에틸아닐리니움테트라키스페틸보레이트, N,N-디에틸아닐리니움테트라키스페닐보레이트, N,N-디에틸아닐리니움테트라키스펜타플루오로페닐보레이트, 디에틸암모니움테트라키스펜타플루오로페닐보레이트, 트리페닐포스포늄테트라키스페닐보레이트, 트리메틸포스포늄테트라키스페닐보레이트, 트리페닐카보니움테트라키스(p-트리플루오로메틸페닐)보레이트, 트리페닐카보니움테트라키스펜타플루오로페닐보레이트, 디메틸아닐리니움테트라키스(펜타플루오로페닐)보레이트 등이 있다.
조촉매 화합물은 상기 화학식 1로 표시되는 제1 전이금속 화합물 및 상기 화학식 2로 표시되는 제2 전이금속 화합물의 전체 함량에 대하여 10 내지 200의 몰비로 포함될 수 있다. 조촉매의 몰비가 10 미만이면 전이금속 화합물이 담체에 담지되는 양이 적고, 몰비가 200을 초과하면 전이금속 화합물이 용매층에 존재하는 조촉매와 반응하여 바람직하지 않다.
일 실시예에서 상기 제1 전이금속 화합물, 제2 전이금속 화합물 및 조촉매 화합물은 실리카, 알루미나, 실리카-알루미나 혼합물, 산화티탄, 제올라이트 등의 유기 또는 무기 다공성 담체에 담지되어 혼성담지 촉매를형성할 수 있다. 제1 전이금속 화합물, 제2 전이금속 화합물 및 조촉매의 혼합물은 고체 분말 상태 또는 균일 용액 상태로 존재할 수 있으며, 상기 혼합물은 공지의 방법에 의해 담지될 수 있다.
메탈로센 화합물 담지 반응에서 용매는 헥산, 펜탄과 같은 지방족 탄화수소 용매, 톨루엔, 벤젠과 같은 방향족 탄화 수소 용매, 디클로로메탄과 같은 염소원자로 치환된 탄화수소 용매, 디에틸에테르, 테트라히드로퓨란과 같은 에테르계 용매, 아세톤, 에틸아세테이트 등의 대부분의 유기용매가 사용 가능하며 바람직하게는 톨루엔, 헥산을 사용할 수 있으나, 이에 제한되지 않는다.
상기 메탈로센 화합물에 핵제를 투입하여 본 발명의 폴리에틸렌 중합용 촉매를 제조할 수 있다. 혼성담지 메탈로센 화합물에 핵제를 투입한 후 톨루엔, 헥산 등의 용매로 씻어내거나 촉매 혼합물의 상층액을 제거하는 과정에서 핵제가 촉매로부터 빠져나올 수 있으므로 이를 고려하여 핵제 투입단계 및 투입량을 결정한다.
바람직하게는 폴리에틸렌 목표 중량 대비 50 내지 1000ppm의 핵제를 메탈로센 화합물에 투입할 수 있으며, 핵제 투입량이 50ppm 미만일 경우 핵제 사용 효과가 거의 나타나지 않으며 1000ppm보다 높을 경우 촉매 활성이 크게 저하될 수 있다.
일 실시예에서 핵제는 특별히 한정되지 않으나 탄소수 10 내지 30의 지방족 카르복실산의 금속염이 사용될 수 있다. 상기 지방족 카르복실산의 구체예로는 미리스트산, 라우르산, 올레산, 스테아르산, 이소스테아르산, 팔미트산, 몬탄산, 베헤닌산 등을 들 수 있다. 또한, 상기 금속의 예로는 리튬, 나트륨, 칼륨, 마그네슘, 칼슘, 바륨, 알루미늄, 아연, 구리, 은, 납, 탈륨, 코발트, 베릴륨, 니켈 등을 들 수 있다. 특히, 스테아르산의 염류나 몬탄산의 염류가 바람직하게 이용되고 이 중에서도 스테아르산나트륨, 스테아르산칼륨, 스테아르산아연 및 몬탄산칼슘으로 이루어진 군에서 선택된 1종 이상의 화합물이 바람직하게 이용된다.
상기 메탈로센 화합물 및 핵제를 포함하는 폴리에틸렌 중합용 촉매 존재 하에서 에틸렌 단량체를 중합하여 폴리에틸렌을 제조할 수 있다. 폴리에틸렌의 중합 반응은 기상, 액상 또는 슬러리상에서 실시될 수 있다. 또한, 각각의 중합 반응 조건은 중합 방법, 목적하는 중합 결과 또는 중합체의 형태에 따라 다양하게 변형될 수 있다.
상기 메탈로센 화합물 및 핵제를 포함하는 폴리에틸렌 중합용 촉매 하에서 제조된 폴리에틸렌은 수평균분자량(Mn)이 10,000 내지 50,000g/mol이고, 중량평균분자량(Mw)이 100,000 내지 500,000g/mol이고, Z평균분자량(Mz)이 100,000 내지 2,000,000g/mol인 것일 수 있다. 또한, 상기 폴리에틸렌은 분자량 분포(MWD)가 2 내지 20이고, 분자량 분포(MZD)가 2 내지 200인 것일 수 있다. 또한 상기 폴리에틸렌은 190℃에서 용융흐름지수(MI2.16)가 0.1 내지 1 g/mol이고, 유동율비(MFRR)가 10 내지 200인 것일 수 있다.
또한 본 발명의 폴리에틸렌은 밀도가 0.930 내지 0.950 g/cm3인 것이 바람직하다. 밀도는 폴리에틸렌의 물성과 가공 조건에 큰 영향을 미치는 요인으로 특히 내환경응력균열저항 특성 및 기계적 강도에 영향을 준다. 일반적으로 폴리에틸렌의 밀도가 낮을수록 내환경응력균열저항 특성은 향상되나 기계적 강도는 낮아지며, 폴리에틸렌의 밀도가 높을수록 내환경응력균열저항 특성은 저하되고 기계적 강도는 높아진다.
실시예
이하, 본 발명의 실시예에 대해 상세히 설명한다. 하기 실시예는 본 발명의 이해를 위한 것일 뿐, 본 발명을 한정하는 것은 아니다.
[실시예 1]
1. 촉매 구성 요소
실시예에서 사용된 제1 전이금속 화합물 비스(1-부틸-3-메틸시클로펜타디에닐) 지르코늄 디클로라이드(Bis(1-butyl-3-methylcyclopentadienyl) zirconium dichloride)는 S-PCI사에서 구매하였으며, 제2 전이금속 화합물 rac-에틸렌비스(테트라하이드로인데닐)지르코늄 디클로라이드(rac-ethylenebis(tetrahydroindenyl) zirconium dichloride)는 STREM사에서 구매하였다. 핵제는 Milliken사의 HPN-20E(스테아린산 아연 34 중량% 및 1,2-시클로헥산디카르복시산 칼슘염 66 중량%의 혼합물)를 구매하여 150℃ 진공오븐에서 24시간 건조하여 수분을 충분히 제거한 후 사용하였다. 톨루엔 및 헥산은 무수 등급(Anhydrous Grade)을 Sigma-Aldrich사로부터 구매한 다음, 추가로 건조하여 사용하였다. MAO(메틸알루미녹산, Methylaluminoxane)는 Albemarle사의 10% 톨루엔 용액(HS-MAO-10%)을 구매하여 사용하였으며, 소성된 실리카는 더 이상의 처리 없이 사용하였다. 또한, 실시예에서 사용된 촉매 화합물은 추가의 정제 없이 사용하였다. 모든 합성 반응은 질소(Nitrogen) 또는 아르곤(Argon) 등의 비활성 분위기(Inert Atmosphere)에서 진행되었고, 표준 쉴렌크(Standard Schlenk) 기술과 글로브 박스(Glove Box) 기술을 이용하였다.
2. 촉매 합성
글로브 박스 안에서 실리카 1g을 150mL 둥근바닥 플라스크에 담은 후 글로브 박스 밖으로 꺼낸 다음 톨루엔 15mL와 MAO 5.14mL를 천천히 가하고 70℃에서 1시간 동안 교반하였다. 제1 전이금속 화합물 63.9μmol과 제2 전이금속 화합물 2.13μmol을 둥근바닥 플라스크에 담아 글로브 박스 밖으로 꺼낸 뒤 톨루엔 15mL에 용해시켜 실리카와 MAO가 반응한 슬러리에 천천히 가하였다. 이를 50℃에서 1시간 동안 교반한 후 교반을 멈추고 다시 1시간 동안 촉매를 톨루엔으로부터 가라앉힌 다음 상층액(톨루엔)을 제거하였다. 이후 촉매를 톨루엔과 헥산으로 씻어낸 뒤 상층액이 제거된 상태로 다시 글로브 박스에 넣어 핵제를 최종 중합체 생성량 대비 250ppm의 함량이 되도록 투입하고 글로브 박스 밖으로 꺼내 헥산 15mL를 주입하여 1시간 동안 교반하였다. 교반이 끝난 후 생성된 슬러리를 진공 건조하여 자유 유동 분말 형태의 담지 촉매를 얻었다.
3. 폴리에틸렌 중합
2L 오토클레이브 반응기(Autoclave reactor)를 120℃, N2 7bar 조건에서 8시간 동안 유지한 후 N2 0~2bar 조건으로 2~3회 퍼지(Purge)하고 온도를 상온으로 낮추었다. 상온에서 헥산 1L를 반응기에 넣고 이어서 헥산에 용해된 1M TEAL 0.4mL와 1-헥센 5mL를 넣은 후 에틸렌 2bar 조건에서 75℃로 승온하며 교반하였다. 온도가 50℃에 도달했을 때 교반을 멈추고 촉매 100mg을 헥산 5mL와 함께 주입하였다. 온도가 75℃에 도달하였을 때 에틸렌 8bar 조건에서 1시간 동안 반응시켰다. 중합이 완료되면 중합체 슬러리를 진공오븐에 넣고 80℃, 12시간 동안 건조시켜 하얀 파우더 형태의 중합체를 얻었다.
[비교예 1]
실시예 1의 2. 촉매 합성 단계에서 핵제를 투입하지 않는 것을 제외하고, 실시예 1과 동일한 방법으로 촉매를 합성하고 폴리에틸렌을 제조하였다.
[비교예 2]
실시예 1의 2. 촉매 합성 단계에서 핵제를 투입하지 않는 것을 제외하고, 실시예 1과 동일한 방법으로 촉매를 합성하였다.
상기 촉매 하에서 얻어진 중합체 중량 대비 핵제 300ppm을 첨가하고 블렌더로 혼합하여 폴리에틸렌을 제조하였다.
[물성 평가]
상기 실시예 및 비교예에서 합성된 촉매 및 폴리에틸렌을 하기 평가 항목에 따라 평가하여 그 결과를 표 1 및 표 2에 나타내었다.
1. 촉매활성
폴리에틸렌 중합 시 투입된 촉매 대비 생성된 폴리에틸렌의 무게를 측정하여 계산한 값이다.
2. 밀도
ASTM D1505를 기준으로 측정하였다.
3. 용융흐름지수(MI 2.16 )
측정온도 190℃에서 2.16kg의 하중으로 AMTM1238을 기준으로 하여 측정하였다.
4. 중량평균분자량(M W )
Polymer Laboratories Ltd (UK)사의 PL GPC-220와 Differential Viscometer (M210R)로 구성된 GPC 시스템을 통해 160℃에서 측정한 결과를 적용하였다.
5. 녹는점(Tm), 결정화온도(Tc), 용융엔탈피(ΔH)
TA사의 Q-200 Differential Scanning Calorimetry(DSC)를 이용하여 3step으로 25℃~200℃ 범위 내에서 10℃/min으로 승온하여 측정하였다.
6. 항복강도
ASTM D638 기준으로 50mm/min의 속도로 측정하였으며, 각 시편당 4회 측정하여 그 평균치를 적용하였다.
7. 내환경응력균열저항(Strain Hardening Modulus, SHM)
ISO 18488:2015 (Polyethylene (PE) materials for piping systems ― Determination of Strain Hardening Modulus in relation to slow crack growth ― Test method) 기준에 따라 SHM을 측정하였으며, 이를 통해 내환경응력균열저항 특성을 상대비교 하였다.
촉매활성
(kg[PE]
/g[Cat]·h)
생성된 중합체
대비 핵제농도
(ppm)
밀도
(g/cm3)
MI2.16
(g/10min)
Mw
(104g/mol)
Tm
(℃)
Tc
(℃)
ΔH
(J/g)
실시예 1 0.95 266 0.9407 0.59 15 128 116 182
비교예 1 1.01 0 0.9393 0.61 16 127 114 174
비교예 2 - 300 0.9405 0.61 16 128 115 181
기계적 특성 ESCR 예측
항복강도(kgf/cm2) SHM(MPa)
실시예 1 175 19.1
비교예 1 168 19.1
비교예 2 175 19.2
표 1 및 표 2를 참조하면, 촉매 합성 과정에서 핵제를 투입하거나(실시예 1), 폴리에틸렌과 핵제를 혼합한 경우(비교예 2), 핵제를 전혀 투입하지 않은 경우(비교예 1)와 비교하여 중합체의 항복강도는 증가하였으나, 내환경응력균열저항 특성을 나타내는 SHM은 유사한 수준으로 유지되었다. 이러한 결과로부터 핵제의 첨가는 중합체의 분자량 및 단쇄분지 함량에 크게 영향을 미치지 않으며, 중합체의 결정화도 및 결정의 균일도를 증가시켜 기계적 물성을 향상시키는 것을 알 수 있다.
한편, 실시예 1의 경우 비교예 2 대비 투입된 핵제의 양은 적으나, 핵제가 중합체 전체에 고르게 분포되어 열 분석 결과에서 녹는점(Tm), 결정화온도(Tc), 용융엔탈피(ΔH) 등 결정성에 영향을 받는 인자들이 서로 유사한 수준으로 나타나며, 이로 인해 밀도 또한 동등한 수준으로 측정되었다.
또한, 실시예 1과 비교예 2는 중합체 밀도에 영향을 받는 항복강도 또한 동등한 수준을 보였으며, SHM 측정 결과에서도 큰 차이를 보이지 않았다. 이로부터 실시예 1의 핵제 사용량이 적음에도 불구하고 비교예 2와 동등한 수준의 기계적 물성 및 장기내구성을 갖는 것을 알 수 있다.
상기 결과는 촉매 제조 단계에서 핵제가 투입된 경우에는 핵제가 촉매와 균일하게 혼합된 상태에서 에틸렌 중합이 진행되므로 핵제가 중합체 입자 내부까지 더 고르게 분포할 수 있으며, 이로써 핵제 사용 효과가 극대화될 수 있음을 의미한다. 따라서, 핵제를 촉매 담지 단계에서 투입할 경우 더욱 적은 양의 핵제 사용으로도 고내압특성을 갖는 파이프용 폴리에틸렌 수지의 생산이 가능하므로 경제성을 높일 수 있다.

Claims (9)

  1. 메탈로센 화합물 및 핵제를 포함하는 폴리에틸렌 중합용 촉매.
  2. 제1항에 있어서,
    상기 핵제는 (C10-C30)지방족 카르복실산의 금속염으로 이루어진 군에서 선택된 1종 이상의 화합물인 것을 특징으로 하는 폴리에틸렌 중합용 촉매.
  3. 제2항에 있어서,
    상기 (C10-C30)지방족 카르복실산은 미리스트산, 라우르산, 올레산, 스테아르산, 이소스테아르산, 팔미트산, 몬탄산 및 베헤닌산으로 이루어진 군에서 선택된 1종 이상이고,
    상기 금속은 리튬, 나트륨, 칼륨, 마그네슘, 칼슘, 바륨, 알루미늄, 아연, 구리, 은, 납, 탈륨, 코발트, 베릴륨 및 니켈로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 폴리에틸렌 중합용 촉매.
  4. 제1항에 있어서,
    상기 메탈로센 화합물은 하기 화학식 1로 표시되는 적어도 1종의 제1 전이금속 화합물 및 하기 화학식 2로 표시되는 적어도 1종의 제2 전이금속 화합물을 포함하는 폴리에틸렌 중합용 촉매:

    [화학식 1]
    Figure pat00006

    [화학식 2]
    Figure pat00007

    (상기 화학식 1 및 화학식 2에서,
    M1 및 M2는 각각 독립적으로 주기율표 상의 3족 내지 10족 원소로 이루어진 군에서 선택되고,
    X1 및 X2는 각각 독립적으로 할로겐기, 아민기, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C1-C20)알킬실릴기, 실릴(C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬(C6-C20)아릴기, (C6-C20)아릴실릴기, 실릴(C6-C20)아릴기, (C1-C20)알콕시기, (C1-C20)알킬실록시기 및 (C6-C20)아릴옥시기로 이루어진 군에서 선택되고,
    Ar1, Ar2, Ar3 및 Ar4는 서로 동일하거나 상이하며, 각각 독립적으로 시클로펜타디에닐 골격을 갖는 리간드이고,
    B는 전이금속 M2에 직접 배위하지 않고 리간드 Ar3와 Ar4를 연결하는 성분으로서, 탄소(C), 규소(Si), 게르마늄(Ge), 질소(N) 및 인(P)으로 이루어진 군에서 선택되는 원소를 포함하고,
    L은 수소, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C1-C20)알킬실릴기, 실릴(C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬(C6-C20)아릴기, (C6-C20)아릴실릴기 및 실릴(C6-C20)아릴기로 이루어진 군에서 선택되고,
    n은 1 내지 5의 정수이고,
    m은 1 내지 5의 정수이고,
    p는 1 또는 2이다).
  5. 제4항에 있어서,
    상기 제1 전이금속 화합물과 상기 제 2전이금속 화합물의 몰비는 1:1 내지 50:1인 폴리에틸렌 중합용 촉매:
  6. 제1항에 있어서,
    상기 촉매는 조촉매 화합물을 더 포함하고,
    상기 조촉매 화합물은 하기 화학식 3으로 표시되는 단위를 포함하는 화합물, 하기 화학식 4로 표시되는 화합물 및 하기 화학식 5로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물인 폴리에틸렌 중합용 촉매:

    [화학식 3]
    Figure pat00008

    (상기 화학식 3에서,
    q는 2 이상의 정수이고,
    Al은 알루미늄이며,
    O는 산소이고,
    Ra는 할로겐; 또는 할로겐으로 치환 또는 비치환된 (C1-C20)하이드로카르빌기이며),

    [화학식 4]
    Figure pat00009

    (상기 화학식 4에서,
    Q는 알루미늄 또는 보론이고,
    Rb는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐; 또는 할로겐으로 치환 또는 비치환된 (C1-C20)하이드로카르빌기이며),

    [화학식 5]
    Figure pat00010

    (상기 화학식 5에서,
    [W]+는 양이온성 루이스 산; 또는 수소 원자가 결합한 양이온성 루이스 산이고,
    Z는 13족 원소이고,
    Rc는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, (C1-C20)하이드로카르빌기, 알콕시기 및 페녹시기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환된 (C6-C20)아릴기; 할로겐, (C1-C20)하이드로카르빌기, 알콕시기 및 페녹시기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환된 (C1-C20)알킬기이다).
  7. 제6항에 있어서,
    상기 조촉매 화합물은 상기 화학식 1로 표시되는 적어도 1종의 제1 전이금속 화합물 및 상기 화학식 2로 표시되는 적어도 1종의 제2 전이금속 화합물의 전체 함량에 대하여 10 내지 200의 몰비로 포함되는 것인 폴리에틸렌 중합용 촉매.
  8. 메탈로센 화합물을 담체에 담지시키는 단계 및
    상기 담지된 메탈로센 화합물에 핵제를 투입하는 단계를 포함하는
    제1항 내지 제7항 중 어느 한 항에 따른 폴리에틸렌 중합용 촉매의 제조방법.
  9. 제1항 내지 제7항 중 어느 한 항에 따른 폴리에틸렌 중합용 촉매의 존재 하에서, 에틸렌 단량체의 중합에 의해 형성되는 폴리에틸렌.
KR1020190153901A 2019-11-27 2019-11-27 폴리에틸렌 중합용 촉매, 이의 제조방법 및 이를 이용하여 제조된 폴리에틸렌 KR20210065311A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190153901A KR20210065311A (ko) 2019-11-27 2019-11-27 폴리에틸렌 중합용 촉매, 이의 제조방법 및 이를 이용하여 제조된 폴리에틸렌

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190153901A KR20210065311A (ko) 2019-11-27 2019-11-27 폴리에틸렌 중합용 촉매, 이의 제조방법 및 이를 이용하여 제조된 폴리에틸렌

Publications (1)

Publication Number Publication Date
KR20210065311A true KR20210065311A (ko) 2021-06-04

Family

ID=76391639

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190153901A KR20210065311A (ko) 2019-11-27 2019-11-27 폴리에틸렌 중합용 촉매, 이의 제조방법 및 이를 이용하여 제조된 폴리에틸렌

Country Status (1)

Country Link
KR (1) KR20210065311A (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328121A (ja) 2005-05-24 2006-12-07 Tokyo Printing Ink Mfg Co Ltd 造核剤含有ポリエチレン樹脂組成物及びその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328121A (ja) 2005-05-24 2006-12-07 Tokyo Printing Ink Mfg Co Ltd 造核剤含有ポリエチレン樹脂組成物及びその製造方法

Similar Documents

Publication Publication Date Title
KR101725004B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 가공성이 우수한 폴리올레핀 수지
KR101066969B1 (ko) 공중합성이 뛰어난 전이금속 촉매를 이용한 올레핀중합체의 제조 방법
KR100738851B1 (ko) 올레핀 중합체의 제조 방법
KR101618460B1 (ko) 올레핀 중합용 담지 촉매 및 이를 이용하여 제조된 올레핀 중합체의 제조방법
EP3184556B1 (en) Metallocene-supported catalyst and method of preparing polyolefin using the same
KR102226823B1 (ko) 굴곡탄성율이 우수한 폴리올레핀 제조용 촉매 조성물
US20050203260A1 (en) Catalyst composition for polymerization of olefins and polymerization process using the same
KR101206166B1 (ko) 메탈로센 촉매를 포함하는 촉매 조성물
KR102375854B1 (ko) 폴리프로필렌 및 그 제조방법
KR101213733B1 (ko) 신규한 촉매조성물 및 이를 이용한 올레핀 중합체의 제조방법
KR20210067559A (ko) 용융장력이 우수한 폴리프로필렌 수지 제조방법, 폴리프로필렌 수지 및 이의 발포체
KR20180054357A (ko) 폴리프로필렌의 제조방법
KR100958676B1 (ko) 이핵으로 구속된 배열을 갖는 균일계 촉매의 합성방법 및이를 이용하여 제조한 선형알파올레핀 공중합체
KR102651363B1 (ko) 내환경응력균열저항 특성이 우수한 폴리에틸렌 제조방법
JP2020505480A (ja) オレフィン重合体、その製造方法、そしてこれを利用したフィルム
KR101271904B1 (ko) 폴리올레핀 중합체 제조용 메탈로센 촉매 및 이의 제조방법
KR102547238B1 (ko) 혼성 촉매 조성물 및 이를 포함하는 올레핀 중합용 촉매의 제조방법
KR20210065311A (ko) 폴리에틸렌 중합용 촉매, 이의 제조방법 및 이를 이용하여 제조된 폴리에틸렌
US20220025083A1 (en) Polypropylene resin having excellent melt characteristics, and preparation method therefor
KR20060118556A (ko) 중합 방법
KR20190060317A (ko) 분자량 분포가 넓은 고밀도 폴리올레핀 제조용 메탈로센 촉매 시스템 및 이를 이용한 폴리올레핀의 제조방법
KR20190063572A (ko) 에틸렌 중합체 제조용 메탈로센 촉매 시스템 및 이를 이용한 에틸렌 중합체의 제조방법
KR20230069640A (ko) 광택성이 향상된 폴리에틸렌 수지 조성물 및 이를 이용하여 제조된 파이프
KR102432898B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 올레핀 중합체의 제조 방법
KR20230078018A (ko) 폴리올레핀 및 이를 이용하여 제조된 파이프