KR20210040157A - 드래프트 미터 및 선박 - Google Patents

드래프트 미터 및 선박 Download PDF

Info

Publication number
KR20210040157A
KR20210040157A KR1020217008764A KR20217008764A KR20210040157A KR 20210040157 A KR20210040157 A KR 20210040157A KR 1020217008764 A KR1020217008764 A KR 1020217008764A KR 20217008764 A KR20217008764 A KR 20217008764A KR 20210040157 A KR20210040157 A KR 20210040157A
Authority
KR
South Korea
Prior art keywords
draft
data
pressure
ship
air chamber
Prior art date
Application number
KR1020217008764A
Other languages
English (en)
Other versions
KR102321817B1 (ko
Inventor
미츠히로 오카모토
Original Assignee
바르질라 재팬 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 바르질라 재팬 가부시키가이샤 filed Critical 바르질라 재팬 가부시키가이샤
Publication of KR20210040157A publication Critical patent/KR20210040157A/ko
Application granted granted Critical
Publication of KR102321817B1 publication Critical patent/KR102321817B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/10Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • B63B17/0027Tanks for fuel or the like ; Accessories therefor, e.g. tank filler caps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/12Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude for indicating draught or load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B49/00Arrangements of nautical instruments or navigational aids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/002Sealings comprising at least two sealings in succession
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3296Arrangements for monitoring the condition or operation of elastic sealings; Arrangements for control of elastic sealings, e.g. of their geometry or stiffness
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/32Other parts
    • B63H23/321Bearings or seals specially adapted for propeller shafts
    • B63H2023/327Sealings specially adapted for propeller shafts or stern tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computing Systems (AREA)
  • Sealing Devices (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

변동할 수 있는 흘수를 수시로 특정할 수 있는 드래프트 미터 및 선박을 제공하기 위해, 프로펠러 축의 축 방향으로 간격을 두고 복수 개의 시일 링이 상기 프로펠러 축의 주위에 설치되고, 상기 복수 개의 시일 링에 의해 선미 측으로부터 공기실과 오일실의 순서로 구비되고, 공기 제어 유닛이 공기 공급로를 사이에 두고 상기 공기실에 연통되어 있고, 상기 공기실의 압력을 계측하는 압력계가 구비된 선박에서 이용되는 드래프트 미터로서, 상기 드래프트 미터는 데이터 저장부와 연산부를 포함하고, 상기 데이터 저장부에는, 소정의 보정 데이터와 해수 밀도 데이터가 저장되며, 상기 압력계에 의해 계측된 압력 데이터가 입력되고, 상기 연산부에 의해, 상기 압력 데이터와 상기 보정 데이터의 차분값이 연산되고, 상기 차분값을 상기 해수 밀도 데이터로 나눔으로써 상기 선박의 흘수를 특정하는 것을 특징으로 하는 드래프트 미터를 제공한다.

Description

드래프트 미터 및 선박
본 개시 내용은 드래프트 미터와 드래프트 미터를 구비한 선박에 관한 것이다.
최근, 선박의 IoT화 (Internet of Things) 가 진전되고 있으며, 선박이 탑재하는 각종 센서 등을 통해 얻은 빅데이터는 선박을 구성하는 각종 기기의 개량 및 운항 효율 향상에 도움이 되고 있다. 그러나, IoT화가 어려운 항목도 있으며, 그 중 하나가 선박의 흘수 (吃水) 이다. 예를 들면, 선박 정지 시에 화물을 싣고 내릴 때나 항행 시에 흘수가 항상 변동하므로 흘수의 실시간 특정이 어렵다는 것이 IoT화를 어렵게 하는 주요 요인이다.
기존의 선박의 흘수 특정 방법은, 예를 들면, 선박의 현측 외판에 마크를 표시하여 두고, 계측원이 소형선을 타고서 정박하고 있는 선박에 근접하여, 흘수 계측 장치를 사용하여 마크와 수면 사이의 거리를 계측함으로써 행해지고 있다 (예를 들면, 특허문헌 1 참조).
일본국 특허공개공보 특개 2014-196067 호
그러나, 특허문헌 1에 개시된 흘수 특정 방법에서는, 정박하고 있는 선박에 계측원이 소형선을 타고 근접하여 흘수 계측 장치를 사용하여 계측할 필요가 있기 때문에, 흘수의 특정에 수고가 많이 든다. 게다가, 항상 변동할 수 있는 흘수를 수시로 특정하기 어렵기 때문에, 선박의 IoT화를 위해 제공할 흘수에 관한 시계열적 데이터를 축적할 수가 없다.
본 개시 내용은, 변동할 수 있는 흘수를 수시로 특정할 수 있는 드래프트 미터 및 선박을 제공하는 것을 목적으로 한다.
본 개시 내용에 따른 드래프트 미터의 일 양태는, 프로펠러 축의 축 방향으로 간격을 두고 복수 개의 시일 링이 상기 프로펠러 축의 축 주위에 설치되고, 상기 복수 개의 시일 링에 의해 선미 (船尾) 측으로부터 공기실과 오일실의 순서로 구비되고, 공기 제어 유닛이 공기 공급로를 사이에 두고 상기 공기실에 연통되어 있고, 상기 공기실의 압력을 계측하는 압력계가 구비된 선박에서 이용되는 드래프트 미터로서, 상기 드래프트 미터는 데이터 저장부와 연산부를 포함하고, 상기 데이터 저장부에는 소정의 보정 데이터와 해수 밀도 데이터가 저장되며 상기 압력계에 의해 계측된 압력 데이터가 입력되고, 상기 연산부에 의해, 상기 압력 데이터와 상기 보정 데이터의 차분값이 연산되고, 상기 차분값을 상기 해수 밀도 데이터로 나눔으로써 상기 선박의 흘수를 특정하는 것을 특징으로 한다.
본 개시 내용의 일 양태에 의하면, 변동할 수 있는 흘수를 수시로 특정할 수 있다.
도 1은 실시형태에 따른 선박의 시스템 구성의 일 예를 나타내는 도면이다.
도 2 는 시일 링의 구성, 긴박력 및 유로 저항을 설명하는 설명도이다.
도 3 은 공기 제어 유닛을 구성하는 플로우 컨트롤러에 의한 압력 추종 동작을 설명하는 설명도이다.
도 4 는 흘수가 깊어진 경우와 얕아진 경우에 있어, 플로우 컨트롤러에 의한 공기실 압력 제어 메커니즘을 설명하는 설명도이다.
도 5 는 실시형태에 따른 드래프트 미터의 하드웨어 구성의 일 예를 나타내는 도면이다.
도 6 은 실시형태에 따른 드래프트 미터의 기능 구성의 일 예를 나타내는 도면이다.
도 7 은 드래프트 미터의 데이터 저장부에 저장된 보정 데이터의 일 예를 나타내는 도면이다.
도 8 은 흘수 데이터 수집 시스템의 전체 구성의 일 예를, 서버 장치의 기능 구성의 일 예와 함께 나타내는 도면이다.
이하에서는, 본 개시 내용의 실시형태에 따른 드래프트 미터와 선박, 나아가, 드래프트 미터로부터 송신된 흘수 데이터를 축적하는 서버 장치를 포함하는 흘수 데이터 수집 시스템에 대해 첨부된 도면을 참조하여 설명한다. 또한, 본 명세서 및 도면에 있어, 실질적으로 동일한 구성 요소에 대해서는 동일 부호를 붙여 중복되는 설명을 생략하는 경우가 있다.
[실시형태에 따른 선박]
먼저, 도 1 내지 도 4 를 참조하여, 실시형태에 따른 선박에 대해 설명한다. 여기서, 도 1 은 실시형태에 따른 선박의 시스템 구성의 일 예를 나타내는 도면이고, 도 2 는 시일 링의 구성, 긴박력 및 유로 저항을 설명하는 설명도이다.
도 1 에 나타낸 바와 같이, 선박 (200) 은 프로펠러 축 (3) 주위에 선미관 (船尾管) 시일 (seal) 장치 (10) 를 포함하며, 선내 기기로서, 공기 제어 유닛 (30), 오일 탱크 유닛 (60), 오일 펌프 유닛 (70), 드레인 회수 유닛 (80), 드래프트 미터 (100) 를 주로 포함한다.
선미관 (1) 의 내측에는 베어링 (2) 이 구비되어 있고, 베어링 (2) 을 사이에 두고 프로펠러 축 (3) 이 회전 가능하게 지지되어 있으며, 프로펠러 축 (3) 의 선미 측 끝에 프로펠러 (5) 가 고정되어 있다.
프로펠러 축 (3) 의 주위에는 라이너 (4) 가 끼워져 있고, 라이너 (4) 의 외주측 (外周側) 에 라이너 (4) 를 동심원 모양으로 둘러싸는 원기둥 모양의 하우징 (7) 이 설치되며, 하우징 (7) 은 선미관 (1) 에 볼트에 의해 고정되어 있다. 선미관 시일 장치 (10) 는 하우징 (7), 패킹 링 (8), 4 개의 시일 링 (9, 선미 측에서부터 순서대로 제 1 시일 링 (9A), 제 2 시일 링 (9B), 제 3 시일 링 (9C), 제 4 시일 링 (9D)) 을 포함한다.
하우징 (7) 은 6 개의 분할 하우징 (6) 에 의해 형성되고, 각 분할 하우징 (6) 은 모두 원기둥 모양의 부재이며, 서로 끼워 맞추어 프로펠러 축 (3) 의 축 방향으로 적층된 상태로 선미관 (1) 에 고정된다. 또한, 각 분할 하우징 (6) 은 각각 인접하는 분할 하우징 (6) 에 끼워 맞췄을 때, 도 2 에 나타낸 바와 같이 고리 모양 홈 (6a) 을 형성하고, 시일 링 (9) 이 고리 모양 홈 (6a) 에 유지된다. 또한, 패킹 링 (8) 은 원형 고리 모양의 탄성 부재로 형성되고, 라이너 (4) 의 바깥에 끼워져 있다. 패킹 링 (8) 은 라이너 (4) 와 함께 회전하여 하우징 (7) 에 미끄럼 접촉하고, 어망 등의 이물질이 선미관 시일 장치 (10) 및 선미관 (1) 에 침입하는 것을 방지한다.
도 2 에 나타낸 바와 같이, 시일 링 (9) 은 키 (key) 부 (9a), 아암 (arm) 부 (9b), 립 (lip) 부 (9c) 를 포함한다. 키부 (9a) 는 시일 링 (9) 의 외주측 단부에 형성되고, 고리 모양 홈 (6a) 에 끼워 맞춰져서 유지된다. 아암부 (9b) 는 키부 (9a) 에서 라이너 (4) 측을 향해 연장하여 돌출되고, 나아가 굴곡되어 선미 측으로 연장하여 돌출되도록 형성되어 있다. 또한, 도 2 에는 제 2 시일 링 (9B) 을 나타내고 있으므로 키부 (9a) 는 선미 측으로 굴곡되어 연장하여 돌출되지만, 제 3 시일 링 (9C) 및 제 4 시일 링 (9D) 을 포함하는 키부 (9a) 는 반대로 선수 (船首) 측으로 굴곡된다. 립부 (9c) 는 아암부 (9b) 의 내주측 단부에 형성되고, 그 제 1 측면 (9c1) 은 라이너 (4) 에 대향한다. 한편, 립부 (9c) 에 있어, 라이너 (4) 의 반대쪽의 제 2 측면 (9c2) 은 스프링 홈 (9c3) 을 포함하고, 스프링 홈 (9c3) 에 끼워져 있는 고리 모양 스프링 (9d) 에 의해 제 2 시일 링 (9B) 이 라이너 (4) 측에 체결되어 있다.
이와 같이, 고리 모양의 시일 링 (9) 에 의한 체결력과 고리 모양 스프링 (9d) 에 의한 체결력에 의해, 시일 링 (9) 에는 라이너 (4) 측을 향하는 지름 방향의 긴박력 (T) 이 작용한다.
한편, 이하에서 설명하지만, 립부 (9c) 의 제 1 측면 (9c1) 과 라이너 (4) 사이의 근소한 간극 (G) 으로 일정 유량 (Q) 의 공기가 선미 측으로 흐를 때, 이 공기에는 선수 측으로 유로 저항 (F) 이 작용한다.
탄성 부재인 시일 링 (9) 의 성형 재료로서 고무 재료나 고무 이외의 수지 재료를 들 수 있다. 고무 재료로는 니트릴 고무 (NBR), 불소 고무 (FR), 천연 고무 (NR) 나 이소프렌 고무 (IR), 부타디엔 고무 (BR), 스티렌부타디엔 고무 (SBR) 등을 들 수 있다. 한편 고무 이외의 수지 재료로는 폴리테트라플루오르에틸렌 (PTFE) 이나 폴리에테르에테르케톤 (PEEK), 불소 수지, 폴리아미드 (PA) 등을 들 수 있다.
제 1 시일 링 (9A) 및 제 2 시일 링 (9B) 은 립부가 선미 측을 향하도록 배치되고, 제 3 시일 링 (9C) 및 제 4 시일 링 (9D) 은 립부가 선수 측을 향하도록 배치된다. 그리고 인접한 시일 링 (9, 9) 사이에는 환상실 (環狀室) 이 각각 형성되어 있으며, 선미 측에서부터 순서대로 제 1 공기실 (20A), 제 2 공기실 (20B) (모두 공기실의 일 예), 제 1 오일실 (20C, 오일실의 일 예) 이 형성되어있다. 또한, 도시한 예 외에도 3 개의 시일 링 (9) 을 포함하는 선미관 시일 장치여도 되고, 이 형태에서는 선미 측에서부터 첫 번째 시일 링은 립부가 선미 측을 향하도록 배치되고, 두 번째 및 세 번째의 시일 링은 립부가 선수 측을 향하도록 배치된다.
제 2 공기실 (20B) 에는 공기 제어 유닛 (30) 으로부터 연장되어 설치되는 공기 공급로 (51) 가 통하고 있고, 공기 소스 (38) 로부터 제공된 공기가 공기 제어 유닛 (30) 을 거치고, 공기 공급로 (51) 를 거쳐서 제 2 공기실 (20B) 에 공급된다. 그리고 이 공급된 공기에 의해, 제 2 시일 링 (9B) 과 제 1 시일 링 (9A) 의 립부가 순차적으로 밀어 올려져서, 해수중으로 공기를 배출하도록 되어 있다.
한편, 제 1 오일실 (20C) 에는 오일 공급로 (56) 가 통하고 있고, 오일 탱크 유닛 (60) 으로부터 공급된 윤활유가 오일 공급로 (55) 를 거쳐 오일 펌프 유닛 (70) 에 공급되고, 오일 펌프 유닛 (70) 으로부터 오일 공급로 (56) 를 거쳐 윤활유가 제 1 오일실 (20C) 로 공급된다.
오일 공급로 (56) 는 오일 펌프 유닛 (70) 의 2 차 측에서 분기하고 있으며, 한 쪽의 오일 공급로 (56) 를 거쳐 제 1 오일실 (20C) 에 윤활유가 공급되고, 다른 한 쪽의 오일 공급로 (56) 를 거쳐 제 3 오일실 (20E) 에 윤활유가 공급된다. 이 윤활유에 의해 베어링 (2) 의 미끄러짐이 양호해진다. 제 3 오일실 (20E) 에 제공된 윤활유는 베어링 (2) 의 선미 측에 있어, 제 4 시일 링 (9D) 과 베어링 (2) 사이에 형성되어 있는 환상실인 제 2 오일실 (20D) 까지 공급된다. 제 3 오일실 (20E) 에는 오일 회수로 (54) 가 통하고 있고, 오일 회수로 (54) 를 거쳐 오일 탱크 유닛 (60) 으로 윤활유가 회수된다.
공기 제어 유닛 (30) 은 공기 소스 (38) 로부터 제2공기실 (20B) 을 향해 순서대로, 필터 (31), 레귤레이터 (32), 유량계 (33), 플로우 컨트롤러 (flow controller, 34), 체크 밸브 (35), 평상시 열려 있는 밸브 (36) 를 가진다. 그리고 레귤레이터 (32) 에 의해 제2공기실 (20B) 에 공급하는 공기 (압축 공기) 의 공기압이 너무 높아지지 않는 정도로 압력 제어가 실행된다.
또한 플로우 컨트롤러 (34) 는, 해수압의 변동에 대하여, 제2공기실 (20B) 이 항상 변동하는 해수압과의 사이에서 일정한 압력 차이를 유지할 수 있도록 유량이 조정된 일정량의 공기를 공급한다. 이러한 제어에 의해, 제1공기실 (20A) 및 제2공기실 (20B) 의 공기실 압력을 해수압보다 항상 일정 압력 높게 유지하고, 최종적으로는 공기를 선미 측에 토출하여 해수의 침입을 방지하도록 되어 있다.
또한 공기 제어 유닛 (30) 은 레귤레이터 (32) 보다 2 차 측에서 가압로 (52) 를 사이에 두고 오일 탱크 유닛 (60) 을 구성하는 오일 탱크 (61) 에 접속되어 있다. 공기 제어 유닛 (30) 에 있어, 가압로 (52) 도중에는 에어 릴레이 (압력 조정 밸브) (37) 가 구비되며, 공기 공급로 (51) 에 있어, 가압로 접속 부분 보다 2 차 측으로부터 압력 입력 신호로 (53) 가 인출되어, 에어 릴레이 (37) 에 접속되어 있다.
에어 릴레이 (37) 에 의해, 공기 공급로 (51) 보다 오일 탱크 (61) 의 실내 압력이 근소하게 높아지도록 제어되고 (다시 말하면, 제 1 오일실 (20C) 의 오일실 압력이 제 2 공기실 (20B) 의 공기실 압력보다 근소하게 높아지도록 제어), 제 1 오일실 (20C) 로의 이물질의 혼입이 방지된다.
오일 탱크 유닛 (60) 은 오일 탱크 (61) 와 오일 회수로 (54) 사이에 개재하는 평상시 열려있는 밸브 (62) 를 포함한다. 가압로 (52) 를 거쳐 오일 탱크 (61) 에 공급되는 공기의 압력을 이용하여 오일 탱크 (61) 가 가압됨으로써, 제 1 오일실 (20C) 내지 제 3 오일실 (20E) 에 있는 윤활유의 유압이, 해수압이나 제 1 공기실 (20A) 및 제 2 공기실 (20B) 의 공기실 압력보다 항상 일정 압력 높도록 제어된다. 제 1 오일실 (20C) 의 오일실 압력이 제 2 공기실 (20B) 의 공기실 압력보다 항상 일정 압력 높아지도록 제어되고 있는 것과 제 3 시일 링 (9C) 의 립부가 선수 측을 향하고 있는 것에 의해, 제 1 오일실 (20C) 의 윤활유는 제 3 시일 링 (9C) 의 립부가 항상 라이너 (4) 를 누르고 있을 수 있도록 할 수 있다. 이를 통해, 제 3 시일 링 (9C) 의 립부는 라이너 (4) 에 항상 미끄럼 접촉되고, 제 1 오일실 (20C) 로부터 제 2 공기실 (20B) 로의 윤활유의 누출이 방지된다.
오일 펌프 유닛 (70) 은 오일 탱크 (61) 측에서부터 순서대로, 필터 (71), 순환 펌프 (72), 쿨러 (73) 및 쿨러 (73) 로부터 연장되어 설치된 오일 공급로 (56) 가 분기하는 위치에 평상시 열려 있는 밸브 (74) 를 포함한다. 오일 펌프 유닛 (70) 은 오일 탱크 유닛 (60) 으로부터 공급된 윤활유를 제 1 오일실 (20C) 과 제 3 오일실 (20E) 에 공급하며, 라이너 (4) 와 제 3 시일 링 (9C) 및 제 4 시일 링 (9D) 사이의 슬라이딩면을 통해 제 2 오일실 (20D) 까지 윤활유를 공급한다. 그리고 제 3 오일실 (20E) 로부터 오일 회수로 (54) 를 통해 오일 탱크 유닛 (60) 으로 윤활유를 회수함으로써, 윤활유를 항상 순환시키도록 되어 있다.
드레인 회수 유닛 (80) 은 제 2 공기실 (20B) 에 해수나 윤활유가 침입했을 때, 이들 액체를 배출하기 위해 제 2 공기실 (20B) 로 통하는 드레인로 (57) 와 드레인로 (57) 의 도중에 평상시 열려있는 밸브 (83) 를 포함한다. 드레인 회수 유닛 (80) 은 또한, 드레인 배출기 (81, 오토 드레인) 와 니들 밸브 (needle valve, 82) 를 포함하며, 드레인 배출기 (81) 에 해수나 윤활유 등이 회수되고, 일정량이 쌓인 단계에서 자동 배출되도록 되어 있다.
드레인 회수 유닛 (80) 에 의해, 평상시에는 제 2 공기실 (20B) 로부터 공기만 방출된다. 그러나 만일 제 2 공기실 (20B) 로 해수나 윤활유가 새어들어간 경우, 항상 열려 있는 니들 밸브 (82) 를 통해 가압 공기를 소량 배출함과 함께, 새어들어간 해수나 윤활유를 드레인 회수 유닛 (80) 으로 회수한다.
또한, 도 1 에 나타낸 바와 같이, 선박 (200) 은 공기 공급로 (51) 에 압력계 (40) 를 포함한다. 또한, 도시한 예는 공기 제어 유닛 (30) 내에 있어서의 공기 공급로 (51) 에 압력계 (40) 가 장비되어 있는 형태이지만, 공기 공급로 (51) 의 제 2 공기실 (20B) 의 입구 근방 등에 압력계 (40) 가 장비되어도 좋고, 제 2 공기실 (20B) 내부나 제 1 공기실 (20A) 내부에 압력계 (40) 가 장비되어도 좋다.
선박 (200) 에서는, 압력계 (40) 에 의해 제 2 공기실 (20B) 이나 제 1 공기실 (20A) 과 같은 공기실 내의 압력이 항상 계측된다.
나아가, 도 1 에 나타낸 바와 같이, 선박 (200) 은 드래프트 미터 (100) 를 포함한다. 이하에서 설명하지만, 항상 계측되는 공기실 내의 압력 데이터가 드래프트 미터 (100) 에 송신되고, 이 압력 데이터에 기초하여 드래프트 미터 (100) 에서 흘수가 특정되도록 되어 있다.
다음으로, 도 3 및 도 4 를 참조하여 공기 제어 유닛에 의한 해수압의 변동에 대한 압력 추정 동작에 대해 설명한다. 여기서 도 3 은 공기 제어 유닛을 구성하는 플로우 컨트롤러에 의한 압력 추종 동작을 설명하는 설명도이다. 또한 도 4 는 흘수가 깊어진 경우와 얕아진 경우에 있어, 플로우 컨트롤러에 의한 공기실 압력 제어 메커니즘을 설명하는 설명도이다.
플로우 컨트롤러 (34) 는 니들 밸브 (34a) 및 다이어프램 (34b) 을 포함하고, 조작 압력에 의해 다이어프램 (34b) 의 간극 (C) 을 Y1 방향으로 크게하거나 Y2 방향으로 작게 할 수 있도록 되어 있다. 플로우 컨트롤러 (34) 는, 공기 소스 (38) 로부터 제공되는 입구 측 공기압 (P1) 을 일정하게 하면, 출구 측의 공기압 (P2) 이 변화해도 동일한 공기 유량 (Q) 을 유지하려고 하는 기능을 가지고 있다.
한편, 시일 링 (9A) 에 있어서는, 립부 (9c) 와 라이너 (4) 사이의 간극 (h) 을 통과하는 공기 유량 (Q) 이 변화하지 않는 한, 간극 (h) 은 거의 동일하고, 배면 측의 제 1 공기실 (20A) 의 공기압 (P3) 과 정면 측의 해수압 (Pw) 의 압력차 (P3 - Pw) 는 거의 일정하게 유지되고 있다.
여기서, 도 4 에 나타낸 바와 같이, 예를 들면 흘수가 깊어져서 해수압 (Pw) 이 높아진 경우, 먼저 시일 링 (9A) 에 작용하는 하중이 증가하고, 라이너 (4) 와의 사이의 간극 (h) 이 순간적으로 감소한다. 따라서 공기 유량 (Q) 이 줄어들기 때문에, 공기실 압력 (P3) 및 플로우 컨트롤러 (34) 의 출구 압력 (P2) 이 증가한다.
이 때, 플로우 컨트롤러 (34) 는 일정한 유량을 유지하기 위해 다이어프램 (34b) 의 간극 (C) 을 즉시 확장하기 때문에, 출구 압력 (P2) 과 공기 유량 (Q) 이 원래 값으로 돌아온다. 공기 유량 (Q) 이 원래 값으로 돌아옴에 따라, 시일 링 (9A) 의 정배면 측의 압력차 (P3 - Pw) 도 다시 초기 값으로 회복하며, 해수압 (Pw) 의 증가에 공기실 압력 (P3) 이 추종하게 된다. 이 흘수가 깊어진 때의 공기 제어 유닛 (30) 에 의한 압력 추종 동작은 시간 지연 없이 이루어질 수 있다.
이와 같은 공기 제어 유닛 (30) 에 의한 압력 추종 동작은 흘수가 얕아져서 해수압 (Pw) 이 낮아진 경우에도 마찬가지로 이루어지며, 이 경우에도 공기 제어 유닛 (30) 에 의한 압력 추종 동작은 시간 지연 없이 실행된다.
이와 같이 흘수의 변동에 대응하기 위해 플로우 컨트롤러 (34) 가 공기실에 공급되는 공기 유량 (Q) 이 일정해지도록 제어하는 것에 의해, 흘수의 변동 (해수압의 변동) 과 관계없이 시일 링 (9) 과 라이너 (4) 사이에 안정적인 유로가 확보된다. 그 때문에 도 2 에 나타낸 유로 저항 (F) 이 거의 일정해질 수 있다.
한편, 도 2 에 나타낸 바와 같이, 시일 링 (9) 에는 긴박력 (T) 이 항상 작용하고 있다. 긴박력 (T) 은 이하에서 자세히 설명하는 바와 같이, 시일 링의 형태에 따라 다양하게 변화할 수 있다. 예를 들면, 시일 링의 단면 모양, 재질, 고리 모양 스프링의 형태, 시일 링의 직경 등이 시일 링의 형태를 결정하는 요소가 되며, 시일 링의 형태에 따른 긴박력 (T) 이 존재한다. 또한, 예를 들면, 시일 링의 단면 모양이 변화하는 것에 의해, 유로 저항도 변화할 수 있다.
그러나, 긴박력 (T) 과 유로 저항 (F) 을 나누어 각각을 특정하는 것은 매우 어렵다. 그래서 실험실 내에서, 사용하는 시일 링의 형태를 이용한 선미관 시일 장치를 제작하고, 시일 링의 한 쪽 면에 해수를 시뮬레이션하고, 시일 링의 다른 쪽 면에 공기실을 구비하며, 플로우 컨트롤러에 의해 공기 유량이 일정해지도록 공기를 제공한다. 그리고 안정된 유로가 확보되었을 때의 해수압 (Pw) 과 공기실 압력 (P3) 을 측정하여, 쌍방 간의 관계식을 구함으로써 이하의 식 (1) 이 도출된다.
[식 1]
공기실 압력 (P3) = 해수압 (Pw) + α (일정 값) …… (1)
식 (1) 에서, 보정값 α 는, 사용하는 시일 링의 형태에 의거하는 긴박력 (T) 과, 상술한 바와 같이 거의 일정한 값이 될 수 있는 유로 저항 (F) 의 합계값이므로, 시일 링의 형태를 설정함으로써 α 를 일정한 값으로 할 수 있어, 식 (1) 을 도출할 수 있게 된다.
본 발명자 등은 지금까지 복수의 형태의 시일 링을 적용해 실내 실험을 실시하여, α 의 범위가 0.01 MPa 내지 0.03 MPa 인 것으로 특정하고 있다. 따라서, 사용하는 시일 링의 형태에 따라서 상기 수치 범위 안에 있는, 예를 들면0.015 MPa 를 α 에 적용할 수 있게 된다.
전술한 바와 같이, 선박 (200) 에서는 압력계 (40) 로 공기실 압력 (P3) 을 항상 계측하고 있으므로, 상기 식 (1) 을 변형한 이하의 식 (2) 에 의해 공기실 압력 (P3) 을 이용하여 해수압 (Pw) 을 특정할 수 있다.
[식 2]
해수압 (Pw) = 공기실 압력 (P3) - α (일정 값) …… (2)
한편, 해수 밀도는 해수 온도 등에 의해 약간의 변동은 있으나, 예를 들면 1.025 × 10-3 kg/cm3 로 특정할 수 있다.
따라서, 상기 식 (2) 에서 특정된 해수압 (Pw) 과 상기 해수 밀도를 이용한 이하의 식 (3) 에 의해, 공기실 압력 (P3) 을 이용하여 흘수를 특정할 수 있다.
[식 3]
흘수 = {공기실 압력 (P3) - α (일정 값)} / 해수 밀도 …… (3)
이하에서 자세히 설명하지만, 선박 (200) 에서는 압력계 (40) 에 의한 공기실 압력에 관한 압력 데이터에 기초하여, 드래프트 미터 (100) 를 통해 흘수를 특정하는 것이 가능하다. 따라서 항상 변동할 수 있는 흘수를 수시로 특정할 수 있게 되고, 선박의 IoT 화를 위해 제공하는 흘수에 관한 시계열적인 데이터를 축적할 수 있게 된다.
[실시형태에 따른 드래프트 미터]
다음으로, 도 5 내지 도 7 을 참조하여, 실시형태에 따른 드래프트 미터에 대해 설명한다. 여기서, 도 5 는 실시형태에 따른 드래프트 미터의 하드웨어 구성의 일 예를 나타내는 도면이고, 도 6 은 실시형태에 따른 드래프트 미터의 기능 구성의 일 예를 나타내는 도면이다. 또한, 도 7 은 드래프트 미터의 데이터 저장부에 저장된 보정 데이터의 일 예를 나타내는 도면이다.
도 5 에 나타낸 바와 같이, 드래프트 미터 (100) 는 CPU (Central Processing Unit, 102), ROM (Read Only Memory, 104), RAM (Random Access Memory, 106), 보조 기억부 (108), 표시부 (110) 및 통신부 (112) 를 포함한다. 또한, 드래프트 미터 (100) 의 각 부는 버스 (114) 를 사이에 두고 상호간에 접속되어 있다.
CPU (102) 는 보조 기억부 (108) 에 설치된 각종 프로그램을 실행한다. ROM (104) 은 비 휘발성 메모리이며, 보조 기억부 (108) 에 저장된 각종 프로그램을 CPU (102) 가 실행하기 위해 필요한 각종 프로그램이나 데이터 등을 저장하는 주기억부로서 기능한다. RAM (106) 은 휘발성 메모리이며, 주기억부로서 기능한다. RAM (106) 은 보조 기억부 (108) 에 저장된 각종 프로그램이 CPU (102) 에 실행될 때의 작업 영역으로서 기능한다. 보조 기억부 (108) 는 드래프트 미터 (100) 에 설치된 각종 프로그램 및 각종 프로그램을 실행하는 데 사용되는 데이터 등을 저장한다.
표시부 (110) 는 수시로 변동할 수 있는 흘수를 그때마다 표시하고, 필요에 따라 흘수의 시계열적 변화 그래프 등을 표시한다. 또한 그 근거가 되는 공기실 압력, α 값, 해수 밀도 등을 표시한다.
통신부 (112) 는 이하에서 자세히 설명하는 바와 같이, 특정된 흘수 데이터를 네트워크를 통해 서버 장치 등으로 송신한다.
도 6 에 나타낸 바와 같이, 드래프트 미터 (100) 는 압력계 (40) 에서 계측된 공기실 압력에 관한 압력 데이터를 데이터 수집부 (120) 에서 수신한다. 수신된 압력 데이터는 데이터 수집부 (120) 에서 데이터 저장부 (140) 에 일시적으로 저장된다.
데이터 저장부 (140) 에는 소정의 보정 데이터와 해수 밀도 데이터가 저장되어 있다. 여기서, 도 7 을 참조하여 보정 데이터에 대해 설명한다. 보정 데이터 (α) 는 전술한 바와 같이, 적용되는 시일 링의 형태에 의해 결정되는 긴박력 값과 유로 저항값을 더한 값으로 설정된다. 그러나 긴박력 값과 유로 저항값을 나누어 각각을 특정하는 것은 매우 어려우므로, 실험실 내에서, 사용하는 시일 링의 형태를 이용한 선미관 시일 장치를 제작하고, 미리 실험을 통해 사용하는 시일 링에 따른 보정 데이터 (α) 를 특정해 둔다.
예를 들면, 도 7 에 나타낸 바와 같이, 시일 링 형태 No. 1 은 시일 링의 형상이 X1, 고리 형상 스프링의 형태가 S1, 시일 링의 직경이 φ1 이고, 시일 링의 소재를 포함한 이러한 각 요소가 보정 데이터 (α1) 를 결정하는 요소가 된다. 기타 시일 링 형태 No. 2, …, 시일 링 형태 No. N 또한, 이들이 가지는 각 요소가 보정 데이터 α2, …, αN 을 결정하는 요소가 된다.
이러한 보정 데이터 (α1, α2, …, αN) 는 각각의 형태의 시일 링을 사용한 실내 실험을 실시하는 것에 의해 특정된다. 실내 실험에서는 시일 링의 한 쪽 면에 해수를 모의하고, 시일 링의 다른 쪽 면에 공기실을 구비하며, 플로우 컨트롤러에 의해 공기 유량이 일정해지도록 공기를 제공하여, 안정된 유로가 확보되었을 때의 해수압 (Pw) 및 공기실 압력 (P3) 을 측정함으로써 보정 데이터 (α) 를 특정할 수 있다. 본 발명자 등은 지금까지 복수의 형태의 시일 링을 적용해서 실내 실험을 실시하여, α 의 범위가 0.01 MPa 내지 0.03 MPa 인 것으로 특정하고 있다.
특정된 보정 데이터 (α) 는 데이터 저장부 (140) 에 저장된다. 예를 들면, 보정 데이터 (α) 의 범위로서, 상술한 0.01 MPa 내지 0.03 Mpa 가 데이터 저장부 (140) 에 저장되고, 이 범위 안에서 적절한 보정 데이터 (α) 를 선택해도 좋다. 또한 0.01 MPa 내지 0.03 MPa 사이의, 예를 들면 0.015 Mpa 를 보정 데이터 (α) 로 설정하고, 데이터 저장부 (140) 에 저장해도 좋다.
연산부 (130) 에서는 상기 식 (3) 에 기초하여, 데이터 저장부 (140) 로부터 불러온 압력 데이터 (P3) 와 보정 데이터 (α) 의 차분값이 연산되며, 차분값을 해수 밀도 데이터로 나눔으로써 선박 (200) 의 흘수를 특정한다. 특정된 흘수 데이터는 데이터 저장부 (140) 에 저장된다.
선박 (200) 의 정지 시에 화물을 싣고 내릴 때나 항행 시에 흘수가 항상 변동하므로, 드래프트 미터 (100) 로 수시로 흘수를 특정하고, 그때마다 특정된 흘수 데이터를 데이터 저장부 (140) 에 저장한다.
드래프트 미터 (100) 에 의하면, 번거롭지 않게 항상 변동할 수 있는 흘수를 수시로 특정하는 것이 용이해지고, 나아가, 선박 (200) 의 IoT 화를 위해 제공할 흘수에 관한 시계열적인 데이터를 축적할 수 있게 된다.
예를 들면, 흘수는 3 m 내지15 m 정도의 범위가 될 수 있으므로, Pw 는 0.03 Mpa 내지 0.15 Mpa 정도가 될 수 있다. 공기실 압력에 관한 계측치 (P3) 를 이용하여 P3 - α (예를 들면, α 가 0.015 Mpa) 를 산정한 결과로서, 0.03 Mpa 내지 0.15 Mpa 정도의 범위 안에서 Pw 가 대략 특정된다. 그리고, 특정된 해수압 (Pw (Mpa)) 과 1 kg/cm2 = 0.098 Mpa 의 관계와, 해수 밀도 1.025 × 10-3 kg/cm3 등을 이용함으로써, 공기실 압력에 관한 계측 값 (P3) 에 기초하여 흘수를 양호한 정확도로 특정할 수 있다.
[흘수 데이터 수집 시스템의 일 예]
다음으로, 도 8 을 참조하여, 흘수 데이터 수집 시스템의 일 예에 대하 설명한다. 여기서 도 8 은 흘수 데이터 수집 시스템의 전체 구성의 일 예를, 서버 장치의 기능 구성의 일 예와 함께 나타낸 도면이다. 또한, 서버 장치의 하드웨어의 구성의 도시는 생략하지만, 원칙적으로는 도 5 에 나타낸 드래프트 미터 (100) 의 하드웨어 구성과 마찬가지의 구성이 적용될 수 있다.
도 8 에 나타낸 바와 같이, 흘수 데이터 수집 시스템 (500) 은 복수의 선박 (200) 에서 특정된 흘수 데이터를 네트워크 (300) 를 통해 수집하며, 서버 장치 (400) 에서 데이터를 해석하는 측정 데이터 수집 시스템 (소위 클라우드 센싱 시스템) 이다.
각 선박 (이 포함하는 드래프트 미터 (100)) (200) 과 서버 장치 (400) 는 각각 인터넷이나 LAN (Local Area Network) 등으로 대표되는 네트워크 (300) 를 통해 접속되어 있다.
서버 장치 (400) 는 데이터 수집부 (402) 를 포함하며, 각 선박 (200) 의 드래프트 미터 (100) 의 통신부 (112, 도 5 참조) 를 통해 송신된 흘수 데이터가 데이터 수집부 (402) 에서 수집되고, 데이터 저장부 (406) 에 저장된다.
데이터 해석부 (404) 에서는 데이터 저장부 (406) 에 저장된 다양한 선박 (200) 의 흘수 데이터를 사용하여 다양한 분석이 이루어진다.
예를 들면, 데이터 해석부 (404) 에 의해, 흘수와 연비의 관계성을 특정할 수 있게 된다. 이 경우, 선박의 소비 연료 데이터도 서버 장치 (400) 에 송신하고, 데이터 해석부 (404) 에서는 흘수와 연비의 상관을 특정하며, 연비성이 뛰어난 흘수를 산출할 수 있게 된다.
또한, 상기 실시형태에서 열거한 구성 등에 대해 기타 구성요소가 결합되는 등의 다른 실시형태여도 좋고, 또한, 본 발명은 여기서 개시한 구성에 하등 한정되는 것이 아니다. 이 점에 관해서는, 본 발명의 취지를 벗아나지 않는 범위 안에서 변경될 수 있고, 그 응용 형태에 따라 적절히 정할 수 있다.
1 선미관
2 베어링
3 프로펠러 축
4라이너
5 프로펠러
6 분할 하우징
7 하우징
8 패킹 링
9 시일 링
10 선미관 시일 장치
20A 제 1 공기실 (공기실)
20B 제 2 공기실 (공기실)
20C 제 1 오일실 (오일실)
20D 제 2 오일실 (오일실)
20E 제 3 오일실 (오일실)
30 공기 제어 유닛
34 플로우 컨트롤러
40 압력계
51 공기 공급로
52 가압로
54 오일 회수로
55, 56 오일 공급로
57 드레인로
60 오일 탱크 유닛
61 오일 탱크
70 오일 펌프 유닛
80 드레인 회수 유닛
100 드래프트 미터
120 데이터 수집부
130 연산부
140 데이터 저장부
110 표시부
112 통신부
200 선박
300 네트워크
400 서버 장치
500 흘수 데이터 수집 시스템

Claims (9)

  1. 프로펠러 축의 축 방향으로 간격을 두고 복수 개의 시일 링이 상기 프로펠러 축의 주위에 설치되고, 상기 복수 개의 시일 링에 의해 선미 측으로부터 공기실과 오일실의 순서로 구비되고, 공기 제어 유닛이 공기 공급로를 사이에 두고 상기 공기실에 연통되어 있고, 상기 공기실의 압력을 계측하는 압력계가 구비된 선박에서 이용되는 드래프트 미터로서,
    상기 드래프트 미터는 데이터 저장부와 연산부를 포함하고,
    상기 데이터 저장부에는, 소정의 보정 데이터와 해수 밀도 데이터가 저장되며, 상기 압력계에 의해 계측된 압력 데이터가 입력되고,
    상기 연산부에 의해, 상기 압력 데이터와 상기 보정 데이터의 차분값이 연산되고, 상기 차분값을 상기 해수 밀도 데이터로 나눔으로써 상기 선박의 흘수를 특정하는 것을 특징으로 하는, 드래프트 미터.
  2. 제1항에 있어서,
    특정된 상기 흘수가 흘수 데이터로서 상기 데이터 저장부에 수시로 축적되는 것을 특징으로 하는, 드래프트 미터.
  3. 제1항 또는 제 2 항에 있어서,
    상기 보정 데이터가, 상기 시일 링에 의한 긴박력 값과 상기 프로펠러 축과 상기 시일 링 사이의 유로 저항값을 더한 값인 것을 특징으로 하는, 드래프트 미터.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 드래프트 미터는 표시부를 더 포함하고,
    연산된 상기 선박의 상기 흘수를 상기 표시부에 표시하는 것을 특징으로 하는, 드래프트 미터.
  5. 제 2 항, 제 2 항에 종속되는 제 3 항 및 제 2 항에 종속되는 제 4 항 중 어느 한 항에 있어서,
    상기 드래프트 미터는 통신부를 더 포함하고,
    상기 데이터 저장부에 저장된 상기 흘수 데이터가, 상기 통신부를 통해 상기 흘수 데이터를 수집하는 서버 장치로 송신되는 것을 특징으로 하는, 드래프트 미터.
  6. 프로펠러 축의 축 방향으로 간격을 두고 복수 개의 시일 링이 상기 프로펠러 축의 주위에 설치되고, 상기 복수 개의 시일 링에 의해 선미 측으로부터 공기실과 오일실의 순서로 구비되고, 공기 제어 유닛이 공기 공급로를 사이에 두고 상기 공기실에 연통되어 있고, 상기 공기실의 압력을 계측하는 압력계가 구비된 선박으로서,
    상기 선박은 드래프트 미터를 포함하고,
    상기 드래프트 미터는 데이터 저장부와 연산부를 포함하고,
    상기 데이터 저장부에는, 소정의 보정 데이터와 해수 밀도 데이터가 저장되며, 상기 압력계에 의해 계측된 압력 데이터가 입력되고,
    상기 연산부에 의해, 상기 압력 데이터와 상기 보정 데이터의 차분값이 연산되고, 상기 차분값을 상기 해수 밀도 데이터로 나눔으로써 상기 선박의 흘수가 연산되는 것을 특징으로 하는, 선박.
  7. 제 6 항에 있어서,
    특정된 상기 흘수가 흘수 데이터로서 상기 데이터 저장부에 수시로 축적되는 것을 특징으로 하는, 선박.
  8. 제 6 항 또는 제 7 항에 있어서,
    상기 보정 데이터가, 상기 시일 링에 의한 긴박력 값과, 상기 프로펠러 축과 상기 시일 링 사이의 유로 저항값을 더한 값인 것을 특징으로 하는, 선박.
  9. 제 6 항 내지 제 8 항 중 어느 한 항에 있어서,
    상기 선박은, 오일 탱크를 구비하며 상기 오일실에 연통되는 오일 탱크 유닛을 더 포함하고,
    상기 공기 제어 유닛은, 일정 유량의 압축 공기를 상기 공기실에 공급하되, 해수압의 변동에 대해 상기 압축 공기의 유량을 조정함으로써 상기 공기실의 압력을 제어하며, 상기 오일 탱크를 가압함으로써 상기 공기실의 압력에 대해 일정 차이의 압력만큼 상기 오일실의 유압을 높게 유지하는 제어를 실행하는 것인, 선박.
KR1020217008764A 2018-11-20 2018-11-20 드래프트 미터 및 선박 KR102321817B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/042772 WO2020105105A1 (ja) 2018-11-20 2018-11-20 ドラフトメーター及び船舶

Publications (2)

Publication Number Publication Date
KR20210040157A true KR20210040157A (ko) 2021-04-12
KR102321817B1 KR102321817B1 (ko) 2021-11-03

Family

ID=65718349

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217008764A KR102321817B1 (ko) 2018-11-20 2018-11-20 드래프트 미터 및 선박

Country Status (5)

Country Link
EP (1) EP3854674B1 (ko)
JP (1) JP6483938B1 (ko)
KR (1) KR102321817B1 (ko)
CN (1) CN112888627B (ko)
WO (1) WO2020105105A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110077548B (zh) * 2019-06-04 2023-10-24 中国人民解放军海军大连舰艇学院 一种水下测量器及动态吃水测量仪

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285089A (ja) * 1996-04-09 1996-11-01 Kobelco Marine Eng:Kk 船尾管シール装置の圧力調整法
KR20040101836A (ko) * 2003-05-27 2004-12-03 삼성중공업 주식회사 선박의 최적트림 제어방법
JP2014196067A (ja) 2013-03-29 2014-10-16 三井造船株式会社 船舶の載荷重量算出システム、及び船舶の載荷重量算出方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233879Y2 (ko) * 1972-02-22 1977-08-02
FR2250668A1 (en) * 1973-11-08 1975-06-06 Cermat Installation for measuring a ship's draught - has water pressure transducers and a digital readout system
JPS5679808U (ko) * 1979-11-22 1981-06-29
JPH0662267U (ja) * 1993-02-09 1994-09-02 仁吾 宮崎 船尾管シール装置の圧力調整法
DE4434261B4 (de) * 1994-09-24 2004-07-08 B + V Industrietechnik Gmbh Anlage zur Anpassung an den wechselnden Tiefgang von Seeschiffen
DE4434247B4 (de) * 1994-09-24 2004-07-15 B + V Industrietechnik Gmbh Sicherheitsvorrichtung an Abdichtungsanordnungen für Propellerwellen von Schiffen
SE509843C2 (sv) * 1995-08-14 1999-03-15 Kockum Sonics Ab Anordning för mätning av ett fartygs djupgående
CN202201149U (zh) * 2011-06-03 2012-04-25 上海上船利富船舶工具有限公司 便携式船舶吃水测量仪
EP2838789B1 (en) * 2012-04-17 2016-05-18 Wärtsilä Finland Oy An arrangement for sealing a propeller shaft of a marine vessel and a method of controlling the operation thereof
WO2014155582A1 (ja) * 2013-03-27 2014-10-02 三菱重工業株式会社 船尾管シール装置
KR20160017690A (ko) * 2014-07-31 2016-02-17 현대중공업 주식회사 흘수 측정 장치
EP3015358B1 (en) * 2014-11-03 2019-01-02 ABB Oy Seal arrangement for a propeller shaft
WO2017122358A1 (ja) * 2016-01-15 2017-07-20 バルチラジャパン株式会社 船尾管シールシステム、船尾管シール装置、船舶、及び船尾管シール方法
CN105711768B (zh) * 2016-01-26 2018-08-17 武汉德尔达科技有限公司 一种船载式船舶吃水自动检测系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285089A (ja) * 1996-04-09 1996-11-01 Kobelco Marine Eng:Kk 船尾管シール装置の圧力調整法
KR20040101836A (ko) * 2003-05-27 2004-12-03 삼성중공업 주식회사 선박의 최적트림 제어방법
JP2014196067A (ja) 2013-03-29 2014-10-16 三井造船株式会社 船舶の載荷重量算出システム、及び船舶の載荷重量算出方法

Also Published As

Publication number Publication date
KR102321817B1 (ko) 2021-11-03
WO2020105105A1 (ja) 2020-05-28
JPWO2020105105A1 (ja) 2021-02-15
EP3854674A4 (en) 2021-11-03
CN112888627B (zh) 2022-02-11
CN112888627A (zh) 2021-06-01
JP6483938B1 (ja) 2019-03-13
EP3854674A1 (en) 2021-07-28
EP3854674B1 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
US20170184138A1 (en) System and method for health monitoring of hydraulic systems
CN101061320B (zh) 用于至少一个风动的阀门-促动器装置的诊断装置
JP6105803B1 (ja) 船尾管シールシステム、船尾管シール装置、及び船舶
US10030776B2 (en) Sealing device and method for sealing in a fluid medium
US20060228225A1 (en) Reciprocating pump performance prediction
NO20120283A1 (no) Smartventil som anvender en kraftfoler
KR102321817B1 (ko) 드래프트 미터 및 선박
WO2016035433A1 (ja) 故障検出装置
US8578763B2 (en) System and method for fuel system health monitoring
CN108474714A (zh) 液压缸单元中的简单泄漏检测
US9080687B2 (en) Pressure and flow altitude compensated shutoff valve
US11953034B2 (en) Method and system for monitoring health of a hydraulic fluid subsystem
NO334805B1 (no) Trykk - volum regulator
EP3173609A1 (en) Apparatus and method for regulating fluid pressure
KR101885429B1 (ko) 위치 전송기 모델을 이용한 공기구동 제어 밸브의 진단 방법 및 장치
US11781668B2 (en) Valve unit including a reinforcement mechanism with optional sensor assembly
US11467056B2 (en) Sensing leak in a multi-seal sealing assembly with sensors
US11069156B2 (en) System and method for estimating remaining useful life of pressure compensator
JP6887584B1 (ja) 空気制御ユニット、船尾管シールシステム、及び船舶
EP3280981B1 (en) Flow meter
RU2616220C1 (ru) Регулятор давления газа
Galushko et al. Development of a test bench for testing the underwater robot control system with variable geometry of the body
KR101541314B1 (ko) 동적위치제어시스템의 성능 모니터링 시스템 및 방법
JPH0662267U (ja) 船尾管シール装置の圧力調整法
JP2017124810A (ja) 船尾管シールシステム、船尾管シール装置、船舶、及び船尾管シール方法

Legal Events

Date Code Title Description
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant