KR20200143332A - 노이즈 필링방법, 오디오 복호화방법 및 장치, 그 기록매체 및 이를 채용하는 멀티미디어 기기 - Google Patents

노이즈 필링방법, 오디오 복호화방법 및 장치, 그 기록매체 및 이를 채용하는 멀티미디어 기기 Download PDF

Info

Publication number
KR20200143332A
KR20200143332A KR1020200175854A KR20200175854A KR20200143332A KR 20200143332 A KR20200143332 A KR 20200143332A KR 1020200175854 A KR1020200175854 A KR 1020200175854A KR 20200175854 A KR20200175854 A KR 20200175854A KR 20200143332 A KR20200143332 A KR 20200143332A
Authority
KR
South Korea
Prior art keywords
bits
subband
spectrum
unit
noise
Prior art date
Application number
KR1020200175854A
Other languages
English (en)
Other versions
KR102284106B1 (ko
Inventor
김미영
오은미
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of KR20200143332A publication Critical patent/KR20200143332A/ko
Application granted granted Critical
Publication of KR102284106B1 publication Critical patent/KR102284106B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/26Pre-filtering or post-filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/028Noise substitution, i.e. substituting non-tonal spectral components by noisy source
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/032Quantisation or dequantisation of spectral components
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/167Audio streaming, i.e. formatting and decoding of an encoded audio signal representation into a data stream for transmission or storage purposes
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L21/0232Processing in the frequency domain
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/002Dynamic bit allocation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition

Abstract

노이즈 필링방법은 비트스트림을 복호화하여 얻어지는 스펙트럼에서 0으로 부호화된 부분을 포함하는 주파수 밴드를 검출하는 단계; 검출된 상기 주파수 밴드에 대하여 노이즈 성분을 생성하는 단계; 및 상기 노이즈 성분의 에너지와 상기 비트스트림에 포함된 상기 주파수 밴드의 에너지를 이용하여, 상기 노이즈 성분이 생성된 상기 주파수 밴드의 에너지를 조정하는 단계를 포함한다.

Description

노이즈 필링방법, 오디오 복호화방법 및 장치, 그 기록매체 및 이를 채용하는 멀티미디어 기기 {Noise filling Method, audio decoding method and apparatus, recoding medium and multimedia device employing the same}
본 발명은 오디오 부호화/복호화에 관한 것으로서, 보다 구체적으로는 엔코더측으로부터의 추가적인 정보없이 노이즈신호를 생성하여 스펙트럼 홀에 채우는 노이즈 필링방법, 오디오 복호화방법 및 장치, 그 기록매체 및 이를 채용하는 멀티미디어 기기에 관한 것이다.
오디오 신호를 부호화하거나 복호화하는 경우, 한정된 비트를 효율적으로 이용함으로써, 해당 비트 범위에서 최상의 음질을 갖는 오디오 신호를 복원하는 것이 요구된다. 특히, 낮은 비트율에서는 특정 주파수 영역에 비트가 집중되지 않고, 지각적으로 중요한 주파수 영역에 비트가 골고루 할당될 수 있도록 오디오 신호를 부호화 및 복호화하는 기술을 필요로 한다.
특히, 낮은 비트율에서는 각 서브밴드에 할당된 비트로 부호화시, 비트가 충분하지 않아 부호화가 되지 않는 주파수 성분에 의해 스펙트럼 홀이 발생하여 음질을 저하를 초래할 수 있다.
본 발명이 해결하고자 하는 과제는 지각적으로 중요한 주파수 영역에 서브밴드 단위로 효율적으로 비트를 할당하는 방법 및 장치, 오디오 부호화/복호화 장치, 그 기록매체와 이를 채용하는 멀티미디어 기기를 제공하는데 있다.
본 발명이 해결하고자 하는 다른 과제는 지각적으로 중요한 주파수 영역에 낮은 복잡도로 서브밴드 단위로 효율적으로 비트를 할당하는 방법 및 장치, 오디오 부호화/복호화 장치, 그 기록매체와 이를 채용하는 멀티미디어 기기를 제공하는데 있다.
본 발명이 해결하고자 하는 다른 과제는 엔코더측으로부터의 추가적인 정보없이 노이즈신호를 생성하여 스펙트럼 홀에 채우는 노이즈 필링방법, 오디오 복호화방법 및 장치, 그 기록매체 및 이를 채용하는 멀티미디어 기기를 제공하는데 있다.
상기 과제를 달성하기 위한 본 발명의 일실시예에 따른 노이즈 필링방법은 비트스트림을 복호화하여 얻어지는 스펙트럼에서 0으로 부호화된 부분을 포함하는 주파수 밴드를 검출하는 단계; 검출된 상기 주파수 밴드에 대하여 노이즈 성분을 생성하는 단계; 및 상기 노이즈 성분의 에너지와 상기 비트스트림에 포함된 상기 주파수 밴드의 에너지를 이용하여, 상기 노이즈 성분이 생성된 상기 주파수 밴드의 에너지를 조정하는 단계를 포함한다.
상기 과제를 달성하기 위한 본 발명의 일실시예에 따른 노이즈 필링방법은 비트스트림을 복호화하여 얻어지는 스펙트럼에서 0으로 부호화된 부분을 포함하는 주파수 밴드를 검출하는 단계; 검출된 상기 주파수 밴드에 대하여 노이즈 성분을 생성하는 단계; 및 상기 노이즈 성분의 에너지와 상기 비트스트림에 포함된 상기 주파수 밴드의 샘플 개수를 이용하여, 상기 노이즈 성분이 생성된 상기 주파수 밴드의 평균 에너지가 1이 되도록 조정하는 단계를 포함한다.
상기 과제를 달성하기 위한 본 발명의 일실시예에 따른 오디오 복호화방법은 비트스트림에 포함된 부호화된 스펙트럼을 무손실 복호화 및 역양자화하여 정규화된 스펙트럼을 생성하는 단계; 상기 비트스트림에 포함된 각 주파수 밴드 단위의 스펙트럼 에너지를 이용하여 상기 정규화된 스펙트럼에 대하여 엔벨로프 쉐이핑을 수행하는 단계; 상기 엔벨로프 쉐이핑된 스펙트럼에서 0으로 부호화된 부분을 포함하는 주파수 밴드를 검출하고, 검출된 상기 주파수 밴드에 대하여 노이즈 성분을 생성하는 단계; 및 상기 노이즈 성분의 에너지와 상기 비트스트림에 포함된 상기 주파수 밴드의 에너지를 이용하여, 상기 노이즈 성분이 생성된 상기 주파수 밴드의 에너지를 조정하는 단계를 포함한다.
상기 과제를 달성하기 위한 본 발명의 일실시예에 따른 오디오 복호화방법은 비트스트림에 포함된 부호화된 스펙트럼을 무손실 복호화 및 역양자화하여 정규화된 스펙트럼을 생성하는 단계; 상기 정규화된 스펙트럼에서 0으로 부호화된 부분을 포함하는 주파수 밴드를 검출하고, 검출된 상기 주파수 밴드에 대하여 노이즈 성분을 생성하는 단계; 상기 노이즈 성분의 에너지와 상기 비트스트림에 포함된 상기 주파수 밴드의 샘플 개수를 이용하여, 상기 노이즈 성분이 생성된 상기 주파수 밴드의 평균 에너지가 1이 되는 정규화된 노이즈 스펙트럼을 생성하는 단계; 및 상기 비트스트림에 포함된 각 주파수 밴드 단위의 스펙트럼 에너지를 이용하여 상기 정규화된 노이즈 스펙트럼을 포함하는 정규화된 스펙트럼에 대하여 엔벨로프 쉐이핑을 수행하는 단계를 포함한다.
스펙트럼 정규화와 비트할당을 위하여 엔코더 측으로부터 전송되는 Norm값을 노이즈 필링에 이용함으로써, 디코더 측에서는 엔코더 측으로부터의 추가적인 노이즈 정보 없이 노이즈 신호를 생성함으로써 비트 효율적인 방법으로 스펙트럼 홀에 의한 음질 저하를 최소화시킬 수 있다.
도 1은 본 발명의 일실시예에 따른 오디오 부호화장치의 구성을 나타낸 블록도이다.
도 2는 도 1에 있어서 본 발명의 일실시예에 따른 비트할당부의 구성을 나타낸 블록도이다.
도 3은 도 1에 있어서 본 발명의 다른 실시예에 따른 비트할당부의 구성을 나타낸 블록도이다.
도 4는 도 1에 있어서 본 발명의 다른 실시예에 따른 비트할당부의 구성을 나타낸 블록도이다.
도 5는 도 1에 있어서 본 발명의 일실시예에 따른 부호화부의 구성을 나타낸 블록도이다.
도 6은 본 발명의 다른 실시예에 따른 오디오 부호화장치의 구성을 나타낸 블록도이다.
도 7은 본 발명의 일실시예에 따른 오디오 복호화장치의 구성을 나타낸 블록도이다.
도 8은 도 7에 있어서 본 발명의 일실시예에 따른 비트할당부의 구성을 나타낸 블록도이다.
도 9는 도 7에 있어서 본 발명의 일실시예에 따른 복호화부의 구성을 나타낸 블록도이다.
도 10은 도 7에 있어서 본 발명의 다른 실시예에 따른 복호화부의 구성을 나타낸 블록도이다.
도 11은 본 발명의 다른 실시예에 따른 오디오 복호화장치의 구성을 나타낸 블록도이다.
도 12는 본 발명의 다른 실시예에 따른 오디오 복호화장치의 구성을 나타낸 블록도이다.
도 13은 본 발명의 일실시예에 따른 비트할당방법의 동작을 설명하는 흐름도이다.
도 14는 본 발명의 다른 실시예에 따른 비트할당방법의 동작을 설명하는 흐름도이다.
도 15는 본 발명의 다른 실시예에 따른 비트할당방법의 동작을 설명하는 흐름도이다.
도 16은 본 발명의 다른 실시예에 따른 비트할당방법의 동작을 설명하는 흐름도이다.
도 17은 본 발명의 다른 실시예에 따른 비트할당방법의 동작을 설명하는 흐름도이다.
도 18은 본 발명의 일실시예에 따른 노이즈 필링방법의 동작을 설명하는 흐름도이다.
도 19는 본 발명의 다른 실시예에 따른 노이즈 필링방법의 동작을 설명하는 흐름도이다.
도 20은 본 발명의 일실시예에 따른 부호화모듈을 포함하는 멀티미디어 기기의 구성을 나타낸 블록도이다.
도 21은 본 발명의 일실시예에 따른 복호화모듈을 포함하는 멀티미디어 기기의 구성을 나타낸 블록도이다.
도 22는 본 발명의 일실시예에 따른 부호화모듈과 복호화모듈을 포함하는 멀티미디어 기기의 구성을 나타낸 블록도이다.
본 발명은 다양한 변환을 가할 수 있고 여러가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 구체적으로 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 기술적 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해될 수 있다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들이 용어들에 의해 한정되는 것은 아니다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 본 발명에서 사용한 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나 이는 당 분야에 종사하는 기술자의 의도, 판례, 또는 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명의 실시예들을 첨부 도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 본 발명의 일실시예에 따른 오디오 부호화장치(100)의 구성을 나타낸 블록도이다.
도 1에 도시된 오디오 부호화장치(100)는 변환부(130), 비트할당부(150), 부호화부(170) 및 다중화부(190)를 포함할 수 있다. 각 구성요소는 적어도 하나의 모듈로 일체화되어 적어도 하나의 프로세서(미도시)로 구현될 수 있다. 여기서, 오디오는 오디오 혹은 음성, 혹은 오디오와 음성의 혼합신호를 의미할 수 있으나, 이하에서는 설명의 편의를 위하여 오디오로 통칭하기로 한다.
도 1은 본 발명의 일실시예에 따른 오디오 부호화장치(100)의 구성을 나타낸 블록도이다.
도 1에 도시된 오디오 부호화장치(100)는 변환부(130), 비트할당부(150), 부호화부(170) 및 다중화부(190)를 포함할 수 있다. 각 구성요소는 적어도 하나의 모듈로 일체화되어 적어도 하나의 프로세서(미도시)로 구현될 수 있다. 여기서, 오디오는 오디오 혹은 음성, 혹은 오디오와 음성의 혼합신호를 의미할 수 있으나, 이하에서는 설명의 편의를 위하여 오디오로 통칭하기로 한다.
도 1을 참조하면, 변환부(130)는 시간 도메인의 오디오 신호를 주파수 도메인으로 변환하여 오디오 스펙트럼을 생성할 수 있다. 이때, 시간/주파수 도메인 변환은 DCT 등과 같은 공지된 다양한 방법을 사용하여 수행할 수 있다.
비트할당부(150)는 오디오 스펙트럼에 대하여 스펙트럼 에너지 혹은 심리음향모델을 이용하여 얻어지는 마스킹 임계치와, 스펙트럼 에너지를 이용하여 각 서브밴드 단위로 할당 비트수를 결정할 수 있다. 여기서, 서브밴드는 오디오 스펙트럼의 샘플들을 그루핑한 단위로서, 임계대역을 반영하여 균일 혹은 비균일 길이를 가질 수 있다. 비균일한 경우, 한 프레임에 대하여 시작 샘플에서부터 마지막 샘플에 이르기까지 서브밴드에 포함되는 샘플의 개수가 점점 증가하도록 서브밴드를 설정할 수 있다. 여기서, 한 프레임에 포함되는 서브밴드의 개수 혹은 서브밴드에 포함되는 샘플의 개수는 미리 결정될 수 있다. 또는, 한 프레임에 대하여 소정 개수의 균일 길이의 서브밴드로 나눈 다음, 스펙트럼 계수들의 분포에 따라서 길이를 조정할 수 있다. 스펙트럼 계수들의 분포는 스펙트럼 평탄도(Spectral Flatness Measure), 최대값과 최소값의 차이 혹은 최대값의 미분값 등을 이용하여 결정할 수 있다.
일실시예에 따르면, 비트할당부(150)는 각 서브밴드 단위로 구해진 Norm 값 즉, 평균 스펙트럼 에너지를 이용하여 허용 비트수를 추정하고, 평균 스펙트럼 에너지를 이용하여 비트를 할당하고, 할당 비트수가 허용 비트수를 초과하지 않도록 제한할 수 있다.
다른 실시예에 따르면, 비트할당부(150)는 각 서브밴드 단위로 심리음향모델을 이용하여 허용 비트수를 추정하고, 평균 스펙트럼 에너지를 이용하여 비트를 할당하고, 할당 비트수가 허용 비트수를 초과하지 않도록 제한할 수 있다.
부호화부(170)는 각 서브밴드 단위로 최종적으로 결정된 할당 비트수에 근거하여 오디오 스펙트럼을 양자화 및 무손실 부호화하여 부호화된 스펙트럼에 대한 정보를 생성할 수 있다.
다중화부(190)는 비트할당부(150)로부터 제공되는 부호화된 Norm 값과, 부호화부(170)에서 제공되는 부호화된 스펙트럼에 대한 정보를 다중화하여 비트스트림을 생성한다.
한편, 오디오 부호화장치(100)는 옵션으로 주어진 서브밴드에 대하여 노이즈 레벨을 생성하여 오디오 복호화장치(도 7의 700, 도 12의 1200, 도 13의 1300)로 제공할 수 있다.
도 2는 도 1에 있어서 본 발명의 일실시예에 따른 비트할당부(200)의 구성을 나타낸 블록도이다.
도 2에 도시된 비트할당부(200)는 Norm 추정부(210), Norm 부호화부(230) 및 비트추정 및 할당부(250)를 포함할 수 있다. 각 구성요소는 적어도 하나의 모듈로 일체화되어 적어도 하나의 프로세서(미도시)로 구현될 수 있다.
도 2를 참조하면, Norm 추정부(210)는 각 서브밴드 단위로 평균 스펙트럼 에너지에 해당하는 Norm 값을 구할 수 있다. 이때, 일례로서 ITU-T G.719 에서 적용되는 하기 수식 1에서와 같이 Norm 값을 계산할 수 있으나, 이에 한정되는 것은 아니다.
Figure pat00001
여기서, 한 프레임에 P 개의 서브밴드 혹은 서브벡터가 존재하는 경우, N(p)는 서브밴드 혹은 서브벡터 p의 Norm 값, Lp는 서브밴드 혹은 서브벡터 p의 길이 즉, 샘플 혹은 스펙트럼 계수의 개수, sp 및 ep는 서브밴드 p의 시작 샘플과 마지막 샘플, y(k)는 샘플의 크기 혹은 스펙트럼 계수(즉, 에너지)를 각각 의미한다.
한편, 각 서브밴드에 대하여 구해진 Norm 값은 부호화부(도 1의 150)로 제공될 수 있다.
Norm 부호화부(230)는 각 서브밴드에 대하여 구해진 Norm 값을 양자화 및 무손실 부호화할 수 있다. 여기서, 각 서브밴드 단위로 양자화된 Norm 값은 비트추정 및 할당부(250)로 제공되거나, 각 서브밴드 단위로 다시 역양자화된 Norm 값은 비트추정 및 할당부(250)로 제공될 수 있다. 한편, 각 서브밴드 단위로 양자화 및 무손실 부호화된 Norm 값은 다중화부(도 1의 190)로 제공될 수 있다.
비트추정 및 할당부(250)는 각 서브밴드 단위로, Norm 값을 이용하여 필요로 하는 비트수를 추정하여 할당할 수 있다. 바람직하게로는, 부호화 파트와 복호화 파트에서 동일한 비트추정 및 할당 프로세스를 이용할 수 있도록 역양자화된 Norm 값을 사용할 수 있다. 이때, 마스킹 효과를 고려하여 조정된 Norm 값을 사용할 수 있다. Norm 값의 조정에는 일예로서, 하기 수식 2에서와 같이 ITU-T G.719 에서 적용되는 심리음향 가중(psycho-acoustical weighting)을 이용할 수 있으나, 이에 한정되는 것은 아니다.
Figure pat00002
여기서,
Figure pat00003
은 서브밴드 p의 양자화된 Norm 값의 인덱스,
Figure pat00004
은 서브밴드 p의 조정된 Norm 값의 인덱스,
Figure pat00005
는 Norm 값 조정을 위한 옵셋 스펙트럼을 각각 나타낸다.
비트추정 및 할당부(250)는 각 서브밴드 단위로, Norm 값을 이용하여 마스킹 임계치를 계산하고, 마스킹 임계치를 이용하여 지각적으로 필요한 비트수를 예측할 수 있다. 이를 위하여, 먼저 각 서브밴드에 대하여 구해진 Norm 값은 하기 수식 3과 같이 dB 단위의 스펙트럼 에너지와 등가적으로 표현될 수 있다.
Figure pat00006
한편, 스펙트럼 에너지를 이용하여 마스킹 임계치를 구하는 방법은 공지된 다양한 방법을 사용할 수 있다. 즉, 마스킹 임계치는 JND(Just Noticeable Distortion) 에 해당하는 값으로서, 양자화 잡음이 마스킹 임계치보다 작을 경우 지각적인 잡음을 느낄 수 없다. 따라서, 지각적인 잡음을 느낄 수 없도록 하는데 필요한 최소 비트수를 마스킹 임계치를 이용하여 계산할 수 있다. 일실시예로, 각 서브밴드 단위로, Norm 값과 마스킹 임계치와의 비를 이용하여 SMR(Signal-to-Mask Ratio)를 계산하고, SMR에 대하여 6.025 dB ≒ 1 비트의 관계를 이용하여 마스킹 임계치를 만족하는 비트수를 예측할 수 있다. 여기서, 예측된 비트수는 지각적인 잡음을 느낄 수 없도록 하는데 필요한 최소 비트수이지만, 압축 측면에서 보면 예측된 비트수 이상으로 사용할 필요가 없으므로 서브밴드 단위로 허용되는 최대 비트수(이하, 허용 비트수라 약함)로 간주될 수 있다. 이때, 각 서브밴드의 허용 비트수는 소수점 단위로 표현될 수 있다.
비트추정 및 할당부(250)는 각 서브밴드 단위로, Norm 값을 이용하여 소수점 단위의 비트 할당을 수행할 수 있다. 이때, Norm 값이 큰 서브밴드에서부터 순차적으로 비트를 할당하는데, 각 서브밴드의 Norm 값에 대하여 각 서브밴드의 지각적 중요도에 따라서 가중치를 부여함으로써 지각적으로 중요한 서브밴드에 더 많은 비트가 할당되도록 조정할 수 있다. 지각적 중요도는 일예로 ITU-T G.719 에서와 같은 심리음향 가중을 통하여 결정할 수 있다.
구체적으로, 비트추정 및 할당부(250)는 Norm 값이 큰 서브밴드에서부터 순차적으로 샘플별로 비트를 할당한다. 즉, 우선적으로 최대 Norm 값을 갖는 서브밴드에 대하여 샘플당 비트를 할당하고, 해당 서브밴드의 Norm 값을 소정 단위만큼 감소시켜 다른 서브밴드에 비트를 할당할 수 있도록 우선순위를 변경한다. 이와 같은 과정은 주어진 프레임에서 사용가능한 전체 비트수(B)가 모두 소진할 때까지 반복적으로 수행된다.
비트추정 및 할당부(250)는 각 서브밴드에 대하여 할당된 비트수가 예측된 비트수 즉 허용 비트수를 넘지 않도록 제한하여, 최종적으로 할당 비트수를 결정할 수 있다. 모든 서브밴드에 대하여, 할당된 비트수와 예측된 비트수를 비교하여 할당된 비트수가 예측된 비트수보다 큰 경우에는 예측된 비트수로 제한한다. 비트수 제한의 결과 얻어지는 주어진 프레임의 전체 서브밴드의 비트수가 주어진 프레임에서 사용가능한 전체 비트수(B)보다 적은 경우 그 차이에 해당하는 비트수를 전체 서브밴드에 균일하게 분배하거나, 혹은 지각적 중요도에 따라서 비균일하게 분배할 수 있다.
이에 따르면, 각 서브밴드의 할당 비트수를 소수점 단위로 결정하면서 허용 비트수로 제한할 수 있으므로 주어진 프레임의 전체 비트수를 보다 효율적으로 배분할 수 있다.
한편, 각 서브밴드에 필요한 비트수를 추정 및 할당하는 구체적인 방법은 다음과 같다. 이에 따르면, 수회의 반복없이 각 서브밴드 단위로 할당 비트수를 한번에 결정할 수 있어 복잡도가 낮아질 수 있다.
일실시예로, 다음 수식 4에 기재된 바와 같은 Lagrange function을 적용하여 양자화 왜곡과 각 서브밴드에 할당되는 비트수를 최적화할 수 있는 해(solution)을 구할 수 있다.
Figure pat00007
여기서, L은 Lagrange function을 지칭하고, D는 양자화 왜곡, B는 주어진 프레임에서 사용가능한 전체 비트수, Nb는 서브밴드 b의 샘플수, Lb는 서브밴드 b에서 각 샘플에 할당된 비트수를 나타낸다. 즉, NbLb는 서브밴드 b에 할당된 비트수를 나타낸다. 여기서, λ 는 최적화계수인 Lagrange multiplier를 나타내며, 주어진 함수의 최소값을 찾기 위한 컨트롤 파라미터이다.
상기 수식 4를 이용하면, 양자화 왜곡을 고려하면서, 주어진 프레임에 포함된 각 서브밴드에 할당된 비트수의 총합과 주어진 프레임에 대한 허용 비트수와의 차이가 최소가 되는 Lb를 결정할 수 있다.
그리고, 양자화 왜곡 D는 다음 수식 5에서와 같이 정의할 수 있다.
Figure pat00008
여기서,
Figure pat00009
는 입력 스펙트럼,
Figure pat00010
는 복호화된 스펙트럼을 나타낸다. 즉, 양자화 왜곡 D는 임의의 프레임에서 입력 스펙트럼(
Figure pat00011
)와 복호화된 스펙트럼(
Figure pat00012
)에 대한 MSE(Mean Square Error)로 정의될 수 있다.
한편, 수식 5에서 분모 항은 주어진 입력 스펙트럼에 의해 결정되는 일정한 값이고, 따라서 최적화에 영향을 주지 않기 때문에 다음 수식 6에서와 같이 간략화될 수 있다.
Figure pat00013
입력 스펙트럼(
Figure pat00014
)에 대하여 임의의 서브밴드 b의 평균 스펙트럼 에너지인 norm 값(
Figure pat00015
)은 다음 수식 7과 같이 정의되고, 로그 스케일로 양자화된 norm 값(
Figure pat00016
)은 다음 수식 8과 같이 정의되고, 역양자화된 norm 값(
Figure pat00017
)은 다음 수식 9와 같이 정의될 수 있다.
Figure pat00018
Figure pat00019
Figure pat00020
여기서, sb와 eb는 각각 서브밴드 b의 시작 샘플과 마지막 샘플을 나타낸다.
다음, 입력 스펙트럼(
Figure pat00021
)은 다음 수식 10에서와 같이 역양자화된 norm 값(
Figure pat00022
)으로 나누어 정규화된 스펙트럼(
Figure pat00023
)를 생성하고, 다음 수식 11에서와 같이 복원된 정규화된 스펙트럼(
Figure pat00024
)에 역양자화된 norm 값(
Figure pat00025
)을 곱하여 복호화된 스펙트럼(
Figure pat00026
)을 생성한다.
Figure pat00027
Figure pat00028
상기 수식 9 내지 11를 이용하여 수식 6의 양자화 왜곡 항을 정리하면 다음 수식 12와 같이 나타낼 수 있다.
Figure pat00029
통상 양자화 왜곡과 할당된 비트수간의 관계에서, 샘플당 1 비트가 추가될 때마다 SNR이 6.02 dB 증가된다고 정의하며, 이를 이용하여 정규화된 스펙트럼의 양자화 왜곡을 정의하면 다음 수식 13과 같이 나타낼 수 있다.
Figure pat00030
한편, 실제 오디오 코딩에 적용하는 경우에는, 1 bit/sample에 대하여 6.02 dB의 관계를 고정하지 않고, 신호의 특성에 따라서 가변될 수 있는 dB 스케일값 C를 적용하여 다음 수식 14과 같이 정의할 수 있다.
Figure pat00031
여기서, C가 2인 경우 6.02 dB, C가 3인 경우 9.03 dB에 해당한다.
따라서, 수식 6는 수식 12와 수식 14로부터 다음 수식 15와 같이 나타낼 수 있다.
Figure pat00032
상기 수식 15에서 최적의 Lb와 λ를 구하기 위하여, 다음 수식 16에서와 같이 Lb와 λ에 대하여 각각 편미분을 수행한다.
Figure pat00033
상기 수식 16를 정리하면, Lb는 다음 수식 17과 같이 나타낼 수 있다.
Figure pat00034
상기 수식 17을 이용하면, 주어진 프레임에서 사용가능한 전체 비트수 B 의 범위내에서, 입력 스펙트럼의 SNR을 최대화시킬 수 있는 각 서브밴드의 샘플당 할당 비트수(Lb)를 추정할 수 있다.
비트추정 및 할당부(250)에서 각 서브밴드 단위로 결정된 할당 비트수는 부호화부(도 1의 170)로 제공될 수 있다.
도 3은 도 1에 있어서 본 발명의 다른 실시예에 따른 비트할당부(300)의 구성을 나타낸 블록도이다.
도 3에 도시된 비트할당부(300)는 심리음향모델(310), 비트추정 및 할당부(330), 스케일팩터 추정부(350) 및 스케일팩터 부호화부(370)를 포함할 수 있다. 각 구성요소는 적어도 하나의 모듈로 일체화되어 적어도 하나의 프로세서(미도시)로 구현될 수 있다.
도 3을 참조하면, 심리음향모델(310)은 변환부(도 1의 130)로부터 제공되는 오디오 스펙트럼을 입력으로 하여, 각 서브밴드에 대하여 마스킹 임계치를 구할 수 있다.
비트추정 및 할당부(330)는 각 서브밴드 단위로 마스킹 임계치를 이용하여 지각적으로 필요한 비트수를 예측할 수 있다. 즉, 각 서브밴드 단위로 SMR을 구할 수 있고, SMR에 대하여 6.025 dB ≒ 1 비트의 관계를 이용하여 마스킹 임계치를 만족하는 비트수를 예측할 수 있다. 여기서, 예측된 비트수는 지각적인 잡음을 느낄 수 없도록 하는데 필요한 최소 비트수이지만, 압축 측면에서 보면 예측된 비트수 이상으로 사용할 필요가 없으므로 서브밴드 단위로 허용되는 최대 비트수(이하, 허용 비트수라 약함)로 간주될 수 있다. 이때, 각 서브밴드의 허용 비트수는 소수점 단위로 표현될 수 있다.
비트추정 및 할당부(330)는 각 서브밴드 단위로, 스펙트럼 에너지를 이용하여 소수점 단위의 비트 할당을 수행할 수 있다. 이때, 예를 들어 상기 수식 4 내지 17에 의한 비트할당방법을 사용할 수 있다.
비트추정 및 할당부(330)는 모든 서브밴드에 대하여, 할당된 비트수와 예측된 비트수를 비교하여 할당된 비트수가 예측된 비트수보다 큰 경우에는 예측된 비트수로 제한한다. 비트수 제한의 결과 얻어지는 주어진 프레임의 전체 서브밴드의 비트수가 주어진 프레임에서 사용가능한 전체 비트수(B)보다 적은 경우 그 차이에 해당하는 비트수를 전체 서브밴드에 균일하게 분배하거나, 혹은 지각적 중요도에 따라서 비균일하게 분배할 수 있다.
스케일팩터 추정부(350)는 각 서브밴드 단위로 최종적으로 결정된 할당 비트수를 이용하여 스케일팩터를 추정할 수 있다. 각 서브밴드 단위로 추정된 스케일팩터는 부호화부(도 1의 170)로 제공될 수 있다.
스케일팩터 부호화부(370)는 각 서브밴드 단위로 추정된 스케일팩터를 양자화 및 무손실 부호화할 수 있다. 서브밴드 단위로 부호화된 스케일팩터는 다중화부(도 1의 190)로 제공될 수 있다.
도 4는 도 1에 있어서 본 발명의 다른 실시예에 따른 비트할당부(300)의 구성을 나타낸 블록도이다.
도 4에 도시된 비트할당부(400)는 Norm 추정부(410), 비트추정 및 할당부(430), 스케일팩터 추정부(450) 및 스케일팩터 부호화부(470)를 포함할 수 있다. 각 구성요소는 적어도 하나의 모듈로 일체화되어 적어도 하나의 프로세서(미도시)로 구현될 수 있다.
도 4를 참조하면, Norm 추정부(410)는 각 서브밴드 단위로 평균 스펙트럼 에너지에 해당하는 Norm 값을 구할 수 있다.
비트추정 및 할당부(430)는 각 서브밴드 단위로 스펙트럼 에너지를 이용하여 마스킹 임계치를 구하고, 마스킹 임계치를 이용하여 지각적으로 필요한 비트수 즉, 허용 비트수를 예측할 수 있다.
비트추정 및 할당부(430)는 각 서브밴드 단위로, 스펙트럼 에너지를 이용하여 소수점 단위의 비트 할당을 수행할 수 있다. 이때, 예를 들어 상기 수식 4 내지 17에 의한 비트할당방법을 사용할 수 있다.
비트추정 및 할당부(430)는 모든 서브밴드에 대하여, 할당된 비트수와 예측된 비트수를 비교하여 할당된 비트수가 예측된 비트수보다 큰 경우에는 예측된 비트수로 제한한다. 비트수 제한의 결과 얻어지는 주어진 프레임의 전체 서브밴드의 할당 비트수가 주어진 프레임에서 사용가능한 전체 비트수(B)보다 적은 경우 그 차이에 해당하는 비트수를 전체 서브밴드에 균일하게 분배하거나, 혹은 지각적 중요도에 따라서 비균일하게 분배할 수 있다.
스케일팩터 추정부(450)는 각 서브밴드 단위로 최종적으로 결정된 할당 비트수를 이용하여 스케일팩터를 추정할 수 있다. 각 서브밴드 단위로 추정된 스케일팩터는 부호화부(도 1의 170)로 제공될 수 있다.
스케일팩터 부호화부(470)는 각 서브밴드 단위로 추정된 스케일팩터를 양자화 및 무손실 부호화할 수 있다. 서브밴드 단위로 부호화된 스케일팩터는 다중화부(도 1의 190)로 제공될 수 있다.
도 5는 도 1에 있어서 본 발명의 일실시예에 따른 부호화부(500)의 구성을 나타낸 블록도이다.
도 5에 도시된 부호화부(500)는 스펙트럼 정규화부(510)와 스펙트럼 부호화부(530)를 포함할 수 있다. 각 구성요소는 적어도 하나의 모듈로 일체화되어 적어도 하나의 프로세서(미도시)로 구현될 수 있다.
도 5를 참조하면, 스펙트럼 정규화부(510)는 비트할당부(도 1의 150)로부터 제공되는 각 서브밴드의 Norm 값을 이용하여 스펙트럼을 정규화할 수 있다.
스펙트럼 부호화부(530)는 정규화된 스펙트럼에 대하여 각 서브밴드의 할당 비트수를 이용하여 양자화를 수행하고, 양자화된 결과에 대하여 무손실 부호화할 수 있다. 일예로서, 스펙트럼 부호화에 팩토리얼 펄스 코딩(Factorial Pulse Coding)을 사용할 수 있으나, 이에 한정되는 것은 아니다. 팩토리얼 펄스 코딩에 따르면, 할당 비트수 범위내에서 펄스의 위치, 펄스의 크기, 및 펄스의 부호와 같은 정보가 팩토리얼 형식으로 표현될 수 있다.
스펙트럼 부호화부(530)에서 부호화된 스펙트럼에 대한 정보는 다중화부(도 1의 190)로 제공될 수 있다.
도 6은 본 발명의 다른 실시예에 따른 오디오 부호화장치(600)의 구성을 나타낸 블록도이다.
도 6에 도시된 오디오 부호화장치(600)는 트랜지언트 검출부(610), 변환부(630), 비트할당부(650), 부호화부(670) 및 다중화부(690)를 포함할 수 있다. 각 구성요소는 적어도 하나의 모듈로 일체화되어 적어도 하나의 프로세서(미도시)로 구현될 수 있다. 도 6의 오디오 부호화장치(600)는 도 1의 오디오 부호화장치(100)와 비교해 볼 때 트랜지언트 검출부(610)를 더 포함하는 차이점이 있으므로, 공통적인 구성요소에 대해서는 구체적인 설명을 생각하기로 한다.
도 6을 참조하면, 트랜지언트 검출부(610)는 오디오 신호를 분석하여 트랜지언트 특성을 나타내는 구간을 검출할 수 있다. 트랜지언트 구간의 검출에는 공지된 다양한 방법을 사용할 수 있다. 트랜지언트 검출부(610)에서 제공되는 트랜지언트 시그널링 정보는 다중화부(690)를 통하여 비트스트림에 포함될 수 있다.
변환부(630)는 트랜지언트 구간 검출결과에 따라서, 변환에 사용되는 윈도우 사이즈를 결정하고, 결정된 윈도우 사이즈에 근거하여 시간/주파수 도메인 변환을 수행할 수 있다. 일예로서, 트랜지언트 구간이 검출된 서브밴드의 경우 단구간 윈도우(short window)를, 검출되지 않은 서브밴드의 경우 장구간 윈도우(long window)를 적용할 수 있다.
비트 할당부(650)는 도 2 내지 도 4에 도시된 비트할당부(200, 300, 400) 중 어느 하나로 구현될 수 있다.
부호화부(670)는 트랜지언트 구간 검출결과에 따라서, 변환부(630)에서와 마찬가지로 부호화에 사용되는 윈도우 사이즈를 결정할 수 있다.
한편, 오디오 부호화장치(600)는 옵션으로 주어진 서브밴드에 대하여 노이즈 레벨을 생성하여 오디오 복호화장치(도 7의 700, 도 12의 1200, 도 13의 1300)로 제공할 수 있다.
도 7은 본 발명의 일실시예에 따른 오디오 복호화장치(700)의 구성을 나타낸 블록도이다.
도 7에 도시된 오디오 복호화장치(700)는 역다중화부(710), 비트할당부(730), 복호화부(750) 및 역변환부(770)를 포함할 수 있다. 각 구성요소는 적어도 하나의 모듈로 일체화되어 적어도 하나의 프로세서(미도시)로 구현될 수 있다.
도 7을 참조하면, 역다중화부(710)는 비트스트림을 역다중화하여 양자화 및 무손실 부호화된 Norm 값과, 부호화된 스펙트럼에 대한 정보를 추출할 수 있다.
비트할당부(730)는 각 서브밴드 단위로, 양자화 및 무손실 부호화된 Norm 값으로부터 역양자화된 Norm 값을 구하고, 역양자화된 Norm 값을 이용하여 할당 비트수를 결정할 수 있다. 비트할당부(730)는 오디오 부호화장치(100, 600)의 비트할당부(150, 650)와 실질적으로 동일하게 동작할 수 있다. 한편, 오디오 부호화장치(100, 600)에서 Norm 값이 심리음향 가중에 의하여 조정된 경우 오디오 복호화장치(700)에서도 동일하게 조정될 수 있다.
복호화부(750)는 역다중화부(710)로부터 제공되는 부호화된 스펙트럼에 대한 정보를 이용하여, 부호화된 스펙트럼을 무손실 복호화 및 역양자화할 수 있다. 일예로서, 스펙트럼 복호화는 팩토리얼 펄스 디코딩을 사용할 수 있다.
역변환부(770)는 복호화된 스펙트럼을 시간도메인으로 변환하여 복원된 오디오 신호를 생성할 수 있다.
도 8은 도 7에 있어서 본 발명의 일실시예에 따른 비트할당부(800)의 구성을 나타낸 블록도이다.
도 8에 도시된 비트할당부(800)는 Norm 복호화부(810)와 비트추정 및 할당부(830)를 포함할 수 있다. 각 구성요소는 적어도 하나의 모듈로 일체화되어 적어도 하나의 프로세서(미도시)로 구현될 수 있다.
도 8을 참조하면, Norm 복호화부(810)는 역다중화부(도 7의 710)로부터 제공되는 양자화 및 무손실 부호화된 Norm 값으로부터 역양자화된 Norm 값을 구할 수 있다.
비트추정 및 할당부(830)는 역양자화된 Norm 값을 이용하여 할당 비트수를 결정할 수 있다. 구체적으로, 비트추정 및 할당부(830)는 각 서브밴드 단위로 스펙트럼 에너지 즉, Norm 값을 이용하여 마스킹 임계치를 구하고, 마스킹 임계치를 이용하여 지각적으로 필요한 비트수 즉, 허용 비트수를 예측할 수 있다.
비트추정 및 할당부(830)는 각 서브밴드 단위로, 스펙트럼 에너지 즉, Norm 값을 이용하여 소수점 단위의 비트 할당을 수행할 수 있다. 이때, 예를 들어 상기 수식 4 내지 17에 의한 비트할당방법을 사용할 수 있다.
비트추정 및 할당부(830)는 모든 서브밴드에 대하여, 할당된 비트수와 예측된 비트수를 비교하여 할당된 비트수가 예측된 비트수보다 큰 경우에는 예측된 비트수로 제한한다. 비트수 제한의 결과 얻어지는 주어진 프레임의 전체 서브밴드의 할당 비트수가 주어진 프레임에서 사용가능한 전체 비트수(B)보다 적은 경우 그 차이에 해당하는 비트수를 전체 서브밴드에 균일하게 분배하거나, 혹은 지각적 중요도에 따라서 비균일하게 분배할 수 있다.
도 9는 도 7에 있어서 본 발명의 일실시예에 따른 복호화부(900)의 구성을 나타낸 블록도이다.
도 9에 도시된 복호화부(900)는 스펙트럼 복호화부(910), 엔벨로프 쉐이핑부(930) 및 스펙트럼 필링부(950)를 포함할 수 있다. 각 구성요소는 적어도 하나의 모듈로 일체화되어 적어도 하나의 프로세서(미도시)로 구현될 수 있다.
도 9를 참조하면, 스펙트럼 복호화부(910)는 역다중화부(도 7의 710)로부터 제공되는 부호화된 스펙트럼에 대한 정보 및 비트할당부(도 7의 730)로부터 제공되는 할당 비트수를 이용하여, 부호화된 스펙트럼을 무손실 복호화 및 역양자화할 수 있다. 스펙트럼 복호화부(910)로부터 제공되는 복호화된 스펙트럼은 정규화된 스펙트럼이다.
엔벨로프 쉐이핑부(930)는 비트할당부(도 7의 730)로부터 제공되는 역양자화된 Norm 값을 이용하여, 스펙트럼 복호화부(910)로부터 제공되는 정규화된 스펙트럼에 대하여 엔벨로프 쉐이핑을 수행하여 정규화 이전의 스펙트럼으로 복원할 수 있다.
스펙트럼 필링부(950)는 엔벨로프 쉐이핑부(930)로부터 제공되는 스펙트럼에서 0으로 역양자화된 부분을 포함하는 서브밴드가 존재하는 경우, 노이즈 성분으로 채울 수 있다. 일실시예에 따르면, 노이즈 성분은 랜덤으로 생성되거나, 0으로 역양자화된 부분을 포함하는 서브밴드에 인접하는 0이 아닌 값으로 역양자화된 서브밴드의 스펙트럼 혹은 0이 아닌 값으로 역양자화된 서브밴드의 스펙트럼을 복사하여 생성할 수 있다. 다른 실시예에 따르면, 0으로 역양자화된 부분을 포함하는 서브밴드에 대하여, 노이즈 성분을 생성하고, 노이즈 성분의 에너지와 비트할당부(도 7의 730)로부터 제공되는 역양자화된 Norm 값 즉, 스펙트럼 에너지간의 비를 이용하여 노이즈 성분의 에너지를 조절할 수 있다. 다른 실시예에 따르면, 0으로 역양자화된 부분을 포함하는 서브밴드에 대하여, 노이즈 성분을 생성하고, 노이즈 성분의 평균 에너지가 1이 되도록 조절할 수 있다.
도 10은 도 7에 있어서 본 발명의 다른 실시예에 따른 복호화부(1000)의 구성을 나타낸 블록도이다.
도 10에 도시된 복호화부(1000)는 스펙트럼 복호화부(1010), 스펙트럼 필링부(1030) 및 엔벨로프 쉐이핑부(1050)를 포함할 수 있다. 각 구성요소는 적어도 하나의 모듈로 일체화되어 적어도 하나의 프로세서(미도시)로 구현될 수 있다. 도 10의 복호화부(1000)는 도 9의 복호화부(900)와 비교해 볼 때 스펙트럼 필링부(1030) 및 엔벨로프 쉐이핑부(1050)의 배치 순서가 다른 차이점이 있으므로, 공통적인 구성요소에 대해서는 구체적인 설명을 생략하기로 한다.
도 10을 참조하면, 스펙트럼 필링부(1030)는 스펙트럼 복호화부(1010)로부터 제공되는 정규화된 스펙트럼에서 0으로 역양자화된 부분을 포함하는 서브밴드가 존재하는 경우, 노이즈 성분으로 채울 수 있다. 이때, 도 9의 스펙트럼 필링부(1050)에 적용되는 다양한 노이즈 필링방법을 사용할 수 있다. 바람직하게는 0으로 역양자화된 부분을 포함하는 서브밴드에 대하여, 노이즈 성분을 생성하고, 노이즈 성분의 평균 에너지가 1이 되도록 조절할 수 있다.
엔벨로프 쉐이핑부(1050)는 비트할당부(도 7의 730)로부터 제공되는 역양자화된 Norm 값을 이용하여, 노이즈 성분이 채워진 서브밴드를 포함하는 스펙트럼에 대하여 정규화 이전의 스펙트럼으로 복원할 수 있다.
도 11은 본 발명의 다른 실시예에 따른 오디오 복호화장치(1100)의 구성을 나타낸 블록도이다.
도 11에 도시된 오디오 복호화장치(1100)는 역다중화부(1110), 스케일팩터 복호화부(1130), 스펙트럼 복호화부(1150) 및 역변환부(1170)를 포함할 수 있다. 각 구성요소는 적어도 하나의 모듈로 일체화되어 적어도 하나의 프로세서(미도시)로 구현될 수 있다.
도 11을 참조하면, 역다중화부(1110)는 비트스트림을 역다중화하여 양자화 및 무손실 부호화된 스케일 팩터와, 부호화된 스펙트럼에 대한 정보를 추출할 수 있다.
스케일팩터 복호화부(1130)는 각 서브밴드 단위로 양자화 및 무손실 부호화된 스케일 팩터를 무손실 복호화 및 역양자화할 수 있다.
스펙트럼 복호화부(1150)는 역다중화부(1110)로부터 제공되는 부호화된 스펙트럼에 대한 정보 및 역양자화된 스케일팩터를 이용하여, 부호화된 스펙트럼을 무손실 복호화 및 역양자화할 수 있다. 스펙트럼 복호화부(1150)는 도 9에 도시된 복호화부(900)와 동일한 구성요소를 포함할 수 있다.
역변환부(1170)는 스펙트럼 복호화부(1150)에서 복호화된 스펙트럼을 시간도메인으로 변환하여 복원된 오디오 신호를 생성할 수 있다.
도 12는 본 발명의 다른 실시예에 따른 오디오 복호화장치(1200)의 구성을 나타낸 블록도이다.
도 12에 도시된 오디오 복호화장치(1200)는 역다중화부(1210), 비트할당부(1230), 복호화부(1250) 및 역변환부(1270)를 포함할 수 있다. 각 구성요소는 적어도 하나의 모듈로 일체화되어 적어도 하나의 프로세서(미도시)로 구현될 수 있다.
도 12에 도시된 오디오 복호화장치(1200)는 도 7의 오디오 복호화장치(700)와 비교해 볼 때 트랜지언트 시그널링 정보가 복호화부(1250) 및 역변환부(1270)으로 제공되는 차이점이 있으므로, 공통적인 구성요소에 대해서는 구체적인 설명을 생략하기로 한다.
도 12를 참조하면, 복호화부(1250)에서는 역다중화부(1210)로부터 제공되는 부호화된 스펙트럼에 대한 정보를 이용하여 스펙트럼을 복호화할 수 있다. 이때, 트랜지언트 시그널링 정보에 따라서 윈도우 사이즈가 가변될 수 있다.
역변환부(1270)에서는 복호화된 스펙트럼을 시간도메인으로 변환하여 복원된 오디오 신호를 생성할 수 있다. 이때, 트랜지언트 시그널링 정보에 따라서 윈도우 사이즈가 가변될 수 있다.
도 13은 본 발명의 일실시예에 따른 비트할당방법의 동작을 설명하는 흐름도이다.
도 13을 참조하면, 1310 단계에서는 각 서브밴드 단위로, 스펙트럼 에너지를 획득한다. 스펙트럼 에너지는 Norm 값을 사용할 수 있다.
1320 단계에서는 각 서브밴드 단위로, 심리음향 가중(psycho-acoustical weighting)을 적용하여 양자화된 Norm값을 수정한다.
1330 단계에서는 각 서브밴드 단위로, 수정된 양자화된 Norm값을 이용하여 비트를 할당한다. 구체적으로, 수정된 양자화된 Norm값이 큰 서브밴드 순서대로 샘플당 1 비트씩 할당한다. 즉, 가장 큰 양자화된 Norm 값을 갖는 서브밴드에 대하여 샘플당 1 비트씩 할당하고, 해당 서브밴드의 양자화된 Norm 값을 소정수, 예를 들면 2만큼 감소시켜, 다른 서브밴드에 비트를 할당할 수 있도록 우선순위를 변경한다. 이와 같은 과정은 해당 프레임에 대하여 주어진 비트를 모두 소진할 때까지 반복적으로 수행된다.
도 14는 본 발명의 다른 실시예에 따른 비트할당방법의 동작을 설명하는 흐름도이다.
도 14를 참조하면, 1410 단계에서는 각 서브밴드 단위로, 스펙트럼 에너지를 획득한다. 스펙트럼 에너지는 Norm 값을 사용할 수 있다.
1420 단계에서는 각 서브밴드 단위로, 스펙트럼 에너지를 이용하여 마스킹 임계치를 획득한다.
1430 단계에서는 각 서브밴드 단위로, 마스킹 임계치를 이용하여 허용 비트수를 소수점 단위로 추정한다.
1440 단계에서는 각 서브밴드 단위로, 스펙트럼 에너지에 근거하여 소수점 단위로 비트를 할당한다.
1450 단계에서는 각 서브밴드 단위로, 허용 비트수와 할당 비트수를 비교한다.
1460 단계에서는 1450 단계에서의 비교결과, 주어진 서브밴드에 대하여 할당 비트수가 허용 비트수보다 큰 경우, 할당 비트수를 허용 비트수로 제한한다.
1470 단계에서는 1450 단계에서의 비교결과, 주어진 서브밴드에 대하여 할당 비트수가 허용 비트수보다 작거나 같은 경우 할당 비트수를 그대로 사용하거나, 1460 단계에서 제한된 허용 비트수를 사용하여 각 서브밴드에 대하여 최종적인 할당 비트수를 결정한다.
한편, 도시되지 않았으나, 1470 단계에서 주어진 프레임의 각 서브밴드에 대하여 결정된 할당 비트수의 총합이 주어진 프레임에서 사용가능한 전체 비트수보다 많거나 적은 경우 그 차이에 해당하는 비트수를 전체 서브밴드에 균일하게 분배하거나, 혹은 지각적 중요도에 따라서 비균일하게 분배할 수 있다.
도 15는 본 발명의 다른 실시예에 따른 비트할당방법의 동작을 설명하는 흐름도이다.
도 15를 참조하면, 각 서브밴드 단위로, 역양자화된 Norm 값을 수신한다.
1510 단계에서는 각 서브밴드 단위로, 역양자화된 Norm 값을 이용하여 마스킹 임계치를 획득한다.
1520 단계에서는 각 서브밴드 단위로, 마스킹 임계치를 이용하여 SMR을 획득한다.
1530 단계에서는 각 서브밴드 단위로, SMR을 이용하여 허용 비트수를 소수점단위로 추정한다.
1540 단계에서는 각 서브밴드 단위로, 스펙트럼 에너지 혹은 역양자화된 Norm 값에 근거하여 소수점 단위로 비트를 할당한다.
1550 단계에서는 각 서브밴드 단위로, 허용 비트수와 할당 비트수를 비교한다.
1560 단계에서는 1550 단계에서의 비교결과, 주어진 서브밴드에 대하여 할당 비트수가 허용 비트수보다 큰 경우, 할당 비트수를 허용 비트수로 제한한다.
1570 단계에서는 1550 단계에서의 비교결과, 주어진 서브밴드에 대하여 할당 비트수가 허용 비트수보다 작거나 같은 경우 할당 비트수를 그대로 사용하거나, 1560 단계에서 제한된 허용 비트수를 사용하여 각 서브밴드에 대하여 최종적인 할당 비트수를 결정한다.
한편, 도시되지 않았으나, 1570 단계에서 주어진 프레임의 각 서브밴드에 대하여 결정된 할당 비트수의 총합이 주어진 프레임에서 사용가능한 전체 비트수보다 많거나 적은 경우 그 차이에 해당하는 비트수를 전체 서브밴드에 균일하게 분배하거나, 혹은 지각적 중요도에 따라서 비균일하게 분배할 수 있다.
도 16은 본 발명의 다른 실시예에 따른 비트할당방법의 동작을 설명하는 흐름도이다.
도 16을 참조하면, 1610 단계에서는 초기화를 수행한다. 초기화의 일예로는 상기 수식 20을 사용하여 각 서브밴드에 대하여 할당 비트수를 추정하는 경우, 모든 서브밴드에 대하여 항상 일정한 값을 가지는
Figure pat00035
을 계산함으로써, 전체적인 복잡도를 줄일 수 있다.
1620 단계에서는 상기 수식 17을 사용하여 각 서브밴드에 대하여 할당 비트수를 소수점 단위로 추정한다. 샘플당 할당 비트수(Lb)에 서브밴드의 샘플 수를 곱하여 각 서브밴드에 할당된 비트수를 구한다. 이때, 수식 17을 이용하여 각 서브밴드의 샘플당 할당 비트수(Lb)를 계산할 경우 Lb 가 0보다 작은 값을 가질 수 있다. 이 경우, 하기 수식 18과 같이 0보다 작은 값을 갖는 Lb 에 대하여 0을 할당한다.
Figure pat00036
그 결과, 주어진 프레임에 포함된 각 서브밴드에 대하여 추정된 할당 비트수의 총합이 주어진 프레임의 사용가능한 비트수 B보다 커질 수 있다.
1630 단계에서는 주어진 프레임에 포함된 각 서브밴드에 대하여 추정된 할당 비트수의 총합과 주어진 프레임의 사용가능한 비트수를 비교한다.
1640 단계에서는 주어진 프레임에 포함된 각 서브밴드에 대하여 추정된 할당 비트수의 총합이 주어진 프레임의 사용가능한 비트수와 동일해질 때까지 하기 수식 19를 사용하여 각 서브밴드에 대하여 비트를 재분배한다.
Figure pat00037
여기서,
Figure pat00038
는 (k-1)번째 반복에 의해 결정되는 비트수,
Figure pat00039
는 k번째 반복에 의해 결정되는 비트수를 나타낸다. 매 반복에서 결정되는 비트수는 0보다 작지 않아야 하며, 따라서 1640 단계는 0보다 큰 비트수를 갖는 서브밴드에 대하여 수행된다.
1650 단계에서는 1630 단계에서의 비교결과, 주어진 프레임에 포함된 각 서브밴드에 대하여 추정된 할당 비트수의 총합이 주어진 프레임의 사용가능한 비트수와 동일한 경우 각 서브밴드의 할당 비트수를 그대로 사용하거나, 1640 단계에서 재분배 결과 얻어지는 각 서브밴드의 할당 비트수를 사용하여 각 서브밴드에 대하여 최종적인 할당 비트수를 결정한다.
도 17은 본 발명의 다른 실시예에 따른 비트할당방법의 동작을 설명하는 흐름도이다.
도 17을 참조하면, 1710 단계에서는 도 16의 1610 단계에서와 마찬가지로 초기화를 수행한다. 1720 단계에서는 도 16의 1620 단계에서와 마찬가지로 각 서브밴드에 대하여 할당 비트수를 소수점 단위로 추정하고, 각 서브밴드의 샘플당 할당 비트수(Lb) 가 0보다 작은 경우 상기 수식 18과 같이 0보다 작은 값을 갖는 Lb 에 대하여 0을 할당한다.
1730 단계에서는 SNR 측면에서 각 서브밴드에 대하여 필요로 하는 최소 비트수를 정의하고, 1720 단계의 할당 비트수가 0보다는 크지만 최소 비트수보다 적은 서브밴드에 대해서는 최소 비트수로 제한하여 할당 비트수를 조정한다. 이와 같이 각 서브밴드의 할당 비트수를 최소 비트수로 제한함으로써, 음질이 저하될 가능성을 줄일 수 있다. 일예로, 각 서브밴드에 대하여 필요로 하는 최소 비트수는 팩토리얼 펄스 코딩에서 펄스 코딩에 필요한 최소 비트수로 정의할 수 있다. 팩토리얼 펄스 코딩은 0이 아닌 펄스의 위치(position), 펄스의 크기(magnitude), 펄스의 부호(sign)의 모든 조합을 이용하여 신호를 표현한다. 이때, 펄스를 표현할 수 있는 모든 조합(N)의 경우는 하기 수식 20과 같이 나타낼 수 있다.
Figure pat00040
여기서, 2i는 i개의 넌-제로 위치에 있는 신호에 대하여 +/-로 표현가능한 부호의 경우의 수를 나타낸다.
수식 20에서 F(n,i)는 하기 수식 21과 같이 정의될 수 있으며, 주어진 n개의 샘플 즉, 위치에 대하여 i개의 넌-제로 위치를 선택할 수 있는 경우의 수를 나타낸다.
Figure pat00041
수식 20에서 D(m,i)는 하기 수식 22와 같이 나타낼 수 있으며, 이는 i개의 넌-제로 위치에서 선택된 신호를 m개의 크기로 표현할 수 있는 경우의 수를 나타낸다.
Figure pat00042
한편, N개의 모든 조합을 표현하기 위하여 필요한 비트수(M)는 하기 수식 23과 같이 나타낼 수 있다.
Figure pat00043
결국, 주어진 서브밴드 b에서 Nb개의 샘플에 대하여 최소 1개의 펄스를 부호화하기 위하여 필요한 최소 비트수(Lb_min)는 하기 수식 24와 같이 나타낼 수 있다.
Figure pat00044
이때, 팩토리얼 펄스 코딩에서 필요한 최소 비트수에는 양자화에 필요한 이득값을 전송하는데 사용되는 비트수가 추가될 수 있고, 비트율에 따라서 가변될 수 있다. 각 서브밴드 단위의 필요한 최소 비트수는 하기 수식 25에서와 같이 팩토리얼 펄스 코딩에서 필요한 최소 비트수와 주어진 서브밴드의 샘플 개수(Nb) 중 큰 값으로 결정될 수 있다. 일예에 따르면, 1 비트/샘플로 설정할 수 있다.
Figure pat00045
한편, 1730 단계에서는 타겟 비트율이 작아 사용할 비트가 충분하지 않을 경우, 할당 비트수가 0보다는 크지만 최소 비트수보다 적은 서브밴드에 대해서는 할당 비트수를 회수하여 할당 비트수를 0으로 조정한다. 또한 할당 비트수가 수식 24의 비트수보다 작은 경우 할당 비트수를 회수하고, 수식 24의 비트수보다 크지만 수식 25의 최소 비트수보다 적은 서브밴드에 대해서는 최소 비트수를 할당할 수 있다.
1740 단계에서는 주어진 프레임에 포함된 각 서브밴드에 대하여 추정된 할당 비트수의 총합과 주어진 프레임의 사용가능한 비트수를 비교한다.
1750 단계에서는 주어진 프레임에 포함된 각 서브밴드에 대하여 추정된 할당 비트수의 총합이 주어진 프레임의 사용가능한 비트수와 동일해질 때까지 최소 비트수보다 많이 할당된 서브밴드에 대하여 비트를 재분배한다.
1760 단계에서는 비트 재분배에 대한 이전 반복시와 현재 반복시 각 서브밴드의 할당 비트수에 변동이 있는지를 판단하여, 비트 재분배에 대한 이전 반복시와 현재 반복시 각 서브밴드의 할당 비트수에 변동이 없거나, 주어진 프레임에 포함된 각 서브밴드에 대하여 추정된 할당 비트수의 총합이 주어진 프레임의 사용가능한 비트수와 같아질 때까지 1740 단계 내지 1760 단계를 수행한다.
1770 단계에서는 1760 단계에서의 판단결과, 비트 재분배에 대한 이전 반복시와 현재 반복시 각 서브밴드의 할당 비트수에 변동이 없는 경우 상위 서브밴드에서 하위 서브밴드로 순차적으로 비트를 회수하여 주어진 프레임의 사용가능한 비트수를 만족할 때까지 1740 단계 내지 1760 단계를 수행한다.
즉, 최소 비트수(Nb)보다 큰 값이 할당된 서브밴드에 대해서 비트를 감소시키면서, 가용 비트수를 만족하도록 조정함에 있어서, 모든 서브밴드에 대해 할당된 비트수가 최소 비트수보다 크지 않으면서, 할당된 비트의 합이 여전히 가용 비트수보다 큰 경우에는, 고주파 밴드부터 차례로 비트를 회수하는 방식으로 비트수를 조정할 수 있다.
도 16 및 도 17에 도시된 비트할당방법에 따르면, 각 서브밴드에 비트를 할당하기 위하여, 각 서브밴드에 스펙트럼 에너지 혹은 가중된 스펙트럼 에너지 순서로 초기 비트를 할당한 다음, 재차 스펙트럼 에너지 혹은 가중된 스펙트럼 에너지를 찾는 동작을 수회 반복할 필요없이, 각 서브밴드가 필요로 하는 비트수를 한번에 예측할 수 있다. 또한, 상기한 비트할당방법에 따르면, 주어진 프레임에 포함된 각 서브밴드에 대하여 추정된 할당 비트수의 총합이 주어진 프레임의 사용가능한 비트수와 동일해질 때까지 비트를 재분배함으로써, 효율적인 비트할당이 가능하다. 또한, 상기한 비트할당방법에 따르면, 임의의 서브밴드에 대하여 최소 비트수를 보장함으로써, 적은 비트수가 할당되어 충분한 개수의 스펙트럼 샘플 혹은 펄스를 부호화할 수 없어 스펙트럼 홀이 발생되는 것을 방지할 수 있다.
도 18은 본 발명의 일실시예에 따른 노이즈 필링방법의 동작을 설명하는 흐름도이다. 도 18의 노이즈 필링방법은 바람직하게로는 도 9의 복호화부(900)에서 수행될 수 있다.
도 18을 참조하면, 1810 단계에서는 비트스트림에 대하여 스펙트럼 복호화과정을 수행하여 정규화된 스펙트럼을 생성한다.
1830 단계에서는 비트스트림에 각 서브밴드 단위로 포함된 부호화된 Norm 값을 이용하여 정규화된 스펙트럼의 엔벨로프 쉐이핑을 수행하여 정규화 이전의 스펙트럼으로 복원한다.
1850 단계에서는 스펙트럼 홀을 포함하는 서브밴드에 대하여 노이즈 신호를 생성하여 채워준다.
1870 단계에서는 노이즈 신호가 생성되어 채워진 서브밴드를 쉐이핑한다. 구체적으로, 노이즈 신호가 생성되어 채워진 서브밴드에 대하여, 하기 수식 26에서와 같이 해당 서브밴드의 평균 스펙트럼 에너지에 해당하는 Norm 값에 해당 서브밴드의 샘플 개수를 승산하여 얻어지는 스펙트럼 에너지 Etarget 과 생성된 노이즈 신호의 에너지 Enoise 의 비를 이용하여 이득 gb 를 계산할 수 있다.
Figure pat00046
한편, 노이즈 신호가 생성되어 채워진 서브밴드에 일부 스펙트럼 성분이 부호화되어 포함되어 있는 경우, 노이즈 신호의 에너지는 부호화된 스펙트럼 성분 Ecoded 을 제외하고 구해지며, 이때 이득 gb는 하기 수식 27에서와 같이 정의될 수 있다.
Figure pat00047
다음, 수식 26 혹은 수식 27에 의하여 얻어진 이득 gb 혹은 gb는 하기 수식 28에서와 같이 노이즈 신호(N(k))가 생성되어 채워진 서브밴드에 적용하여 노이즈 쉐이핑을 수행함으로써 최종 노이즈 스펙트럼(S(k))을 생성한다.
Figure pat00048
한편, 서브밴드에 일부 스펙트럼 성분이 부호화되어 있는 경우 노이즈 신호 생성은, 부호화 된 스펙트럼의 펄스 개수, 부호화된 스펙트럼의 에너지 크기, 또는 서브밴드에 할당된 비트의 수를 각각 정해진 임계값과 비교하여, 일정한 조건을 만족할 경우 선택적으로 적용할 수 있다. 즉, 서브밴드에서 일부 스펙트럼이 부호화 된 경우, 특정한 조건을 만족할 경우에만 노이즈 필링을 수행하도록 제어할 수 있다.
도 19는 본 발명의 다른 실시예에 따른 노이즈 필링방법의 동작을 설명하는 흐름도이다. 도 19의 노이즈 필링방법은 바람직하게로는 도 10의 복호화부(1000)에서 수행될 수 있다.
도 19를 참조하면, 1910 단계에서는 비트스트림에 대하여 스펙트럼 복호화과정을 수행하여 정규화된 스펙트럼을 생성한다.
1930 단계에서는 스펙트럼 홀을 포함하는 서브밴드에 대하여 노이즈 신호를 생성하여 채워준다.
1950 단계에서는 1910 단계에서 생성된 정규화된 스펙트럼과 마찬가지로, 1930 단계에서 생성된 노이즈 신호가 포함된 서브밴드의 평균 에너지가 1이 되도록 조정한다. 구체적으로, 주어진 서브밴드의 샘플 개수가 Nb 이고, 노이즈 신호의 에너지가 Enoise 인 경우 이득 gb 는 하기 수식 29와 같이 얻어질 수 있다.
Figure pat00049
한편, 노이즈 신호가 생성되어 채워진 서브밴드에 일부 스펙트럼 성분이 부호화되어 포함되어 있는 경우, 노이즈 신호의 에너지는 부호화된 스펙트럼 성분 Ecoded 을 제외하고 구해지며, 이때 이득 gb 는 하기 수식 30에서와 같이 정의될 수 있다.
Figure pat00050
다음, 수식 29 혹은 수식 30에 의하여 얻어진 이득 gb 혹은 gb는 상기 수식28에서와 같이 노이즈 신호(N(k))가 생성되어 채워진 서브밴드에 적용하여 노이즈 쉐이핑을 수행함으로써 최종 노이즈 스펙트럼(S(k))을 생성한다.
1970 단계에서는 1950 단계를 통하여 정규화된 노이즈 스펙트럼을 포함하는정규화된 스펙트럼에 대하여 각 서브밴드 단위로 포함된 부호화된 Norm 값을 이용하여 엔벨로프 쉐이핑을 수행하여 정규화 이전의 스펙트럼으로 복원한다.
도 14 내지 도 19의 방법들은 프로그래밍될 수 있으며, 적어도 하나의 프로세싱 디바이스에 의해 수행될 수 있다.
도 20은 본 발명의 일실시예에 따른 부호화모듈을 포함하는 멀티미디어 기기의 구성을 나타낸 블록도이다.
도 20에 도시된 멀티미디어 기기(2000)는 통신부(2010)와 부호화모듈(2030)을 포함할 수 있다. 또한, 부호화 결과 얻어지는 오디오 비트스트림의 용도에 따라서, 오디오 비트스트림을 저장하는 저장부(2050)을 더 포함할 수 있다. 또한, 멀티미디어 기기(2000)는 마이크로폰(2070)을 더 포함할 수 있다. 즉, 저장부(2050)와 마이크로폰(2070)은 옵션으로 구비될 수 있다. 한편, 도 20에 도시된 멀티미디어 기기(2000)는 임의의 복호화모듈(미도시), 예를 들면 일반적인 복호화 기능을 수행하는 복호화모듈 혹은 본 발명의 일실시예에 따른 복호화모듈을 더 포함할 수 있다. 여기서, 부호화모듈(2030)은 멀티미디어 기기(2000)에 구비되는 다른 구성요소(미도시)와 함께 일체화되어 적어도 하나 이상의 프로세서(미도시)로 구현될 수 있다.
도 20을 참조하면, 통신부(2010)는 외부로부터 제공되는 오디오와 부호화된비트스트림 중 적어도 하나를 수신하거나, 복원된 오디오와 부호화모듈(2030)의 부호화결과 얻어지는 오디오 비트스트림 중 적어도 하나를 송신할 수 있다.
통신부(2010)는 무선 인터넷, 무선 인트라넷, 무선 전화망, 무선 랜(LAN), 와이파이(Wi-Fi), 와이파이 다이렉트(WFD, Wi-Fi Direct), 3G(Generation), 4G(4 Generation), 블루투스(Bluetooth), 적외선 통신(IrDA, Infrared Data Association), RFID(Radio Frequency Identification), UWB(Ultra WideBand), 지그비(Zigbee), NFC(Near Field Communication)와 같은 무선 네트워크 또는 유선 전화망, 유선 인터넷과 같은 유선 네트워크를 통해 외부의 멀티미디어 기기와 데이터를 송수신할 수 있도록 구성된다.
부호화모듈(2030)은 일실시예에 따르면, 통신부(2010) 혹은 마이크로폰(2070)을 통하여 제공되는 시간 도메인의 오디오 신호를 주파수 도메인의 오디오 스펙트럼으로 변환하고, 오디오 스펙트럼에서 주어진 프레임에 대하여 사용가능한 비트수 범위내에서, 소정의 주파수 밴드에 존재하는 스펙트럼의 SNR을 최대화시킬 수 있도록 주파수 밴드 단위로 할당 비트수를 소수점 단위로 결정하고, 주파수 밴드 단위로 결정된 할당 비트수를 조정하고, 주파수 밴드 단위로 조정된 비트수와 스펙트럼 에너지를 이용하여 오디오 스펙트럼을 부호화하여 비트스트림을 생성할 수 있다.
부호화모듈(2030)은 다른 실시예에 따르면, 통신부(2010) 혹은 마이크로폰(2070)을 통하여 제공되는 시간 도메인의 오디오 신호를 주파수 도메인의 오디오 스펙트럼으로 변환하고, 오디오 스펙트럼에서 주어진 프레임에 포함된 주파수 밴드 단위로, 마스킹 임계치를 이용하여 허용 비트수를 소수점 단위로 추정하고, 스펙트럼 에너지를 이용하여 할당 비트수를 소수점 단위로 추정하고, 할당 비트수가 상기 허용 비트수를 초과하지 않도록 조정하고, 주파수 밴드 단위로 조정된 비트수와 스펙트럼 에너지를 이용하여 오디오 스펙트럼을 부호화하여 비트스트림을 생성할 수 있다.
저장부(2050)는 부호화 모듈(2030)에서 생성되는 부호화된 비트스트림을 저장할 수 있다. 한편, 저장부(2050)는 멀티미디어 기기(2000)의 운용에 필요한 다양한 프로그램을 저장할 수 있다.
마이크로폰(2070)은 사용자 혹은 외부의 오디오신호를 부호화모듈(2030)로 제공할 수 있다.
도 21은 본 발명의 일실시예에 따른 복호화모듈을 포함하는 멀티미디어 기기의 구성을 나타낸 블록도이다.
도 21에 도시된 멀티미디어 기기(2100)는 통신부(2110)와 복호화모듈(2130)을 포함할 수 있다. 또한, 복호화 결과 얻어지는 복원된 오디오신호의 용도에 따라서, 복원된 오디오신호를 저장하는 저장부(2150)을 더 포함할 수 있다. 또한, 멀티미디어 기기(2100)는 스피커(2170)를 더 포함할 수 있다. 즉, 저장부(2150)와 스피커(2170)는 옵션으로 구비될 수 있다. 한편, 도 21에 도시된 멀티미디어 기기(2100)는 임의의 부호화모듈(미도시), 예를 들면 일반적인 부호화 기능을 수행하는 부호화모듈 혹은 본 발명의 일실시예에 따른 부호화모듈을 더 포함할 수 있다. 여기서, 복호화모듈(2130)은 멀티미디어 기기(2100)에 구비되는 다른 구성요소(미도시)와 함께 일체화되어 적어도 하나의 이상의 프로세서(미도시)로 구현될 수 있다.
도 21을 참조하면, 통신부(2110)는 외부로부터 제공되는 부호화된 비트스트림과 오디오 신호 중 적어도 하나를 수신하거나 복호화 모듈(2130)의 복호화결과 얻어지는 복원된 오디오 신호와 부호화결과 얻어지는 오디오 비트스트림 중 적어도 하나를 송신할 수 있다. 한편, 통신부(2110)는 도 20의 통신부(2010)와 실질적으로 유사하게 구현될 수 있다.
복호화 모듈(2130)은 일실시예에 따르면, 통신부(2110)를 통하여 제공되는 비트스트림을 수신하고, 주어진 프레임에 대하여 사용가능한 비트수 범위내에서, 각 주파수 밴드에 존재하는 스펙트럼의 SNR을 최대화시킬 수 있도록 주파수 밴드 단위로 할당 비트수를 소수점 단위로 결정하고, 주파수 밴드 단위로 결정된 할당 비트수를 조정하고, 주파수 밴드 단위로 조정된 비트수와 스펙트럼 에너지를 이용하여 비트스트림에 포함된 오디오 스펙트럼을 복호화하고, 복호화된 오디오 스펙트럼을 시간 도메인의 오디오 신호로 변환하여 복원된 오디오 신호를 생성한다.
복호화 모듈(2130)은 다른 실시예에 따르면, 통신부(2110)를 통하여 제공되는 비트스트림을 수신하고, 주어진 프레임에 포함된 주파수 밴드 단위로, 마스킹 임계치를 이용하여 허용 비트수를 소수점 단위로 추정하고, 스펙트럼 에너지를 이용하여 할당 비트수를 소수점 단위로 추정하고, 할당 비트수가 상기 허용 비트수를 초과하지 않도록 조정하고, 주파수 밴드 단위로 조정된 비트수와 스펙트럼 에너지를 이용하여 비트스트림에 포함된 오디오 스펙트럼을 복호화하고, 복호화된 오디오 스펙트럼을 시간 도메인의 오디오 신호로 변환하여 복원된 오디오신호를 생성한다.
또한, 상기 복호화 모듈(2130)은 일실시예에 따르면 0으로 역양자화된 부분을 포함하는 서브밴드에 대하여, 노이즈 성분을 생성하고, 노이즈 성분의 에너지와 역양자화된 Norm 값 즉, 스펙트럼 에너지간의 비를 이용하여 노이즈 성분의 에너지를 조절할 수 있다. 상기 복호화 모듈(2130)은 다른 실시예에 따르면, 0으로 역양자화된 부분을 포함하는 서브밴드에 대하여, 노이즈 성분을 생성하고, 노이즈 성분의 평균 에너지가 1이 되도록 조절할 수 있다.
저장부(2150)는 복호화 모듈(2130)에서 생성되는 복원된 오디오신호를 저장할 수 있다. 한편, 저장부(2150)는 멀티미디어 기기(2100)의 운용에 필요한 다양한 프로그램을 저장할 수 있다.
스피커(2170)는 복호화 모듈(2130)에서 생성되는 복원된 오디오신호를 외부로 출력할 수 있다.
도 22는 본 발명의 일실시예에 따른 부호화모듈과 복호화모듈을 포함하는 멀티미디어 기기의 구성을 나타낸 블록도이다.
도 22에 도시된 멀티미디어 기기(2200)는 통신부(2210), 부호화모듈(2220)과 복호화모듈(2230)을 포함할 수 있다. 또한, 부호화 결과 얻어지는 오디오 비트스트림 혹은 복호화 결과 얻어지는 복원된 오디오신호의 용도에 따라서, 오디오 비트스트림 혹은 복원된 오디오신호를 저장하는 저장부(2240)을 더 포함할 수 있다. 또한, 멀티미디어 기기(2200)는 마이크로폰(2250) 혹은 스피커(2260)를 더 포함할 수 있다. 여기서, 부호화모듈(2220)과 복호화모듈(2230)은 멀티미디어 기기(2200)에 구비되는 다른 구성요소(미도시)와 함께 일체화되어 적어도 하나 이상의 프로세서(미도시)로 구현될 수 있다.
도 22에 도시된 각 구성요소는 도 20에 도시된 멀티미디어 기기(2000)의 구성요소 혹은 도 21에 도시된 멀티미디어 기기(2100)의 구성요소와 중복되므로, 그 상세한 설명은 생략하기로 한다.
도 20 내지 도 22에 도시된 멀티미디어 기기(2000, 2100, 2200)에는, 전화, 모바일 폰 등을 포함하는 음성통신 전용단말, TV, MP3 플레이어 등을 포함하는 방송 혹은 음악 전용장치, 혹은 음성통신 전용단말과 방송 혹은 음악 전용장치의 융합 단말장치가 포함될 수 있으나, 이에 한정되는 것은 아니다. 또한, 멀티미디어 기기(2000, 2100, 2200)는 클라이언트, 서버 혹은 클라이언트와 서버 사이에 배치되는 변환기로서 사용될 수 있다.
한편, 멀티미디어 기기(2000, 2100, 2200)가 예를 들어 모바일 폰인 경우, 도시되지 않았지만 키패드 등과 같은 유저 입력부, 유저 인터페이스 혹은 모바일 폰에서 처리되는 정보를 디스플레이하는 디스플레이부, 모바일 폰의 전반적인 기능을 제어하는 프로세서를 더 포함할 수 있다. 또한, 모바일 폰은 촬상 기능을 갖는 카메라부와 모바일 폰에서 필요로 하는 기능을 수행하는 적어도 하나 이상의 구성요소를 더 포함할 수 있다.
한편, 멀티미디어 기기(2000, 2100, 2200)가 예를 들어 TV인 경우, 도시되지 않았지만 키패드 등과 같은 유저 입력부, 수신된 방송정보를 디스플레이하는 디스플레이부, TV의 전반적인 기능을 제어하는 프로세서를 더 포함할 수 있다. 또한, TV는 TV에서 필요로 하는 기능을 수행하는 적어도 하나 이상의 구성요소를 더 포함할 수 있다.
상기 실시예들에 따른 방법은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 또한, 상술한 본 발명의 실시예들에서 사용될 수 있는 데이터 구조, 프로그램 명령, 혹은 데이터 파일은 컴퓨터로 읽을 수 있는 기록매체에 다양한 수단을 통하여 기록될 수 있다. 컴퓨터로 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 저장 장치를 포함할 수 있다. 컴퓨터로 읽을 수 있는 기록매체의 예로는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함될 수 있다. 또한, 컴퓨터로 읽을 수 있는 기록매체는 프로그램 명령, 데이터 구조 등을 지정하는 신호를 전송하는 전송 매체일 수도 있다. 프로그램 명령의 예로는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함할 수 있다.
이상과 같이 본 발명의 일실시예는 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명의 일실시예는 상기 설명된 실시예에 한정되는 것은 아니며, 이는 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 스코프는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 이의 균등 또는 등가적 변형 모두는 본 발명 기술적 사상의 범주에 속한다고 할 것이다.
130: 변환부 150: 비트할당부
170: 부호화부 190: 다중화부
210: Norm 추정부 230: Norm 부호화부
250: 비트추정 및 할당부

Claims (5)

  1. 비트스트림에 대하여 스펙트럼 복호화과정을 수행하여 정규화된 스펙트럼을 생성하는 단계;
    상기 비트스트림에 포함된 부호화된 Norm 값을 이용하여 상기 정규화된 스펙트럼의 엔벨로프 쉐이핑을 수행하여 정규화 이전의 스펙트럼으로 복원하는 단계;
    상기 복원된 스펙트럼에서 제로로 역양자화된 부분을 포함하는 서브밴드에 대하여 노이즈 신호를 생성하여 채우는 단계를 포함하고,
    상기 노이즈 신호는, 복호화된 스펙트럼 성분과 스펙트럼 에너지에 기초하여 노이즈 게인을 계산하고, 상기 노이즈 게인을 상기 서브밴드에 적용함으로써 쉐이핑되는 것을 특징으로 하는, 노이즈 필링 방법.
  2. 제1항에 있어서, 상기 노이즈 신호를 생성하여 채우는 단계는,
    상기 서브밴드에 할당된 비트수와 미리 정해진 문턱치를 비교함으로써 상기 노이즈 신호가 채워질 서브밴드를 선택하는 단계를 포함하는, 노이즈 필링 방법.
  3. 노이즈 필링을 수행하는 오디오 복호화 장치에 있어서, 상기 오디오 복호화 장치는,
    적어도 하나의 프로세서를 포함하고,
    상기 적어도 하나의 프로세서는,
    비트스트림에 대하여 스펙트럼 복호화과정을 수행하여 정규화된 스펙트럼을 생성하고,
    상기 비트스트림에 포함된 부호화된 Norm 값을 이용하여 상기 정규화된 스펙트럼의 엔벨로프 쉐이핑을 수행하여 정규화 이전의 스펙트럼으로 복원하고,
    상기 복원된 스펙트럼에서 제로로 역양자화된 부분을 포함하는 서브밴드에 대하여 노이즈 신호를 생성하여 채우도록 설정되며,
    상기 노이즈 신호는, 복호화된 스펙트럼 성분과 스펙트럼 에너지에 기초하여 노이즈 게인을 계산하고, 상기 노이즈 게인을 상기 서브밴드에 적용함으로써 쉐이핑되는 것을 특징으로 하는, 오디오 복호화 장치.
  4. 제1항에 있어서, 상기 적어도 하나의 프로세서는,
    상기 서브밴드에 할당된 비트수와 미리 정해진 문턱치를 비교함으로써 상기 노이즈 신호가 채워질 서브밴드를 선택하도록 설정되는, 오디오 복호화 장치.
  5. 제1항 또는 제2항에 기재된 방법을 실행할 수 있는 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.
KR1020200175854A 2011-05-13 2020-12-15 노이즈 필링방법, 오디오 복호화방법 및 장치, 그 기록매체 및 이를 채용하는 멀티미디어 기기 KR102284106B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161485741P 2011-05-13 2011-05-13
US61/485,741 2011-05-13
US201161495014P 2011-06-09 2011-06-09
US61/495,014 2011-06-09
KR1020190159364A KR102193621B1 (ko) 2011-05-13 2019-12-03 노이즈 필링방법, 오디오 복호화방법 및 장치, 그 기록매체 및 이를 채용하는 멀티미디어 기기

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020190159364A Division KR102193621B1 (ko) 2011-05-13 2019-12-03 노이즈 필링방법, 오디오 복호화방법 및 장치, 그 기록매체 및 이를 채용하는 멀티미디어 기기

Publications (2)

Publication Number Publication Date
KR20200143332A true KR20200143332A (ko) 2020-12-23
KR102284106B1 KR102284106B1 (ko) 2021-07-30

Family

ID=47141906

Family Applications (7)

Application Number Title Priority Date Filing Date
KR1020120051071A KR102053900B1 (ko) 2011-05-13 2012-05-14 노이즈 필링방법, 오디오 복호화방법 및 장치, 그 기록매체 및 이를 채용하는 멀티미디어 기기
KR1020120051070A KR102053899B1 (ko) 2011-05-13 2012-05-14 비트할당방법, 오디오 부호화방법 및 장치, 오디오 복호화방법 및 장치, 기록매체와 이를 채용하는 멀티미디어 기기
KR1020190159364A KR102193621B1 (ko) 2011-05-13 2019-12-03 노이즈 필링방법, 오디오 복호화방법 및 장치, 그 기록매체 및 이를 채용하는 멀티미디어 기기
KR1020190159358A KR102209073B1 (ko) 2011-05-13 2019-12-03 비트할당방법, 오디오 부호화방법 및 장치, 오디오 복호화방법 및 장치, 기록매체와 이를 채용하는 멀티미디어 기기
KR1020200175854A KR102284106B1 (ko) 2011-05-13 2020-12-15 노이즈 필링방법, 오디오 복호화방법 및 장치, 그 기록매체 및 이를 채용하는 멀티미디어 기기
KR1020210009642A KR102409305B1 (ko) 2011-05-13 2021-01-22 비트할당방법, 오디오 부호화방법 및 장치, 오디오 복호화방법 및 장치, 기록매체와 이를 채용하는 멀티미디어 기기
KR1020220000533A KR102491547B1 (ko) 2011-05-13 2022-01-03 비트할당방법, 오디오 부호화방법 및 장치, 오디오 복호화방법 및 장치, 기록매체와 이를 채용하는 멀티미디어 기기

Family Applications Before (4)

Application Number Title Priority Date Filing Date
KR1020120051071A KR102053900B1 (ko) 2011-05-13 2012-05-14 노이즈 필링방법, 오디오 복호화방법 및 장치, 그 기록매체 및 이를 채용하는 멀티미디어 기기
KR1020120051070A KR102053899B1 (ko) 2011-05-13 2012-05-14 비트할당방법, 오디오 부호화방법 및 장치, 오디오 복호화방법 및 장치, 기록매체와 이를 채용하는 멀티미디어 기기
KR1020190159364A KR102193621B1 (ko) 2011-05-13 2019-12-03 노이즈 필링방법, 오디오 복호화방법 및 장치, 그 기록매체 및 이를 채용하는 멀티미디어 기기
KR1020190159358A KR102209073B1 (ko) 2011-05-13 2019-12-03 비트할당방법, 오디오 부호화방법 및 장치, 오디오 복호화방법 및 장치, 기록매체와 이를 채용하는 멀티미디어 기기

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020210009642A KR102409305B1 (ko) 2011-05-13 2021-01-22 비트할당방법, 오디오 부호화방법 및 장치, 오디오 복호화방법 및 장치, 기록매체와 이를 채용하는 멀티미디어 기기
KR1020220000533A KR102491547B1 (ko) 2011-05-13 2022-01-03 비트할당방법, 오디오 부호화방법 및 장치, 오디오 복호화방법 및 장치, 기록매체와 이를 채용하는 멀티미디어 기기

Country Status (15)

Country Link
US (7) US9159331B2 (ko)
EP (5) EP3346465A1 (ko)
JP (3) JP6189831B2 (ko)
KR (7) KR102053900B1 (ko)
CN (3) CN105825859B (ko)
AU (3) AU2012256550B2 (ko)
BR (1) BR112013029347B1 (ko)
CA (1) CA2836122C (ko)
MX (3) MX2013013261A (ko)
MY (2) MY186720A (ko)
RU (2) RU2705052C2 (ko)
SG (1) SG194945A1 (ko)
TW (5) TWI562133B (ko)
WO (2) WO2012157931A2 (ko)
ZA (1) ZA201309406B (ko)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100266989A1 (en) 2006-11-09 2010-10-21 Klox Technologies Inc. Teeth whitening compositions and methods
TWI562133B (en) 2011-05-13 2016-12-11 Samsung Electronics Co Ltd Bit allocating method and non-transitory computer-readable recording medium
MX350162B (es) 2011-06-30 2017-08-29 Samsung Electronics Co Ltd Aparato y método para generar señal extendida de ancho de banda.
US8586847B2 (en) * 2011-12-02 2013-11-19 The Echo Nest Corporation Musical fingerprinting based on onset intervals
US11116841B2 (en) 2012-04-20 2021-09-14 Klox Technologies Inc. Biophotonic compositions, kits and methods
CN103854653B (zh) * 2012-12-06 2016-12-28 华为技术有限公司 信号解码的方法和设备
CN107516531B (zh) 2012-12-13 2020-10-13 弗朗霍弗应用研究促进协会 语音声响编码装置和解码装置、语音声响编码和解码方法
CN103107863B (zh) * 2013-01-22 2016-01-20 深圳广晟信源技术有限公司 一种分段平均码率的数字音频信源编码方法及装置
BR112015017748B1 (pt) * 2013-01-29 2022-03-15 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E. V. Preenchimento de ruído na codificação de áudio de transformada perceptual
US20140276354A1 (en) 2013-03-14 2014-09-18 Klox Technologies Inc. Biophotonic materials and uses thereof
CN108198564B (zh) 2013-07-01 2021-02-26 华为技术有限公司 信号编码和解码方法以及设备
EP3614381A1 (en) 2013-09-16 2020-02-26 Samsung Electronics Co., Ltd. Signal encoding method and device and signal decoding method and device
KR101852749B1 (ko) * 2013-10-31 2018-06-07 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 주파수 도메인에서의 시간적인 사전-형상화된 잡음의 삽입에 의한 오디오 대역폭 확장
KR102185478B1 (ko) * 2014-02-28 2020-12-02 프라운호퍼-게젤샤프트 추르 푀르데룽 데어 안제반텐 포르슝 에 파우 복호 장치, 부호화 장치, 복호 방법, 및 부호화 방법
CN104934034B (zh) 2014-03-19 2016-11-16 华为技术有限公司 用于信号处理的方法和装置
RU2689181C2 (ru) * 2014-03-31 2019-05-24 Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. Кодер, декодер, способ кодирования, способ декодирования и программа
CN110097892B (zh) 2014-06-03 2022-05-10 华为技术有限公司 一种语音频信号的处理方法和装置
US9361899B2 (en) * 2014-07-02 2016-06-07 Nuance Communications, Inc. System and method for compressed domain estimation of the signal to noise ratio of a coded speech signal
KR20230066137A (ko) 2014-07-28 2023-05-12 삼성전자주식회사 신호 부호화방법 및 장치와 신호 복호화방법 및 장치
EP2980792A1 (en) 2014-07-28 2016-02-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for generating an enhanced signal using independent noise-filling
EP3208800A1 (en) * 2016-02-17 2017-08-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for stereo filing in multichannel coding
CN105957533B (zh) * 2016-04-22 2020-11-10 杭州微纳科技股份有限公司 语音压缩方法、语音解压方法及音频编码器、音频解码器
CN106782608B (zh) * 2016-12-10 2019-11-05 广州酷狗计算机科技有限公司 噪声检测方法及装置
CN108174031B (zh) * 2017-12-26 2020-12-01 上海展扬通信技术有限公司 一种音量调节方法、终端设备及计算机可读存储介质
US10950251B2 (en) * 2018-03-05 2021-03-16 Dts, Inc. Coding of harmonic signals in transform-based audio codecs
US10586546B2 (en) 2018-04-26 2020-03-10 Qualcomm Incorporated Inversely enumerated pyramid vector quantizers for efficient rate adaptation in audio coding
US10734006B2 (en) 2018-06-01 2020-08-04 Qualcomm Incorporated Audio coding based on audio pattern recognition
US10580424B2 (en) * 2018-06-01 2020-03-03 Qualcomm Incorporated Perceptual audio coding as sequential decision-making problems
CN108833324B (zh) * 2018-06-08 2020-11-27 天津大学 一种基于时域限幅噪声消除的haco-ofdm系统接收方法
CN108922556B (zh) * 2018-07-16 2019-08-27 百度在线网络技术(北京)有限公司 声音处理方法、装置及设备
WO2020207593A1 (en) * 2019-04-11 2020-10-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio decoder, apparatus for determining a set of values defining characteristics of a filter, methods for providing a decoded audio representation, methods for determining a set of values defining characteristics of a filter and computer program
CN110265043B (zh) * 2019-06-03 2021-06-01 同响科技股份有限公司 自适应有损或无损的音频压缩和解压缩演算方法
EP3980992A4 (en) 2019-11-01 2022-05-04 Samsung Electronics Co., Ltd. HUB DEVICE, MULTIPLE DEVICE SYSTEM WITH THE HUB DEVICE AND A VARIETY OF DEVICES AND METHOD OF OPERATING THE HUB DEVICE AND THE MULTIPLE DEVICE SYSTEM

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009029036A1 (en) * 2007-08-27 2009-03-05 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for noise filling
KR102053900B1 (ko) * 2011-05-13 2019-12-09 삼성전자주식회사 노이즈 필링방법, 오디오 복호화방법 및 장치, 그 기록매체 및 이를 채용하는 멀티미디어 기기

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4899384A (en) * 1986-08-25 1990-02-06 Ibm Corporation Table controlled dynamic bit allocation in a variable rate sub-band speech coder
JPH03181232A (ja) * 1989-12-11 1991-08-07 Toshiba Corp 可変レート符号化方式
JP2560873B2 (ja) * 1990-02-28 1996-12-04 日本ビクター株式会社 直交変換符号化復号化方法
JPH0414355A (ja) 1990-05-08 1992-01-20 Matsushita Electric Ind Co Ltd 構内交換機のリンガ信号送出方法
JPH04168500A (ja) * 1990-10-31 1992-06-16 Sanyo Electric Co Ltd 信号符号化方法
JPH05114863A (ja) 1991-08-27 1993-05-07 Sony Corp 高能率符号化装置及び復号化装置
JP3141450B2 (ja) * 1991-09-30 2001-03-05 ソニー株式会社 オーディオ信号処理方法
EP0559348A3 (en) * 1992-03-02 1993-11-03 AT&T Corp. Rate control loop processor for perceptual encoder/decoder
JP3153933B2 (ja) * 1992-06-16 2001-04-09 ソニー株式会社 データ符号化装置及び方法並びにデータ復号化装置及び方法
JPH06348294A (ja) * 1993-06-04 1994-12-22 Sanyo Electric Co Ltd 帯域分割符号化装置
US5893065A (en) * 1994-08-05 1999-04-06 Nippon Steel Corporation Apparatus for compressing audio data
TW271524B (ko) 1994-08-05 1996-03-01 Qualcomm Inc
KR0144011B1 (ko) * 1994-12-31 1998-07-15 김주용 엠펙 오디오 데이타 고속 비트 할당 및 최적 비트 할당 방법
US5864802A (en) * 1995-09-22 1999-01-26 Samsung Electronics Co., Ltd. Digital audio encoding method utilizing look-up table and device thereof
US5956674A (en) * 1995-12-01 1999-09-21 Digital Theater Systems, Inc. Multi-channel predictive subband audio coder using psychoacoustic adaptive bit allocation in frequency, time and over the multiple channels
JP3189660B2 (ja) * 1996-01-30 2001-07-16 ソニー株式会社 信号符号化方法
JP3181232B2 (ja) 1996-12-19 2001-07-03 立川ブラインド工業株式会社 ロールブラインドのスクリーン取付装置
JP3328532B2 (ja) * 1997-01-22 2002-09-24 シャープ株式会社 デジタルデータの符号化方法
KR100261254B1 (ko) * 1997-04-02 2000-07-01 윤종용 비트율 조절이 가능한 오디오 데이터 부호화/복호화방법 및 장치
JP3802219B2 (ja) * 1998-02-18 2006-07-26 富士通株式会社 音声符号化装置
JP3515903B2 (ja) * 1998-06-16 2004-04-05 松下電器産業株式会社 オーディオ符号化のための動的ビット割り当て方法及び装置
JP4168500B2 (ja) 1998-11-04 2008-10-22 株式会社デンソー 半導体装置およびその実装方法
JP2000148191A (ja) * 1998-11-06 2000-05-26 Matsushita Electric Ind Co Ltd ディジタルオーディオ信号の符号化装置
TW477119B (en) * 1999-01-28 2002-02-21 Winbond Electronics Corp Byte allocation method and device for speech synthesis
JP2000293199A (ja) * 1999-04-05 2000-10-20 Nippon Columbia Co Ltd 音声符号化方法および記録再生装置
US6687663B1 (en) * 1999-06-25 2004-02-03 Lake Technology Limited Audio processing method and apparatus
US6691082B1 (en) 1999-08-03 2004-02-10 Lucent Technologies Inc Method and system for sub-band hybrid coding
JP2002006895A (ja) * 2000-06-20 2002-01-11 Fujitsu Ltd ビット割当装置および方法
JP4055336B2 (ja) * 2000-07-05 2008-03-05 日本電気株式会社 音声符号化装置及びそれに用いる音声符号化方法
JP4190742B2 (ja) * 2001-02-09 2008-12-03 ソニー株式会社 信号処理装置及び方法
JP2004522198A (ja) * 2001-05-08 2004-07-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 音声符号化方法
US7447631B2 (en) 2002-06-17 2008-11-04 Dolby Laboratories Licensing Corporation Audio coding system using spectral hole filling
KR100462611B1 (ko) * 2002-06-27 2004-12-20 삼성전자주식회사 하모닉 성분을 이용한 오디오 코딩방법 및 장치
US7272566B2 (en) * 2003-01-02 2007-09-18 Dolby Laboratories Licensing Corporation Reducing scale factor transmission cost for MPEG-2 advanced audio coding (AAC) using a lattice based post processing technique
FR2849727B1 (fr) * 2003-01-08 2005-03-18 France Telecom Procede de codage et de decodage audio a debit variable
JP2005202248A (ja) * 2004-01-16 2005-07-28 Fujitsu Ltd オーディオ符号化装置およびオーディオ符号化装置のフレーム領域割り当て回路
US7460990B2 (en) * 2004-01-23 2008-12-02 Microsoft Corporation Efficient coding of digital media spectral data using wide-sense perceptual similarity
JP2005265865A (ja) * 2004-02-16 2005-09-29 Matsushita Electric Ind Co Ltd オーディオ符号化のためのビット割り当て方法及び装置
CA2457988A1 (en) * 2004-02-18 2005-08-18 Voiceage Corporation Methods and devices for audio compression based on acelp/tcx coding and multi-rate lattice vector quantization
KR100695125B1 (ko) * 2004-05-28 2007-03-14 삼성전자주식회사 디지털 신호 부호화/복호화 방법 및 장치
US7725313B2 (en) * 2004-09-13 2010-05-25 Ittiam Systems (P) Ltd. Method, system and apparatus for allocating bits in perceptual audio coders
US7979721B2 (en) * 2004-11-15 2011-07-12 Microsoft Corporation Enhanced packaging for PC security
CN1780278A (zh) * 2004-11-19 2006-05-31 松下电器产业株式会社 子载波通信系统中自适应调制与编码方法和设备
KR100657948B1 (ko) * 2005-02-03 2006-12-14 삼성전자주식회사 음성향상장치 및 방법
DE202005010080U1 (de) 2005-06-27 2006-11-09 Pfeifer Holding Gmbh & Co. Kg Verbindungsvorrichtung
US7562021B2 (en) * 2005-07-15 2009-07-14 Microsoft Corporation Modification of codewords in dictionary used for efficient coding of digital media spectral data
US7734053B2 (en) * 2005-12-06 2010-06-08 Fujitsu Limited Encoding apparatus, encoding method, and computer product
US8332216B2 (en) * 2006-01-12 2012-12-11 Stmicroelectronics Asia Pacific Pte., Ltd. System and method for low power stereo perceptual audio coding using adaptive masking threshold
JP2007264154A (ja) * 2006-03-28 2007-10-11 Sony Corp オーディオ信号符号化方法、オーディオ信号符号化方法のプログラム、オーディオ信号符号化方法のプログラムを記録した記録媒体及びオーディオ信号符号化装置
JP5114863B2 (ja) * 2006-04-11 2013-01-09 横浜ゴム株式会社 空気入りタイヤおよび空気入りタイヤの組立方法
SG136836A1 (en) * 2006-04-28 2007-11-29 St Microelectronics Asia Adaptive rate control algorithm for low complexity aac encoding
JP4823001B2 (ja) * 2006-09-27 2011-11-24 富士通セミコンダクター株式会社 オーディオ符号化装置
US7953595B2 (en) * 2006-10-18 2011-05-31 Polycom, Inc. Dual-transform coding of audio signals
KR101291672B1 (ko) * 2007-03-07 2013-08-01 삼성전자주식회사 노이즈 신호 부호화 및 복호화 장치 및 방법
ES2375192T3 (es) 2007-08-27 2012-02-27 Telefonaktiebolaget L M Ericsson (Publ) Codificación por transformación mejorada de habla y señales de audio.
CN101239368A (zh) 2007-09-27 2008-08-13 骆立波 异型盖整平模具及其整平方法
JP5883561B2 (ja) * 2007-10-17 2016-03-15 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ アップミックスを使用した音声符号器
US8527265B2 (en) * 2007-10-22 2013-09-03 Qualcomm Incorporated Low-complexity encoding/decoding of quantized MDCT spectrum in scalable speech and audio codecs
ATE518224T1 (de) * 2008-01-04 2011-08-15 Dolby Int Ab Audiokodierer und -dekodierer
US8831936B2 (en) * 2008-05-29 2014-09-09 Qualcomm Incorporated Systems, methods, apparatus, and computer program products for speech signal processing using spectral contrast enhancement
WO2010053287A2 (en) 2008-11-04 2010-05-14 Lg Electronics Inc. An apparatus for processing an audio signal and method thereof
US8463599B2 (en) 2009-02-04 2013-06-11 Motorola Mobility Llc Bandwidth extension method and apparatus for a modified discrete cosine transform audio coder
CN102222505B (zh) * 2010-04-13 2012-12-19 中兴通讯股份有限公司 可分层音频编解码方法系统及瞬态信号可分层编解码方法
JP5575977B2 (ja) * 2010-04-22 2014-08-20 クゥアルコム・インコーポレイテッド ボイスアクティビティ検出
CN101957398B (zh) 2010-09-16 2012-11-28 河北省电力研究院 一种基于机电与电磁暂态混合仿真技术检测计算电网一次时间常数的方法
JP5609591B2 (ja) * 2010-11-30 2014-10-22 富士通株式会社 オーディオ符号化装置、オーディオ符号化方法及びオーディオ符号化用コンピュータプログラム
FR2969805A1 (fr) * 2010-12-23 2012-06-29 France Telecom Codage bas retard alternant codage predictif et codage par transformee
EP2684190B1 (en) * 2011-03-10 2015-11-18 Telefonaktiebolaget L M Ericsson (PUBL) Filling of non-coded sub-vectors in transform coded audio signals
WO2012144128A1 (ja) * 2011-04-20 2012-10-26 パナソニック株式会社 音声音響符号化装置、音声音響復号装置、およびこれらの方法
DE102011106033A1 (de) * 2011-06-30 2013-01-03 Zte Corporation Verfahren und System zur Audiocodierung und -decodierung und Verfahren zur Schätzung des Rauschpegels
RU2505921C2 (ru) * 2012-02-02 2014-01-27 Корпорация "САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд." Способ и устройство кодирования и декодирования аудиосигналов (варианты)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009029036A1 (en) * 2007-08-27 2009-03-05 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for noise filling
KR102053900B1 (ko) * 2011-05-13 2019-12-09 삼성전자주식회사 노이즈 필링방법, 오디오 복호화방법 및 장치, 그 기록매체 및 이를 채용하는 멀티미디어 기기

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Low-complexity, full-band audio coding for high-quality, conversational applications. Recommendation ITU-T G.719. 2008.06. *
Marina Bosi, et al. ISO/IEC MPEG-2 advanced audio coding. Journal of the Audio engineering society, 1997, Vol.45. No.10, pp.789-814. *

Also Published As

Publication number Publication date
AU2012256550A1 (en) 2014-01-16
CN105825858B (zh) 2020-02-14
KR102409305B1 (ko) 2022-06-15
AU2018200360A1 (en) 2018-02-08
AU2012256550B2 (en) 2016-08-25
EP3385949A1 (en) 2018-10-10
KR102284106B1 (ko) 2021-07-30
JP2017194690A (ja) 2017-10-26
KR20220004778A (ko) 2022-01-11
RU2013155482A (ru) 2015-06-20
JP2014514617A (ja) 2014-06-19
KR102053900B1 (ko) 2019-12-09
US20170061971A1 (en) 2017-03-02
AU2018200360B2 (en) 2019-03-07
ZA201309406B (en) 2021-05-26
TW201705123A (zh) 2017-02-01
US9773502B2 (en) 2017-09-26
TW201705124A (zh) 2017-02-01
TWI576829B (zh) 2017-04-01
EP2707874A4 (en) 2014-12-03
KR102193621B1 (ko) 2020-12-21
KR20120127335A (ko) 2012-11-21
KR20190139172A (ko) 2019-12-17
TW201715512A (zh) 2017-05-01
US9711155B2 (en) 2017-07-18
KR20190138767A (ko) 2019-12-16
KR20120127334A (ko) 2012-11-21
US20170316785A1 (en) 2017-11-02
US20160099004A1 (en) 2016-04-07
MX2013013261A (es) 2014-02-20
US10276171B2 (en) 2019-04-30
JP2019168699A (ja) 2019-10-03
TWI606441B (zh) 2017-11-21
KR20210011482A (ko) 2021-02-01
US20160035354A1 (en) 2016-02-04
US10109283B2 (en) 2018-10-23
JP6189831B2 (ja) 2017-08-30
KR102209073B1 (ko) 2021-01-28
AU2016262702B2 (en) 2017-10-19
KR102053899B1 (ko) 2019-12-09
WO2012157931A2 (en) 2012-11-22
RU2648595C2 (ru) 2018-03-26
US20120288117A1 (en) 2012-11-15
EP2707875A2 (en) 2014-03-19
JP6726785B2 (ja) 2020-07-22
TWI562132B (en) 2016-12-11
CN103650038A (zh) 2014-03-19
CN105825859A (zh) 2016-08-03
CN105825858A (zh) 2016-08-03
TW201301264A (zh) 2013-01-01
CN103650038B (zh) 2016-06-15
CA2836122A1 (en) 2012-11-22
BR112013029347A2 (pt) 2017-02-07
TWI604437B (zh) 2017-11-01
WO2012157932A2 (en) 2012-11-22
MY186720A (en) 2021-08-12
EP2707875A4 (en) 2015-03-25
SG194945A1 (en) 2013-12-30
BR112013029347B1 (pt) 2021-05-11
MX337772B (es) 2016-03-18
US9159331B2 (en) 2015-10-13
RU2018108586A3 (ko) 2019-04-24
US9489960B2 (en) 2016-11-08
EP3346465A1 (en) 2018-07-11
WO2012157932A3 (en) 2013-01-24
TW201250672A (en) 2012-12-16
MY164164A (en) 2017-11-30
KR102491547B1 (ko) 2023-01-26
US9236057B2 (en) 2016-01-12
US20120290307A1 (en) 2012-11-15
RU2705052C2 (ru) 2019-11-01
AU2016262702A1 (en) 2016-12-15
CN105825859B (zh) 2020-02-14
MX345963B (es) 2017-02-28
EP3937168A1 (en) 2022-01-12
WO2012157931A3 (en) 2013-01-24
US20180012605A1 (en) 2018-01-11
RU2018108586A (ru) 2019-02-26
TWI562133B (en) 2016-12-11
CA2836122C (en) 2020-06-23
EP2707874A2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
KR102193621B1 (ko) 노이즈 필링방법, 오디오 복호화방법 및 장치, 그 기록매체 및 이를 채용하는 멀티미디어 기기
KR20130090826A (ko) 낮은 복잡도로 오디오 신호를 처리하는 방법 및 장치

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant