KR20200128112A - Aav에 기반한 유전자 및 단백질 전달을 위한 모듈식 시스템 - Google Patents

Aav에 기반한 유전자 및 단백질 전달을 위한 모듈식 시스템 Download PDF

Info

Publication number
KR20200128112A
KR20200128112A KR1020207028093A KR20207028093A KR20200128112A KR 20200128112 A KR20200128112 A KR 20200128112A KR 1020207028093 A KR1020207028093 A KR 1020207028093A KR 20207028093 A KR20207028093 A KR 20207028093A KR 20200128112 A KR20200128112 A KR 20200128112A
Authority
KR
South Korea
Prior art keywords
aav
conjugate
cells
binding partner
polypeptide
Prior art date
Application number
KR1020207028093A
Other languages
English (en)
Inventor
레아 번
빌지 에신 오즈투르크
티머시 데이
Original Assignee
유니버시티 오브 피츠버그-오브 더 커먼웰쓰 시스템 오브 하이어 에듀케이션
더 리젠츠 오브 더 유니버시티 오브 캘리포니아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유니버시티 오브 피츠버그-오브 더 커먼웰쓰 시스템 오브 하이어 에듀케이션, 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 filed Critical 유니버시티 오브 피츠버그-오브 더 커먼웰쓰 시스템 오브 하이어 에듀케이션
Publication of KR20200128112A publication Critical patent/KR20200128112A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/465Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/40Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14121Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/40Systems of functionally co-operating vectors

Abstract

한 실시양태에서, 본 발명은 외부 표면을 포함하는 아데노 관련 바이러스(AAV)로서, 그 표면은 결합 파트너와 결합을 형성하는 하나 이상의 펩티드 태그를 포함하고, AAV는 생 바이러스인 AAV를 제공한다. 다른 실시양태에서, 본 발명은 적어도 하나의 상기 AAV와, 태그에 대한 결합 파트너인 제1 도메인 및 생물 활성 폴리펩티드인 제2 도메인을 포함하는 적어도 하나의 폴리펩티드를 포함하는 접합체를 제공한다. 다른 실시양태에서, 본 발명은 적어도 하나의 상기 AAV(제1 AAV) 및 적어도 하나의 제2 AAV를 포함하는 접합체로서, 제2 AAV는 제2 외부 표면을 포함하고, 제2 외부 표면은 태그 또는 제3 링커 분자에 대한 적어도 하나의 결합 파트너를 포함하며, 적어도 하나의 제1 AAV와 적어도 하나의 제2 AAV는 결합되어 있는 것인 접합체를 제공한다.

Description

AAV에 기반한 유전자 및 단백질 전달을 위한 모듈식 시스템
관련 출원에 대한 상호 참조
본 특허 출원은 2018년 2월 28일에 제출된 공동 계류중인 미국 특허 출원 제62/636,638호를 우선권으로 주장하며, 그의 전체 내용은 본원에 여기에 그 전부가 인용되어 있다.
전자적으로 제출된 자료의 참조 인용
본원과 동시에 제출되었고 하기와 같이 식별되는 컴퓨터 판독 가능한 뉴클레오티드/아미노산 서열 목록이, 그 전체가 본원에 참조로 인용되어 있다: 2019년 2월 28일자의 "741805_ST25.TXT"로 명명된 하나의 36,315 바이트 ASCII(텍스트) 파일.
현재, 바이러스, 예컨대 아데노 관련 바이러스(AAV)는 생체내 유전자 전달을 위한 가장 효율적인 방식이지만, 단백질 발현의 시간적 제어를 허용하지 않는 경우가 많다. 대신, 바이러스 벡터를 통해 전달된 유전자는 흔히 영구적으로 발현되는데, 이는 Cas9의 경우에 중대한 결점이며, 이때 지속적인 발현은 표적외 효과를 초래한다. 유도성 프로모터는 일시적인 수준을 제공할 수는 있지만, 흔히 누락적이거나 비효율적이다.
AAV는 생체내 유전자 전달을 위한 고효율의 비병원성 벡터이고, 신경 세포에 대래 강한 향성(tropism)을 가지며, 실험실 환경에서 생산 및 작업이 용이하다. 그러나, AAV 벡터의 크기는 4.7 kB로 엄격히 제한되어, 큰 유전자 또는 복수의 유전자의 전달을 어렵게 한다. 따라서, 단일 AAV 비리온에 수용될 수 있는 것보다 큰 전이 유전자의 전달을 가능하게 하는 개선된 AAV 기반 벡터 시스템에 대한 요구가 있다. 또한, 일시적 발현이 중요한 단백질, 예컨대 Cas9를 전달할 수 있는 AAV 기반 벡터에 대한 요구가 있다.
본 발명은 생체내 유전자 전달에 대한 이러한 주요 장애를 극복하는, AAV의 안전성 및 효율성을 기반으로 한, 혁신적인 유전자 및 단백질 전달 시스템을 제공한다. 패키징 크기 제한 및 영구적인 단백질 발현을 극복하기 위해, 본 발명은, 작은 구형 단백질과 생리적으로 관련된 조건에서 파괴되지 않는 결합(이의 비제한적인 예로서, 공유 결합을 들 수 있음)을 자발적으로 형성하는 펩티드 태그를 이용한 모듈식 AAV 기반 유전자 및 단백질 전달 시스템을 제공한다. AAV 비리온의 표면 상에 이 펩티드 태그를 발현하고, 또 다른 AAV 또는 다른 단백질 상에 결합 파트너를 발현함으로써, 본 발명의 AAV 벡터는 캡시드를 서로 및/또는 단백질에 연결(예컨대, 공유 결합)하여, 보다 큰 감염성 단위를 생성할 수 있다. 유전자 및 단백질을 세포로 전달하기 위한 이 매우 유연하고 확장 가능하며 모듈식인 시스템은, 유전자 및 단백질 전달을 위한 AAV의 능력을 크게 확장시킨다.
AAV 캡시드들을 함께 연결하여 접합체를 형성함으로써, 본 발명은 AAV 벡터의 운반 능력을 2배(또는 2배 초과)로 만들 수 있어, 절대 AAV 동시 감염을 통한 큰 유전자 및 복수의 유전자의 전달을 가능하게 할 수 있다. 또한, 단백질을 AAV 캡시드 외부에 결속시킴으로써, 본 발명은 일시적 발현이 필수적인 생물학적 활성 단백질, 예컨대 Cas9를 전달하면서 바이러스의 향성 및 감염성을 이용한다.
본 발명은 또한 이들 두 접근법을 조합하도록 확장되어, 유전자 및 단백질 그룹의 공동 전달을 가능하게 할 수 있다. 이 접근법은 함께, 생체내 유전자 및 단백질 전달에 대한 가장 극명한 장벽 중 일부를 극복하고, 생물학적 연구 및 유전자 치료를 위한 AAV 매개 유전자 전달 및 유전자 편집의 유용성을 확장한다. 중요하게도, 본 발명의 이 시스템은 모듈식이고 매우 유연하며 다양한 실험 목적을 위해 수정될 수 있다. 본 발명의 이 시스템의 개발은, 생체내 유전자 발현, 유전자 편집 및 단백질 전달의 정확하고 효율적인 제어를 위한 맞춤형 도구를 제공함으로써, 생물학의 모든 영역에 광범위하게 영향을 미치고, 큰 유전자를 포함하거나 일시적 발현을 필요로 하는 질환에 대한 새로운 치료 방법을 개시하며, 학문 분야에 걸쳐 과학자들에게 새로운 연구의 길을 열어준다. 또한, 본원에서 개념 및 방법은 확장 가능하며 다른 유형의 바이러스로 전달될 수 있다.
한 실시양태에서, 본 발명은 외부 표면을 포함하는 아데노 관련 바이러스(AAV)로서, 그 표면은 결합 파트너와 결합(이의 비제한적인 예로서 공유 결합을 들 수 있음)을 형성하는 하나 이상의 펩티드 태그를 포함하고, AAV는 생 바이러스인 AAV를 제공한다. 또 다른 실시양태에서, 본 발명은 적어도 하나의 상기 AAV와, 태그에 대한 결합 파트너인 제1 도메인 및 생물 활성 폴리펩티드인 제2 도메인을 포함하는 적어도 하나의 폴리펩티드를 포함하는 접합체로서, AAV와 폴리펩티드가 결합(예컨대, 공유 결합)되어 있는 것인 접합체를 제공한다. 다른 실시양태에서, 본 발명은 적어도 하나의 상기 AAV(제1 AAV) 및 적어도 하나의 제2 AAV를 포함하는 접합체로서, 제2 AAV는 제2 외부 표면을 포함하고, 제2 외부 표면은 태그 또는 제3 링커 분자에 대한 적어도 하나의 결합 파트너를 포함하며, 적어도 하나의 제1 AAV와 적어도 하나의 제2 AAV는 결합(예컨대, 공유 결합)되어 있고, 적어도 하나의 제2 AAV는 생 바이러스인 접합체를 제공한다.
본 발명은 또한, 본 발명의 AAV 및 접합체로 세포를 감염시키는 방법, 그리고 본 발명의 AAV 및 접합체와 세포를 포함하는 조성물로서, 세포는 본 발명의 AAV 또는 접합체로 감염되어 있는 것인 조성물을 제공한다. 본 발명은 또한, 본 발명의 AAV 또는 접합체 및 약학적으로 허용되는 담체를 포함하는 약학 조성물을 제공한다.
컬러 도면과 관련된 37 C.F.R.§1.84에 따른 진술
본 특허 또는 출원 파일은 컬러로 작성된 적어도 하나의 도면을 포함한다. 컬러 도면(들)을 갖는 이 특허 또는 특허 출원 공보의 사본은, 요청 및 필요 비용 지불시에 해당 청에 의해 제공될 것이다.
도 1은 본 발명의 접근법의 개략도를 나타낸다. A행은 연결된 바이러스(AAV)에 관한 것이다. AAV 캡시드 표면에 펩티드 태그가 발현되고, 다른 바이러스(제2 AAV)에 단백질 결합 파트너가 발현된다. 이들 두 바이러스 종을 함께 혼합하면, 링커 쌍은 생리적 조건 하에서 영구적으로 안정한 결합(이의 비제한적인 예로서 공유 결합을 들 수 있음)을 자발적으로 형성하여, 접합체(A행에서 바이러스 이량체로 도시됨)의 형성을 유도함으로써, 벡터의 운반 능력을 증가시키고 전달된 유전자의 비율을 정확하게 제어할 수 있게 한다. 접합체는 동일한 세포에 복수의 유전자를 전달할 수 있게 하거나 절대 공동 감염 후 재조합을 통해 큰 유전자를 전달할 수 있게 한다. B행은 제3 링커 분자를 통한 2개의 바이러스 캡시드의 연결에 관한 것으로, 여기서 링커는 두 바이러스 상의 링커에 결합하는 분자들로 구성되고 두 벡터를 함께 가교한다. C열은 바이러스에 연결되어 결합체를 형성하는 단백질에 관한 것이다. 단백질을 캡시드 외부에 결속함으로써, AAV의 향성과 감염성을 이용하여 치료 단백질, 예컨대 Cas9를 비영구적으로 전달할 수 있다. Cas9의 일시적인 발현은 표적외 효과를 감소시키는 데 필수적이다. 연결된 기능성 단백질은 핵으로 전달되어 자신의 기능을 수행한 다음에 분해된다. D행은 본 발명의 접근법이 어떻게 확장될 수 있는지를 나타낸다. 이들 접근법을을 조합하여, DNA 함유 바이러스 입자 및 단백질의 임의의 가닥을, 다량체성 접합체 단위로서 함께 전달할 수 있다.
도 2는 연결된 벡터(AAV 접합체)의 전자 현미경 이미지를 제시한다. 패널 A는 대조군으로서의 AAV2 벡터를 도시한다. 패널 B는, AAV2-SpyTag 벡터가 AAV2-SnoopTag 벡터와 연결되어 다중 바이러스 접합체를 형성하는 것을 보여주는 데이터를 제시한다. 접합체는 AAV 비리온의 이량체 또는 삼량체로서 나타난다. 패널 C는 SpyTag/SnoopTag 링커의 과발현이, 다수의 AAV 벡터가 함께 결속된 AAV 캡시드의 덩어리를 형성시킨다는 것을 보여준다.
도 3은 AAV 캡시드의 연결을 보여주는 웨스턴 블롯 이미지를 도시한다. 마지막 두 레인의 위쪽 밴드는 연결된 VP3 서브유닛을 나타낸다. 이 특정 실시양태에서, AAV 캡시드는 제3 연결 분자(VP3SpyTag-링커-VP3SnoopTag)를 통해 연결되었다(도 1, B행).
도 4는 기능성 단백질에 연결된 AAV를 포함하는 접합체를 도표식으로 도시한다. 패널 A는 증가하는 양의 GFP-SpyCatcher가 AAV-SpyTag에 연결되어 있음을 도시한다. 패널 B는 tdTomato(AAV2로 패키징된 전이 유전자에 의해 코딩됨)의 발현도시하며, 이는 AAV-SpyTag-GFP-SpyCatcher가 감염성임을 입증한다. 패널 C는 AAV-SpyTag-GFP-SpyCatcher 입자가 초고해상도 공초점 현미경으로 추적될 수 있음을 입증하는 데이터를 제시하며, 이는 기능성 단백질의 성공적인 도입을 입증한다.
도 5는, Cas9-SpyCatcher가 AAV2-SpyTag에 공유 결합된 AAV-폴리펩티드 접합체에 관한 데이터를 제시한다. 패널 A는 로돕신을 표적으로 하는 가이드 RNA 및 Cas9-Spycatcher로 형질감염된 HEK293T 세포에 관한 것이다. CRISPR/Cas9 유도 돌연변이는 T7 분석에 의해 시험되었다. 처음의 두 레인은 1) 미처리 및 2) T7 엔도뉴클레아제로 처리된 것으로서의 비감염 샘플을 도시한다. 마지막 두 레인은 3) 미처리 및 4) T7 엔도뉴클레아제로 처리된 것으로서의 감염 샘플을 도시한다. Cas9-Spycatcher 절단 생성물은 네 번째 레인에서 볼 수 있다. 패널 B는 Cas9-SpyCatcher에 대한 AAV2-SpyTag의 결합을 보여주는 웨스턴 블롯 이미지를 제시한다.
한 실시양태에서, 본 발명은 외부 표면을 포함하는 AAV로서, 그 표면은 결합 파트너와 결합(이의 비제한적인 예로서 공유 결합을 들 수 있음)을 형성하는 하나 이상의 펩티드 태그를 포함하는 것인 AAV를 제공한다. 본 발명의 맥락에서, AAV는 바람직하게는, 바이러스 유사 입자(VLP)와는 반대로 생 바이러스이다.
펩티드 태그는 결합 파트너와 결합을 형성할 수 있는 폴리펩티드이다. 이는, 일단 본 발명의 AAV가 이러한 결합을 형성하면, 결합이 안정적이고 생리학적으로 관련된 조건 하에서 일반적으로는 파괴되지 않아, AAV가 결속된 것(예를 들어, 제2 AAV, 생체 활성 폴리펩티드 등)이면 어떠한 것이든, 감염시 태그 결합 파트너 결합을 통해 세포에 전달할 수 있도록 함을 보장한다.
본 발명의 맥락에서 "태그"는 AAV의 외부 표면에서 발현될 때에 특정 결합 파트너에 대한 결합(이의 비제한적인 예는 공유 결합일 수 있음)을 형성할 수 있는 임의의 적합한 폴리펩티드일 수 있다. 적합한 태그의 예는 SpyTag 및 그의 결합 파트너인 SpyCatcher, 또는 SnoopTag 및 그의 결합 파트너인 SnoopCatcher, 또는 SpyTag002 및 그의 결합 파트너인 SpyCatcher002로 불리우는 박테리아 유래의 분자 테터를 포함하나, 이들로 한정되는 것은 아니다(예를 들어, 문헌[Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proceedings of the National Academy of Sciences 109, E690-7 (2012)](이의 전체 내용이 본원에 참조로 인용됨) 및 문헌[Veggiani, G. et al. Programmable polyproteins built using twin peptide superglues. Proc. Natl. Acad. Sci. U.S.A 113, 1202-1207 (2016)](이의 전체 내용이 본원에 참조로 인용됨), 및 문헌[Keeble et al. Evolving Accelerated Amidation by SpyTag/SpyCatcher to Analyze Membrane Dynamics. Angew Chem Int Ed Engl. (2017)](이의 전체 내용이 본원에 참조로 인용됨)을 참조한다). 일반적으로 결합(테더)은 공유 결합이나, 다른 테더가 사용될 수 있다. 사용될 수 있는 다른 분자 테더로는, 예를 들어 분할 인테인(예를 들어, 문헌[Wu et al. Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. PNAS (1998)](이의 전체 내용이 본원에 참조로 인용됨), 소르타아제(예를 들어, 문헌[Kobashigawa et al., Attachment of an NMR-invisible solubility enhancement tag using a sortase-mediated protein ligation method. J Biomol NMR. (2009)](이의 전체 내용이 본원에 참조로 인용됨), 분할 GFP(예를 들어, 문헌[Feinberg, E. H. et al. GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57, 353-363 (2008)](이의 전체 내용이 본원에 참조로 인용됨)), 또는 기타 유사한 링커 분자가 있다.
태그는 이러한 태그를 포함하도록 세포외 도메인을 갖는 AAV 폴리펩티드를 코딩하는 유전자 서열을 돌연변이시킴으로써 본 발명의 AAV의 표면상에서 발현되도록 조작될 수 있다. 예를 들어, AAV VP2 및 VP3 폴리펩티드는 이러한 태그 도메인을 포함하도록 돌연변이를 일으키기에 적합한 폴리펩티드이다. 태그를 포함하기에 적합한 부위는 AAV2 VP3의 위치 453, 588(및 다른 AAV 혈청형의 유사 부위), 및 AAV2 및 기타 혈청형 중 AAV VP2의 N- 및 C-말단을 포함한다. 또한, 키메라 바이러스는 태깅된 및 태깅되지 않은 캡시드 단백질(예를 들어, VP3 단백질의 50%가 태그 도메인을 운반하고, 캡시드 단백질의 50%가 태그 도메인을 운반하지 않는 AAV 캡시드)을 조합하여 구성될 수 있다.
AAV-폴리펩티드 접합체
한 실시양태에서, 본 발명은 외부 표면을 포함하는 본 발명의 AAV를 포함하는 접합체로서, 그 표면은 결합 파트너와 결합(이의 비제한적인 예는 공유 결합일 수 있음)을 형성하는 하나 이상의 펩티드 태그와, 태그에 대한 결합 파트너인 제1 도메인 및 생체 활성 폴리펩티드인 제2 도메인을 포함하는 적어도 하나의 폴리펩티드를 포함하고, AAV와 폴리펩티드는 결합(예컨대, 반드시 그런 것은 아니지만, 공유 결합)되어 있는 것인 접합체를 제공한다. 이 실시양태는 도 1의 C열에 개략적으로 제시되어 있다. 이 실시양태에서, 적어도 하나의 폴리펩티드는, 생물 활성 폴리펩티드-코딩 도메인이 태그(예컨대, 상기 언급한 바와 같은 SpyCatcher, SnoopCatcher, SpyCatcher002 등)에 대한 특이적 결합 파트너를 코딩하는 서열과 인프레임 융합되는 코딩 서열을 이용하여 재조합적으로 구성할 수 있다.
본 발명의 AAV-폴리펩티드 접합체는 태깅된 및 태깅되지 않은 캡시드 단백질을 코딩하는 플라스미드의 혼합물을 패키징 세포주(예컨대, 293개의 세포)로 형질감염시키는 것에 의해 본 발명의 AAV의 표면에서 발현되는 태그의 수를 변화시킴으로써 임의의 원하는 수의 결합된 생리 활성 폴리펩티드를 도입할 수 있다. 따라서 태깅된 캡시드 단백질 대 태깅되지 않은 캡시드 단백질을 코딩하는 플라스미드의 비율을 이용하여, 캡시드 표면의 태그 수를 캡시드당 1 ∼ 60 개로 변경할 수 있다(AAV 캡시드를 형성하는 60 개의 폴리펩티드가 있음). 최대로 태깅된(60 개 태그) AAV의 생산을 위해, 태깅되지 않은 캡시드 단백질을 코딩하는 플라스미드를 사용할 필요는 없다. 예를 들어, 한 실시양태에서, 본 발명의 AAV-폴리펩티드 접합체는 단 하나의 연결(이의 비제한적인 예는 공유 결합일 수 있음)된 생물 활성 폴리펩티드를 가질 수 있다. 다른 실시양태에서, 본 발명의 AAV-폴리펩티드 접합체는 다수의 이러한 연결된 생물 활성 폴리펩티드를, 예를 들어 3 개 이상, 5 개 이상, 10 개 이상, 20 개 이상(또는 "대략" 이러한 수의 공유 결합된 생물 활성 분자)을 가질 수 있다. 본 발명의 AAV-폴리펩티드 접합체 중 이러한 연결된 생물 활성 폴리펩티드의 수는 원하는 적용에 따라 최대 30 개, 또는 최대 50 개, 또는 최대 60 개상(또는 "대략" 이러한 수의 결합된 생물 활성 분자)일 수 있다.
생성 후, 생성된 AAV는 정제되고, 태그에 대한 결합 파트너인 제1 도메인 및 생체 활성 폴리펩티드인 제2 도메인을 포함하는 폴리펩티드와 (반드시는 아니지만 PBS에서) 혼합될 수 있으며, 여기서 AAV와 폴리펩티드가 결합(이의 비제한적인 예는 공유 결합을 포함함)된다. 이러한 패키징 세포주로부터의 AAV의 정제는 일상적인 것이며 당업자에게 공지되어 있다.
본 발명의 AAV-폴리펩티드 접합체는, 접합체에 의한 세포를 감염시에, 결합된 생체 활성 폴리펩티드를 세포에 전달하기 위해 사용될 수 있다. 이 접근법은 바람직하게는 세포 내에 일시적으로 존재하는 세포로의 생체 활성 폴리펩티드의 전달에 특히 적합하다. 이는, AAV를 사용하는 세포로의 폴리펩티드의 일반적인 전달과 대조적이며, 여기서는 폴리펩티드가 AAV 벡터 게놈 내에 전이 유전자로서의, 원하는 폴리펩티드를 코딩하는 유전자(코딩 서열)를 포함함으로써 세포에 전달된다. 감염 후, AAV 벡터 게놈은 비분할 세포 내에 유지되어, 특히 구성적 프로모터의 제어하에 있는 경우, AAV 게놈 내의 전이 유전자가 세포 내에서 영구적으로 발현된다. 그러나, 특정 폴리펩티드에 있어서, 이러한 폴리펩티드의 구성적, 영구적인 생성은 바람직하지 않다. 그러한 예 중 하나는, 급속하게, 사용 가능한 가장 강력한 연구 도구 중 하나가 된 CRISPR/Cas9 시스템과 관련된 Cas9이다. 생체내 전달은 CRISPR/Cas9 기반 접근법의 성공에 가장 큰 장애물로 남아있다. Cas9의 장기간 과발현은 의도하지 않은 게놈 부위에서 표적외 절단 위험을 실질적으로 증가시킨다. 따라서 유전자 편집 접근법의 중요한 목표는, 일시적으로 Cas9의 효율적인 전달을 제공하는 것이다. 본 발명은 AAV-폴리펩티드 접합체를 제공함으로써 영구적으로 발현된 전이 유전자가 아닌 Cas9 폴리펩티드를 세포에 전달할 수 있으므로, 이러한 두 가지 과제를 모두 만족시킬 수 있다. AAV 표면에 연결된 단백질 형태로 Cas9를 전달하면 일시적인 활성을 제공하고, 전이 유전자(예컨대, CRISPR/Cas9 기반 접근법을 위한 공여자 DNA, 형광 마커를 코딩하는 유전자, 또는 기타 원하는 전이 유전자)를 위한 AAV 게놈의 공간을 마련할 수 있다. Cas9는 유전적으로 코딩되지 않기 때문에, 본 발명의 접합체를 통해 전달되는 단백질은 시간이 지남에 따라 세포에 의해 분해되어 잠재적으로 유해한 장기적 표적외 효과를 감소시킨다.
생체 활성 폴리펩티드 도메인은 또한 형광 폴리펩티드, 예컨대 녹색 형광 펩티드(GFP)일 수 있으며, 따라서 세포로의 접합체의 전달은 감염 추적을 용이하게 할 수 있다. 예를 들어 도 4의 패널 C에 도시되어 있다.
생체 활성 폴리펩티드 도메인은 또한 폴리펩티드, 예컨대 콜레라 독소(CTB)의 베타 서브유닛 또는 광견병 바이러스 G 단백질(RVGP)일 수 있으며, 이들의 발현은 바이러스의 향성을 이동시킨다. 예를 들어, 이론에 구속되고자 하는 바는 아니나, 캡시드 표면에 CTB 및 RVGP를 부착하면 말초 신경을보다 효율적으로 감염시킬 수 있고/있거나 역행 수송을 개선할 수 있다.
제1 AAV-제2 AAV 접합체
한 실시양태에서, 본 발명은 외부 표면을 포함하는 본 발명의 AAV로서, 그 표면은 결합 파트너와 결합(그의 비제한적인 예는 공유 결합임)을 형성하는 하나 이상의 펩티드 태그를 포함하는 것인 AAV(제1 AAV), 및 하나 이상의 제2 AAV를 포함하는 접합체를 제공하며, 여기서 제2 AAV는 제2 외부 표면을 포함하고, 제2 외부 표면은 태그 또는 별개의 링커 분자에 대한 적어도 하나의 결합 파트너를 포함한다. 접합체 내에서, 적어도 하나의 제1 AAV 및 적어도 하나의 제2 AAV가 결합된다. 또한, 제1 AAV(상기 논한 바와 같음)에서와 같이, 접합체 내의 적어도 하나의 제2 AAV는 바람직하게는 생 바이러스이다.
이 실시양태(제1 AAV-제2 AAV 접합체)에서, 제2 AAV는 제1 AAV가 태그를 발현하는 것과 동일한 방식으로 제2 표면에서 결합 파트너를 발현 할 수 있다(예를 들어, 돌연변이 VP2 폴리펩티드 또는 다른 표면 폴리펩티드에 도입됨).
이 실시양태(제1 AAV-제2 AAV 접합체)에서, 제1 및 제2 AAV는 둘 다 결합 파트너 태그(예컨대 SpyTag 및 SnoopTag)를 발현 할 수 있으며, 이는 이어서 별도의 링커 분자(예컨대 SpyCatcher-SnoopCatcher 융합 단백질)를 통해 함께 결합되어 3피스의 공동 집합체를 형성한다. 다른 링커 서열은 SpyTag/SpyCatcher 삽입 부위에서 사용될 수 있으며, 예를 들어 SpyTag/SnoopTag/SpyTag002에 대해 LA…A 링커, 및 VP2 경질 링커에 대해 긴 유연한 링커 및 짧은 링커가 사용될 수 있다. 도 1의 A행은 접합체 내의 AAV가 접합체 내의 개별 AAV 사이의 펩티드 태그/단백질 결합 파트너 상호 작용을 통해 직접 결합되는 실시양태를 도시한다. 도 1의 B행은 AAV가 제3 링커 분자를 통해 결합되는 실시양태를 도시하며, 여기서 제3 링커 분자는 AAV 벡터를 함께 가교한다.
본 발명의 제1 AAV-제2 AAV 접합체는, 상기 논한 바와 같이 패키징 세포주에서 태그를 발현하는 캡시드 단백질의 비율을 변경하는 것에 의해, 제1 및 제2 AAV의 표면에서 발현되는 태그 및 결합 파트너의 수를 변경함으로써, 임의의 원하는 수의 AAV를 도입할 수 있다, 그 후, 제1 AAV-제2 AAV 접합체는, 예를 들어 크기 배제 친화성, 이온 교환 FPLC 크로마토그래피, 또는 원하는 수의 AAV(예컨대, 단량체 또는 삼량체와 대조되는 이량체)를 갖는 접합체를 정제할 수 있는 다른 방법에 의해 정제될 수 있다. 예를 들어, 한 실시양태에서, 접합체는 AAV의 이량체를 포함 할 수 있다(예를 들어, 도 1의 A행 참조). 다른 실시양태에서, 제1 AAV-제2 AAV 접합체는 삼량체, 사량체, 오량체, 십량체 등일 수 있다. 따라서, 제1 AAV-제2 AAV 접합체는 제1 AAV(태그 포함) 중 하나 초과, 제2 AAV(태그에 대한 특정 결합 파트너 포함) 중 하나 초과, 또는 둘 다를 포함할 수 있다. 제1 AAV-제2 AAV 접합체 내의 AAV 수에 대한 실제 한계는 물리적 크기인데, 접합체 내의 AAV는 세포를 감염시키고 그러한 세포의 핵에 들어갈 수 있어야하기 때문이다.
본 발명의 제1 AAV-제2 AAV 접합체의 한 가지 용도는 단일 AAV 벡터의 4.7kB 한계보다 더 큰 전이 유전자를 효과적으로 전달하는 것이다. 따라서,이 실시양태의 바람직한 구성은, 제1 AAV-제2 AAV 접합체에 의한 세포의 감염시에 완전한 전이 유전자가 조립될 수 있도록, 전이 유전자의 개별적인 각각의 분절을 포함하는 게놈을 포함하는 접합체 내의 AAV를 포함한다.
예를 들어, AAV가 유전자 치료에 효과적으로 사용될 수 있는 다수의 질환의 치료는, 단일 AAV 벡터의 4.7 kB 한계를 초과하는 큰 유전자의 전달을 필요로 한다. 발현의 효율성과 안정성을 유지하면서 AAV 벡터의 용량을 증가시키는 것은 유전자 치료 분야의 주요 목표이다. 큰 유전자를 전달하는 한 가지 유망한 접근법은 개방형 해독 프레임을 여러 벡터로 분할하는 것이며, 이 벡터는 두 벡터(또는 다수의 벡터)에 의한 세포의 바이러스 감염 후 상동성 재조합을 통해 재결합한다. 그러나, 큰 유전자의 개별 부분의 동일한 비율이 별도의 바이러스를 사용하여 동일한 비율로 동일한 세포에 전달되는 일은 거의 없다. 이로 인해 단백질 발현 효율이 감소하고 절단된 단백질 산물이 형성된다. AAV 벡터가 접합체 내에서 함께 연결되는 본 발명의 이러한 양태(제1 AAV-제2 AAV 접합체)는 공동 전달의 높은(거의 100%) 효율을 보장하고, 감염성 유닛의 운반 능력을 효과적으로 2배(또는 접합체 내의 AAV 수에 따라 3배, 4배 등)로 만든다.
제1 AAV-제2 AAV 접합체는, 예를 들어 Stargardt(전이 유전자로서 ABCA4), 신경 섬유종증(전이 유전자로서 NF1), 혈우병, 레베르 선천성 흑암시(전이 유전자로서 CEP290), 두켄 근이영양증, 낭포성 섬유증, 어셔 증후군 I형, II형 및 III형과 같은 질환의 치료를 위해 다중 AAV 캡시드로 분할된 대형 유전자를 전달하는 데 사용될 수 있다. 이 접근법은 또한 여러 유전자를 세포에 전달하는 데 사용될 수 있으며, 이의 생성물은 세포내에서 서로 상호 작용하거나 보완적일 수 있다. 예를 들어, RdCVF의 원뿔 생존 특성과 RdCVFL의 항산화 특성(예를 들어 문헌[Byrne et al, Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration J Clin Invest (2015)](그 전체가 본원에 참조로 인용됨))의 이점을 얻기 위해 RdCVF 및 RdCVFL을 모두, 영양 인자 및 대체 유전자, 예컨대 PDE6B 및 XIAP(문헌[Yae et al., Caspase Inhibition with XIAP as an Adjunct to AAV Vector Gene-Replacement Therapy: Improving Efficacy and Prolonging the Treatment Window PLOS ONE (2012)](그 전체가 본원에 참조로 인용됨)), 또는 치료 유전자 및 리포터 유전자를 전달하는 데에 이 접근법을 사용하여, 치료제의 감염 패턴, 그리고 게놈 편집의 증가된 특이성 및 효율성을 위한 Cas9를 기반으로 하는 2개의 보완적 닉카아제의 전달 등을 더욱 잘 분석할 수 있다. 예를 들어, 이 접근법은 영양 인자 및 대체 유전자의 공동 전달에 의해 효율적인 기능적 시력 구조에 사용할 수 있다. 이 접근법은 벡터의 향성을 확장하기 위해 AAV의 두 혈청형을 연결하는 데 사용될 수도 있다.
본 발명의 AAV의 표면이, 태그(복수의 유형의 태그 포함) 또는 태그에 대한 특정 결합 파트너(복수의 태그 포함) 중 하나 또는 둘 다, 또는 하나 이상의 태그와 하나 이상의 특정 결합 파트너들 둘 다 가질 수 있음이 관찰될 것이다. 따라서, 제1 및 제2 AAV를 포함하는 접합체 내에서, 제1 AAV 중 하나 이상은 또한 결합 파트너와 결합을 형성하는 펩티드 태그에 대한 적어도 하나의 결합 파트너를 포함할 수 있다. 유사하게, 이러한 접합체 내에서, 적어도 하나의 제2 AAV의 제2 외부 표면은 결합 파트너와 결합을 형성하는 하나 이상의 펩티드 태그를 포함 할 수 있다. 이는 그러한 접합체 내에서 AAV의 다중화를 촉진할 수 있다는 것이 관찰될 것이다. 도 1의 D행을 참조한다.
또한, 본 발명의 제1 AAV-제2 AAV 접합체(도 1의 A행 및 B행)와 본 발명의 AAV-생체 활성 폴리펩티드 접합체(도 1의 C행) 접근법이 함께 사용될 수 있다. 이러한 의미에서, 본 발명은 임의의 일련의 DNA 함유 바이러스 입자 및 단백질이 다량체 접합체 단위로서 세포 또는 세포 집단에 함께 전달되도록 허용한다.
본 발명의 AAV 및 접합체를 사용하여 세포를 감염시킴으로써 전이 유전자 및/또는 연결(예를 들어, 이에 한정되는 것은 아니나, 공유 결합)된 생체 활성 폴리펩티드를 이러한 세포에 전달하는 것이 관찰될 것이다. 따라서, 본 발명은 하나 이상의 본 발명의 AAV 또는 접합체로 세포를 감염시킴으로써 세포에 전이 유전자를 전달하는 방법을 제공하며, 여기서 AAV 또는 접합체는 하나 이상의 전이 유전자를 포함한다. 언급된 바와 같이, 큰(4.7 kB보다 큰) 전이 유전자의 경우, 제1 AAV-제2 AAV 접합체를 사용하여 세포를 감염시킬 수 있으며, 이에 의해, 전이 유전자는 제1 AAV-제2 AAV 접합체를 구성하는 적어도 2개의 AAV로 나뉜다. 세포 내에서 이러한 전이 유전자 섹션은 전이 유전자에 대한 전체 코딩 서열을 생성하기 위해 재조립될 수 있다.
유사하게, 본 발명은 본원에 기술된 본 발명의 AAV-생체 활성 폴리펩티드 접합체 중 하나 이상으로 세포를 감염시킴으로써 생물 활성 폴리펩티드를 세포에 전달하는 방법을 제공한다. 감염시, 접합체 내 AAV의 외부 표면에 있는 태그에 연결(예를 들어, 이에 한정되는 것은 아니나, 공유 결합)된 생체 활성 폴리펩티드는, 영구적으로 발현될 전이 유전자의 산물로서 보다는, 일시적으로 세포에 전달된다. 언급한 바와 같이, 이는 세포 내에서 단백질의 표적외 효과를 방지하기 위해 Cas9와 같은 생체 활성 단백질에 있어서 선호된다.
본 발명의 방법은 당업자에게 공지된, AAV가 향성을 나타내는 임의의 세포를 감염시키는 데 사용될 수 있다. 예를 들어, 세포는 예컨대 외분비 분비 세포(예를 들어, 선 세포, 예컨대 타액선 세포, 유선 세포, 땀샘 세포, 소화선 세포 등), 호르몬 분비선 세포(예를 들어, 뇌하수체 세포, 갑상선 세포, 부갑상선 세포, 부신 세포 등), 외배엽 유래 세포(예를 들어, 각질화 상피 세포(예컨대 피부 및 모발을 구성하는 것), 습식 층상 장벽 상피 세포(예컨대 각막, 혀, 구강, 위장관, 요도, 질 등의 것), 신경계 세포(예를 들어, 말초 및 중추 뉴런, 신경교 등)), 중배엽 유래 세포, 다수의 내부 기관의 세포(예를 들어 신장, 간, 췌장, 심장, 폐) 골수 세포, 그리고 종양 또는 기타 내의 암 세포일 수 있다. 본 발명의 AAV 및 접합체에 의한 감염에 적합한 세포의 바람직하고 비제한적인 예는, 말초 및 중추 신경계의 뉴런, 광 수용체, 망막 신경절 세포, 망막 색소 상피 세포, 달팽이관 세포, 뮬러 신경교, 망막 양극성 세포, 무축삭 세포 및 수평 세포를 포함하나 이들로 한정되는 것은 아니다. 세포는 시험관내 또는 생체내의 것일 수 있고, 임의의 원하는 포유 동물 숙주, 예를 들어 실험실 동물(래트, 마우스 등), 농업적 또는 수의학적 관심의 동물(예를 들어 소, 개, 염소, 말, 고양이, 양, 돼지 등) 또는 영장류, 예를 들어 원숭이, 유인원, 또는 바람직하게는 인간(인간 환자 내의 세포 포함)의 것일 수 있다.
동시에, 본 발명은 세포 및 상기 기재된 바와 같은 AAV, AAV-생체 활성 접합체 또는 AAV-AAV 접합체 중 하나 이상를 포함하는 조성물을 제공하며, 여기서 세포는 AAV 또는 접합체로 감염된다. 세포는 생체내 또는 시험관내의 것일 수 있으며, 상기 기술된 바와 같이 AAV 또는 접합체가 향성 및 감염성을 나타내는 임의의 바람직한 유형일 수 있다. 물론, 세포가 시험관내의 것인 경우, 조성물은 또한 조성물 내에서 감염된 세포를 유지하고 증식시키기에 적합한 배양 배지를 포함한다. 이러한 배양 배지는 당업자에게 공지되어 있으며, 조성물 내의 세포 유형에 따라 적합한 배지를 선택할 수 있다.
생체내, 특히 인간 환자에서의 사용을 용이하게 하기 위해, 본 발명은 또한 상기 기재된 바와 같은 AAV, AAV-폴리펩티드 접합체 또는 AAV-AAV 접합체 중 하나 이상 및 담체, 바람직하게는 생리학적으로 허용되는 담체를 포함하는 약학 조성물을 제공한다. 조성물의 담체는 벡터에 적합한 임의의 담체일 수 있다. 담체는 일반적으로 액체이지만, 고체이거나 액체와 고체 성분의 조합일 수도 있다. 담체는 바람직하게는 약학적으로 허용되는(예를 들어, 생리학적 또는 약리학적으로 허용되는) 담체(예컨대, 부형제 또는 희석제)이다. 약학적으로 허용되는 담체는 널리 공지되어 있으며 쉽게 입수할 수 있다. 담체의 선택은 특정 벡터 및 조성물 투여에 사용되는 특정 방법에 의해 적어도 부분적으로 결정될 것이다. 조성물은 특히 조성물 및/또는 최종 용도의 안정성을 향상시키기 위해 임의의 다른 적합한 성분을 추가로 포함할 수 있다. 따라서, 본 발명의 조성물의 다양한 적합한 제형이 존재한다. 다음의 제형 및 방법은 단지 예시일 뿐이며 어떤식으로든 제한되는 것은 아니다.
비경구 투여에 적합한 제형은 항산화제, 완충제, 세균 억제제 및 제형을 의도된 수용자의 혈액 또는 다른 조직과 등장성으로 만드는 용질을 함유할 수 있는 수성 및 비수성 등장성 멸균 주사 용액을 포함하고, 현탁제, 가용화제, 증점제, 안정제 및 방부제를 포함할 수 있는 수성 및 비수성 멸균 현탁액을 포함한다. 일반적으로, 이러한 담체는 피부 찌름을 통한 투여, 또는 피하, 근육내, 종양내 또는 비경구 주사 또는 원하는 조직 또는 기관으로의 직접 주사를 통한 투여를 용이하게 하는 생리 식염수 용액이다. 그러나, 다른 담체(예를 들어, 경피 투여를 위한 고약, 크림, 패치 등)도 사용될 수 있다.
제형은 단위 용량 또는 다회 용량 밀봉 용기, 예를 들어 앰플 및 바이알에 제공될 수 있으며, 예를 들어 사용 직전에, 주사용 멸균 액체 부형제, 예컨대 물의 첨가만을 필요로 하는 냉동 건조(동결 건조) 상태로 저장될 수 있다.
또한, 조성물은 추가의 치료제 또는 생물학적 활성제를 포함할 수 있다. 예를 들어, 특정 적응증의 치료에 유용한 치료 인자가 존재할 수 있다. 염증을 조절하는 인자, 예컨대 이부프로펜 또는 스테로이드는, 벡터의 생체내 투여 및 생리적 고통과 관련된 부종 및 염증을 감소시키기 위한 조성물의 일부일 수 있다. 면역계 억제제는 벡터 자체 또는 장애와 관련된 면역 반응을 줄이기 위해 조성물 방법으로 투여될 수 있다. 또는 면역 증강제를 조성물에 포함시켜 질환에 대한 신체의 자연 방어를 상향 조정할 수 있다. 항생제, 즉 살균제 및 살진균제는 유전자 전달 절차 및 기타 장애와 관련된 감염 위험을 줄이기 위해 존재할 수 있다.
다음의 실시예는 본 발명을 추가로 설명하지만, 물론 어떤식으로도 그 범위를 제한하는 것으로 해석되어서는 안된다. 하기 방법은 실시예 1 내지 4의 기초가되는 실험에 사용되었다.
패키징용 플라스미드의 복제 및 준비
SpyTag/SnoopTag, SpyCatcher, SnoopCatcher, SpyTag002 또는 SnoopTag002를 포함하는 AAV 벡터를 생산하기 위해, 링커 펩티드는, 삽입 영역을 증폭하고 Gibson Assembly(New England Biolabs)로 어닐링하는 PCR에 의해 AAV 캡시드의 표면 노출 영역을 조작하였다. 링커 펩티드는 AAV의 VP2 서브유닛의 N 또는 C 말단, 및 VP3 서브유닛의 453 또는 588 위치에 삽입하였다(서열에 대해서는 부록을 참조).
바이러스 벡터의 생산
GFP 또는 mCherry를 코딩하는 게놈을 보유하고 캡시드 단백질에 SpyTag 또는 SnoopTag를 보유하는 AAV 벡터를, 3 또는 4 개의 플라스미드를 사용하여, 플라스미드 공동-형질감염 방법에 의해 생산하였다(문헌[Grieger et. al., Production and characterization of adeno-associated viral vectors. Nat Protoc. 2006;1(3):1412-28](이의 전체 내용이 본원에 참조로 인용됨)). 재조합 AAV는 요오딕사놀 구배 초원심 분리에 이어 PBS + 0.001% Pluronic F-68 중의 Amicon Ultra-15 원심 분리 필터 유닛에 의한 완충액 교환 및 농축으로 정제하였다. 역가는 표준 곡선에 대한 정량적 PCR에 의해 결정하였다(문헌[Aurnhammer et al, Hum. Gene Ther. Methods. 23(1):18-28 (2012)](이의 전체 내용이 본원에 참조로 인용됨)).
웨스턴 블롯
SpyCatcher 단백질을, 녹색 형광 단백질(GFP), Cas9 단백질, 또는 콜레라 독소의 베타 서브유닛과 융합하여 단백질 코딩 서열의 시작 또는 중지 코돈을 돌연변이시키고, Gibson 클로닝을 통해, 단백질의 N- 또는 C-말단에서 프레임 중 SpyCatcher에 대한 코딩 서열을 삽입하였다. 단백질은 박테리아 세포에서 발현되고 정제되었다. AAV-SpyTag 벡터를 10 ㎍의 GFP-SpyCatcher 또는 10 ㎍의 Cas9-SpyCatcher 단백질과 혼합하였다. AAV-SnoopTag 벡터를 43.5 ㎍의 SpyCatcher/SnoopCatcher 융합 단백질 링커 분자와 혼합하였다. AAV-벡터를 함께 연결하기 위해 AAV-SnoopTag 및 AAV-SpyTag 벡터를 Spycatcher/SnoopCatcher 융합 단백질 링커 분자와 혼합하였다. 이들은 실온에서 1 시간 동안, 이어서 4℃에서 하룻밤 동안 인큐베이션하였다.
다음날, 그 혼합물을 6-8% 트리스-글리신 겔상에서 주행시켰다. 단백질을 PVDF 막으로 옮기고 5% 유액에서 1 시간 동안 블록킹하였다. 이어서, 막을 TBST에서 3×5 분 세정하고, 4℃에서 하룻밤 동안 1차 항체에서 인큐베이션하였다: Progen(1:100)으로부터의 VP1, 2 및 3에 대한 마우스 단일 클론 항체. 그 막을 TBST에서 15분 동안, 이어서 4×5 분 동안 세정하였다. 항 마우스 2차 항체(Li-Cor, 1:2000)를, Odyssey CLx Imaging System(Li-cor)을 사용하여 세정 및 시각화하기 전에 실온에서 1 시간 동안 적용하였다.
CRISPR/Cas9 형질감염
Cas9-SpyCatcher 융합 단백질의 편집 능력을 시험하였다. 인간 로돕신 유전자를 표적으로 하는 4개의 서로 다른 gRNA를 설계하였으며, GeneArt Precision gRNA Synthesis Kit(Thermo Fisher Scientific)를 사용하여 합성하였다. Cas9-SpyCatcher는 gRNA와 함께 Lipofectamine CRISPRMAX Transfection Reagent(Thermo Fisher Scientific)를 사용하여 HEK293 세포 내로 형질감염시켰다. Cas9-SpyCatcher 및 gRNA의 농도는, Lipofectamine CRISPRMAX Transfection 프로토콜에 따라 결정하였다. 편집 효율을 시험하기 전에 세포를 72 시간 동안 인큐베이션하였다.
AAV-SpyTag-Cas9-SpyCatcher-RNP 조립체
Cas9 RNP 복합체를 제조하기 위해, Cas9-SpyCatcher 단백질을 sgRNA와 2:1 또는 4:1 몰비로 인큐베이션하였다. 한 방법에서, Cas9-SpyCatcher 단백질은, 세포를 감염시키기 하루 전에 AAV-SpyTag 벡터와 혼합하였다. 실험 직전에, sgRNA를 혼합물에 첨가하고 실온에서 10분 또는 20분 동안 인큐베이션하였다. 다른 방법에서, AAV-SpyTag 벡터, Cas9-SpyCatcher 단백질 및 sgRNA를 함께 혼합하고 실온에서 30 분 동안 인큐베이션하였다. HEK293 세포를 조립체로 감염시키고 편집 효율을 시험하기 전에 72 시간 동안 인큐베이션하였다.
CRISPR/Cas9 편집 효율성 시험
원하는 게놈 유전자좌에서 편집 능력을 정량화하기 위해, 게놈 편집을 로돕신 유전자로 유도하는 가이드 RNA UAGAGCGUGAGGAAGUUGAU(서열번호 12)를 사용하여 T7 엔도뉴클레아제 I 분석을 HEK293T 세포에서 수행하였다. T7 엔도뉴클레아제 I 분석의 경우, Qiagen DNeasy Blood 및 Tissue Kit를 사용하여 형질감염 후 ∼72 시간에 게놈 DNA를 추출하였다. 프라이머(hRHO 1 Fw: AGGCCTTCGCAGCATTCTT(서열번호 13) 및 hRHO 1 Rv:GCAGCACCCCATCTGTTTTC(서열번호 14))는 표적 부위를 포함하는 ∼1 kb 영역을 증폭하도록 설계하였으며, 증폭을 위해 Q5 High-Fidelity DNA Polymerase를 사용하였다. PCR 반응은 Zymo DNA Clean 및 Concentrator에 이어 T7 Endonuclease 1 소화에 의해 정제하였다. T7 엔도뉴클레아제로 처리된 샘플은 소화되지 않은 샘플과 함께 아가로스 겔에서 주행시켰다.
실시예 1
이 실시예는 결합 파트너와 공유 결합을 형성하는 하나 이상의 펩티드 태그를 포함하는 외부 표면을 포함하는 AAV의 생성, 안정성 및 감염성을 입증하며, 여기서 AAV는 생 바이러스이다.
링커 펩티드(태그) SpyTag 및 SnoopTag와, 특이적 결합 파트너인 SnoopCatcher를 VP3의 위치 453, 588 및 VP2 서브유닛의 C 또는 N 말단을 포함하는 AAV 캡시드의 표면 노출 영역 내로 조작하였다.
링커 분자를 운반하는 QPCR(문헌[Aurnhammer et al. Universal real-time PCR for the detection and quantification of adeno-associated virus serotype 2-derived inverted terminal repeat sequences. Hum. Gene. Ther. Methods. 23(1):18-28 (2012)](그 전체가 본원에 참고로 인용됨)에서와 같음)을 사용하여 수행된 바이러스의 역가는, 본 발명의 AAV가 바이러스 안정성 및 감염성에 영향을 주지 않으면서 이들 링커(태그 및 특이적 결합 파트너)를 운반할 수 있음을 입증하였. 이는 표 1에 제시되어 있다.
Figure pct00001
표 1. 요오딕사놀 정제 바이러스의 높은 바이러스 역가는, VP2 및 VP3의 표면 노출 영역에 링커 분자를 삽입한 후의 AAV 캡시드의 안정성을 입증한다. "TG_GLS"는 TG 및 GLS 서열이 SpyTag 삽입물(예컨대 TG-SpyTag-GLS)의 N- 및 C-말단 측면에 포함되어, 유연성을 제공하고 효율적인 바이러스 패키징을 가능하게 한다는 것을 시사한다.
실시예 2
이 실시예는 본원에 기재된 바와 같은 제1 AAV-제2 AAV 접합체의 생성을 입증한다.
실시예 1에서 참조된 AAV 종을 함께 혼합하고 전자 현미경으로 관찰하였다. 도 2에 도시된 바와 같이, 쌍을 이룬 AAV 바이러스 접합체는 가시적이었다. 도 2의 패널 A: 대조군으로서의 AAV2 벡터. 도 2의 패널 B: SpyCatcher/SnoopCatcher 링커 단백질에 의해 연결된, AAV2-SnoopTag 벡터와 연결된 AAV2-SpyTag 벡터. 바이러스는 이량체 또는 삼량체로 나타난다. 도 2의 패널 C: SpyTag/SnoopTag 링커의 과발현은, 다수의 AAV 벡터가 함께 결속된 AAV 캡시드 덩어리의 형성을 야기한다.
연결된 접합체를 형성하는 태그-발현(제1 AAV) 및 결합 파트너-발현(제2 AAV)의 능력은, 웨스턴 블롯 평가에 의해 확인하였다. 도 3은 SpyCatcher-SnoopCatcher 융합 단백질로 제조된 링커 분자를 통해 결합된, SpyTag 발현 및 SnoopTag 발현 AAV 캡시드의 연결을 입증하는 이러한 데이터를 보여준다.
실시예 3
이 실시예는 본원에 기재된 바와 같은 AAV-폴리펩티드 접합체의 생성을 입증한다.
AAV2-SpyTag를, 녹색 형광 단백질(GFP 또는 mClover)이 SpyCatcher(GFP-SpyCatcher)에 연결되어 있는 폴리펩티드에 결합시켰다(도 4의 패널 A). GFP 결합된 바이러스 입자를, 293 개의 세포에서 초고해상도 현미경으로 추적하였다. 그 결과는, 바이러스 입자가 전염성이 있고 연결된 단백질이 기능성이라는 것을 보여주었다(도 4의 패널 C).
실시예 4
이 실시예는 본원에 기재된 바와 같은 AAV-폴리펩티드 접합체의 생성을 입증한다.
Cas9를, AAV-SpyTag 벡터에 대한 그의 결합을 가능하게 하기 위해서 SpyCatcher에 융합시켰다. 먼저, 인간 로돕신을 표적으로 하는 가이드 RNA와의 Cas9-SpyCatcher 융합 단백질의 절단 효율을 HEK293T 세포에서 연구하였다. 그 결과는 도 5의 패널 A에 제시되어 있으며, 이들은 AAV-Cas9-SpyCatcher 접합체의 감염에 의해 전달된 Cas9-SpyCatcher 폴리펩티드가 표적(로돕신)을 성공적으로 절단했음을 보여준다.
AAV2-SpyTag에 대한 Cas9-SpyCatcher의 결합 능력도 웨스턴 블롯 분석에 의해 평가하였다. 그 결과는 그림 5의 패널 B에 제시되어 있다. 그 결과는 AAV2-SpyTag가 Cas9-SpyCatcher에 결합한다는 것을 입증한다.
본원에 인용된 공보, 특허 출원 및 특허를 포함한 모든 참고 문헌은, 각각의 참고 문헌이, 본원에 참조로 인용되도록 개별적으로 및 구체적으로 표시되고 그 전체가 본원에 기재된 것과 동일한 정도로 본원에 참고로 인용되어 있다.
본 발명을 설명하는 맥락에서(특히 다음의 청구범위의 맥락에서), 용어 "한"및 "하나" 및 "그"와, 유사한 지시어의 사용은, 본원에 달리 표시되거나 문맥에 의해 명확하게 모순되지 않는 한, 단수 및 복수를 모두 포함하는 것으로 해석되어야 한다. 용어 "포함하는", "갖는", "포괄하는" 및 "함유하는"은 달리 언급하지 않는 한, 개방형 용어(즉, "포함하지만 그에 제한되지 않는"의 의미)로 해석되어야 한다. 본원의 값 범위의 인용은, 본원에서 달리 명시되지 않는 한, 범위 내에 속하는 각각의 개별 값을 개별적으로 언급하는 약식 방법으로서 의도된 것이고, 각각의 개별 값은 마치 본원에서 개별적으로 인용된 것처럼 명세서에 포함된다. 본 명세서에 기술된 모든 방법은 본 명세서에서 달리 명시되거나 문맥상 명백히 모순되지 않는 한, 임의의 적절한 순서로 수행될 수 있다. 본원에 제공된 임의의 및 모든 예시 또는 예시적 어구(예를 들어, "예컨대")의 사용은 단지 본 발명을 보다 잘 설명하기 위한 것이며, 달리 청구되지 않는 한 본 발명의 범위를 제한하지 않는다. 명세서 내의 어떠한 어구도 본 발명의 실행에 필수적인 것으로 청구되지 않은 요소를 나타내는 것으로 해석되어서는 안 된다.
본 발명을 수행하기 위해 본 발명자들에게 알려진 최상의 방식을 포함하여 본 발명의 바람직한 실시양태가 본원에 기술되어 있다. 이러한 바람직한 실시양태의 변형은 전술한 설명을 읽을 때 당업자에게 명백해질 수 있다. 본 발명자들은 당업자가 이러한 변형을 적절하게 이용할 것으로 기대하며, 본 발명자들은 본 발명이 본원에 구체적으로 설명된 것과 다르게 실시되기를 의도한다. 따라서, 본 발명은 적용 가능한 법률에 의해 허용되는 바와 같이 본원에 첨부된 청구범위에 언급된 주제의 모든 변형 및 등가 내용을 포함한다. 또한, 모든 가능한 변형에서의 전술한 요소들의 임의의 조합은, 본원에서 달리 명시되거나 문맥에 의해 달리 명확하게 모순되지 않는 한, 본 발명에 포함된다.
부록 - 서열목록
서열번호 1: AAV2-588-SPYTAG의 삽입물(밑줄)을 포함하는 서열의 일부(TG_GLS 링커 포함):
Figure pct00002
Figure pct00003
서열번호 2: AAV2-588-SNOOPTAG의 삽입물(밑줄)을 포함하는 서열의 일부(TG_GLS 링커 포함):
Figure pct00004
Figure pct00005
서열번호 3: AAV2-453-SPYTAG의 삽입물(밑줄)을 포함하는 서열의 일부(링커 없음):
Figure pct00006
Figure pct00007
서열번호 4: AAV2-453-SPYTAG의 삽입물(밑줄)을 포함하는 서열의 일부(TG_GLS 링커 포함):
Figure pct00008
Figure pct00009
서열번호 5: VP2-SPYTAG의 C 말단 중 삽입물(밑줄)을 포함하는 서열의 일부(GSGGSGGSG 링커 포함):
Figure pct00010
Figure pct00011
서열번호 6: VP2-SNOOPTAG의 C 말단 중 삽입물(밑줄)을 포함하는 서열의 일부(GSGGSGGSG 링커 포함):
Figure pct00012
서열번호 7: AAV2-588-SPYTAG002의 삽입물(밑줄)을 포함하는 서열의 일부(TG_GLS 링커 포함):
Figure pct00013
Figure pct00014
서열번호 8: AAV2-453-SPYTAG002의 삽입물(밑줄)을 포함하는 서열의 일부(TG_GLS 링커 포함):
Figure pct00015
Figure pct00016
서열번호 9: SpyCatcher-VP2(SpyCatcher 및 길고 유연한 링커(밑줄) 포함):
Figure pct00017
Figure pct00018
서열번호 10: Cas9-SpyCatcher002 서열(SpyCatcher002(밑줄)):
Figure pct00019
Figure pct00020
Figure pct00021
서열번호 11: mClover(GFP 변형)-SpyCatcher002 서열(SpyCatcher002(밑줄)):
Figure pct00022
Figure pct00023
서열번호 12:
Figure pct00024
서열번호 13:
Figure pct00025
서열번호 14:
Figure pct00026
SEQUENCE LISTING <110> UNIVERSITY OF PITTSBURGH - OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION THE REGENTS OF THE UNIVERSITY OF CALIFORNIA <120> MODULAR SYSTEM FOR GENE AND PROTEIN DELIVERY BASED ON AAV <130> 741805 <150> US 62/636,638 <151> 2018-02-28 <160> 14 <170> PatentIn version 3.5 <210> 1 <211> 2261 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 1 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac 540 tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600 aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caaacaaatt 780 tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc gcatcaagga 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct 1200 cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga cgttcctttc 1260 cacagcagct acgctcacag ccagagtctg gaccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagtggaa ccaccacgca gtcaaggctt 1380 cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga 1440 ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac 1500 tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc 1560 ccggccatgg caagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc 1620 atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca 1680 gacgaagagg aaatcaggac aaccaatccc gtggctacgg agcagtatgg ttctgtatct 1740 accaacctcc agagaggcaa caccggtgcc cacatcgtga tggtggacgc ctacaagccg 1800 acgaagggct taagtagaca agcagctacc gcagatgtca acacacaagg cgttcttcca 1860 ggcatggtct ggcaggacag agatgtgtac cttcaggggc ccatctgggc aaagattcca 1920 cacacggacg gacattttca cccctctccc ctcatgggtg gattcggact taaacaccct 1980 cctccacaga ttctcatcaa gaacaccccg gtacctgcga atccttcgac caccttcagt 2040 gcggcaaagt ttgcttcctt catcacacag tactccacgg gacaggtcag cgtggagatc 2100 gagtgggagc tgcagaagga aaacagcaaa cgctggaatc ccgaaattca gtacacttcc 2160 aactacaaca agtctgttaa tgtggacttt actgtggaca ctaatggcgt gtattcagag 2220 cctcgcccca ttggcaccag atacctgact cgtaatctgt a 2261 <210> 2 <211> 2258 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 2 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac 540 tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600 aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caaacaaatt 780 tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc gcatcaagga 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct 1200 cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga cgttcctttc 1260 cacagcagct acgctcacag ccagagtctg gaccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagtggaa ccaccacgca gtcaaggctt 1380 cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga 1440 ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac 1500 tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc 1560 ccggccatgg caagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc 1620 atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca 1680 gacgaagagg aaatcaggac aaccaatccc gtggctacgg agcagtatgg ttctgtatct 1740 accaacctcc agagaggcaa caccggtaaa ctgggcgaca tagagtttat caaggtgaac 1800 aaaggcttaa gtagacaagc agctaccgca gatgtcaaca cacaaggcgt tcttccaggc 1860 atggtctggc aggacagaga tgtgtacctt caggggccca tctgggcaaa gattccacac 1920 acggacggac attttcaccc ctctcccctc atgggtggat tcggacttaa acaccctcct 1980 ccacagattc tcatcaagaa caccccggta cctgcgaatc cttcgaccac cttcagtgcg 2040 gcaaagtttg cttccttcat cacacagtac tccacgggac aggtcagcgt ggagatcgag 2100 tgggagctgc agaaggaaaa cagcaaacgc tggaatcccg aaattcagta cacttccaac 2160 tacaacaagt ctgttaatgt ggactttact gtggacacta atggcgtgta ttcagagcct 2220 cgccccattg gcaccagata cctgactcgt aatctgta 2258 <210> 3 <211> 2246 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 3 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac 540 tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600 aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caaacaaatt 780 tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc gcatcaagga 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct 1200 cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga cgttcctttc 1260 cacagcagct acgctcacag ccagagtctg gaccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagtggag cccacatcgt gatggtggac 1380 gcctacaagc cgacgaagac caccacgcag tcaaggcttc agttttctca ggccggagcg 1440 agtgacattc gggaccagtc taggaactgg cttcctggac cctgttaccg ccagcagcga 1500 gtatcaaaga catctgcgga taacaacaac agtgaatact cgtggactgg agctaccaag 1560 taccacctca atggcagaga ctctctggtg aatccgggcc cggccatggc aagccacaag 1620 gacgatgaag aaaagttttt tcctcagagc ggggttctca tctttgggaa gcaaggctca 1680 gagaaaacaa atgtggacat tgaaaaggtc atgattacag acgaagagga aatcaggaca 1740 accaatcccg tggctacgga gcagtatggt tctgtatcta ccaacctcca gagaggcaac 1800 agacaagcag ctaccgcaga tgtcaacaca caaggcgttc ttccaggcat ggtctggcag 1860 gacagagatg tgtaccttca ggggcccatc tgggcaaaga ttccacacac ggacggacat 1920 tttcacccct ctcccctcat gggtggattc ggacttaaac accctcctcc acagattctc 1980 atcaagaaca ccccggtacc tgcgaatcct tcgaccacct tcagtgcggc aaagtttgct 2040 tccttcatca cacagtactc cacgggacag gtcagcgtgg agatcgagtg ggagctgcag 2100 aaggaaaaca gcaaacgctg gaatcccgaa attcagtaca cttccaacta caacaagtct 2160 gttaatgtgg actttactgt ggacactaat ggcgtgtatt cagagcctcg ccccattggc 2220 accagatacc tgactcgtaa tctgta 2246 <210> 4 <211> 2261 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 4 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac 540 tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600 aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caaacaaatt 780 tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc gcatcaagga 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct 1200 cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga cgttcctttc 1260 cacagcagct acgctcacag ccagagtctg gaccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagtggaa ccggtgccca catcgtgatg 1380 gtggacgcct acaagccgac gaagggctta agtaccacca cgcagtcaag gcttcagttt 1440 tctcaggccg gagcgagtga cattcgggac cagtctagga actggcttcc tggaccctgt 1500 taccgccagc agcgagtatc aaagacatct gcggataaca acaacagtga atactcgtgg 1560 actggagcta ccaagtacca cctcaatggc agagactctc tggtgaatcc gggcccggcc 1620 atggcaagcc acaaggacga tgaagaaaag ttttttcctc agagcggggt tctcatcttt 1680 gggaagcaag gctcagagaa aacaaatgtg gacattgaaa aggtcatgat tacagacgaa 1740 gaggaaatca ggacaaccaa tcccgtggct acggagcagt atggttctgt atctaccaac 1800 ctccagagag gcaacagaca agcagctacc gcagatgtca acacacaagg cgttcttcca 1860 ggcatggtct ggcaggacag agatgtgtac cttcaggggc ccatctgggc aaagattcca 1920 cacacggacg gacattttca cccctctccc ctcatgggtg gattcggact taaacaccct 1980 cctccacaga ttctcatcaa gaacaccccg gtacctgcga atccttcgac caccttcagt 2040 gcggcaaagt ttgcttcctt catcacacag tactccacgg gacaggtcag cgtggagatc 2100 gagtgggagc tgcagaagga aaacagcaaa cgctggaatc ccgaaattca gtacacttcc 2160 aactacaaca agtctgttaa tgtggacttt actgtggaca ctaatggcgt gtattcagag 2220 cctcgcccca ttggcaccag atacctgact cgtaatctgt a 2261 <210> 5 <211> 1842 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 5 aggccggtag agcactctcc tgtggagcca gactcctcct cgggaaccgg aaaggcgggc 60 cagcagcctg caagaaaaag attgaatttt ggtcagactg gagacgcaga ctcagtacct 120 gacccccagc ctctcggaca gccaccagca gccccctctg gtctgggaac taatacgatg 180 gctacaggca gtggcgcacc aatggcagac aataacgagg gcgccgacgg agtgggtaat 240 tcctcgggaa attggcattg cgattccaca tggatgggcg acagagtcac caccaccagc 300 acccgaacct gggccctgcc cacctacaac aaccacctct acaaacaaat ttccagccaa 360 tcaggagcct cgaacgacaa tcactacttt ggctacagca ccccttgggg gtattttgac 420 ttcaacagat tccactgcca cttttcacca cgtgactggc aaagactcat caacaacaac 480 tggggattcc gacccaagag actcaacttc aagctcttta acattcaagt caaagaggtc 540 acgcagaatg acggtacgac gacgattgcc aataacctta ccagcacggt tcaggtgttt 600 actgactcgg agtaccagct cccgtacgtc ctcggctcgg cgcatcaagg atgcctcccg 660 ccgttcccag cagacgtctt catggtgcca cagtatggat acctcaccct gaacaacggg 720 agtcaggcag taggacgctc ttcattttac tgcctggagt actttccttc tcagatgctg 780 cgtaccggaa acaactttac cttcagctac acttttgagg acgttccttt ccacagcagc 840 tacgctcaca gccagagtct ggaccgtctc atgaatcctc tcatcgacca gtacctgtat 900 tacttgagca gaacaaacac tccaagtgga accaccacgc agtcaaggct tcagttttct 960 caggccggag cgagtgacat tcgggaccag tctaggaact ggcttcctgg accctgttac 1020 cgccagcagc gagtatcaaa gacatctgcg gataacaaca acagtgaata ctcgtggact 1080 ggagctacca agtaccacct caatggcaga gactctctgg tgaatccggg cccggccatg 1140 gcaagccaca aggacgatga agaaaagttt tttcctcaga gcggggttct catctttggg 1200 aagcaaggct cagagaaaac aaatgtggac attgaaaagg tcatgattac agacgaagag 1260 gaaatcagga caaccaatcc cgtggctacg gagcagtatg gttctgtatc taccaacctc 1320 cagagaggca acagacaagc agctaccgca gatgtcaaca cacaaggcgt tcttccaggc 1380 atggtctggc aggacagaga tgtgtacctt caggggccca tctgggcaaa gattccacac 1440 acggacggac attttcaccc ctctcccctc atgggtggat tcggacttaa acaccctcct 1500 ccacagattc tcatcaagaa caccccggta cctgcgaatc cttcgaccac cttcagtgcg 1560 gcaaagtttg cttccttcat cacacagtac tccacgggac aggtcagcgt ggagatcgag 1620 tgggagctgc agaaggaaaa cagcaaacgc tggaatcccg aaattcagta cacttccaac 1680 tacaacaagt ctgttaatgt ggactttact gtggacacta atggcgtgta ttcagagcct 1740 cgccccattg gcaccagata cctgactcgt aatctgggca gcggcggcag cggcggcagc 1800 ggcgcccaca tcgtgatggt ggacgcctac aagccgacga ag 1842 <210> 6 <211> 1839 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 6 aggccggtag agcactctcc tgtggagcca gactcctcct cgggaaccgg aaaggcgggc 60 cagcagcctg caagaaaaag attgaatttt ggtcagactg gagacgcaga ctcagtacct 120 gacccccagc ctctcggaca gccaccagca gccccctctg gtctgggaac taatacgatg 180 gctacaggca gtggcgcacc aatggcagac aataacgagg gcgccgacgg agtgggtaat 240 tcctcgggaa attggcattg cgattccaca tggatgggcg acagagtcac caccaccagc 300 acccgaacct gggccctgcc cacctacaac aaccacctct acaaacaaat ttccagccaa 360 tcaggagcct cgaacgacaa tcactacttt ggctacagca ccccttgggg gtattttgac 420 ttcaacagat tccactgcca cttttcacca cgtgactggc aaagactcat caacaacaac 480 tggggattcc gacccaagag actcaacttc aagctcttta acattcaagt caaagaggtc 540 acgcagaatg acggtacgac gacgattgcc aataacctta ccagcacggt tcaggtgttt 600 actgactcgg agtaccagct cccgtacgtc ctcggctcgg cgcatcaagg atgcctcccg 660 ccgttcccag cagacgtctt catggtgcca cagtatggat acctcaccct gaacaacggg 720 agtcaggcag taggacgctc ttcattttac tgcctggagt actttccttc tcagatgctg 780 cgtaccggaa acaactttac cttcagctac acttttgagg acgttccttt ccacagcagc 840 tacgctcaca gccagagtct ggaccgtctc atgaatcctc tcatcgacca gtacctgtat 900 tacttgagca gaacaaacac tccaagtgga accaccacgc agtcaaggct tcagttttct 960 caggccggag cgagtgacat tcgggaccag tctaggaact ggcttcctgg accctgttac 1020 cgccagcagc gagtatcaaa gacatctgcg gataacaaca acagtgaata ctcgtggact 1080 ggagctacca agtaccacct caatggcaga gactctctgg tgaatccggg cccggccatg 1140 gcaagccaca aggacgatga agaaaagttt tttcctcaga gcggggttct catctttggg 1200 aagcaaggct cagagaaaac aaatgtggac attgaaaagg tcatgattac agacgaagag 1260 gaaatcagga caaccaatcc cgtggctacg gagcagtatg gttctgtatc taccaacctc 1320 cagagaggca acagacaagc agctaccgca gatgtcaaca cacaaggcgt tcttccaggc 1380 atggtctggc aggacagaga tgtgtacctt caggggccca tctgggcaaa gattccacac 1440 acggacggac attttcaccc ctctcccctc atgggtggat tcggacttaa acaccctcct 1500 ccacagattc tcatcaagaa caccccggta cctgcgaatc cttcgaccac cttcagtgcg 1560 gcaaagtttg cttccttcat cacacagtac tccacgggac aggtcagcgt ggagatcgag 1620 tgggagctgc agaaggaaaa cagcaaacgc tggaatcccg aaattcagta cacttccaac 1680 tacaacaagt ctgttaatgt ggactttact gtggacacta atggcgtgta ttcagagcct 1740 cgccccattg gcaccagata cctgactcgt aatctgggca gcggcggcag cggcggcagc 1800 ggcaaactgg gcgacataga gtttatcaag gtgaacaaa 1839 <210> 7 <211> 2264 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 7 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac 540 tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600 aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caaacaaatt 780 tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc gcatcaagga 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct 1200 cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga cgttcctttc 1260 cacagcagct acgctcacag ccagagtctg gaccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagtggaa ccaccacgca gtcaaggctt 1380 cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga 1440 ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac 1500 tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc 1560 ccggccatgg caagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc 1620 atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca 1680 gacgaagagg aaatcaggac aaccaatccc gtggctacgg agcagtatgg ttctgtatct 1740 accaacctcc agagaggcaa caccggtgtg cctactatcg tgatggtgga cgcctacaag 1800 cgttacaagg gcttaagtag acaagcagct accgcagatg tcaacacaca aggcgttctt 1860 ccaggcatgg tctggcagga cagagatgtg taccttcagg ggcccatctg ggcaaagatt 1920 ccacacacgg acggacattt tcacccctct cccctcatgg gtggattcgg acttaaacac 1980 cctcctccac agattctcat caagaacacc ccggtacctg cgaatccttc gaccaccttc 2040 agtgcggcaa agtttgcttc cttcatcaca cagtactcca cgggacaggt cagcgtggag 2100 atcgagtggg agctgcagaa ggaaaacagc aaacgctgga atcccgaaat tcagtacact 2160 tccaactaca acaagtctgt taatgtggac tttactgtgg acactaatgg cgtgtattca 2220 gagcctcgcc ccattggcac cagatacctg actcgtaatc tgta 2264 <210> 8 <211> 2264 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 8 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac 540 tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600 aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caaacaaatt 780 tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc gcatcaagga 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct 1200 cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga cgttcctttc 1260 cacagcagct acgctcacag ccagagtctg gaccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagtggaa ccggtgtgcc tactatcgtg 1380 atggtggacg cctacaagcg ttacaagggc ttaagtacca ccacgcagtc aaggcttcag 1440 ttttctcagg ccggagcgag tgacattcgg gaccagtcta ggaactggct tcctggaccc 1500 tgttaccgcc agcagcgagt atcaaagaca tctgcggata acaacaacag tgaatactcg 1560 tggactggag ctaccaagta ccacctcaat ggcagagact ctctggtgaa tccgggcccg 1620 gccatggcaa gccacaagga cgatgaagaa aagttttttc ctcagagcgg ggttctcatc 1680 tttgggaagc aaggctcaga gaaaacaaat gtggacattg aaaaggtcat gattacagac 1740 gaagaggaaa tcaggacaac caatcccgtg gctacggagc agtatggttc tgtatctacc 1800 aacctccaga gaggcaacag acaagcagct accgcagatg tcaacacaca aggcgttctt 1860 ccaggcatgg tctggcagga cagagatgtg taccttcagg ggcccatctg ggcaaagatt 1920 ccacacacgg acggacattt tcacccctct cccctcatgg gtggattcgg acttaaacac 1980 cctcctccac agattctcat caagaacacc ccggtacctg cgaatccttc gaccaccttc 2040 agtgcggcaa agtttgcttc cttcatcaca cagtactcca cgggacaggt cagcgtggag 2100 atcgagtggg agctgcagaa ggaaaacagc aaacgctgga atcccgaaat tcagtacact 2160 tccaactaca acaagtctgt taatgtggac tttactgtgg acactaatgg cgtgtattca 2220 gagcctcgcc ccattggcac cagatacctg actcgtaatc tgta 2264 <210> 9 <211> 2136 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 9 gccaccatgg gctcaggtga tagtgctacc catattaaat tctcaaaacg tgatgaggac 60 ggcaaagagt tagctggtgc aactatggag ttgcgtgatt catctggtaa aactattagt 120 acatggattt cagatggaca agtgaaagat ttctacctgt atccaggaaa atatacattt 180 gtcgaaaccg cagcaccaga cggttatgag gtagcaactg ctattacctt tacagttaat 240 gagcaaggtc aggttactgt aaatggcaaa gcaactaaag gtgacgctca tatttcaggt 300 ggtggcggtt caggcggagg tggctctggc ggtggcggat cggctccggg aaaaaagagg 360 ccggtagagc actctcctgt ggagccagac tcctcctcgg gaaccggaaa ggcgggccag 420 cagcctgcaa gaaaaagatt gaattttggt cagactggag acgcagactc agtacctgac 480 ccccagcctc tcggacagcc accagcagcc ccctctggtc tgggaactaa tacgatggct 540 acaggcagtg gcgcaccaat ggcagacaat aacgagggcg ccgacggagt gggtaattcc 600 tcgggaaatt ggcattgcga ttccacatgg atgggcgaca gagtcatcac caccagcacc 660 cgaacctggg ccctgcccac ctacaacaac cacctctaca aacaaatttc cagccaatca 720 ggagcctcga acgacaatca ctactttggc tacagcaccc cttgggggta ttttgacttc 780 aacagattcc actgccactt ttcaccacgt gactggcaaa gactcatcaa caacaactgg 840 ggattccgac ccaagagact caacttcaag ctctttaaca ttcaagtcaa agaggtcacg 900 cagaatgacg gtacgacgac gattgccaat aaccttacca gcacggttca ggtgtttact 960 gactcggagt accagctccc gtacgtcctc ggctcggcgc atcaaggatg cctcccgccg 1020 ttcccagcag acgtcttcat ggtgccacag tatggatacc tcaccctgaa caacgggagt 1080 caggcagtag gacgctcttc attttactgc ctggagtact ttccttctca gatgctgcgt 1140 accggaaaca actttacctt cagctacact tttgaggacg ttcctttcca cagcagctac 1200 gctcacagcc agagtctgga ccgtctcatg aatcctctca tcgaccagta cctgtattac 1260 ttgagcagaa caaacactcc aagtggaacc accacgcagt caaggcttca gttttctcag 1320 gccggagcga gtgacattcg ggaccagtct aggaactggc ttcctggacc ctgttaccgc 1380 cagcagcgag tatcaaagac atctgcggat aacaacaaca gtgaatactc gtggactgga 1440 gctaccaagt accacctcaa tggcagagac tctctggtga atccgggccc ggccatggca 1500 agccacaagg acgatgaaga aaagtttttt cctcagagcg gggttctcat ctttgggaag 1560 caaggctcag agaaaacaaa tgtggacatt gaaaaggtca tgattacaga cgaagaggaa 1620 atcaggacaa ccaatcccgt ggctacggag cagtatggtt ctgtatctac caacctccag 1680 agaggcaaca gacaagcagc taccgcagat gtcaacacac aaggcgttct tccaggcatg 1740 gtctggcagg acagagatgt gtaccttcag gggcccatct gggcaaagat tccacacacg 1800 gacggacatt ttcacccctc tcccctcatg ggtggattcg gacttaaaca ccctcctcca 1860 cagattctca tcaagaacac cccggtacct gcgaatcctt cgaccacctt cagtgcggca 1920 aagtttgctt ccttcatcac acagtactcc acgggacagg tcagcgtgga gatcgagtgg 1980 gagctgcaga aggaaaacag caaacgctgg aatcccgaaa ttcagtacac ttccaactac 2040 aacaagtctg ttaatgtgga ctttactgtg gacactaatg gcgtgtattc agagcctcgc 2100 cccattggca ccagatacct gactcgtaat ctgtaa 2136 <210> 10 <211> 5784 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 10 catcaccatc accatcacga gaacctctat ttccagggat cttctatgaa aatcgaagaa 60 ggtaaactgg taatctggat taacggcgat aaaggctata acggtctcgc tgaagtcggt 120 aagaaattcg agaaagatac cggaattaaa gtcaccgttg agcatccgga taaactggaa 180 gagaaattcc cacaggttgc ggcaactggc gatggccctg acattatctt ctgggcacac 240 gaccgctttg gtggctacgc tcaatctggc ctgttggctg aaatcacccc ggacaaagcg 300 ttccaggaca agctgtatcc gtttacctgg gatgccgtac gttacaacgg caagctgatt 360 gcttacccga tcgctgttga agcgttatcg ctgatttata acaaagatct gctgccgaac 420 ccgccaaaaa cctgggaaga gatcccggcg ctggataaag aactgaaagc gaaaggtaag 480 agcgcgctga tgttcaacct gcaagaaccg tacttcacct ggccgctgat tgctgctgac 540 gggggttatg cgttcaagta tgaaaacggc aagtacgaca ttaaagacgt gggcgtggat 600 aacgctggcg cgaaagcggg tctgaccttc ctggttgacc tgattaaaaa caaacacatg 660 aatgcagaca ccgattactc catcgcagaa gctgccttta ataaaggcga aacagcgatg 720 accatcaacg gcccgtgggc atggtccaac atcgacacca gcaaagtgaa ttatggtgta 780 acggtactgc cgaccttcaa gggtcaacca tccaaaccgt tcgttggcgt gctgagcgca 840 ggtattaacg ccgccagtcc gaacaaagag ctggcaaaag agttcctcga aaactatctg 900 ctgactgatg aaggtctgga agcggttaat aaagacaaac cgctgggtgc cgtagcgctg 960 aagtcttacg aggaagagtt ggcgaaagat ccacgtattg ccgccactat ggaaaacgcc 1020 cagaaaggtg aaatcatgcc gaacatcccg cagatgtccg ctttctggta tgccgtgcgt 1080 actgcggtga tcaacgccgc cagcggtcgt cagactgtcg atgaagccct gaaagacgcg 1140 cagactaatt cgagctcgaa caacaacaac aataacaata acaacaacct cgggatcgag 1200 gaaaacctgt acttccaatc caatgccacc atggataaga aatactcaat aggcttagat 1260 atcggcacaa atagcgtcgg atgggcggtg atcactgatg aatataaggt tccgtctaaa 1320 aagttcaagg ttctgggaaa tacagaccgc cacagtatca aaaaaaatct tataggggct 1380 cttttatttg acagtggaga gacagcggaa gcgactcgtc tcaaacggac agctcgtaga 1440 aggtatacac gtcggaagaa tcgtatttgt tatctacagg agattttttc aaatgagatg 1500 gcgaaagtag atgatagttt ctttcatcga cttgaagagt cttttttggt ggaagaagac 1560 aagaagcatg aacgtcatcc tatttttgga aatatagtag atgaagttgc ttatcatgag 1620 aaatatccaa ctatctatca tctgcgaaaa aaattggtag attctactga taaagcggat 1680 ttgcgcttaa tctatttggc cttagcgcat atgattaagt ttcgtggtca ttttttgatt 1740 gagggagatt taaatcctga taatagtgat gtggacaaac tatttatcca gttggtacaa 1800 acctacaatc aattatttga agaaaaccct attaacgcaa gtggagtaga tgctaaagcg 1860 attctttctg cacgattgag taaatcaaga cgattagaaa atctcattgc tcagctcccc 1920 ggtgagaaga aaaatggctt atttgggaat ctcattgctt tgtcattggg tttgacccct 1980 aattttaaat caaattttga tttggcagaa gatgctaaat tacagctttc aaaagatact 2040 tacgatgatg atttagataa tttattggcg caaattggag atcaatatgc tgatttgttt 2100 ttggcagcta agaatttatc agatgctatt ttactttcag atatcctaag agtaaatact 2160 gaaataacta aggctcccct atcagcttca atgattaaac gctacgatga acatcatcaa 2220 gacttgactc ttttaaaagc tttagttcga caacaacttc cagaaaagta taaagaaatc 2280 ttttttgatc aatcaaaaaa cggatatgca ggttatattg atgggggagc tagccaagaa 2340 gaattttata aatttatcaa accaatttta gaaaaaatgg atggtactga ggaattattg 2400 gtgaaactaa atcgtgaaga tttgctgcgc aagcaacgga cctttgacaa cggctctatt 2460 ccccatcaaa ttcacttggg tgagctgcat gctattttga gaagacaaga agacttttat 2520 ccatttttaa aagacaatcg tgagaagatt gaaaaaatct tgacttttcg aattccttat 2580 tatgttggtc cattggcgcg tggcaatagt cgttttgcat ggatgactcg gaagtctgaa 2640 gaaacaatta ccccatggaa ttttgaagaa gttgtcgata aaggtgcttc agctcaatca 2700 tttattgaac gcatgacaaa ctttgataaa aatcttccaa atgaaaaagt actaccaaaa 2760 catagtttgc tttatgagta ttttacggtt tataacgaat tgacaaaggt caaatatgtt 2820 actgaaggaa tgcgaaaacc agcatttctt tcaggtgaac agaagaaagc cattgttgat 2880 ttactcttca aaacaaatcg aaaagtaacc gttaagcaat taaaagaaga ttatttcaaa 2940 aaaatagaat gttttgatag tgttgaaatt tcaggagttg aagatagatt taatgcttca 3000 ttaggtacct accatgattt gctaaaaatt attaaagata aagatttttt ggataatgaa 3060 gaaaatgaag atatcttaga ggatattgtt ttaacattga ccttatttga agatagggag 3120 atgattgagg aaagacttaa aacatatgct cacctctttg atgataaggt gatgaaacag 3180 cttaaacgtc gccgttatac tggttgggga cgtttgtctc gaaaattgat taatggtatt 3240 agggataagc aatctggcaa aacaatatta gattttttga aatcagatgg ttttgccaat 3300 cgcaatttta tgcagctgat ccatgatgat agtttgacat ttaaagaaga cattcaaaaa 3360 gcacaagtgt ctggacaagg cgatagttta catgaacata ttgcaaattt agctggtagc 3420 cctgctatta aaaaaggtat tttacagact gtaaaagttg ttgatgaatt ggtcaaagta 3480 atggggcggc ataagccaga aaatatcgtt attgaaatgg cacgtgaaaa tcagacaact 3540 caaaagggcc agaaaaattc gcgagagcgt atgaaacgaa tcgaagaagg tatcaaagaa 3600 ttaggaagtc agattcttaa agagcatcct gttgaaaata ctcaattgca aaatgaaaag 3660 ctctatctct attatctcca aaatggaaga gacatgtatg tggaccaaga attagatatt 3720 aatcgtttaa gtgattatga tgtcgatcac attgttccac aaagtttcct taaagacgat 3780 tcaatagaca ataaggtctt aacgcgttct gataaaaatc gtggtaaatc ggataacgtt 3840 ccaagtgaag aagtagtcaa aaagatgaaa aactattgga gacaacttct aaacgccaag 3900 ttaatcactc aacgtaagtt tgataattta acgaaagctg aacgtggagg tttgagtgaa 3960 cttgataaag ctggttttat caaacgccaa ttggttgaaa ctcgccaaat cactaagcat 4020 gtggcacaaa ttttggatag tcgcatgaat actaaatacg atgaaaatga taaacttatt 4080 cgagaggtta aagtgattac cttaaaatct aaattagttt ctgacttccg aaaagatttc 4140 caattctata aagtacgtga gattaacaat taccatcatg cccatgatgc gtatctaaat 4200 gccgtcgttg gaactgcttt gattaagaaa tatccaaaac ttgaatcgga gtttgtctat 4260 ggtgattata aagtttatga tgttcgtaaa atgattgcta agtctgagca agaaataggc 4320 aaagcaaccg caaaatattt cttttactct aatatcatga acttcttcaa aacagaaatt 4380 acacttgcaa atggagagat tcgcaaacgc cctctaatcg aaactaatgg ggaaactgga 4440 gaaattgtct gggataaagg gcgagatttt gccacagtgc gcaaagtatt gtccatgccc 4500 caagtcaata ttgtcaagaa aacagaagta cagacaggcg gattctccaa ggagtcaatt 4560 ttaccaaaaa gaaattcgga caagcttatt gctcgtaaaa aagactggga tccaaaaaaa 4620 tatggtggtt ttgatagtcc aacggtagct tattcagtcc tagtggttgc taaggtggaa 4680 aaagggaaat cgaagaagtt aaaatccgtt aaagagttac tagggatcac aattatggaa 4740 agaagttcct ttgaaaaaaa tccgattgac tttttagaag ctaaaggata taaggaagtt 4800 aaaaaagact taatcattaa actacctaaa tatagtcttt ttgagttaga aaacggtcgt 4860 aaacggatgc tggctagtgc cggagaatta caaaaaggaa atgagctggc tctgccaagc 4920 aaatatgtga attttttata tttagctagt cattatgaaa agttgaaggg tagtccagaa 4980 gataacgaac aaaaacaatt gtttgtggag cagcataagc attatttaga tgagattatt 5040 gagcaaatca gtgaattttc taagcgtgtt attttagcag atgccaattt agataaagtt 5100 cttagtgcat ataacaaaca tagagacaaa ccaatacgtg aacaagcaga aaatattatt 5160 catttattta cgttgacgaa tcttggagct cccgctgctt ttaaatattt tgatacaaca 5220 attgatcgta aacgatatac gtctacaaaa gaagttttag atgccactct tatccatcaa 5280 tccatcactg gtctttatga aacacgcatt gatttgagtc agctaggagg tgacgggtca 5340 cctaagaaaa aacgaaaagt tgaggatcct aaaaagaaac gaaaagttga tggcagcggc 5400 ggcagcggcg gcagcggcgg cgccatggta accaccttat caggtttatc aggtgagcaa 5460 ggtccgtccg gtgatatgac aactgaagaa gatagtgcta cccatattaa attctcaaaa 5520 cgtgatgagg acggccgtga gttagctggt gcaactatgg agttgcgtga ttcatctggt 5580 aaaactatta gtacatggat ttcagatgga catgtgaagg atttctacct gtatccagga 5640 aaatatacat ttgtcgaaac cgcagcacca gacggttatg aggtagcaac tgctattacc 5700 tttacagtta atgagcaagg tcaggttact gtaaatggcg aagcaactaa aggtgacgct 5760 catactggat ccagtggtag ctaa 5784 <210> 11 <211> 1146 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 11 catcaccatc accatcacga gaacctctat ttccagggag tgagcaaggg cgaggagctg 60 ttcaccgggg tggtgcccat cctggtcgag ctggacggcg acgtaaacgg ccacaagttc 120 agcgtccgcg gcgagggcga gggcgatgcc accaacggca agctgaccct gaagttcatc 180 tgcaccaccg gcaagctgcc cgtgccctgg cccaccctcg tgaccacctt cggctacggc 240 gtggcctgct tcagccgcta ccccgaccac atgaagcagc acgacttctt caagtccgcc 300 atgcccgaag gctacgtcca ggagcgcacc atctctttca aggacgacgg tacctacaag 360 acccgcgccg aggtgaagtt cgagggcgac accctggtga accgcatcga gctgaagggc 420 atcgacttca aggaggacgg caacatcctg gggcacaagc tggagtacaa cttcaacagc 480 cactacgtct atatcacggc cgacaagcag aagaactgca tcaaggctaa cttcaagatc 540 cgccacaacg ttgaggacgg cagcgtgcag ctcgccgacc actaccagca gaacaccccc 600 atcggcgacg gccccgtgct gctgcccgac aaccactacc tgagccatca gtccaagctg 660 agcaaagacc ccaacgagaa gcgcgatcac atggtcctgc tggagttcgt gaccgccgcc 720 gggattacac atggcatgga cgagctgtac aagggcagcg gcggcagcgg cggcagcggc 780 ggcgccatgg taaccacctt atcaggttta tcaggtgagc aaggtccgtc cggtgatatg 840 acaactgaag aagatagtgc tacccatatt aaattctcaa aacgtgatga ggacggccgt 900 gagttagctg gtgcaactat ggagttgcgt gattcatctg gtaaaactat tagtacatgg 960 atttcagatg gacatgtgaa ggatttctac ctgtatccag gaaaatatac atttgtcgaa 1020 accgcagcac cagacggtta tgaggtagca actgctatta cctttacagt taatgagcaa 1080 ggtcaggtta ctgtaaatgg cgaagcaact aaaggtgacg ctcatactgg atccagtggt 1140 agctaa 1146 <210> 12 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> Synthetic <400> 12 uagagcguga ggaaguugau 20 <210> 13 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 13 aggccttcgc agcattctt 19 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 14 gcagcacccc atctgttttc 20

Claims (16)

  1. 외부 표면을 포함하는 아데노 관련 바이러스(AAV)로서, 그 표면은 결합 파트너와 결합을 형성하는 하나 이상의 펩티드 태그를 포함하고, AAV는 생 바이러스인 AAV.
  2. 제1항의 AAV와, 태그에 대한 결합 파트너를 포함하는 제1 도메인 및 생물 활성 폴리펩티드를 포함하는 제2 도메인을 포함하는 적어도 하나의 폴리펩티드를 포함하는 접합체로서, AAV와 폴리펩티드가 결합되어 있는 것인 접합체.
  3. 제2항에 있어서, 제2 도메인은 Cas9를 포함하는 것인 접합체.
  4. 적어도 하나의 제1항의 AAV(제1 AAV) 및 적어도 하나의 제2 AAV를 포함하는 접합체로서, 제2 AAV는 제2 외부 표면을 포함하고, 제2 외부 표면은 태그 또는 제3 링커 분자에 대한 적어도 하나의 결합 파트너를 포함하며, 적어도 하나의 제1 AAV와 적어도 하나의 제2 AAV는 결합되어 있고, 적어도 하나의 제2 AAV는 생 바이러스인 접합체.
  5. 제4항에 있어서, 접합체 내의 제1 AAV 및 제2 AAV는, 접합체에 의한 세포의 감염시에 완전한 전이 유전자가 조립될 수 있도록, 전이 유전자의 개별적인 각각의 분절을 포함하는 게놈을 포함하는 것인 접합체.
  6. 제4항 또는 제5항에 있어서, 적어도 하나의 제1 AAV의 외부 표면은, 결합 파트너와 결합을 형성하는 펩티드 태그에 대한 적어도 하나의 결합 파트너를 포함하는 것인 접합체.
  7. 제4항 내지 제6항 중 어느 한 항에 있어서, 적어도 하나의 제2 AAV의 제2 외부 표면은, 결합 파트너와 결합을 형성하는 하나 이상의 펩티드 태그를 포함하는 것인 접합체.
  8. 제4항 내지 제7항 중 어느 한 항에 있어서, 상기 제1 AAV 중 하나 초과를 포함하는 접합체.
  9. 제4항 내지 제8항 중 어느 한 항에 있어서, 상기 제2 AAV 중 하나 초과를 포함하는 접합체.
  10. 제4항 내지 제9항 중 어느 한 항에 있어서, AAV를 함께 가교하는 제3 링커 분자를 포함하는 접합체.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서, 결합은 공유 결합인 접합체.
  12. 세포 및 제1항 내지 제11항 중 어느 한 항의 AAV 또는 접합체를 포함하는 조성물로서, 세포는 AAV 또는 접합체로 감염되어 있는 것인 조성물.
  13. 제12항에 있어서, 상기 세포는 생체내의 것인 조성물.
  14. 제12항 또는 제13항에 있어서, 상기 세포는 인간의 것인 조성물.
  15. 제12항 또는 제13항에 있어서, 상기 세포는 소, 개, 염소, 말, 고양이, 양, 돼지 또는 영장류의 것인 조성물.
  16. 제1항 내지 제11항 중 어느 한 항의 AAV 또는 접합체 및 약학적으로 허용되는 담체를 포함하는 약학 조성물.
KR1020207028093A 2018-02-28 2019-02-28 Aav에 기반한 유전자 및 단백질 전달을 위한 모듈식 시스템 KR20200128112A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862636638P 2018-02-28 2018-02-28
US62/636,638 2018-02-28
PCT/US2019/020096 WO2019169159A1 (en) 2018-02-28 2019-02-28 A modular system for gene and protein delivery based on aav

Publications (1)

Publication Number Publication Date
KR20200128112A true KR20200128112A (ko) 2020-11-11

Family

ID=65911251

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207028093A KR20200128112A (ko) 2018-02-28 2019-02-28 Aav에 기반한 유전자 및 단백질 전달을 위한 모듈식 시스템

Country Status (8)

Country Link
US (1) US20200407751A1 (ko)
EP (1) EP3758725A4 (ko)
JP (1) JP2021516048A (ko)
KR (1) KR20200128112A (ko)
CN (1) CN112041451B (ko)
AU (1) AU2019227910A1 (ko)
CA (1) CA3092451A1 (ko)
WO (2) WO2019169159A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220044581A (ko) * 2019-08-19 2022-04-08 더 카톨릭 유니버시티 오브 아메리카 유전자 및 단백질의 대량 카고를 인간 세포로 전달하기 위한 원핵-진핵 하이브리드 바이러스 벡터

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3645553T3 (pl) * 2017-06-27 2023-07-17 Regeneron Pharmaceuticals, Inc. Zrekombinowane cząstki wirusowe o zmodyfikowanym tropizmie i ich zastosowania do celowanego wprowadzania materiału genetycznego do komórek ludzkich
WO2022187377A1 (en) * 2021-03-02 2022-09-09 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Adeno-associated viruses and methods and materials for making and using adeno-associated viruses
WO2023192463A2 (en) * 2022-03-30 2023-10-05 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Adeno-associated virus vectors for nucleic acid delivery to retinal cells

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113930455A (zh) * 2014-10-09 2022-01-14 生命技术公司 Crispr寡核苷酸和基因剪辑
WO2016112242A1 (en) * 2015-01-08 2016-07-14 President And Fellows Of Harvard College Split cas9 proteins
DE16703049T1 (de) * 2015-01-15 2018-07-12 University Of Copenhagen Virusähnliche partikel mit effizienter epitopanzeige
EP3256170B1 (en) * 2015-02-13 2020-09-23 University of Massachusetts Compositions and methods for transient delivery of nucleases
US20190345483A1 (en) * 2016-05-12 2019-11-14 President And Fellows Of Harvard College AAV Split Cas9 Genome Editing and Transcriptional Regulation
JP2019524162A (ja) * 2016-08-18 2019-09-05 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア モジュラーAAV送達システムによるCRISPR−Casゲノム編集
PL3645553T3 (pl) * 2017-06-27 2023-07-17 Regeneron Pharmaceuticals, Inc. Zrekombinowane cząstki wirusowe o zmodyfikowanym tropizmie i ich zastosowania do celowanego wprowadzania materiału genetycznego do komórek ludzkich

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220044581A (ko) * 2019-08-19 2022-04-08 더 카톨릭 유니버시티 오브 아메리카 유전자 및 단백질의 대량 카고를 인간 세포로 전달하기 위한 원핵-진핵 하이브리드 바이러스 벡터

Also Published As

Publication number Publication date
WO2019169159A1 (en) 2019-09-06
US20200407751A1 (en) 2020-12-31
WO2019169144A1 (en) 2019-09-06
CN112041451A (zh) 2020-12-04
JP2021516048A (ja) 2021-07-01
CN112041451B (zh) 2024-03-08
CA3092451A1 (en) 2019-09-06
EP3758725A1 (en) 2021-01-06
EP3758725A4 (en) 2021-05-19
AU2019227910A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
CN112041451B (zh) 基于aav的基因和蛋白质递送模块化系统
CN107295802B (zh) 用于高效基因组编辑的腺相关病毒载体变异体和其方法
KR20220007056A (ko) 뇌에서 증진된 특이성을 갖는 바이러스 조성물
CN114127089A (zh) 重组腺相关病毒及其用途
US20210355171A1 (en) Adeno-associated virus having a variant capsid protein, and use thereof
CN110770346A (zh) 多倍体腺相关病毒载体及其制备和使用方法
US11851671B2 (en) Programmable assembly of virus composites for receptor-targeted gene delivery
TW202106700A (zh) Aav 工程化
KR20220004072A (ko) 뇌에 지향성을 가지는 aav 돌연변이체
CN115925819A (zh) 腺相关病毒突变体及其应用
Xie et al. The use of melittin to enhance transgene expression mediated by recombinant adeno-associated virus serotype 2 vectors both in vitro and in vivo
KR20200130337A (ko) Aav 키메라
US20220010335A1 (en) Prokaryotic-eukaryotic hybrid viral vector for delivery of large cargos of genes and proteins into human cells
EP3031820A1 (en) JC Polyomavirus VLP (virus-like particle) with a targeting peptide
EP4087602A2 (en) Methods and compositions for delivery of immunotherapy agents across the blood-brain barrier to treat brain cancer
Galli et al. Characterization of viral genome encapsidated in adeno-associated recombinant vectors produced in yeast saccharomyces cerevisiae
US20230175013A1 (en) Controlled modification of adeno-associated virus (aav) for enhanced gene therapy
Lee et al. An acidic oligopeptide displayed on AAV2 improves axial muscle tropism after systemic delivery
RU2809389C2 (ru) Мутант aav, обладающий способностью нацеливаться на головной мозг
WO2023209137A1 (en) Conjugation of adeno-associated viruses
US20180320199A1 (en) Use of vlp for the detection of nucleic acids