KR20200123000A - 스테이지 장치, 리소그래피 장치, 및 물품의 제조 방법 - Google Patents

스테이지 장치, 리소그래피 장치, 및 물품의 제조 방법 Download PDF

Info

Publication number
KR20200123000A
KR20200123000A KR1020200036542A KR20200036542A KR20200123000A KR 20200123000 A KR20200123000 A KR 20200123000A KR 1020200036542 A KR1020200036542 A KR 1020200036542A KR 20200036542 A KR20200036542 A KR 20200036542A KR 20200123000 A KR20200123000 A KR 20200123000A
Authority
KR
South Korea
Prior art keywords
optical path
gas
supply unit
unit
stage
Prior art date
Application number
KR1020200036542A
Other languages
English (en)
Inventor
리이치로 하나와
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20200123000A publication Critical patent/KR20200123000A/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Toxicology (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Optical Integrated Circuits (AREA)
  • Weting (AREA)

Abstract

[과제] 스테이지의 위치를 정밀도 좋게 계측하기 위해서 유리한 기술을 제공한다.
[해결 수단] 스테이지 장치는, 이동가능한 스테이지와, 상기 스테이지에 광을 조사하고, 상기 스테이지의 위치를 계측하는 계측부와, 상기 광의 광로에 따른 방향으로의 기체의 흐름을 상기 광로에 형성하도록, 상기 광로에 기체를 공급하는 공급부와, 상기 방향에 있어서의 상기 스테이지의 위치에 따라서, 상기 공급부로부터 상기 광로에 공급되는 기체의 유량을 변경하도록, 상기 공급부를 제어하는 제어부를 포함한다.

Description

스테이지 장치, 리소그래피 장치, 및 물품의 제조 방법{STAGE APPARATUS, LITHOGRAPHY APPARATUS, AND METHOD OF MANUFACTURING ARTICLE}
본 발명은, 스테이지 장치, 리소그래피 장치 및 물품의 제조 방법에 관한 것이다.
반도체 디바이스나 액정 패널등의 제조에 사용되는 리소그래피 장치에는, 기판이나 원판등을 보유해서 이동가능한 스테이지를 갖는 스테이지 장치가 설치된다. 스테이지 장치에서는, 최근의 회로 패턴의 미세화를 따르고, 스테이지의 위치결정 정밀도의 향상이 요구되고 있어, 그 요구를 실현하기 위해서는, 스테이지의 위치를 정밀도 좋게 계측하는 것이 필요하다.
스테이지의 위치의 계측에는, 일반적으로 레이저 간섭계가 사용되고 있지만, 레이저 간섭계에서는, 계측광로상에 있어서의 기체의 온도나 압력, 습도등의 흔들림(「기체의 흔들림」이라고 부르는 경우가 있다)에 기인하는 계측광로상의 굴절률의 변화가 계측오차의 요인이 될 수 있다. 특허문헌 1에는, 레이저 간섭계로부터 사출된 광(레이저 빔)의 광로를 따라 기체를 흘리는 것에 의해, 해당 광로상에 있어서의 굴절률의 변화를 저감하는 장치가 제안되어 있다.
특허문헌1: 일본 특허공개 2011-133398호 공보
레이저 간섭계로부터 사출된 광의 광로를 따라 기체를 흘리는 방식에서는, 스테이지를 향하는 방향으로 분출된 기체가 스테이지에 충돌함으로써, 스테이지의 주변에 있어서 기체의 흐름이 변화되고, 기체의 흔들림이 생기는 일이 있다. 이와 같이 스테이지의 주변에서 생기는 기체의 흔들림은, 기체의 분출구와 스테이지와의 거리가 근접함에 따라서 현저해지기 때문에, 스테이지의 위치를 정밀도 좋게 계측하는 것을 곤란하게 할 수 있다.
그래서, 본 발명은, 스테이지의 위치를 정밀도 좋게 계측하기 위해서 유리한 기술을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해서, 본 발명의 일측면으로서의 스테이지 장치는, 이동가능한 스테이지와, 상기 스테이지에 광을 조사하고, 상기 스테이지의 위치를 계측하는 계측부와, 상기 광의 광로에 따른 방향에의 기체의 흐름을 상기 광로에 형성하도록, 상기 광로에 기체를 공급하는 공급부와, 상기 방향에 있어서의 상기 스테이지의 위치에 따라, 상기 공급부로부터 상기 광로에 공급되는 기체의 유량을 변경하도록, 상기 공급부를 제어하는 제어부를 포함하는 것을 특징으로 한다.
본 발명의 추가의 목적 또는 기타의 측면은, 이하, 첨부도면을 참조하여 설명되는 바람직한 실시 형태에 의해 밝혀질 것이다.
본 발명에 의하면, 예를 들면, 스테이지의 위치를 정밀도 좋게 계측하기 때문에 유리한 기술을 제공할 수 있다.
[도1] 노광 장치의 전체 개략도
[도2] 제1실시 형태의 스테이지 장치의 구성 예를 도시한 도면
[도3] 제1공급부의 분출부의 구성 예를 도시한 도면
[도4] 제1실시 형태에 있어서, 기판 스테이지의 위치에 따른 제1공급부의 제어 예를 도시한 도면
[도5] 제1공급부 및 제2공급부의 배치 예를 도시한 도면
[도6] 제2실시 형태의 스테이지 장치의 구성을 도시한 도면
[도7] 제2실시 형태에 있어서, 기판 스테이지의 위치에 따른 제1공급부의 제어 예를 도시한 도면
[도8] 제1공급부의 분출부의 변형 예를 도시한 도면
이하, 첨부 도면을 참조하여 실시 형태를 상세하게 설명한다. 한편, 이하의 실시 형태는 특허청구의 범위에 따른 발명을 한정하는 것이 아니다. 실시 형태에는 복수의 특징이 기재되어 있지만, 이것들의 복수의 특징의 모두가 발명에 필수적인 것이라고는 한정하지 않고, 또한, 복수의 특징은 임의로 조합되어도 좋다. 더욱, 첨부 도면에 있어서는, 동일 또는 마찬가지의 구성에 동일한 참조 번호를 부여하고, 중복된 설명은 생략한다.
이하의 실시 형태에서는, 본 발명에 따른 스테이지 장치를, 기판을 노광하는 노광 장치에 적용하는 예에 대해서 설명하지만, 거기에 한정되는 것이 아니다. 예를 들면, 몰드를 사용해서 기판상의 조성물을 형성하는 형성 장치(임프린트 장치, 평탄화 장치)나, 하전 입자선을 사용해서 기판상에 패턴을 형성하는 묘화 장치등의 다른 리소그래피 장치에 있어서도, 본 발명에 따른 스테이지 장치를 적용할 수 있다. 또한, 이하에서는, 기판의 면과 평행한 면내에서 서로 직교하는 방향을 X방향 및 Y방향으로 하고, 기판의 면에 수직한 방향을 Z방향으로 한다.
<제1실시 형태>
본 발명에 따른 제1실시 형태의 노광 장치 100에 대해서 설명한다. 도1은, 제1실시 형태의 노광 장치 100의 전체 개략도다. 본 실시 형태의 노광 장치 100은, 예를 들면 액정 패널용의 유리 기판과 같은 대형의 기판W에 마스크M(원판)의 패턴을 전사하는 장치이며, 기판W의 노광 처리를 행하는 노광부 10(본체부)과, 노광부 10이 수용되는 챔버 30과, 제어부CNT를 갖는다. 제어부CNT는, 예를 들면 CPU나 메모리등을 포함하는 컴퓨터에 의해 구성되어, 노광 장치 100의 각 부를 제어한다.
우선, 노광부 10의 구성에 대해서 설명한다. 노광부 10은, 예를 들면, 조명 광학계 11과, 투영 광학계 12와, 마스크 스테이지 13과, 기판 스테이지 14와, 관찰 광학계 15와, 계측부 20을 포함할 수 있다.
조명 광학계 11은, 렌즈, 미러, 옵티컬 인티그레이터등의 복수종류의 광학소자를 포함하고, 수은 램프 등의 광원 11a로부터의 광으로 마스크M을 조명하는 광학계다. 또한, 투영 광학계 12는, 조명 광학계 11에 의해 조명된 마스크M의 패턴 상을 기판W에 투영하는 광학계다. 본 실시 형태의 경우, 투영 광학계 12는, 평면 미러, 요면 미러, 철면 미러등을 포함하는 미러 프로젝션형의 등배 결상 광학계로서 구성되어 있지만, 거기에 한정되지 않고, 확대 결상 광학계나 축소 결상 광학계등의 다른 타입의 광학계가 적용되어도 좋다.
마스크 스테이지 13은, 마스크 척 13a와 마스크 구동기구 13b를 포함하고, 마스크M을 보유해서 XY방향으로 이동가능하게 구성된다. 마스크 척 13a는, 진공 척이나 정전 척등에 의해 마스크M을 보유한다. 마스크 구동기구 13b는, 마스크 척 13a를 지지함과 아울러, XY방향으로 이동가능하게 구성될 수 있다. 또한, 기판 스테이지 14는, 기판 척 14a와 기판 구동기구 14b를 포함하고, 기판W를 보유해서 이동가능하게 구성된다. 기판 척 14a는, 진공 척이나 정전 척등에 의해 기판W를 보유한다. 기판 구동기구 14b는, 기판 척 14a를 지지함과 아울러, 정반 16 위를 XY방향으로 이동가능하게 구성된다.
관찰 광학계 15는, 마스크 스테이지 13의 상방에 배치되어, 마스크M 및 투영 광학계 12를 통해 기판W를 관찰하기 위한 광학계다. 본 실시 형태의 경우, 관찰 광학계 15는, 예를 들면, 마스크M과 기판W와의 얼라인먼트를 행하기 위해서 마스크M 및 기판W의 각각에 형성된 마크를 검출하는 얼라인먼트 검출계(얼라인먼트 스코프)를 포함할 수 있다.
계측부 20은, 예를 들면 레이저 간섭계로 구성되어, 마스크 스테이지 13 및 기판 스테이지 14에 계측광(레이저 광)을 조사하고, 각 스테이지의 위치를 실시간으로 계측한다. 본 실시 형태의 경우, 계측부 20은, 예를 들면, 레이저 헤드 21과, 빔 스플리터 22와, 바 미러 23, 24를 포함할 수 있다. 바 미러 23은 마스크 스테이지 13에 부착되고, 바 미러 24는 기판 스테이지 14에 부착되어 있다. 레이저 헤드 21로부터 사출된 계측광ML(레이저 광)은, 빔 스플리터 22로 분기되고, 일부의 계측광ML은 미러 25에서 반사되어서 마스크 스테이지 13의 바 미러 23에 입사하고, 나머지의 계측광ML은 기판 스테이지 14의 바 미러 24에 입사한다. 마스크 스테이지 13의 바 미러 23에서 반사된 계측광ML과 기판 스테이지 14의 바 미러 24에서 반사된 계측광ML은, 다시 빔 스플리터 22를 지나는 것으로 서로 간섭한다. 그 때문에, 계측부 20(레이저 헤드 21)은, 해당 간섭 패턴에 근거하여, 마스크 스테이지 13(마스크M)과 기판 스테이지 14(기판W)와의 상대 위치를 계측할 수 있다.
노광 장치 100에서는, 마스크 스테이지 13에 의해 보유된 마스크M과, 기판 스테이지 14에 의해 보유된 기판W는, 투영 광학계 12를 통해 광학적으로 공역한 위치(투영 광학계 12의 물체면 및 상(image)면)에 각각 배치된다. 그리고, 제어부CNT는, 계측부 20에서의 계측결과에 근거하여, 마스크 스테이지 13과 기판 스테이지 14를 투영 광학계 12의 투영 배율에 따른 속도비로 상대적으로 동기 주사 함에 의해, 마스크M의 패턴을 기판상에 전사할 수 있다.
다음에, 노광부 10이 수용되는 챔버 30의 구성에 대해서 설명한다. 챔버 30은, 노광부 10이 배치되어 있는 환경(공간)의 온도를 조절하기 위한 공조기구로서 구성될 수 있다. 예를 들면, 챔버 30은, 기체(공기)의 온도조정을 행하는 온조기 31과, 미소한 이물을 여과해서 청정 공기의 균일한 흐름을 형성하는 필터 박스 32와, 노광부 10이 배치되어 있는 환경을 외부와 차폐하기 위한 부스 33으로 구성될 수 있다.
온조기 31은, 예를 들면, 유기물이나 무기물을 제거하기 위한 케미칼 필터 31a와, 히터 31b와, 송풍기 31c와, 온도제어부 31d로 구성된다. 온도제어부 31d는, 부스 33안이 소정의 온도로 되도록 히터 31b를 제어함과 아울러, 필터 박스 32로부터 소정의 유량으로 기체가 공급되도록 송풍기 31c를 제어한다. 또한, 필터 박스 32는, 노광부 10의 상방 및 측방에 설치되어 있어, 다운 플로우 및 사이드 플로우로 부스 33안에 기체를 공급하고 있다. 이렇게 부스 33안에 기체를 공급함으로써, 노광부 10의 계측부 20에 의한 마스크 스테이지 13 및 기판 스테이지 14의 위치의 계측에 대하여, 부스 33안으로의 기체의 공급에 의한 영향을 저감할 수 있다.
본 실시 형태의 경우, 챔버 30은, 노광부 10이 수용되어 있는 부스 33의 내부에 있어서, 온도조정 및 유량조정된 기체를 순환시키는 순환계의 공조기구다. 구체적으로는, 케미칼 필터 31a를 통과한 기체는, 히터 31b에 의해 온도조정된 후, 송풍기 31c에 의해 유량조정되어, 필터 박스 32로부터 부스 33안에 공급된다. 부스 33안에 공급된 기체는, 취입구 34로부터 다시 온조기 31안에 취입되어서 순환한다. 여기에서, 챔버 30에서는, 부스 33안을 외부에 대하여 항상 양압으로 하고, 부스 33안으로의 미소 이물의 침입을 방지하기 위해서, 순환 공기량의 약 1할의 기체를 외기도입구 35로부터 도입하고 있다.
또한, 챔버 30은, 노광 장치 100의 외부로부터 기판W의 주고 받기를 행하기 위한 인터페이스 개구부 36과, 인터페이스 개구부 36에 설치된 셔터 37을 포함한다. 셔터 37은, 예를 들면, 챔버 30의 외부로부터 기판W를 반입출하는 로보트 핸드로부터의 기판 주고 받기 신호에 따라, 개폐 동작이 제어된다.
[제1공급부 및 제2공급부의 구성]
노광 장치 100에서는, 최근의 회로 패턴의 미세화에 따라, 마스크 스테이지 13 및 기판 스테이지 14의 위치결정 정밀도의 향상이 요구되고 있어, 그 요구를 실현하기 위해서는, 이것들의 스테이지의 위치를 계측부 20로 정밀도 좋게 계측하는 것이 필요하다. 그렇지만, 계측부 20을 구성하는 레이저 간섭계에서는, 계측광로상에 있어서의 기체의 온도나 압력, 습도등의 흔들림(「기체의 흔들림」이라고 부르는 경우가 있다)에 기인하는 계측광로상의 굴절률의 변화가 계측오차의 요인이 될 수 있다. 예를 들면, 마스크 스테이지 13 및 기판 스테이지 14의 위치를 계측하는 계측부 20에는, 30nm이하의 계측정밀도(계측오차)가 요구되고 있고, 그 계측정밀도를 실현하기 위해서는, 계측광로의 온도변화율을 1ppm/℃이하로 할 필요가 있다.
또한, 최근에서는, 액정 패널용의 기판W가 대형화하고 있어, 거기에 따라, 노광 장치 100에서는, 기판 스테이지 14가 대형화하고, 기판 스테이지 14의 이동 스트로크가 길게 되어 있다. 그 때문에, 계측부 20의 계측광로 길이도 길어져, 예를 들면, 약 3000mm에도 달한다. 이 경우, 30nm이하의 계측정밀도를 실현하기 위해서는, 계측광로의 온도변화를 0.01℃이하로 억제할 필요가 있다.
그래서, 본 실시 형태의 노광 장치 100에는, 계측부 20(레이저 헤드21)으로부터 사출된 계측광ML의 광로(계측광로)에 대하여, 유량 및 온도가 조정된 기체를 공급하는 제1공급부 40 및 제2공급부 50이 설치된다. 제1공급부 40 및 제2공급부 50에는, 예를 들면, 온조기 31에 의해 온도조정된 기체가 공급된다. 구체적으로는, 도1에 도시한 바와 같이, 온조기 31에는, 공장설비로부터 압축 기체를 취입하기 위한 취입구 38과, 온도 조정한 기체를 송출하기 위한 송출구 39가 설치된다. 취입구 38로부터 온조기 31안에 취입된 압축 기체는, 케미칼 필터 31a를 통과하여, 히터 31b에 의해 온도조정된 후, 송출구 39로부터 송출된다. 송출구 39는, 제1공급부 40 및 제2공급부 50에 연통하고 있고, 송출구 39로부터 송출한 압축 기체가 제1공급부 40 및 제2공급부 50에 공급된다. 또한, 공장설비로부터 온조기 31의 취입구 38에 공급되는 압축 기체는, 0.1MPa∼0.8MPa정도의 기체압(공기압)이면 좋다.
다음에, 본 실시 형태의 노광 장치 100에 적용되는 스테이지 장치의 구성에 대해서 설명한다. 스테이지 장치는, 예를 들면, 계측부 20, 제1공급부 40 및 제어부CNT를 포함하는 것으로서 정의될 수 있지만, 그것들에 더하여 제2공급부 50도 포함하는 것으로서 정의되어도 좋다. 도2는, 스테이지 장치의 구성을 도시한 도면이며, 기판 스테이지 14의 위치를 계측하기 위한 계측부 20(레이저 헤드 21)의 계측광로에 대하여 제1공급부 40 및 제2공급부 50을 설치한 예를 나타내는 도다. 이하에서는, 기판 스테이지 14의 위치를 계측하기 위한 계측광로(레이저 헤드 21과 바 미러 24와의 사이의 광로)에 대하여 제1공급부 40 및 제2공급부 50을 설치하는 예에 대해서 설명하지만, 거기에 한정되는 것이 아니다. 예를 들면, 도1에 나타낸 바와 같이, 마스크 스테이지 13의 위치를 계측하기 위한 계측광로(빔 스플리터 22와 바 미러 23과의 사이의 광로)에 대하여도 마찬가지로 제1공급부 40 및 제2공급부 50을 설치해도 좋다.
제1공급부 40은, 예를 들면 유량조정부 41(전동밸브)과, 온도조정부 42와, 분출부 43을 포함하고, 계측부 20으로부터의 계측광ML의 광로에 따른 제1방향(광축방향, 예를 들면 -X방향)으로의 기체의 흐름을 계측광로에 형성하도록, 해당 계측광로에 기체를 공급한다. 유량조정부 41은, 예를 들면 매스 플로우 콘트롤러를 포함하고, 제어부CNT에서의 제어하에서, 챔버 30의 온조기 31의 송출구 39로부터 튜브 46a를 통해 공급된 압축 기체의 유량을 조정한다. 온도조정부 42는, 예를 들면 히터나 냉각 기구등을 포함하고, 제어부CNT에서의 제어하에서, 유량조정부 41로부터 튜브 46b를 통해 공급된 기체의 온도를 조정한다. 여기에서, 도2에 나타내는 예에서는, 온도조정부 42가 유량조정부 41의 하류에 배치되어 있지만, 거기에 한정되지 않고, 유량조정부 41이 온도조정부 42의 하류에 배치되어 있어도 좋다. 또한, 유량조정부 41 및 온도조정부 42는, 분출부 43의 근방에 설치되는 것이 바람직하지만, 임의의 위치에 설치되어도 좋고, 예를 들면, 온조기 31의 내부에 설치되어도 좋다.
분출부 43은, 코안다 효과를 이용하고, 계측광로에 따른 제1방향으로의 기체의 흐름을 해당 계측광로에 형성하도록, 온도조정부 42로부터 튜브 46c를 통해 공급된 기체를 계측광로에 분출한다. 구체적으로는, 분출부 43은, 도3에 나타낸 바와 같이, 분출구 44와 안내 부재 45를 포함할 수 있다. 분출구 44는, 온도조정부 42에 연통하고 있고, 온도조정부 42로부터 튜브 46c를 통해 공급된 기체(화살표α로 나타낸다)를, 계측광로를 가로지르는 방향(예를 들면, -Z방향)으로 분출한다. 안내 부재 45는, 코안다 효과를 이용하고, 분출구 44로부터 분출된 기체를, 계측광로에 따른 제1방향(예를 들면 -X방향)에의 흐름에 안내하기 위한 안내면 45a를 갖는다. 이러한 안내 부재 45의 구성에 의해, 분출구 44로부터 분출된 기체를, 코안다 효과에 의해 안내면 45a를 따라서 흘리고, 계측광로에 따른 제1방향으로의 흐름으로 변환할 수 있다. 또한, 분출부 43으로부터 기체가 분출되면, 분출부 43의 주위에 존재하고 있는 기체(화살표β로 나타낸다)가, 벨누이 효과에 의해 분출부 43로부터 분출된 기체에 인입된다. 즉, 분출부 43으로부터 분출된 기체는, 그 유량이 수배∼수십배로 증폭되어서 계측광로에 공급되게 된다.
제2공급부 50은, 계측광로를 가로지르는 제2방향(예를 들면, -Z방향)으로의 기체의 흐름을 계측광로에 형성하도록, 해당 계측광로에 기체를 공급한다. 예를 들면, 제2공급부 50은, 계측광로(예를 들면, -X방향)를 따라 배열된 복수의 분출구를 갖고, 챔버 30의 온조기 31의 송출구 39로부터 튜브 51을 통해 공급된 압축 기체를, 계측광로를 가로지르는 방향(예를 들면, -Z방향)으로 분출한다. 또한, 본 실시 형태의 경우, 제2공급부 50은, 계측광로 중, 제1공급부 40에 의해 기체가 공급되는 부분보다 계측부측(레이저 헤드 21측)의 부분에 기체를 공급하도록 배치될 수 있다.
[기체의 유량 및 온도의 제어]
본 실시 형태에 있어서의 제1공급부 40의 구성에서는, 제1공급부 40으로부터 계측광로에 공급된(분출된) 기체는, 기판 스테이지 14(또는 바 미러 24)에 충돌한다. 그 때문에, 기판 스테이지 14의 주변의 계측광로에서는, 제1공급부 40으로부터 공급된 기체의 흐름이 변화될 수 있다. 이 경우, 기판 스테이지 14 혹은 그 주위의 열원에 의해 열을 띤 기체를 빨아들여, 계측광로상에 있어서 기체의 온도나 압력, 습도등에 흔들림(이하에서는, 「기체의 흔들림」이라고 부르는 경우가 있다)이 생길 수 있다. 이러한 기체의 흔들림은, 계측광로상의 굴절률을 변화시키기 위해서, 계측부 20에서의 계측오차의 요인이 될 수 있다. 또한, 이러한 기체의 흔들림은, 기판 스테이지 14와 제1공급부 40의 분출부 43(분출구 44)과의 거리A가 근접함에 따라서 현저해지기 때문에, 기판 스테이지 14의 위치를 정밀도 좋게 계측하는 것을 곤란하게 할 수 있다.
그 때문에, 본 실시 형태의 제어부CNT는, 계측광로에 따른 제1방향에 있어서의 기판 스테이지 14의 위치에 따라, 제1공급부 40으로부터 계측광로에 공급된(분출된) 기체의 유량을 변경하도록, 제1공급부 40의 유량조정부 41을 제어한다. 예를 들면, 제어부CNT는, 계측광로에 따른 제1방향에 있어서의 기판 스테이지 14와 제1공급부 40(분출부 43)과의 거리가 짧을수록, 제1공급부 40으로부터 계측광로에 공급되는 기체의 유량이 적어지도록, 제1공급부 40의 유량조정부 41을 제어한다.
구체적으로는, 제1방향에 있어서의 기판 스테이지 14의 위치가 서로 다른 복수의 상태의 각각에 대해서, 제1공급부 40으로부터 계측광로에 기체를 공급했을 때에 계측부 20의 계측오차가 허용 값이하가 되는 기체의 유량을 실험 등으로 사전에 취득해둔다. 이에 따라, 제1방향에 있어서의 기판 스테이지 14의 위치와 제1공급부 40으로부터 계측광로에 공급해야 할 기체의 유량과의 대응 관계를 나타내는 정보(이하에서는, 「제1정보」라고 부르는 경우가 있다)를 얻을 수 있다. 제어부CNT는, 사전에 취득한 제1정보와 기판 스테이지 14의 위치 정보에 근거하여, 제1공급부 40으로부터 계측광로에 공급해야 할 기체의 유량을 결정하고, 결정한 기체의 유량에 근거해서 제1공급부 40의 유량조정부 41을 제어한다. 본 실시 형태의 경우, 제어부CNT는, 도2에 나타낸 바와 같이, 기판 스테이지 14의 위치를 나타내는 정보로서, 계측부 20의 계측결과를 사용하고 있지만, 거기에 한정되지 않고, 기판 스테이지 14의 기판 구동기구 14b로부터 얻어지는 신호 값을 사용해도 좋다.
또한, 제1공급부 40으로부터 계측광로에 공급되는 기체의 유량을 변경하면, 단열팽창에 의해 기체의 온도변화가 생길 수 있다. 예를 들면, 제1공급부 40으로부터 계측광로에 공급되는 기체의 유량이 적어짐에 따라서, 단열팽창에 의해 해당 기체의 온도가 저하할 수 있다. 그 때문에, 본 실시 형태의 제어부CNT는, 제1공급부 40으로부터 계측광로에 공급되는 기체의 유량의 변경에 기인하는 해당 기체의 온도변화를 보상하도록, 제1공급부 40의 온도조정부 42를 제어할 수 있다.
구체적으로는, 온도조정부 42에 의한 온도조정을 행하지 않고, 제1공급부 40의 분출부 43(분출구 44)으로부터 공급되는 기체의 유량이 서로 다른 복수의 상태의 각각에 대해서, 분출부 43으로부터 공급되는 기체의 온도를 실험 등으로 사전에 계측해 둔다. 그리고, 각 상태에 대해서, 분출부 43으로부터 분출되는 기체의 온도의 계측값과 기준온도와의 차이를 보상하기 위해서 필요한 가열량(또는 냉각량)을 산출한다. 기준온도는, 임의로 설정될 수 있지만, 예를 들면 챔버 30의 온조기 31의 설정 온도로 설정되면 좋다. 이에 따라, 제1공급부 40으로부터 계측광로에 공급되는 기체의 유량과 온도조정부 42에서의 가열량과의 대응 관계를 나타내는 정보(이하에서는, 「제2정보」라고 부르는 경우가 있다)를 얻을 수 있다. 제어부CNT는, 사전에 취득한 제2정보와 유량조정부 41에서 조정된 기체의 유량에 근거하여, 온도조정부 42에서의 기체의 가열량을 결정하고, 결정한 가열량에 근거해서 온도조정부 42를 제어한다.
여기에서, 상기한 제어를 행하기 위한 제어부CNT의 구성의 구체예에 대해서 설명한다. 유량조정부 41로서 전동밸브가 사용되어, 온도조정부 42로서 히터가 사용되어 있는 경우를 상정한다. 이 경우, 제어부CNT는, 전동밸브의 개도를 제어하기 위한 펄스 콘트롤러를 갖고, 전동밸브에 탑재된 펄스 모터를 구동해서 전동밸브의 개도를 제어 함으로써, 제1공급부 40으로부터 계측광로에 공급되는 기체의 유량을 제어할 수 있다. 또한, 제어부CNT는, 솔리드 스테이트 릴레이 회로를 갖고, 히터의 스위칭을 고속으로 제어 함으로써, 제1공급부 40으로부터 계측광로에 공급되는 기체의 온도를 제어할 수 있다.
다음에, 기판 스테이지 14의 위치에 따른 제1공급부 40의 제어 예에 대해서, 도4를 참조하면서 설명한다. 도4는 기판 스테이지 14의 위치에 따른 제1공급부 40의 제어 예를 나타낸 도면이다. 도4a는, 기판 스테이지 14와 제1공급부 40의 분출부 43과의 거리A를 나타내고 있고, 도4b는, 유량조정부 41에서 조정해야 할 기체의 유량을 나타내고 있고, 도4c는 온도조정부 42에서 주어야 할 가열량을 나타내고 있다.
구간 101은, 제1공급부 40의 분출부 43으로부터 떨어지도록 기판 스테이지 14(바 미러 24)가 이동해서 거리A가 넓어져 있는 구간이다. 이 구간 101에서는, 제어부CNT는, 거리A가 넓어짐에 따라서, 제1공급부 40으로부터 계측광로에 공급되는 기체의 유량이 증가하도록 유량조정부 41을 제어함과 아울러, 기체의 가열량이 증가하도록 온도조정부 42를 제어한다. 또한, 구간 102는, 거리A가 최대의 그대로 일정한 구간이다. 이 구간 102에서는, 제어부CNT는, 기체의 유량 및 기체의 가열량이 각각 일정해지도록 유량조정부 41 및 온도조정부 42를 제어한다.
구간 103은, 제1공급부 40의 분출부 43에 접근하도록 기판 스테이지 14가 이동해서 거리A가 단축되어 있는 구간이다. 이 구간 103에서는, 제어부CNT는, 거리A가 단축됨에 따라서, 제1공급부 40으로부터 계측광로에 공급되는 기체의 유량이 저감하도록 유량조정부 41을 제어함과 아울러, 기체의 가열량이 저감하도록 온도조정부 42를 제어한다. 여기에서, 제어부CNT는, 기판 스테이지 14가 제1공급부 40의 분출부 43의 하방에 배치되었을 경우에, 제1공급부 40으로부터의 계측광로에의 기체의 공급을 정지해도 좋다.
[제1공급부 및 제2공급부의 배치 예]
다음에, 노광부 10에 있어서의 제1공급부 40 및 제2공급부 50의 배치 예에 대해서 설명한다. 도5는, 노광부 10에 있어서의 제1공급부 40 및 제2공급부 50의 배치 예를 나타낸 도면이다. 제1공급부 40(분출부 43) 및 제2공급부 50은, 도5에 나타낸 바와 같이, 구조체 17 밑에 배치된다. 구조체 17은, 기판 스테이지 14가 가장 +X방향측으로 배치되었을 때에, 기판 스테이지 14에 보유된 기판W를 덮기 위한 부재이며, 예를 들면, 투영 광학계 12의 일부를 구성하는 부재이여도 좋다. 또한, 계측광ML의 광축방향에 있어서의 제1공급부 40(분출부 43)과 투영 광학계 12와의 사이에는, 검출계 18이 설치될 수 있다. 검출계 18은, 예를 들면, 기판W에 형성된 마크를 검출하는, 소위 오프 액시스 스코프를 포함할 수 있다.
상술한 것 같이, 본 실시 형태의 노광 장치 100은, 기판 스테이지 14의 위치에 따라서, 제1공급부 40으로부터 계측광로에 공급되는(분출되는) 기체의 유량을 변경하도록, 제1공급부 40의 유량조정부 41을 제어한다. 또한, 노광 장치 100은, 제1공급부 40으로부터 계측광로에 공급되는 기체의 유량의 변경에 기인하는 해당 기체의 온도변화를 보상하도록, 제1공급부 40의 온도조정부 42를 제어할 수 있다. 이에 따라, 노광 장치 100에서는, 기판 스테이지 14와 제1공급부 40(분출부 43)과의 거리A의 변화에 기인하는 계측광로상의 기체의 흔들림의 변화를 저감하고, 기판 스테이지 14의 위치를 정밀도 좋게 계측할 수 있다.
<제2실시 형태>
본 발명에 따른 제2실시 형태의 노광 장치에 대해서 설명한다. 본 실시 형태의 노광 장치는, 제1실시 형태의 노광 장치 100의 구성을 기본적으로 이어받는 것이지만, 복수의 제1공급부 40이 설치되는 점에서 상이하다. 본 실시 형태에서는, 계측광로에 따른 제1방향에 있어서 서로 다른 계측광로상의 위치에 기체를 공급하는 2개의 제1공급부 40a, 40b이 설치되어 있다. 도6은, 본 실시 형태의 스테이지 장치의 구성을 도시한 도면이며, 기판 스테이지 14의 위치를 계측하기 위한 계측부 20(레이저 헤드 21)의 계측광로에 대하여 제1공급부 40a, 40b 및 제2공급부 50을 설치한 예를 나타내는 도다. 각 제1공급부 40a, 40b의 구성은, 제1실시 형태에서 설명한 대로이며, 유량조정부 41과, 온도조정부 42와, 분출부 43을 각각 포함할 수 있다. 또한, 이하에서는, 설명을 이해하기 쉽게 하기 위해서, 도6에 있어서의 우측의 제1공급부 40a를 「우공급부40a」라고 부르고, 좌측의 제1공급부 40b를 「좌공급부40b」라고 부르는 것으로 한다.
다음에, 기판 스테이지 14의 위치에 따른 우공급부 40a, 좌공급부 40b의 제어 예에 대해서, 도7을 참조하면서 설명한다. 도7은, 기판 스테이지 14의 위치에 따른 우공급부 40a, 좌공급부 40b의 제어 예를 도시한 도면이다. 도7a는, 기판 스테이지 14와 우공급부 40a의 분출부 43a와의 거리A, 및, 기판 스테이지 14와 좌공급부 40b의 분출부 43b와의 거리B를 나타내고 있다. 또한, 도7b는, 우공급부 40a의 유량조정부 41a로 조정해야 할 기체의 유량을 나타내고 있고, 도7c는, 좌공급부 40b의 유량조정부 41b로 조정해야 할 기체의 유량을 나타내고 있다.
구간 104는, 우공급부 40a(분출부 43a)로부터 떨어지도록 기판 스테이지 14(바 미러 24)가 이동해서 거리A가 넓어져 있지만, 좌공급부 40b(분출부 43b)의 하방에 계측광로가 아직 배치되지 않고 있는 구간이다. 이 구간 104에서는, 제어부CNT는, 우공급부 40a에 대하여, 거리A가 넓어짐에 따라서, 계측광로에 공급하는 기체의 유량을 증가시키도록 유량조정부 41a를 제어한다. 한편, 좌공급부 40b에 대하여는, 계측광로에의 기체의 공급을 정지시켜 두도록 유량조정부 41b을 제어한다.
구간 105는, 좌공급부 40b의 분출부 43b의 하방에 계측광로가 배치된 상태에 있어서, 우공급부 40a(분출부 43a) 및 좌공급부 40b(분출부 43b)로부터 떨어지도록 기판 스테이지 14가 이동해서 거리A 및 거리B가 넓어져 있는 구간이다. 이 구간 105에서는, 우공급부 40a가 기체의 공급을 담당하는 계측광로(분출부 43a와 분출부 43b와의 사이의 계측광로)의 거리가 변화되지 않는다. 그 때문에, 제어부CNT는, 우공급부 40a에 대하여, 계측광로에 공급하는 기체의 유량이 일정하게 되도록 유량조정부 41a를 제어한다. 한편, 좌공급부 40b에 대하여는, 거리B가 넓어짐에 따라서, 계측광로에 공급하는 기체의 유량을 증가시키도록 유량조정부 41b를 제어한다.
구간 106은, 거리A 및 거리B가 최대의 그대로 일정한 구간이다. 이 구간 106에서는, 제어부CNT는, 우공급부 40a 및 좌공급부 40b에 대하여, 계측광로에 공급하는 기체의 유량이 일정해지도록 유량조정부 41a 및 유량조정부 41b를 각각 제어한다.
구간 107은, 좌공급부 40b의 분출부 43b의 하방에 계측광로가 배치된 상태에 있어서, 우공급부 40a(분출부 43a) 및 좌공급부 40b(분출부 43b)에 접근하도록 기판 스테이지 14가 이동해서 거리A 및 거리B가 단축되어 있는 구간이다. 이 구간 107에서는, 제어부CNT는, 우공급부 40a에 대하여, 계측광로에 공급하는 기체의 유량이 일정하게 되도록 유량조정부 41a를 제어한다. 한편, 좌공급부 40b에 대하여는, 거리B가 단축됨에 따라서, 계측광로에 공급하는 기체의 유량을 감소시키도록 유량조정부 41b를 제어한다.
구간 108은, 좌공급부 40b(분출부 43b)의 하방에 계측광로가 배치되지 않게 된 상태에서, 우공급부 40a(분출부 43a)에 접근하도록 기판 스테이지 14가 이동해서 거리A가 단축되어 있는 구간이다. 이 구간 108에서는, 제어부CNT는, 우공급부 40a에 대하여, 거리A가 단축됨에 따라서, 계측광로에 공급하는 기체의 유량을 감소시키도록 유량조정부 41a를 제어한다. 한편, 좌공급부 40b에 대하여는, 계측광로에의 기체의 공급을 정지시켜 두도록 유량조정부 41b를 제어한다.
상술한 것 같이, 복수의 제1공급부 40을 설치했을 경우에 있어서도, 기판 스테이지 14의 위치에 따라서, 각 제1공급부 40으로부터 계측광로에 공급되는 기체의 유량을 변경한다. 이렇게 복수의 제1공급부 40을 설치하면, 기판 스테이지 14의 이동 스트로크가 큰 경우이여도, 계측광로에 있어서의 기체의 흔들림의 변화를 저감하여, 기판 스테이지 14의 위치를 정밀도 좋게 계측할 수 있다. 여기에서, 본 실시 형태에 있어서도, 제1실시 형태에서 설명한 바와 같이, 계측광로에 공급되는 기체의 유량의 변경에 기인한 해당 기체의 온도변화를 보상하도록, 각 제1공급부 40의 온도조정부 42를 제어해도 좋다.
<제3실시 형태>
본 발명에 따른 제3실시 형태의 노광 장치에 대해서 설명한다. 본 실시 형태의 노광 장치는, 제1실시 형태의 노광 장치 100의 구성을 기본적으로 이어받는 것이지만, 제1공급부 40의 분출부 43(분출구 44)으로부터 기체를 분출하는 방향이 계측광ML의 광축방향에 대하여 수직하지 않은 점에서 상이하다. 도8에 나타낸 바와 같이, 분출부 43으로부터 분출되어서 계측광로에 형성되는 기체의 흐름이, 계측광로에 따른 제1방향(예를 들면 -X방향)과 평행하지 않은 경우이여도, 분출부 43으로부터 분출된 기체는, 기판 스테이지 14(바 미러 24)에 충돌할 수 있다. 구체적으로는, 분출부 43으로부터 분출되는 기체의 흐름F는, 제1방향에 수직한 성분Fx와, 제1방향에 평행한 성분Fy로 이루어진다. 성분Fy는, 기판 스테이지 14에 충돌하고, 계측광로에 있어서의 기체의 흔들림의 변화를 생기게 한다. 그 때문에, 본 실시 형태에 있어서도, 제1실시 형태에서 설명한 바와 같이, 기판 스테이지 14의 위치에 따라서 기체의 유량을 제어 함으로써, 계측광로에 있어서의 기체의 흔들림의 변화를 저감하여, 기판 스테이지 14의 위치를 정밀도 좋게 계측할 수 있다.
<물품의 제조 방법의 실시 형태>
본 발명의 실시 형태에 따른 물품의 제조 방법은, 예를 들면, 반도체 디바이스 등의 마이크로 디바이스나 미세구조를 갖는 소자등의 물품을 제조하는데 적합하다. 본 실시 형태의 물품의 제조 방법은, 기판에 도포된 감광제에 상기한 리소그래피 장치(노광 장치)를 사용해서 기판상에 패턴을 형성하는 형성 공정과, 형성 공정으로 패턴이 형성된 기판을 가공하는 가공 공정을 포함한다. 더욱, 이러한 제조 방법은, 다른 주지의 공정(산화, 성막, 증착, 도핑, 평탄화, 에칭, 레지스트 박리, 다이싱, 본딩, 패키징 등)을 포함한다. 본 실시 형태의 물품의 제조 방법은, 종래의 방법에 비교하여, 물품의 성능·품질·생산성·생산 코드의 적어도 1개에 있어서 유리하다.
발명은 상기 실시 형태에 제한되는 것이 아니고, 발명의 정신 및 범위로부터 이탈하지 않고, 여러가지 변경 및 변형이 가능하다. 따라서, 발명의 범위를 밝히기 위해서 청구항을 첨부한다.
10: 노광부, 11: 조명 광학계, 12: 투영 광학계, 13: 마스크 스테이지, 14: 기판 스테이지, 20: 계측부, 30: 챔버, 40: 제1공급부, 50: 제2공급부

Claims (11)

  1. 이동가능한 스테이지와,
    상기 스테이지에 광을 조사하고, 상기 스테이지의 위치를 계측하는 계측부와,
    상기 광의 광로에 따른 방향으로의 기체의 흐름을 상기 광로에 형성하도록, 상기 광로에 기체를 공급하는 공급부와,
    상기 방향에 있어서의 상기 스테이지의 위치에 따라서, 상기 공급부로부터 상기 광로에 공급되는 기체의 유량을 변경하도록, 상기 공급부를 제어하는 제어부를 포함하는 것을 특징으로 하는 스테이지 장치.
  2. 제 1 항에 있어서,
    상기 공급부는, 기체를 분출하는 분출부를 갖고,
    상기 제어부는, 상기 방향에 있어서의 상기 스테이지의 위치에 따라서, 상기 분출부로부터 분출되는 기체의 유량을 변경하도록, 상기 공급부를 제어하는 것을 특징으로 하는 스테이지 장치.
  3. 제 1 항에 있어서,
    상기 제어부는, 상기 방향에 있어서의 상기 스테이지와 상기 공급부와의 거리가 짧을수록, 상기 공급부로부터 상기 광로에 공급되는 기체의 유량이 적어지도록, 상기 공급부를 제어하는 것을 특징으로 하는 스테이지 장치.
  4. 제 1 항에 있어서,
    상기 제어부는, 상기 계측부에 의한 상기 스테이지의 위치의 계측결과에 근거하여, 상기 공급부로부터 상기 광로에 공급되는 기체의 유량을 변경하도록, 상기 공급부를 제어하는 것을 특징으로 하는 스테이지 장치.
  5. 제 1 항에 있어서,
    상기 제어부는, 상기 방향에 있어서의 상기 스테이지의 위치에 따라서, 상기 공급부로부터 상기 광로에의 기체의 공급을 정지시키도록, 상기 공급부를 제어하는 것을 특징으로 하는 스테이지 장치.
  6. 제 1 항에 있어서,
    상기 공급부는, 상기 광로에 공급되는 기체의 온도를 조정하는 온도조정부를 포함하고,
    상기 제어부는, 상기 공급부로부터 상기 광로에 공급되는 기체의 유량의 변경에 기인하는 해당 기체의 온도변화를 보상하도록, 상기 온도조정부를 제어하는 것을 특징으로 하는 스테이지 장치.
  7. 제 1 항에 있어서,
    상기 방향에 있어서 서로 다른 상기 광로상의 위치에 기체를 공급하는 복수의 상기 공급부를 포함하는 것을 특징으로 하는 스테이지 장치.
  8. 제 1 항에 있어서,
    상기 광로를 가로지르는 방향으로의 기체의 흐름을 상기 광로에 형성하도록, 상기 광로에 기체를 공급하는 제2공급부를 더욱 포함하는 것을 특징으로 하는 스테이지 장치.
  9. 제 8 항에 있어서,
    상기 제2공급부는, 상기 광로 중, 상기 공급부에 의해 기체가 공급되는 부분보다 상기 계측부측의 부분에 기체를 공급하는 것을 특징으로 하는 스테이지 장치.
  10. 기판상에 패턴을 형성하는 리소그래피 장치로서,
    상기 기판을 보유해서 이동가능한 스테이지를 갖는 청구항 1 내지 9 중 어느 한 항에 기재된 스테이지 장치를 포함하는 것을 특징으로 하는 리소그래피 장치.
  11. 청구항 10에 기재된 리소그래피 장치를 사용해서 기판상에 패턴을 형성하는 형성 공정과,
    상기 형성 공정으로 패턴이 형성된 상기 기판을 가공하는 가공 공정을 포함하고,
    상기 가공 공정으로 가공된 상기 기판으로부터 물품을 제조하는 것을 특징으로 하는 물품의 제조 방법.
KR1020200036542A 2019-04-18 2020-03-26 스테이지 장치, 리소그래피 장치, 및 물품의 제조 방법 KR20200123000A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019079563A JP7278137B2 (ja) 2019-04-18 2019-04-18 ステージ装置、リソグラフィ装置、および物品の製造方法
JPJP-P-2019-079563 2019-04-18

Publications (1)

Publication Number Publication Date
KR20200123000A true KR20200123000A (ko) 2020-10-28

Family

ID=72913848

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200036542A KR20200123000A (ko) 2019-04-18 2020-03-26 스테이지 장치, 리소그래피 장치, 및 물품의 제조 방법

Country Status (4)

Country Link
JP (1) JP7278137B2 (ko)
KR (1) KR20200123000A (ko)
CN (1) CN111830791B (ko)
TW (1) TWI803740B (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133398A (ja) 2009-12-25 2011-07-07 Nikon Corp 移動体装置、露光装置、デバイス製造方法、及び移動体の位置情報計測方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3163636B2 (ja) * 1991-02-07 2001-05-08 株式会社ニコン 処理装置、ステージ装置、及び露光装置
US5469260A (en) * 1992-04-01 1995-11-21 Nikon Corporation Stage-position measuring apparatus
JPH10125584A (ja) * 1996-10-16 1998-05-15 Canon Inc ステージ装置およびこれを用いた露光装置
JPH11312640A (ja) * 1998-02-25 1999-11-09 Canon Inc 処理装置および該処理装置を用いたデバイス製造方法
JP2000036453A (ja) * 1998-07-17 2000-02-02 Canon Inc 露光装置およびデバイス製造方法
WO2001006548A1 (fr) * 1999-07-16 2001-01-25 Nikon Corporation Procede et systeme d'exposition
CN1881090B (zh) * 2001-08-28 2011-05-25 日本电气株式会社 在气体环境中执行曝光处理的基片处理系统
WO2006028188A1 (ja) * 2004-09-10 2006-03-16 Nikon Corporation ステージ装置及び露光装置
US7924399B2 (en) * 2006-03-27 2011-04-12 Asml Netherlands B.V. Assembly comprising a conditioning system and at least one object, a conditioning system, a lithographic apparatus and methods
WO2008073486A2 (en) * 2006-12-11 2008-06-19 Zygo Corporation Multiple-degree of freedom interferometer with compensation for gas effects
US20090046297A1 (en) * 2007-02-14 2009-02-19 Nikon Corporation Atmosphere-density-fluctuation monitors for interferometer beams, and atmosphere-supplying systems comprising same
US20100014097A1 (en) * 2008-07-17 2010-01-21 Nikon Corporation Algorithm correcting for correction of interferometer fluctuation
CN105137719B (zh) * 2015-09-21 2017-10-31 中国科学院长春光学精密机械与物理研究所 气体供给装置及具有其的光刻投影物镜
JP6896404B2 (ja) * 2016-11-30 2021-06-30 キヤノン株式会社 露光装置及び物品の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133398A (ja) 2009-12-25 2011-07-07 Nikon Corp 移動体装置、露光装置、デバイス製造方法、及び移動体の位置情報計測方法

Also Published As

Publication number Publication date
TWI803740B (zh) 2023-06-01
JP2020177142A (ja) 2020-10-29
CN111830791A (zh) 2020-10-27
CN111830791B (zh) 2024-03-19
JP7278137B2 (ja) 2023-05-19
TW202040285A (zh) 2020-11-01

Similar Documents

Publication Publication Date Title
US5877843A (en) Exposure apparatus
KR100885970B1 (ko) 리소그래피 장치, 리소그래피 시스템 및 디바이스 제조 방법
JP4410216B2 (ja) 2ステージ・リソグラフィ装置及びデバイス製造方法
US7538852B2 (en) Exposure apparatus and device manufacturing method
TWI305295B (en) Lithographic apparatus and device manufacturing method
US8184261B2 (en) Exposure apparatus
JP2009081465A (ja) リソグラフィ装置および装置製造方法
US7391498B2 (en) Technique of suppressing influence of contamination of exposure atmosphere
US10394139B2 (en) Patterning device cooling apparatus
JP4833953B2 (ja) リソグラフィ装置およびデバイス製造方法
KR20200123000A (ko) 스테이지 장치, 리소그래피 장치, 및 물품의 제조 방법
US7515277B2 (en) Stage apparatus, control system, exposure apparatus, and device manufacturing method
TWI813768B (zh) 用於處理生產基板之製程工具、用於檢測該製程工具之方法、及檢測基板
TWI646403B (zh) 圖案化裝置冷卻系統及熱調節圖案化裝置的方法
JP7512131B2 (ja) 露光装置、及び物品の製造方法
KR20220155189A (ko) 기판 처리장치 및 물품의 제조방법
CN114200779A (zh) 气体供给装置、光刻装置以及物品制造方法
JP2013161991A (ja) 露光装置およびデバイス製造方法
KR20210047259A (ko) 위치결정 장치, 노광 장치, 및 물품의 제조 방법
JP2024092046A (ja) 露光装置、および物品の製造方法
KR20210007856A (ko) 광학장치, 투영 광학계, 노광 장치, 및 물품의 제조 방법
KR20150029580A (ko) 스테이지 장치, 리소그래피 장치 및 소자 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal