KR20200097003A - 식물에서 고급 재조합 알레르기 항원들의 생산 방법 - Google Patents

식물에서 고급 재조합 알레르기 항원들의 생산 방법 Download PDF

Info

Publication number
KR20200097003A
KR20200097003A KR1020207022985A KR20207022985A KR20200097003A KR 20200097003 A KR20200097003 A KR 20200097003A KR 1020207022985 A KR1020207022985 A KR 1020207022985A KR 20207022985 A KR20207022985 A KR 20207022985A KR 20200097003 A KR20200097003 A KR 20200097003A
Authority
KR
South Korea
Prior art keywords
der
allergens
leu
plant
plants
Prior art date
Application number
KR1020207022985A
Other languages
English (en)
Inventor
베로니큐에 곰올드
안네 케세리네 핏체테
노익 파예
Original Assignee
엥거니 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엥거니 인코포레이티드 filed Critical 엥거니 인코포레이티드
Publication of KR20200097003A publication Critical patent/KR20200097003A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

본 발명은 식물, 특히 담배(tobacco plant), 바람직하게는 니코티아나 벤타미아나(Nicotiana benthamiana)에서 재조합 단백질(recombinant protein)을 생산하는 방법으로서, (a) LED 조명 하에, 분무 재배법(aeroponic) 또는 수경 재배법(hydroponic)으로, 바람직하게는 모바일 플로트들(mobile floats) 상에서 식물을 배양(culturing)하는 과정; (b) 진공 하에서, 재조합 단백질을 코딩(coding)하는 DNA 단편(fragment)을 포함하는 식물 종양균(agrobacteria)에 의해, 상기 과정(a)에서 얻은 식물을 침윤(agroinfiltration)시키는 과정; (c) 상기 과정(a)와 동일한 조건에서, 식물들을 과정(b) 이후의 배양으로 되돌려 놓는 과정; 및 (d) 상기 과정(c)에서 생산된 식물들의 지상부들(aerial parts)로부터 재조합 단백질을 추출(extraction) 및 정제(purification)하는 과정;을 포함하는 것을 특징으로 하는 방법을 제공한다.

Description

식물에서 고급 재조합 알레르기 항원들의 생산 방법 {Method for Producing High-quality Recombinant Allergens in a Plant}
본 발명은 식물에서 고급 재조합 알레르기 항원들의 생산 방법에 관한 것이다.
재조합 알레르기 항원들의 사용은 알레르기들의 진단 시험들(diagnostic tests) 및 처치에 큰 특별함과 보다 나은 효과를 제공한다. 수많은 알레르기 항원들이 이미 재조합 형태로 생산되고 있다. 오늘날 그것들은 알레르기들의 체외 진단에 사용된다. 그러나, 일반적으로 대장균(E. coli)에 사용되는 발현 시스템(expression system)은 주로 천연 알레르기 항원들에 매우 유사한 복제품들만이 얻어지도록 허용하는 바, 이는 진핵생물들(eukaryotes)의 단백질들의 정확한 절곡(folding)에 필요한 해독후 변형들(post-translational modifications)을 수행하는 이러한 세균의 불능으로 인한 것이다. 이는 환자들의 면역글로불린 E(immunoglobulin E; IgE)와 반응할 수 있는 특정한 항원결정부들(epitopes)이 대장균에서 생산되는 재조합 알레르기 항원들 상에 나타나지 않기 때문에, 분자들을 사용하여 수행되어지는 진단 시험들의 신뢰성 및 민감성에 종종 부정확한 효과를 갖는다.
또한, 진핵생물 발현 시스템들은 재조합 알레르기 항원들을 생산하기 위해 사용되어 왔다. 이들은 주로 효모들이고, 이러한 경우에는, 특히 이들 유기체들에 특이적으로, 과글리코스화(hyperglycosylation)는 여전히 재조합 알레르기 항원들의 생산이 그것들의 천연 동족체들(homologs)과 일치하도록 허용하지 않는다.
식물들은 알레르기들의 개별 처치, 통합 진단 시험들 및 치료(therapy)를 위한 그것들의 사용과 양립될 수 있는 생산 비용 및 품질로서, 재조합 형태의 복잡한 알레르기 항원들의 생산이 가능한 유일한 진핵생물 숙주들(eukaryotic hosts)이다.
그러나, 상기 재조합 알레르기 항원들의 생산을 위해 지금까지 사용되는 식물 발현 시스템들은 일반적으로 하기 공지된 근본적인 제약이 있는 식물 형질전환을 채용한다.
- 수년이 소요되는 발육 작업으로서, 유전자로부터 단백질로의 변환을 위한 긴 시간, 및
- 대규모 생산을 위한 식물 재료의 많은 생체량으로서, 0.1% 내지 1% 가량의 수용성 단백질들(soluble proteins)의 낮은 산출량.
일과성 발현(transient expression)을 사용하여 달성되는 최근의 발전들은, 한편으로는, 유전자로부터 단백질로의 과정에서의 지연을 크게 줄여, 매우 빠른 발육을 가능하게 하고, 다른 한편으로는, 적어도 10배수까지 생산량을 증가시켜, 목적 단백질의 추출(extraction) 및 정제(purification) 비용을 최소화함으로써, 이러한 제약들을 넘어서는 것이 가능하도록 만들었다.
식물들에서의 일과성 발현을 위한 이러한 종류의 기술은 최근 미국에서 광범위한 생산 유닛들을 개발하고 있는 특정한 기업들에 의해, 백신들을 생산하기 위해 현재 대규모로 사용되고 있다.
그러나, 이러한 노력들에도 불구하고, 여전히 재조합 알레르기 항원들을 생산하기 위한 효율적이고 재생 가능한 방법으로서, 그것들의 천연 동족체들과 유사한 조성(composition) 및 입체구조(conformation)를 갖는 재조합 알레르기 항원들이 얻어지도록 허용하는 방법이 요구된다. 또한, 양호한 생산량을 갖는 방법이 요구된다.
본 발명은 종래에 재조합 형태로 얻을 수 없었던 복잡한 재조합 단백질들, 상세하게는 복잡한 재조합 알레르기 항원들을 얻는 것이 가능하도록 한다. 또한, 이러한 알레르기 항원들은 그것들의 천연 동족체들과 동일한 복제품들이다.
따라서, 본 발명은 식물, 특히 담배(tobacco plant), 바람직하게는 니코티아나 벤타미아나(Nicotiana benthamiana)에서 재조합 단백질(recombinant protein)을 생산하는 방법으로서,
(a) LED 조명하에, 분무 재배법(aeroponic) 또는 수경 재배법(hydroponic)으로, 바람직하게는 모바일 플로트들(mobile floats) 상에서 식물을 배양(culturing)하는 과정;
(b) 진공 하에서, 재조합 단백질을 코딩(coding)하는 DNA 단편(fragment)을 포함하는 식물 종양균(agrobacteria)에 의해, 상기 과정(a)에서 얻은 식물을 침윤(agroinfiltration)시키는 과정;
(c) 상기 과정(a)와 동일한 조건에서, 식물들을 과정(b) 이후의 배양으로 되돌려 놓는 과정; 및
(d) 상기 과정(c)에서 생산된 식물들의 지상부들(aerial parts)로부터 재조합 단백질을 추출(extraction) 및 정제(purification)하는 과정;
을 포함하는 것을 특징으로 하는 방법에 관한 것이다.
본 발명은 또한, 상기 방법에 의해 얻어질 수 있는 재조합 단백질에 관한 것이다.본 발명에 따른 방법에 활용될 수 있는 식물은, 바람직하게는 니코티아나 벤타미아나 및 니코티아나 타바쿰(Nicotiana tabacum), 또는 상추(상치 속; genus Lactuca) 또는 시금치 식물(Spinacia oleracea)과 같이 일과성 발현에 사용될 수 있는 다른 식물에서 선택되는 담배이다. 상추들 중에서, 본 발명자들은 lettuce Appia, Grosse Blonde Paresseuse, Lollo Rosso, Merveillede quatre saisons ("four-seasons Wonder"), feuille de chene (oak leaf lettuce), 또는 red sails을 언급할 수 있다. 상기 식물은 또한, 아라비도프시스 속(genus Arabidopsis), 또는 그것들의 돌연변이로서, 상세하게는 아라비도프시스의 글리코스화 돌연변이들일 수 있으며, 최종적으로, 유전자 녹아웃(knock-out) 담배 식물들(특히, 글리코스화 돌연변이들)이 사용될 수 있다.
바람직하게는, 본 발명에 따른 방법에 의해 생산되는 재조합 단백질은 재조합 알레르기 항원, 바람직하게는 재조합 진드기(mite) 알레르기 항원일 수 있다.
"알레르기 항원"은 피부와의 접촉, 호흡 또는 섭취에 의한 접촉시 종래에 민감해지는 대상에서 알레르기 반응을 유발할 수 있는 임의의 단백질 또는 임의의 펩티드(peptide)를 의미한다. 알레르기 항원은 정제된 항원이 피실험자들의 50% 또는 그 이상에서 알레르기를 유발하는 경우, 및 상기 알레르기 항원에 대해 알레르기를 갖는 객체들의 적어도 70% 이내에서, 매우 낮은 농도에 즉각적인 양성 피부반응 검사들(positive skin tests)과 함께, 특정한 IgE들을 나타내는 경우에 "주요인(major)"으로 언급된다.
"단백질"은 적어도 50개의 아미노산들을 포함하고 있는 염기서열을 의미한다.
"펩티드"는 1 내지 49개의 아미노산들, 바람직하게는 2 내지 40개의 아미노산들을 포함하고 있는 염기서열을 의미한다.
바람직하게는, 본 발명에 따른 방법에 의해 생산되는 재조합 단백질은 알레르기 항원, 알레르기 항원 단편, 또는 알레르기 항원 또는 알레르기 항원 단편을 포함하고 있는 융합 단백질일 수 있다.
바람직하게는, 상기 재조합 단백질은 큰 다리 먼지 진드기(Dermatophagoidesfarinae), 세로무늬 먼지 진드기(Dermatophagoidespteronyssinus) 또는 주름 먼지 진드기(Euroglyphus manei)와 같은 집 먼지 진드기들(house dust mites)로부터 기인한 호흡기(respiratory) 알레르기들의 원인이 되는 알레르기 항원들, 열대 진드기(Blomia tropicalis)와 같은 저장 진드기들(storage mites)의 알레르기 항원들, 종래에 Tyroglyphus farinae라 일컫는 굵은 다리 가루 진드기(Acarus siro) 종류의 진드기들의 알레르기 항원들, 바퀴벌레(cockroach) 알레르기 항원들, 수목 또는 잡초 꽃가루(tree or grass pollen) 알레르기 항원들, 동물들(고양이, 개, 말)로부터의 알레르기 항원들, 곰팡이들(molds)의 알레르기 항원들, 파라고무나무 유액(hevea latex) 또는 음식(우유, 계란, 생선, 과일) 알레르기들의 원인이 되는 알레르기 항원들과 같은 접촉성 알레르기들의 원인이 되는 알레르기 항원들에서 선택될 수 있다.
큰 다리 먼지 진드기의 항원들 중에, 본 발명자들은 Der f 10, Der f 11, Der f 13, Der f 14, Der f 15, Der f 16, Der f 17, Der f 18, Der f 2, Der f 2.0101, Der f 2.0102, Der f 2.0103, Der f 2.0104, Der f 2.0105, Der f 2.0106, Der f 2.0107, Der f 2.0108, Der f 2.0109, Der f 2.0110, Der f 2.0111, Der f 2.0112, Der f 2.0113, Der f 2.0114, Der f 2.0115, Der f 2.0116, Der f 2.0117, Der f 20, Der f 3, Der f 4, Der f 5, Der f 6, Der f 7, Der f 8, Der f 9 및 Der f HSP70을 언급할 수 있다.
세로무늬 먼지 진드기의 항원들 중에, 본 발명자들은 Der p 10, Der p 11, Der p 14, Der p 15, Der p 18, Der p 2, Der p 2.0101, Der p 2.0102, Der p 2.0103, Der p 2.0104, Der p 2.0105, Der p 2.0106, Der p 2.0107, Der p 2.0108, Der p 2.0109, Der p 2.0110, Der p 2.0111, Der p 2.0112, Der p 2.0113, Der p 20, Der p 21, Der p 3, Der p 4, Der p 5, Der p 6, Der p 7, Der p 8, Der p 9를 언급할 수 있다.
열대 진드기의 알레르기 항원들 중에, 본 발명자들은 Blo t 1, Der p 5와 40% 염기서열 상동성을 갖는 Blo t 5, Blo t 9, Blo t 10, Blo t 12 또는 Blo t 21를 언급할 수 있다.
이러한 모든 알레르기 항원들은 공지되어 있으며, 그것들의 염기서열은 바람직하게는 Allergome (allergome.org)와 같은 데이터 베이스들에서, 또는 UniProt에서 매우 간단하게 찾을 수 있다.
본 발명에 따른 일과성 발현에 의해 재조합 알레르기 항원들을 생산하는 방법은, 바람직하게는 N. benthamiana에서, 매우 효과적이고, 재생 가능하며, 양호한 산출량을 가질 수 있다.
본 발명에 따른 재조합 단백질들의 생산 방법은 LED 조명하에, 분무 재배법 또는 수경 재배법으로, 바람직하게는 자유 모바일 플로트들(free mobile floats) 상에서 식물을 배양하는 제 1 과정(과정(a))을 포함하고 있다.
분무 재배법들은, 일반적으로 플라스틱으로 만들어져 있고, 무기물 염(mineral salt)에 기반한 배양액(nutrient solution)의 지속적인 미스팅(misting)과 결합된 기재 상에서의 식물의 배양에 해당한다.
수경 재배법은 토양 없이 식물을 배양하는 것에 해당한다. 상기 식물은 모래, 점토 비드들(clay beads), 폴리스티렌 접시들 또는 암면(rock wool)과 같은 중성의 인서트(insert) 기질 상에서 배양된다. 상기 기질은 식물에 무기물 염과 필수 영양소들을 공급하는 용액의 스트림으로 규칙적으로 관개된다. 본 발명에 따라 사용되는 방법에서, 담배, 특히 N. benthamiana는 바람직하게는 수경 재배법으로, 자유 플로트들, 예를 들어 천공된 폴리스티렌(perforated polystyrene)의 판재 상에서 배양된다. 이러한 플로트들은 산기 장치들(air diffusers)에 의해 지속적으로 공기가 통하는 배지(culture medium)를 포함하고 있는 탱크들 내에 배열되어 있다. 이러한 기술은 종래 배양의 경우에 포트들(pots) 내에 포함된 기질들로부터의 불순물들 또는 쓰레기들에 의한 과정(b)에서의 침윤 매체의 오염 리스크의 완벽한 제거와 결합하여, 재조합 단백질들의 생산을 위한 환경의 표준화를 가능하게 한다. 또한, 이러한 배양 환경의 사용은 실시예들에서 보이는 바와 같이, 매우 높은 산출량에 도달 가능하도록 한다.
최종적으로, 규모 확대(scale-up) 과정에서, 폴리스티렌 판재 상에 고정된 식물들의 집단들의 침윤 또는 재배를 위한 조작은 식물들이 배양되는 포트 및 기질의 경우에 비해, 더 용이할 수 있음은 물론이다.
본 발명에 따른 재조합 단백질들의 생산을 위한 방법은 과정(a) 이후에, 진공 하에서, 재조합 단백질을 코딩하는 DNA 단편을 포함하는 식물 종양균에 의해, 식물, 바람직하게는 담배를 침윤시키는 과정(b)를 포함할 수 있다.
특히, 배양, 바람직하게는 자유 모바일 플로트들 상에서의 수경 재배법의 5주 후에, 담배들의 침윤은 진공 하에서, 재조합 단백질을 코딩하는 DNA 단편을 포함하는 식물 종양균에 의해 수행될 수 있다.
이러한 침윤의 과정(b)는 진공을 형성하는 임의의 수단들에 의해 수행될 수 있다. 바람직하게는, 본 발명에 따른 방법에서, 벤츄리 효과(Venturi effect)에 의해 진공 하에서 수행될 수 있다.
과정(a)에서 사용되고, 식물 종양군 내에 삽입되는 재조합 단백질 코딩용 DNA 단편은 클로닝(cloning)에 의해 제조될 수 있다. 이러한 DNA 단편은 재조합 단백질, 예를 들어 비상동(heterologous) 알레르기 항원을 코딩하는 염기서열을 포함할 수 있으며, 상기 염기 서열은 그것의 정제를 촉진하게 하는 펩티드를 인코딩(encoding)하는 염기서열, 예를 들어 "히스티딘 태그(histidine tag)" 염기서열, 또는 세포내 어드레싱(intracellular addressing)을 위한 펩티드 또는 폴리펩티드를 인코딩하는 염기서열과 융합될 수 있다. 상기 세포내 어드레싱을 위한 펩티드 또는 폴리 펩티드는, 바람직하게는, 표 1에 제공된 염기서열들의 펩티드들, 즉, SEQ ID NO. 1 내지 20의 펩티드들에서 선택될 수 있다.
상기 DNA 단편은 이후에, 본 발명의 측면에서 개발된 pAG01 발현 벡터(도 1 및 SEQ ID NO가 21인 염기서열 참조)로 합체될 수 있으며, 이후에 상기 식물 종양균은 이러한 발현 벡터를 사용하여 변환된다. 바람직하게는, 본 발명은 또한, 변환 DNA(TDNA)의 좌우측 경계 사이에 위치한 SEQ ID NO가 21인 염기서열(sequence) 및 인서트를 포함하는 발현 벡터에 관한 것으로서, 이는 도 1에 도시되어 있으며, 좌측 경계는 "LB"이고, 우측 경계는 "RB"이며, 상기 인서트는 SEQ ID NO 1 내지 20에서 선택되는 펩티드(peptide)를 코딩하는 적어도 하나의 핵산 염기서열(nucleic acid sequence)을 포함하고 있고, 상기 핵산 염기 서열은 목적 단백질을 인코딩하는 제 2 핵산 염기 서열과 직접 융합될 수 있다. 이러한 벡터는 인서트를 포함하고 있는 pAG01 벡터에 대응하며, 상기 인서트는 목적 알레르기 항원의 핵산 염기서열과 직접 융합되는 SEQ ID NO 1 내지 20에서 선택되는 핵산 펩티드 염기서열을 포함할 수 있다. 바람직하게는 상기 목적 단백질은 앞서 설명한 바와 같은 알레르기 항원일 수 있다.
식물들, 바람직하게는 담배들, 더욱 바람직하게는 N. benthamiana의 지상부들의 침윤은 진공하에서 수행될 수 있다. 바람직하게는, 벤츄리 효과에 의해 진공을 가하는 시스템을 포함하는 기밀 챔버(air-tight chamber)가 사용될 수 있다. 일반적으로, 상기 챔버는 식물 종양균 배양을 포함하고 있으며, 식물들이 수경 재배법으로 배양되고 있는 플로팅 플랫폼들을 뒤집은 이후에, 후자를 세균현탁액(bacterial suspension) 내에서 윗면이 하부를 향하도록 담근다. 이러한 방법은 도 2에 도시되어 있다. 이는 동일한 플로팅 플랫폼 상에서 배양되는 모든 식물들의 지속적인 침윤이 가능하도록 한다.
제 1 실시예에 따르면, 침윤은 2분 동안 진공에 식물들을 놓아 두는 과정에 의해 수행된다.
바람직하게는, 제 2 실시예에 따르면, 침윤은 하기의 3단계(순차 과정; sequential process)로 수행된다:
(1) 바람직하게는 2분 동안 -0.8 bar로 진공을 가하고,
(2) 진공을 멈추어 대기압으로 되돌리고, 바람직하게는 30초 동안 진공을 멈추어 대기압으로 되돌린 다음,
진공 하에서, 바람직하게는 2분 동안 -0.8 bar의 진공 하에서 놓아둔 후, 뒤이어 대기압으로 되돌린다.
이러한 침윤 기술은 빠르고(총 지속시간이 5분 이하), 효과적이며, 자동화가 용이하다.
본 발명에 따라 사용될 수 있는 식물 종양균 중에서, 본 발명자들은, 바람직하게는 LBA4404, GV3101, EHA 101/105 또는 C58 균주들(strains)을 언급할 수 있다.
바람직하게는, 식물 종양균은 10 Mm의 Mes(2-morpholino-ethanesulfonic acid)를 포함하는 용액 내에서 OD600으로 0.7 내지 1.0으로 정해진 농도에서 침윤을 위해 사용되며, 상기 Mes는 선택적으로 MOPS (3-(N-morpholinopropanesulfonic acid), 10 mM의 MgCl2 및 100μM의 아세토시링곤(acetosyringone)으로 대체될 수 있다.
침윤의 과정(b)의 말미에, 상기 방법은 과정(a)와 동일한 조건에서, 식물들을 배양으로 되돌려 놓는 과정(c)를 포함할 수 있다.
상기 식물들은 일반적으로 15분 동안 거꾸로 드레인(drain)되고, 그 후에, 이상적으로는 침윤에 뒤이은 배양의 처음 6시간 동안 배양의 잦은 미스팅을 보장하면서, 과정(a)에 묘사된 조건의 배양으로 돌려 놓아진다. 이와 다르게, 상기 식물들은 과정(a)에 묘사된 조건의 배양으로 바로 되돌려질 수 있다.
최종적으로, 본 발명에 따른 방법은 과정(c)에서 침윤된 이후에 생산된 재조합 단백질을 추출 및 정제하는 과정(d)를 포함할 수 있다.
상기 식물 바이오매스(biomass)는 침윤에 뒤따른 배양에 식물들을 놓은 후 4 내지 5일 이후에 수확된다.
식물들의 지상부들로부터의 단백질들의 그라인딩(grinding) 및 추출 이후에, 재조합 단백질은 정제된다. 종래의 기술로부터 공지된 추출 및 정제 기술은 이 과정에서 적용될 수 있다. 바람직하게는, 만일 재조합 단백질이 "히스티딘 태그" 염기서열을 포함하는 경우, 그것은 분자 체치기(molecular sieving)의 과정에 이어서, 니켈 고정화 칼럼 크로마토그래피(immobilized nickel column chromatography; IMAC)에 의해 정제된다. 상기 정제를 위해 사용되는 태그 염기서열은 이후에, 최종 산출물로부터 분리될 수 있다.
본 발명은 종래에 재조합 형태로 얻을 수 없었던 복잡한 재조합 단백질들, 상세하게는 복잡한 재조합 알레르기 항원들을 얻는 것이 가능하도록 한다.
또한, 본 발명은이러한 알레르기 항원들은 그것들의 천연 동족체들과 동일한 복제품들을 제공한다.
도면들의 범례는 하기와 같다.
도 1: pAG01 벡터의 T-DNA는 식물 종양균의 T-DNA의 두 개의 측면순서들(flanking sequences, RB 및 LB) 및 사일런싱 억제제 발현(silencing inhibitor expression)(카세트 1), 바람직하게는 알레르기 항원인 재조합 단백질(카세트 2), 및 선택 항생제(selection antibiotic)에 대해 저항을 부여하는 엔자임(enzyme) 또는 단백질 성숙 엔자임(카세트 3)을 허용하는 세 개의 발현 카세트들(expression cassettes)을 구성한다.
도 2: 본 발명에 따라 개발된 플랫폼은 본래의 과정들과 월등한 고급 재조합 알레르기 항원들의 저가의 대량 생산을 가능하게 하는 도구들을 결합한다. 적응성 및 생산 속도 역시, 4 내지 5일이면, 세포로부터 단백질로 성장하기에 충분하므로, 이러한 생산 플랫폼의 특징을 이룬다.
도 3: 세로무늬 먼지 진드기의 복잡한 주요 알레르기 항원들: Der p 4(트랙 1); Der p 7(트랙 2); Der p 21(트랙 4); Der p 5 (트랙 6) 및 Der p 2(트랙 7); 유액의 주요 알레르기 항원들 중 하나: Hev b 13(트랙 3) 및 a 곰팡이 알레르기 항원: CP120(트랙 5)의 생산.
도 4: 사용된 발현 카세트들의 도식적인 예시(패널 A). 패널 B에서, 웨스턴 블롯 분석들(Western blot analyses)은 상이한 Reozyme™ 신호들과 융합에 의해 생산된 Der p 2 알레르기 항원의 품질의 차이를 나타낸다. 상기 알레르기 항원은 이질의 형상(heterogeneous form)으로 생산되고, R1, R2 및 R3인 Reozyme™ 신호들이 사용되는 경우, 비순응적 분자량(noncompliant molecular weight)을 갖는다. 그러나, R4 신호가 사용되는 경우, 재조합 알레르기 항원은 균질해 지고, 천연 알레르기 항원과 동일한 분자량을 갖는다.
도 5: 패널 A는 각각의 식물로부터 추출된 모든 단백질들의 SDS-PAGE 분석을 나타낸다. 웨스턴 블롯에 의한 추출물들의 분석은, 식물들이 각각 표준 조건들(백열등에 의한 조명 하에 포트 재배)에서 배양되거나(트랙 1-6, 상이한 트랙들은 상이한 형질전환 이벤트들에 대응된다), LED 조명과 함께, 분무 재배법으로 배양된 경우(트랙 7-9), 하나와 동일한 목적 단백질에 대한 생산량을 나타낸다. 패널 B: 발색 탐지(chromogenic detection); 패널 C: 화학 발광(chemiluminescence)에 의한 탐지.
도 6: GFP의 발현 비교: 1) 침윤이 본 발명에 따른 프로토콜에 따라 수행되는 경우(패널 B), 또는 2) 침윤이 종래의 침윤 방법에 따라 수행되는 경우(패널 A).
도 7: Der p 4 알레르기 항원의 정제 과정의 SDS-PAGE 및 웨스턴 블롯에 의한 분석.
표 1(도 8): 재조합 알레르기 항원들이 어드레싱 펩티드들과 융합되어 생산되는 경우, 이들의 대상 발현에 사용되는 Reozyme™ 염기서열들 및 상기 알레르기 항원들의 세포 이하의 저장 격실. ER: 소포체(endoplasmic reticulum), GA: 골지체(Golgi apparatus).
트랙 1: 모든 단백질 추출.
트랙 2: 니켈 고정화 칼럼(IMAC)에서 정제되고, 50 mM의 이미다졸(imidazole)의 존재 하에 용출된 Der p 4.
트랙 3: IMAC 과정 이후에 분자 체치기에 의해 정제된 Der p 4.
트랙 4: 태그가 체외에서 분리되어 정제된 Der p 4.
최상단 패널: 겔에서 쿠마씨 블루(Coomassie Blue)로 단백질들을 염색한 다음, SDS-PAGE에 의한 Der p 4의 분석.
최하단 패널: 정제 태그의 특정 면역 혈청(immunoserum)으로 프린트 상에서의 웨스턴 블롯팅 및 면역 탐지(immunodetection) 이후에, SDS-PAGE에 의한 Der p 4의 분석.
본 발명은 하기 실시예들과 함께 설명되지만, 이에 한정되는 것은 아니다.
<실시예 1: 복잡한 항체들의 표준화된 생산>
여기에 묘사된 방법의 확인을 위해, 진드기, 수목 또는 곰팡이들의 복잡한 알레르기 항원을 코딩하는 상보적 DNA들(cDNAs)이 pAG0 벡터 내로 복제되었다. 그 후에, 이러한 벡터들은 N. benthamiana 내에서의 일과성 발현을 관찰하면서 식물 종양균(LBA4404 균주) 내에 삽입되었다.
N. benthamiana 식물들은 하기에 묘사된 방법에 의해 배양되었다: 종자들이 지면에 파종되고 약 45일 동안 이 기재 상에서 배양된다. 바람직하게는, 이러한 종자들로부터의 묘목들은 자유 플로트들 상에서의 수경 재배를 위한 탱크로 옮겨지기 전까지, 15일 동안 상기 기재에서(LED 조명 하에서) 성장한다. 그 후에, 상기 식물들은 25일 동안 LED 조명 하에, 영양소 및 미량 원소들(trace elements)이 존재하는 이러한 조건들에서 배양된다. 이러한 프로토콜과 다른 경우로서, 코팅된 종자들의 사용이 플로팅 플랫폼들 상에서 N. benthamiana 식물들의 직파(direct sowing)를 가능하게 한다. 이러한 조건들에서, 식물들의 발아(germination) 및 배양은 수경 재배 조건에 자리 잡는다.
40일 동안의 배양 이후에, 플로트들 상에 유지되는 상기 식물들은 형질주입(transfection)을 위해 기밀 챔버로 이동된다. 바이너리 벡터(binary vector)를 감내하는 식물 종양균의 침투를 위해, 상기 식물들의 지상부는 농도가 OD 600: 0.7에 상응하는 식물 종양균 용액 내에 담궈진다(플로트가 뒤집어진다). 형질주입은 진공 하에 2분(-0.8 bar), 정상 상태로 되돌린 후, 다시 진공 하에 2분(-0.8 bar)의 프로토콜에 따른 벤츄리 효과에 의해 기밀 챔버 내에서 진공 하에 수행된다. 그 후에, 상기 플로트들은 10 내지 15분 동안 식물들을 드레인시키기 위해 기재 상에 올려진다(식물들이 뒤집어진다). 그 후에, 배양된 플로팅 플랫폼들 상에 여전히 고정되어 있는 상기 식물들은, 이상적으로는 침윤에 뒤이은 배양의 처음 6시간 동안 배양 탱크의 잦은 미스팅을 보장하면서, 4일 동안 배양 탱크들로 되돌려 놓아진다.
이러한 4일 이후에, 다양한 알레르기 항원들을 발현시키는 식물들의 지상부들이 수확된다. 상기 단백질들은 변성 버퍼(denaturing buffer)에서 추출되며, 그 후에 FLAG 항원 결정부(epitope)에 대항하는 항체를 사용하는 SDS-PAGE 및/또는 웨스턴 블롯팅에 의해 분석된다.
도 3은 얻어진 결과들을 나타낸다. 본 발명에 따른 방법은 복잡한 주요 알레르기 항원들의 생산을 가능하게 한다.
<실시예 2: 본 발명에 따른 방법은 알레르기 항원들의 품질 조절을 가능하게 한다>
재조합 항원들의 숙성 및 균질성을 관찰하기 위해, 상이한 신호들(R1,R2,R3 및 R4)이 목적 알레르기 항원과 융합되고, 그 후에, 융합 단백질은 pAG01 벡터 내로 복제되었다. 그 후에, 이러한 벡터들은 N. benthamiana 내에서의 일과성 발현을 관찰하면서 식물 종양균(LBA4404 균주) 내에 삽입되었다.
N. benthamiana 식물들은 하기에 묘사된 방법에 의해 배양되었다: 종자들이 지면에 파종되고, 이러한 종자들로부터의 묘목들은 바람직하게는, 자유 플로트들로 옮겨지기 전까지 15일 동안 이 기재 상에서(LED 조명) 성장한다. 그 후에, 상기 식물들은 자유 플로트들 상에서 수경 재배법으로 25일 동안 배양된다.
40일 동안의 배양 이후에, 플로팅 배양 플랫폼들 상에 유지되는 상기 식물들은 형질주입을 위해 기밀 챔버로 이동된다. 바이너리 벡터를 지탱하는 식물 종양균의 침투를 위해, 상기 식물들의 지상부는 식물 종양균 용액 내에 담궈진다(플로트가 뒤집어진다). 형질주입은 진공 하에 2분(-0.8 bar), 정상 상태로 되돌린 후, 다시 진공 하에 2분(-0.8 bar)의 프로토콜에 따른 벤츄리 효과에 의해 기밀 챔버 내에서 진공 하에 수행된다. 그 후에, 상기 플로트들은 10 내지 15분 동안 식물들을 드레인시키기 위해 기재 상에 올려진다(식물들이 뒤집어진다). 그 후에, 플로트들 상에 여전히 고정되어 있는 상기 식물들은 4일 동안 배양 탱크들로 되돌려 놓아진다.
이러한 4일 후에, 다양한 알레르기 항원들을 발현시키는 식물들이 수확된다. 상기 단백질들은 변성 버퍼(denaturing buffer)에서 그라인딩에 의해 추출되며, 그 후에 FLAG 항원 결정부(epitope)에 대항하는 항체를 사용하는 SDS-PAGE 및/또는 웨스턴 블롯팅에 의해 분석된다.
도 4는 사용된 발현 카세트들의 도식적 예시(패널 A)를 나타낸다. 또한, 그것은 진드기 알레르기 항원인 Der p 2의 실시예와 함께, Reozyme™ 신호들을 사용하는 것과 연관된 질적인 잇점들을 보여준다. 실제로, 패널 B에서, 웨스턴 블롯 분석들(Western blot analyses)은 상이한 Reozyme™ 신호들과 융합에 의해 생산된 Der p 2 알레르기 항원의 품질의 차이를 나타낸다. 상기 알레르기 항원은 이질의 형상(heterogeneous form)으로 생산되고, R1, R2 및 R3인 Reozyme™ 신호들이 사용되는 경우, 비순응적 분자량을 갖는다. 그러나, R4 신호가 사용되는 경우, 재조합 알레르기 항원은 균질해 지고, 천연 알레르기 항원과 동일한 분자량을 갖는다.
<실시예 3: 본 발명에 따른 방법은 높은 산출량을 가능하게 한다>
본 실시예를 위해, 본 발명자들은 Medranoet al. (2009)에서 실시예로서 묘사된 형질주입의 종래 방법들과 관련된 바이너리 벡터(-/+사일런싱 억제제)를 사용하여, 본 발명에서 묘사된 방법의 사용과 연결해 pAG01 벡터의 사용을 비교하였다.
세로무늬 먼지 진드기의 Der p 7 알레르기 항원을 인코딩하는 상보적 DNA(cDNA)가 pAG0 벡터 내로, 또는 pBI121 내로 각각 복제되었다. 그 후에, 이러한 벡터들은 N. benthamiana 내에서의 일과성 발현을 관찰하면서 식물 종양균(LBA4404 균주) 내에 삽입되었다.
그 후에, 식물 종양균의 균주들은 실시예 1 및 2에서 묘사된 플로팅 플랫폼들 상에서의 수경 재배법으로 배양되거나, 토양에서 각각 배양된 식물들을 형질주입시키기 위해 사용되고, Pogue et al. (2010)에서 공지된 바와 같은 종래 프로토콜에 따라, 진공 하에서 침윤되었다.
도 5에 나타난 바와 같이, 상기 방법에서 묘사된 식물 배양 조건들 뿐만 아니라, pAG01 벡터의 사용은 일과성 발현에 일반적으로 사용되는 조건들로 관찰된 경우에 비해, 재조합 알레르기 항원들의 높은 산출량을 가능하게 한다.
본 발명에 따른 방법의 산출량이, 종래의 방법으로 얻어진 경우에 비해, 월등히 높다는 점은 도 5에서 명확하게 확인할 수 있다. 또한, 본 발명자들은, 트랙 4 내지 6과 비교하여, 트랙 7 내지 9에 묘사된 바와 같이, 다양한 형질전환 이벤트들의 보다 나은 균질성을 보여준다.
Der p 7에서 관찰되는 높은 발현 수준들은 부분적으로 본 발명의 방법에 따른 침윤의 조건에 의해 설명된다. 실제로, 도 6에 도시된 바와 같이, 상기 방법에서 묘사된 잎 조직들(foliar tissues)의 침윤은 보다 효과적이다. 이러한 특징에서, 본 발명자들은 1) 침윤이 본 발명에 따른 프로토콜에 따라 수행되는 경우(패널 B), 또는 2) 침윤이 Medranoet al. (2009)에서 예로서 묘사된 종래의 침윤 방법에 따라 수행되는 경우(패널 A)의 각각의 GFP의 발현을 비교하였다.
<실시예 4: 본 발명에 따른 방법은 용이한 정제를 가능하게 한다>
니코티아나 벤타미아나 식물들의 잎들이 수집되고, pH 7.5인 NaCl(0.1 M)이 보충된 인산 완충액(phosphate buffer)에서 상기 식물 재료들을 그라인딩함으로써 단백질들이 추출되었다. 빠른 침윤 이후에, 상기 추출물들은 니켈 고정화 칼럼에 놓여졌다. 크로마토그래피 매트릭스에 대해 친화성이 없는 상기 추출물의 단백질들은 칼럼 상에 유지되지 않는다. 그러나, 상기 방법에 따라 생산된 재조합 알레르기 항원들은 헥사-히스티딘 테그(hexa-histidine tag)를 포함하고 있으며, 이러한 유형의 매트릭스 상에 남아있게 된다. 단백질 오염을 제거하기 위한 칼럼의 세척 이후에, 알레르기 항원들은 인산 버퍼 내의 50 mM 이미다졸의 존재 하에 특이적으로 용출된다.
본 발명에 따른 생산 방법은 변형 가능하며 어떠한 목적 알레르기 항원의 생산에라도 용이하게 적용될 수 있다. 이는 배양, 복제, 침윤 및 추출뿐만 아니라, 정제에도 해당된다.
실제로, 태그의 융합으로 인해, 재조합 알레르기 항원들의 정제는 표준화되어 있다. 이는 본 발명에서 묘사된 바와 같이 생산된 Der p 4 알레르기 항원의 정제 과정의 SDS-PAGE 및 웨스턴 블롯팅에 의한 분석을 나타내는 도 7에 도시되어 있다. 이러한 방법은 상기 알레르기 항원의 정제 방법을 1) 니켈 고정화 친밀성 칼럼(IMAC) 및 2) 분자 체치기의 2가지 크로마토그래피 과정들로 나타낸다.
트랙 1: 모든 단백질 추출.
트랙 2: 니켈 고정화 칼럼(IMAC)에서 정제되고, 50 mM의 이미다졸의 존재 하에 용출된 Der p 4.
트랙 3: IMAC 과정 이후에 분자 체치기에 의해 정제된 Der p 4.
트랙 4: 태그가 체외에서 분리되어 정제된 Der p 4.
최상단 패널: 겔에서 쿠마씨 블루로 단백질들을 염색한 다음, SDS-PAGE에 의한 Der p 4의 분석.
최하단 패널: 정제 태그의 특정 면역 혈청으로 프린트 상에서의 웨스턴 블롯팅 및 면역 탐지 이후에, SDS-PAGE에 의한 Der p 4의 분석.
<110> ANGANY GENETICS <115> GOMORD, Veronique FITCHETTE, Anne Catherine FAYE, Loic <120> Method for Producing High-quality Recombinant Allergens in a Plant <130> PLASS 8(P) <150> PCT/FR 2013/051383 <151> 2013-06-13 <160> 21 <170> KoPatentIn version 3.0 <210> 1 <211> 13 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 1 Met Thr Gly Ala Ser Arg Arg Ser Ala Arg Gly Arg Ile 1 5 10 <210> 2 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 2 Met Ala Arg Gly Glu Arg Arg Arg Arg Ala 1 5 10 <210> 3 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 3 Met Asn Asp Arg Arg Pro Gln Arg Lys Arg Pro Ala 1 5 10 <210> 4 <211> 150 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 4 Met Thr Gly Ala Ser Arg Arg Ser Ala Arg Gly Arg Ile Lys Ser Ser 1 5 10 15 Ser Leu Ser Pro Gly Ser Asp Glu Gly Ser Ala Tyr Pro Pro Ser Ile 20 25 30 Arg Arg Gly Lys Gly Lys Glu Leu Val Ser Ile Gly Ala Phe Lys Thr 35 40 45 Asn Leu Lys Ile Leu Val Gly Leu Ile Ile Leu Gly Ile Ile Val Ile 50 55 60 Tyr Phe Val Ile Asn Arg Leu Val Arg His Gly Leu Leu Phe Asp Glu 65 70 75 80 Ser Gln Lys Pro Arg Val Ile Thr Pro Phe Pro Ala Pro Lys Val Met 85 90 95 Asp Leu Ser Met Phe Gln Gly Glu His Lys Glu Ser Leu Tyr Trp Gly 100 105 110 Thr Tyr Arg Pro His Val Tyr Phe Gly Val Arg Ala Arg Thr Pro Leu 115 120 125 Ser Leu Val Ala Gly Leu Met Trp Leu Gly Val Lys Asp Glu Met Tyr 130 135 140 Val Met Arg His Phe Cys 145 150 <210> 5 <211> 49 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 5 Met Ala Arg Gly Ser Arg Ser Val Gly Ser Ser Ser Ser Lys Trp Arg 1 5 10 15 Tyr Cys Asn Pro Ser Tyr Tyr Leu Lys Arg Pro Lys Arg Leu Ala Leu 20 25 30 Leu Phe Ile Val Phe Val Cys Val Ser Phe Val Phe Trp Asp Arg Gln 35 40 45 Thr <210> 6 <211> 99 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 6 Met Ala Arg Gly Ser Arg Ser Val Gly Ser Ser Ser Ser Lys Trp Arg 1 5 10 15 Tyr Cys Asn Pro Ser Tyr Tyr Leu Lys Arg Pro Lys Arg Leu Ala Leu 20 25 30 Leu Phe Ile Val Phe Val Cys Val Ser Phe Val Phe Trp Asp Arg Gln 35 40 45 Thr Leu Val Arg Glu His Gln Val Glu Ile Ser Glu Leu Gln Lys Glu 50 55 60 Val Thr Asp Leu Lys Asn Leu Val Asp Asp Leu Asn Asn Lys Gln Gly 65 70 75 80 Gly Thr Ser Gly Lys Thr Asp Leu Gly Arg Lys Ala Thr Lys Ser Ser 85 90 95 Lys Asp Val <210> 7 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 7 Met Ala Ala Ala Leu Ala Leu Leu Phe Ile Val Phe Val Cys Val Ser 1 5 10 15 Phe Val Phe Trp Asp Arg 20 <210> 8 <211> 68 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 8 Met Gly Val Phe Ser Asn Leu Arg Gly Pro Arg Ala Gly Ala Thr His 1 5 10 15 Asp Glu Phe Pro Ala Thr Asn Gly Ser Pro Ser Ser Ser Ser Ser Pro 20 25 30 Ser Ser Ser Ile Lys Arg Lys Leu Ser Asn Leu Leu Pro Leu Cys Val 35 40 45 Ala Leu Val Val Ile Ala Glu Ile Gly Phe Leu Gly Arg Leu Asp Lys 50 55 60 Val Ala Thr Ser 65 <210> 9 <211> 38 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 9 Met Arg Gly Tyr Lys Phe Cys Cys Asp Phe Arg Tyr Leu Leu Ile Leu 1 5 10 15 Ala Ala Val Ala Phe Ile Tyr Ile Gln Met Arg Leu Phe Ala Thr Gln 20 25 30 Ser Glu Tyr Ala Asp Arg 35 <210> 10 <211> 68 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 10 Met Gly Val Phe Ser Asn Leu Arg Gly Pro Lys Ile Gly Leu Thr His 1 5 10 15 Glu Glu Leu Pro Val Val Ala Asn Gly Ser Thr Ser Ser Ser Ser Ser 20 25 30 Pro Ser Ser Phe Lys Arg Lys Val Ser Thr Phe Leu Pro Ile Cys Val 35 40 45 Ala Leu Val Val Ile Ile Glu Ile Gly Phe Leu Cys Arg Leu Asp Asn 50 55 60 Ala Ser Thr Ser 65 <210> 11 <211> 41 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 11 Met Leu Val Met Pro Gln Pro Pro Lys Pro Phe Asn Thr Ile Thr Ile 1 5 10 15 Thr Ile Met Ile Ala Phe Thr Phe Phe Leu Leu Phe Leu Thr Gly Phe 20 25 30 Leu Gln Phe Pro Ser Ile Ser Pro Ser 35 40 <210> 12 <211> 106 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 12 Met Ala Arg Gly Ser Arg Ser Val Gly Ser Ser Ser Ser Lys Trp Arg 1 5 10 15 Tyr Cys Asn Pro Ser Tyr Tyr Leu Lys Arg Pro Lys Arg Leu Ala Leu 20 25 30 Leu Phe Ile Val Phe Val Cys Val Ser Phe Val Phe Trp Cys Val Ser 35 40 45 Phe Val Phe Trp Asp Arg Gln Thr Leu Val Arg Glu His Gln Val Glu 50 55 60 Ile Ser Glu Leu Gln Lys Glu Val Thr Asp Leu Lys Asn Leu Val Asp 65 70 75 80 Asp Leu Asn Asn Lys Gln Gly Gly Thr Ser Gly Lys Thr Asp Leu Gly 85 90 95 Arg Lys Ala Thr Lys Ser Ser Lys Asp Val 100 105 <210> 13 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> Xaa can be any naturally occurring amino acid <220> <221> MISC_FEATURE <222> (1)..(3) <223> signal peptide <400> 13 Xaa Xaa Xaa Leu Ala Leu Leu Phe Ile Val Phe Val Cys Val Ser Phe 1 5 10 15 Val Phe Trp Asp Arg 20 <210> 14 <211> 25 <212> PRT <213> Artificial Sequence <220> <223> Xaa can be any naturally occurring amino acid <220> <221> MISC_FEATURE <222> (1)..(2) <223> signal peptide <400> 14 Xaa Xaa Arg Tyr Leu Leu Ile Leu Ala Ala Val Ala Phe Ile Tyr Ile 1 5 10 15 Gln Met Arg Leu Phe Ala Thr Gln Ser 20 25 <210> 15 <211> 24 <212> PRT <213> Artificial Sequence <220> <223> Xaa can be any naturally occurring amino acid <220> <221> MISC_FEATURE <222> (1)..(3) <223> signal peptide <220> <221> MISC_FEATURE <222> (22)..(24) <223> Xaa can be any naturally occurring amino acid <400> 15 Xaa Xaa Xaa Leu Gly Ile Leu Phe Ala Val Thr Leu Ser Ile Val Leu 1 5 10 15 Met Leu Val Ser Val Xaa Xaa Xaa 20 <210> 16 <211> 23 <212> PRT <213> Artificial Sequence <220> <223> Xaa can be any naturally occurring amino acid <220> <221> MISC_FEATURE <222> (1)..(2) <223> signal peptide <400> 16 Xaa Xaa Lys Ile Phe Leu Tyr Met Leu Leu Leu Asn Ser Leu Phe Leu 1 5 10 15 Ile Ile Tyr Phe Val Phe His 20 <210> 17 <211> 26 <212> PRT <213> Artificial Sequence <220> <223> Xaa can be any naturally occurring amino acid <220> <221> MISC_FEATURE <222> (1)..(3) <223> signal petide <400> 17 Xaa Xaa Xaa Arg Lys Leu Ser Asn Leu Leu Pro Leu Cys Val Ala Leu 1 5 10 15 Val Val Ile Ala Glu Ile Gly Phe Leu Gly 20 25 <210> 18 <211> 26 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 18 Xaa Xaa Xaa Arg Lys Val Ser Thr Phe Leu Pro Ile Cys Val Ala Leu 1 5 10 15 Val Val Ile Ile Glu Ile Gly Phe Leu Cys 20 25 <210> 19 <211> 29 <212> PRT <213> Artificial Sequence <220> <223> Xaa can be any naturally occurring amino acid <220> <221> MISC_FEATURE <222> (1)..(2) <223> signal peptide <220> <221> MISC_FEATURE <222> (28)..(29) <223> Xaa can be any naturally occurring amino acid <400> 19 Xaa Xaa Phe Asn Thr Ile Thr Ile Thr Ile Met Ile Ala Phe Thr Phe 1 5 10 15 Phe Leu Leu Phe Leu Thr Gly Phe Leu Gln Phe Xaa Xaa 20 25 <210> 20 <211> 29 <212> PRT <213> Artificial Sequence <220> <223> Xaa can be any naturally occurring amino acid <220> <221> MISC_FEATURE <222> (1)..(2) <223> signal peptide <400> 20 Xaa Xaa Lys Arg Leu Ala Leu Leu Phe Ile Val Phe Val Cys Val Ser 1 5 10 15 Phe Val Phe Trp Cys Val Ser Phe Val Phe Trp Asp Arg 20 25 <210> 21 <211> 12295 <212> DNA <213> Artificial Sequence <220> <223> plasmid pAG01 <400> 21 tgagcgtcgc aaaggcgctc ggtcttgcct tgctcgtcgg tgatgtactt caccagctcc 60 gcgaagtcgc tcttcttgat ggagcgcatg gggacgtgct tggcaatcac gcgcaccccc 120 cggccgtttt agcggctaaa aaagtcatgg ctctgccctc gggcggacca cgcccatcat 180 gaccttgcca agctcgtcct gcttctcttc gatcttcgcc agcagggcga ggatcgtggc 240 atcaccgaac cgcgccgtgc gcgggtcgtc ggtgagccag agtttcagca ggccgcccag 300 gcggcccagg tcgccattga tgcgggccag ctcgcggacg tgctcatagt ccacgacgcc 360 cgtgattttg tagccctggc cgacggccag caggtaggcc gacaggctca tgccggccgc 420 cgccgccttt tcctcaatcg ctcttcgttc gtctggaagg cagtacacct tgataggtgg 480 gctgcccttc ctggttggct tggtttcatc agccatccgc ttgccctcat ctgttacgcc 540 ggcggtagcc ggccagcctc gcagagcagg attcccgttg agcaccgcca ggtgcgaata 600 agggacagtg aagaaggaac acccgctcgc gggtgggcct acttcaccta tcctgcccgg 660 ctgacgccgt tggatacacc aaggaaagtc tacacgaacc ctttggcaaa atcctgtata 720 tcgtgcgaaa aaggatggat ataccgaaaa aatcgctata atgaccccga agcagggtta 780 tgcagcggaa aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg 840 gcagggtcgg aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt 900 atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtcag 960 gggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt 1020 gctggccttt tgctcacatg ttctttcctg cgttatcccc tgattctgtg gataaccgta 1080 ttaccgcctt tgagtgagct gataccgctc gccgcagccg aacgaccgag cgcagcgagt 1140 cagtgagcga ggaagcggaa gagcgccaga aggccgccag agaggccgag cgcggccgtg 1200 aggcttggac gctagggcag ggcatgaaaa agcccgtagc gggctgctac gggcgtctga 1260 cgcggtggaa agggggaggg gatgttgtct acatggctct gctgtagtga gtgggttgcg 1320 ctccggcagc ggtcctgatc aatcgtcacc ctttctcggt ccttcaacgt tcctgacaac 1380 gagcctcctt ttcgccaatc catcgacaat caccgcgagt ccctgctcga acgctgcgtc 1440 cggaccggct tcgtcgaagg cgtctatcgc ggcccgcaac agcggcgaga gcggagcctg 1500 ttcaacggtg ccgccgcgct cgccggcatc gctgtcgccg gcctgctcct caagcacggc 1560 cccaacagtg aagtagctga ttgtcatcag cgcattgacg gcgtccccgg ccgaaaaacc 1620 cgcctcgcag aggaagcgaa gctgcgcgtc ggccgtttcc atctgcggtg cgcccggtcg 1680 cgtgccggca tggatgcgcg cgccatcgcg gtaggcgagc agcgcctgcc tgaagctgcg 1740 ggcattcccg atcagaaatg agcgccagtc gtcgtcggct ctcggcaccg aatgcgtatg 1800 attctccgcc agcatggctt cggccagtgc gtcgagcagc gcccgcttgt tcctgaagtg 1860 ccagtaaagc gccggctgct gaacccccaa ccgttccgcc agtttgcgtg tcgtcagacc 1920 gtctacgccg acctcgttca acaggtccag ggcggcacgg atcactgtat tcggctgcaa 1980 ctttgtcatg cttgacactt tatcactgat aaacataata tgtccaccaa cttatcagtg 2040 ataaagaatc cgcgcgttca atcggaccag cggaggctgg tccggaggcc agacgtgaaa 2100 cccaacatac ccctgatcgt aattctgagc actgtcgcgc tcgacgctgt cggcatcggc 2160 ctgattatgc cggtgctgcc gggcctcctg cgcgatctgg ttcactcgaa cgacgtcacc 2220 gcccactatg gcattctgct ggcgctgtat gcgttggtgc aatttgcctg cgcacctgtg 2280 ctgggcgcgc tgtcggatcg tttcgggcgg cggccaatct tgctcgtctc gctggccggc 2340 gccagatctg gggaaccctg tggttggcat gcacatacaa atggacgaac ggataaacct 2400 tttcacgccc ttttaaatat ccgattattc taataaacgc tcttttctct taggtttacc 2460 cgccaatata tcctgtcaaa cactgatagt ttaaactgaa ggcgggaaac gacaatctga 2520 tcatgagcgg agaattaagg gagtcacgtt atgacccccg ccgatgacgc gggacaagcc 2580 gttttacgtt tggaactgac agaaccgcaa cgttgaagga gccactcagc cgcgggtttc 2640 tggagtttaa tgagctaagc acatacgtca gaaaccatta ttgcgcgttc aaaagtcgcc 2700 taaggtcact atcagctagc aaatatttct tgtcaaaaat gctccactga cgttccataa 2760 attcccctcg gtatccaatt agagtctcat attcactctc aatccaaata atctgcaccg 2820 gatctggatc gtttcgcgtg cacaaaaatg gaacgagcta tacaaggaaa cgacgctagg 2880 gaacaagcta acagtgaacg ttgggatgga ggatcaggag gcaccacttc tcccttcaaa 2940 cttcctgacg aaagtccgag ttggactgag tggcggctac ataacgatga gacgaactcg 3000 aatcaagata atccccttgg tttcaaggaa agctggggtt tcgggaaagt tgtatttaag 3060 agatatctca gatacgacag gacggaagcc tcactgcaca gagtccttgg atcttggacg 3120 ggagattcgg ttaactatgc agcatctcga tttttcggtt tcgaccagat cggatgtacc 3180 tatagtattc ggtttcgagg agttagtatc accgtttctg gagggtcgcg aactcttcag 3240 catctctgtg agatggcaat tcggtctaag caagaactgc tacagcttgc cccaatcgaa 3300 gtggaaagta atgtatcaag aggatgccct gaaggtactg agaccttcga aaaagaaagc 3360 gagtaagcgg gactctgggg ttcgaaatga ccgaccatat cttgctgcgt tcggatattt 3420 tcgtggagtt cccgccacag acccggatga tcccctaatt cgggggatct ggattttagt 3480 actggatttt ggttttagga attagaaatt ttattgatag aagtatttta caaatacaaa 3540 tacatactaa gggtttctta tatgctcaac acatgagcga aaccctatag gaaccctaat 3600 tcccttatct gggaactact cacacattat tatggagaaa ctcgagcttg tcgatcgacc 3660 ctcctgtcaa tgctggcggc ggctctggtg gtggttctgg tggcggctct gagggtggtg 3720 gctctgaggg tggcggttct gagggtggcg gctctgaggg aggcggttcc ggtggtggct 3780 ctggttccgg tgattttgat tatgaaaaga tggcaaacgc taataagggg gctatgaccg 3840 aaaatgccga tgaaaacgcg ctacagtctg acgctaaagg caaacttgat tctgtcgcta 3900 ctgattacgg tgctgctatc gatggtttca ttggtgacgt ttccggcctt gctaatggta 3960 atggtgctac tggtgatttt gctggctcta attcccaaat ggctcaagtc ggtgacggtg 4020 ataattcacc tttaatgaat aatttccgtc aatatttacc ttccctccct caatcggttg 4080 aatgtcgccc ttttgtcttt ggcccaatac gcaaaccgcc tctccccgcg cgttggccga 4140 ttcattaatg cagctggcac gacaggtttc ccgactggaa agcgggcagt gagcgcaacg 4200 caattaatgt gagttagctc actcattagg caccccaggc tttacacttt atgcttccgg 4260 ctcgtatgtt gtgtggaatt gtgagcggat aacaatttca cacaggaaac agctatgacc 4320 atgattacgc caagcttgca tgcctgcagg tccccagatt agccttttca atttcagaaa 4380 gaatgctaac ccacagatgg ttagagaggc ttacgcagca ggtctcatca agacgatcta 4440 cccgagcaat aatctccagg aaatcaaata ccttcccaag aaggttaaag atgcagtcaa 4500 aagattcagg actaactgca tcaagaacac agagaaagat atatttctca agatcagaag 4560 tactattcca gtatggacga ttcaaggctt gcttcacaaa ccaaggcaag taatagagat 4620 tggagtctct aaaaaggtag ttcccactga atcaaaggcc atggagtcaa agattcaaat 4680 agaggaccta acagaactcg ccgtaaagac tggcgaacag ttcatacaga gtctcttacg 4740 actcaatgac aagaagaaaa tcttcgtcaa catggtggag cacgacacac ttgtctactc 4800 caaaaatatc aaagatacag tctcagaaga ccaaagggca attgagactt ttcaacaaag 4860 ggtaatatcc ggaaacctcc tcggattcca ttgcccagct atctgtcact ttattgtgaa 4920 gatagtggaa aaggaaggtg gctcctacaa atgccatcat tgcgataaag gaaaggccat 4980 cgttgaagat gcctctgccg acagtggtcc caaagatgga cccccaccca cgaggagcat 5040 cgtggaaaaa gaagacgttc caaccacgtc ttcaaagcaa gtggattgat gtgatatctc 5100 cactgacgta agggatgacg cacaatccca ctatccttcg caagaccctt cctctatata 5160 aggaagttca tttcatttgg agagaacacg ggggactcta gaggtacccg ggcccgcgga 5220 tccgcggccg cactagtcga caggcctgag ctcgaatttc cccgatcgtt caaacatttg 5280 gcaataaagt ttcttaagat tgaatcctgt tgccggtctt gcgatgatta tcatataatt 5340 tctgttgaat tacgttaagc atgtaataat taacatgtaa tgcatgacgt tatttatgag 5400 atgggttttt atgattagag tcccgcaatt atacatttaa tacgcgatag aaaacaaaat 5460 atagcgcgca aactaggata aattatcgcg cgcggtgtca tctatgttac tagatcggga 5520 attcactggc cgtcgtttta caacgtcgtg actgggaaaa ccctggcgtt acccaactta 5580 atcgccttgc agcacatccc cctttcgcca gctggcgtaa tagcgaagag gcccgcaccg 5640 atcgcccttc ccaacagttg cgcagcctga atggcgcccg ctcctttcgc tttcttccct 5700 tcctttctcg ccacgttcgc cggctttccc cgtcaagctc taaatcgggg gctcccttta 5760 gggttccgat ttagtgcttt acggcacctc gaccccaaaa aacttgattt gggtgatggt 5820 tcacgtagtg ggccatcgcc ctgatagacg gtttttcgcc ctttgacgtt ggagtccacg 5880 ttctttaata gtggactctt gttccaaact ggaacaacac tcaaccctat ctcgggctat 5940 tcttttgatt tataagggat tttgccgatt tcggaaccac catcaaacag gattttcgcc 6000 tgctggggca aaccagcgtg gaccgcttgc tgcaactctc tcagggccag gcggtgaagg 6060 gcaatcagct gttgcccgtc tcactggtga aaagaaaaac caccccagta cattaaaaac 6120 gtccgcaatg tgttattaag ttgtctaagc gtcaatttgt ttacaccaca atatatcctg 6180 ccaccagcca gccaacagct ccccgaccgg cagctcggca caaaatcacc actcgataca 6240 ggcagcccat cagtccggga cggcgtcagc gggagagccg ttgtaaggcg gcagactttg 6300 ctcatgttac cgatgctatt cggaagaacg gcaactaagc tgccgggttt gaaacacgga 6360 tgatctcgcg gagggtagca tgttgattgt aacgatgaca gagcgttgct gcctgtgatc 6420 aaatatcatc tccctcgcag agatccgaat tatcagcctt cttattcatt tctcgcttaa 6480 ccgtgacagg ctgtcgatct tgagaactat gccgacataa taggaaatcg ctggataaag 6540 ccgctgagga agctgagtgg cgctatttct ttagaagtga acgttgacga tatcaactcc 6600 cctatccatt gctcaccgaa tggtacaggt cggggacccg aagttccgac tgtcggcctg 6660 atgcatcccc ggctgatcga ccccagatct ggggctgaga aagcccagta aggaaacaac 6720 tgtaggttcg agtcgcgaga tcccccggaa ccaaaggaag taggttaaac ccgctccgat 6780 caggccgagc cacgccaggc cgagaacatt ggttcctgta ggcatcggga ttggcggatc 6840 aaacactaaa gctactggaa cgagcagaag tcctccggcc gccagttgcc aggcggtaaa 6900 ggtgagcaga ggcacgggag gttgccactt gcgggtcagc acggttccga acgccatgga 6960 aaccgccccc gccaggcccg ctgcgacgcc gacaggatct agcgctgcgt ttggtgtcaa 7020 caccaacagc gccacgcccg cagttccgca aatagccccc aggaccgcca tcaatcgtat 7080 cgggctacct agcagagcgg cagagatgaa cacgaccatc agcggctgca cagcgcctac 7140 cgtcgccgcg accccgcccg gcaggcggta gaccgaaata aacaacaagc tccagaatag 7200 cgaaatatta agtgcgccga ggatgaagat gcgcatccac cagattcccg ttggaatctg 7260 tcggacgatc atcacgagca ataaacccgc cggcaacgcc cgcagcagca taccggcgac 7320 ccctcggcct cgctgttcgg gctccacgaa aacgccggac agatgcgcct tgtgagcgtc 7380 cttggggccg tcctcctgtt tgaagaccga cagcccaatg atctcgccgt cgatgtaggc 7440 gccgaatgcc acggcatctc gcaaccgttc agcgaacgcc tccatgggct ttttctcctc 7500 gtgctcgtaa acggacccga acatctctgg agctttcttc agggccgaca atcggatctc 7560 gcggaaatcc tgcacgtcgg ccgctccaag ccgtcgaatc tgagccttaa tcacaattgt 7620 caattttaat cctctgttta tcggcagttc gtagagcgcg ccgtgcgtcc cgagcgatac 7680 tgagcgaagc aagtgcgtcg agcagtgccc gcttgttcct gaaatgccag taaagcgctg 7740 gctgctgaac ccccagccgg aactgacccc acaaggccct agcgtttgca atgcaccagg 7800 tcatcattga cccaggcgtg ttccaccagg ccgctgcctc gcaactcttc gcaggcttcg 7860 ccgacctgct cgcgccactt cttcacgcgg gtggaatccg atccgcacat gaggcggaag 7920 gtttccagct tgagcgggta cggctcccgg tgcgagctga aatagtcgaa catccgtcgg 7980 gccgtcggcg acagcttgcg gtacttctcc catatgaatt tcgtgtagtg gtcgccagca 8040 aacagcacga cgatttcctc gtcgatcagg acctggcaac gggacgtttt cttgccacgg 8100 tccaggacgc ggaagcggtg cagcagcgac accgattcca ggtgcccaac gcggtcggac 8160 gtgaagccca tcgccgtcgc ctgtaggcgc gacaggcatt cctcggcctt cgtgtaatac 8220 cggccattga tcgaccagcc caggtcctgg caaagctcgt agaacgtgaa ggtgatcggc 8280 tcgccgatag gggtgcgctt cgcgtactcc aacacctgct gccacaccag ttcgtcatcg 8340 tcggcccgca gctcgacgcc ggtgtaggtg atcttcacgt ccttgttgac gtggaaaatg 8400 accttgtttt gcagcgcctc gcgcgggatt ttcttgttgc gcgtggtgaa cagggcagag 8460 cgggccgtgt cgtttggcat cgctcgcatc gtgtccggcc acggcgcaat atcgaacaag 8520 gaaagctgca tttccttgat ctgctgcttc gtgtgtttca gcaacgcggc ctgcttggcc 8580 tcgctgacct gttttgccag gtcctcgccg gcggtttttc gcttcttggt cgtcatagtt 8640 cctcgcgtgt cgatggtcat cgacttcgcc aaacctgccg cctcctgttc gagacgacgc 8700 gaacgctcca cggcggccga tggcgcgggc agggcagggg gagccagttg cacgctgtcg 8760 cgctcgatct tggccgtagc ttgctggacc atcgagccga cggactggaa ggtttcgcgg 8820 ggcgcacgca tgacggtgcg gcttgcgatg gtttcggcat cctcggcgga aaaccccgcg 8880 tcgatcagtt cttgcctgta tgccttccgg tcaaacgtcc gattcattca ccctccttgc 8940 gggattgccc cgactcacgc cggggcaatg tgcccttatt cctgatttga cccgcctggt 9000 gccttggtgt ccagataatc caccttatcg gcaatgaagt cggtcccgta gaccgtctgg 9060 ccgtccttct cgtacttggt attccgaatc ttgccctgca cgaataccag cgaccccttg 9120 cccaaatact tgccgtgggc ctcggcctga gagccaaaac acttgatgcg gaagaagtcg 9180 gtgcgctcct gcttgtcgcc ggcatcgttg cgccacatct aggtactaaa acaattcatc 9240 cagtaaaata taatatttta ttttctccca atcaggcttg atccccagta agtcaaaaaa 9300 tagctcgaca tactgttctt ccccgatatc ctccctgatc gaccggacgc agaaggcaat 9360 gtcataccac ttgtccgccc tgccgcttct cccaagatca ataaagccac ttactttgcc 9420 atctttcaca aagatgttgc tgtctcccag gtcgccgtgg gaaaagacaa gttcctcttc 9480 gggcttttcc gtctttaaaa aatcatacag ctcgcgcgga tctttaaatg gagtgtcttc 9540 ttcccagttt tcgcaatcca catcggccag atcgttattc agtaagtaat ccaattcggc 9600 taagcggctg tctaagctat tcgtataggg acaatccgat atgtcgatgg agtgaaagag 9660 cctgatgcac tccgcataca gctcgataat cttttcaggg ctttgttcat cttcatactc 9720 ttccgagcaa aggacgccat cggcctcact catgagcaga ttgctccagc catcatgccg 9780 ttcaaagtgc aggacctttg gaacaggcag ctttccttcc agccatagca tcatgtcctt 9840 ttcccgttcc acatcatagg tggtcccttt ataccggctg tccgtcattt ttaaatatag 9900 gttttcattt tctcccacca gcttatatac cttagcagga gacattcctt ccgtatcttt 9960 tacgcagcgg tatttttcga tcagtttttt caattccggt gatattctca ttttagccat 10020 ttattatttc cttcctcttt tctacagtat ttaaagatac cccaagaagc taattataac 10080 aagacgaact ccaattcact gttccttgca ttctaaaacc ttaaatacca gaaaacagct 10140 ttttcaaagt tgttttcaaa gttggcgtat aacatagtat cgacggagcc gattttgaaa 10200 ccacaattat gggtgatgct gccaacttac tgatttagtg tatgatggtg tttttgaggt 10260 gctccagtgg cttctgtgtc tatcagctgt ccctcctgtt cagctactga cggggtggtg 10320 cgtaacggca aaagcaccgc cggacatcag cgctatctct gctctcactg ccgtaaaaca 10380 tggcaactgc agttcactta caccgcttct caacccggta cgcaccagaa aatcattgat 10440 atggccatga atggcgttgg atgccgggca acagcccgca ttatgggcgt tggcctcaac 10500 acgattttac gtcacttaaa aaactcaggc cgcagtcggt aacctcgcgc atacagccgg 10560 gcagtgacgt catcgtctgc gcggaaatgg acgaacagtg gggctatgtc ggggctaaat 10620 cgcgccagcg ctggctgttt tacgcgtatg acagtctccg gaagacggtt gttgcgcacg 10680 tattcggtga acgcactatg gcgacgctgg ggcgtcttat gagcctgctg tcaccctttg 10740 acgtggtgat atggatgacg gatggctggc cgctgtatga atcccgcctg aagggaaagc 10800 tgcacgtaat cagcaagcga tatacgcagc gaattgagcg gcataacctg aatctgaggc 10860 agcacctggc acggctggga cggaagtcgc tgtcgttctc aaaatcggtg gagctgcatg 10920 acaaagtcat cgggcattat ctgaacataa aacactatca ataagttgga gtcattaccc 10980 aattatgata gaatttacaa gctataaggt tattgtcctg ggtttcaagc attagtccat 11040 gcaagttttt atgctttgcc cattctatag atatattgat aagcgcgctg cctatgcctt 11100 gccccctgaa atccttacat acggcgatat cttctatata aaagatatat tatcttatca 11160 gtattgtcaa tatattcaag gcaatctgcc tcctcatcct cttcatcctc ttcgtcttgg 11220 tagcttttta aatatggcgc ttcatagagt aattctgtaa aggtccaatt ctcgttttca 11280 tacctcggta taatcttacc tatcacctca aatggttcgc tgggtttatc gcacccccga 11340 acacgagcac ggcacccgcg accactatgc caagaatgcc caaggtaaaa attgccggcc 11400 ccgccatgaa gtccgtgaat gccccgacgg ccgaagtgaa gggcaggccg ccacccaggc 11460 cgccgccctc actgcccggc acctggtcgc tgaatgtcga tgccagcacc tgcggcacgt 11520 caatgcttcc gggcgtcgcg ctcgggctga tcgcccatcc cgttactgcc ccgatcccgg 11580 caatggcaag gactgccagc gctgccattt ttggggtgag gccgttcgcg gccgaggggc 11640 gcagcccctg gggggatggg aggcccgcgt tagcgggccg ggagggttcg agaagggggg 11700 gcacccccct tcggcgtgcg cggtcacgcg cacagggcgc agccctggtt aaaaacaagg 11760 tttataaata ttggtttaaa agcaggttaa aagacaggtt agcggtggcc gaaaaacggg 11820 cggaaaccct tgcaaatgct ggattttctg cctgtggaca gcccctcaaa tgtcaatagg 11880 tgcgcccctc atctgtcagc actctgcccc tcaagtgtca aggatcgcgc ccctcatctg 11940 tcagtagtcg cgcccctcaa gtgtcaatac cgcagggcac ttatccccag gcttgtccac 12000 atcatctgtg ggaaactcgc gtaaaatcag gcgttttcgc cgatttgcga ggctggccag 12060 ctccacgtcg ccggccgaaa tcgagcctgc ccctcatctg tcaacgccgc gccgggtgag 12120 tcggcccctc aagtgtcaac gtccgcccct catctgtcag tgagggccaa gttttccgcg 12180 aggtatccac aacgccggcg gccgcggtgt ctcgcacacg gcttcgacgg cgtttctggc 12240 gcgtttgcag ggccatagac ggccgccagc ccagcggcga gggcaaccag cccgg 12295

Claims (8)

  1. 담배(tobacco plant)에서 재조합 알레르기 항원(recombinant allergen)을 생산하는 방법으로서,
    (a) LED 조명 하에, 분무 재배법(aeroponic) 또는 수경 재배법(hydroponic)으로 식물을 배양(culturing)하는 과정;
    (b) 진공 하에서, 재조합 알레르기 항원을 코딩(coding)하는 DNA 단편(fragment)이 삽입되어 있는 발현 벡터를 포함하는 식물 종양균(agrobacteria)에 의해, 상기 과정(a)에서 얻은 식물을 침윤(agroinfiltration)시키는 과정;
    (c) 상기 과정(a)와 동일한 조건에서, 식물들을 과정(b) 이후의 배양으로 되돌려 놓는 과정; 및
    (d) 상기 과정(c)에서 생산된 식물들의 지상부들(aerial parts)로부터 재조합 알레르기 항원을 추출(extraction) 및 정제(purification)하는 과정;
    을 포함하는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서, 상기 재조합 알레르기 항원은 재조합 진드기(mite) 알레르기 항원인 것을 특징으로 하는 방법.
  3. 제 1 항 또는 제 2 항에 있어서, 상기 재조합 알레르기 항원은 큰 다리 먼지 진드기(Dermatophagoides farinae)의 알레르기 항원들, 세로무늬 먼지 진드기(Dermatophagoides pteronyssinus)의 알레르기 항원들, 주름 먼지 진드기(Euroglyphus manei)의 알레르기 항원들, 굵은 다리 가루 진드기(Acarus siro)의 알레르기 항원들, 열대 진드기(Blomia tropicalis)의 알레르기 항원들, 바퀴벌레(cockroach) 알레르기 항원들, 수목 또는 잡초 꽃가루(tree or grass pollen) 알레르기 항원들, 동물들의 알레르기 항원들, 곰팡이들(molds)의 알레르기 항원들, 파라고무나무 유액(hevea latex)의 알레르기 항원들 및 음식 알레르기들(allergies)의 원인이 되는 알레르기 항원들에서 선택되는 것을 특징으로 하는 방법.
  4. 제 1 항 내지 제 3 항 중 어느 하나에 있어서, 상기 재조합 알레르기 항원은 Der f 10, Der f 11, Der f 13, Der f 14, Der f 15, Der f 16, Der f 17, Der f 18, Der f 2, Der f 2.0101, Der f 2.0102, Der f 2.0103, Der f 2.0104, Der f 2.0105, Der f 2.0106, Der f 2.0107, Der f 2.0108, Der f 2.0109, Der f 2.0110, Der f 2.0111, Der f 2.0112, Der f 2.0113, Der f 2.0114, Der f 2.0115, Der f 2.0116, Der f 2.0117, Der f 20, Der f 3, Der f 4, Der f 5, Der f 6, Der f 7, Der f 8, Der f 9 및 Der f HSP70에서 선택되는 것을 특징으로 하는 방법.
  5. 제 1 항 내지 제 3 항 중 어느 하나에 있어서, 상기 재조합 알레르기 항원은 Der p 10, Der p 11, Der p 14, Der p 15, Der p 18, Der p 2, Der p 2.0101, Der p 2.0102, Der p 2.0103, Der p 2.0104, Der p 2.0105, Der p 2.0106, Der p 2.0107, Der p 2.0108, Der p 2.0109, Der p 2.0110, Der p 2.0111, Der p 2.0112, Der p 2.0113, Der p 20, Der p 21, Der p 3, Der p 4, Der p 5, Der p 6, Der p 7, Der p 8 및 Der p 9에서 선택되는 것을 특징으로 하는 방법.
  6. 제 1 항 내지 제 3 항 중 어느 하나에 있어서, 상기 재조합 알레르기 항원은 Blo t 1, Blo t 5, Blo t 9, Blo t 10, Blo t 12 및 Blo t 21에서 선택되는 것을 특징으로 하는 방법.
  7. 제 1 항 내지 제 6 항 중 어느 하나에 있어서, 상기 침윤은 벤츄리 효과(Venturi effect)에 의해 진공 하에서 수행되는 것을 특징으로 하는 방법.
  8. 제 7 항에 있어서, 상기 침윤은 식물을 2분 동안 진공에 놓아 두거나, 또는 진공을 가한 후, 진공을 멈추어 대기압으로 되돌린 다음, 진공 하에서 놓아둔 후, 뒤이어 최종적으로 대기압으로 되돌리는 각각의 과정에 의해 수행되는 것을 특징으로 하는 방법.
KR1020207022985A 2012-06-13 2013-06-13 식물에서 고급 재조합 알레르기 항원들의 생산 방법 KR20200097003A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1255510A FR2991996B1 (fr) 2012-06-13 2012-06-13 Methode de production d'allergenes recombinants de haute qualite par expression transitoire chez nicotiana benthamiana
FR1255510 2012-06-13
PCT/FR2013/051383 WO2013186495A1 (fr) 2012-06-13 2013-06-13 Méthode de production d'allergènes recombinants de haute qualité dans une plante

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020147034992A Division KR102274653B1 (ko) 2012-06-13 2013-06-13 식물에서 고급 재조합 알레르기 항원들의 생산 방법

Publications (1)

Publication Number Publication Date
KR20200097003A true KR20200097003A (ko) 2020-08-14

Family

ID=48746080

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020147034992A KR102274653B1 (ko) 2012-06-13 2013-06-13 식물에서 고급 재조합 알레르기 항원들의 생산 방법
KR1020207022985A KR20200097003A (ko) 2012-06-13 2013-06-13 식물에서 고급 재조합 알레르기 항원들의 생산 방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020147034992A KR102274653B1 (ko) 2012-06-13 2013-06-13 식물에서 고급 재조합 알레르기 항원들의 생산 방법

Country Status (12)

Country Link
US (2) US9856489B2 (ko)
EP (2) EP3505634B1 (ko)
JP (3) JP2015519071A (ko)
KR (2) KR102274653B1 (ko)
AU (2) AU2013276345B2 (ko)
CA (1) CA2875689C (ko)
DK (2) DK3505634T3 (ko)
ES (2) ES2700743T3 (ko)
FR (1) FR2991996B1 (ko)
IL (2) IL285503B2 (ko)
SG (2) SG10201804515YA (ko)
WO (1) WO2013186495A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6560495B2 (ja) * 2014-01-17 2019-08-14 三菱ケミカル株式会社 植物を用いた一過性発現によるタンパク質の製造方法
JP6578681B2 (ja) * 2015-03-11 2019-09-25 三菱ケミカル株式会社 植物栽培方法及びそれを用いる有用タンパク質の製造
WO2017055235A1 (en) * 2015-09-30 2017-04-06 Boehringer Ingelheim Vetmedica Gmbh Improved modular antigen transportation molecules and uses therof in animals
KR101926384B1 (ko) * 2015-12-17 2018-12-07 재단법인 포항산업과학연구원 담배 식물의 수경재배 방법
FR3054547B1 (fr) * 2016-07-29 2020-06-05 Angany Inc. Particules pseudo-virales et leurs utilisations
WO2022182224A1 (en) * 2021-02-23 2022-09-01 Universiti Malaya A process for producing pharmaceutical or other heterologous protein via agrobacterium-mediated transformation of mucuna bracteata

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4036756A (en) * 1975-06-10 1977-07-19 Dockery Denzel J Aquarium filter assembly
US20140080177A1 (en) * 1997-09-26 2014-03-20 Pieris Ag Anticalins
RU2261275C2 (ru) * 2002-10-24 2005-09-27 Институт биоорганической химии им. М.М. Шемякина и Ю.А. Овчинникова Российской Академии Наук Способ получения трансгенных растений с повышенной устойчивостью к фитопатогенам
CN2736836Y (zh) * 2004-09-24 2005-10-26 鸿富锦精密工业(深圳)有限公司 电脑连接器保护装置
EP2010645A4 (en) * 2006-04-20 2009-05-06 Univ Singapore RECOMBINANT LACTOBACILLUS AND USE THEREOF
WO2008056265A2 (en) * 2006-11-08 2008-05-15 Centre National De La Recherche Scientifique-Cnrs A set of sequences for targeting expression and control of the post-translationnal modifications of a recombinant polypeptide
BR112012022383A2 (pt) * 2010-02-28 2015-10-27 Los Alamos Nat Security Llc método para aumentar a eficiência do uso de nitrogênio de uma planta em relação a uma planta do tipo selvagem ou não transformada da mesma espécie
CA2805620C (en) * 2010-07-16 2019-09-03 Philip Morris Products S.A. Methods for producing proteins in plants
US20120192486A1 (en) * 2010-11-12 2012-08-02 Illumitex, Inc. Light-emitting diode (led) light bar
WO2012084962A1 (en) * 2010-12-22 2012-06-28 Philip Morris Products S.A. Method and system for the vacuum infiltration of plants
GB201107468D0 (en) * 2011-05-04 2011-06-15 Plant Bioscience Ltd Protein expression systems

Also Published As

Publication number Publication date
ES2879304T3 (es) 2021-11-22
DK2861743T3 (da) 2019-01-02
KR20150018568A (ko) 2015-02-23
IL236152B (en) 2021-08-31
CA2875689A1 (fr) 2013-12-19
JP6807347B2 (ja) 2021-01-06
WO2013186495A1 (fr) 2013-12-19
IL285503A (en) 2021-09-30
EP3505634B1 (fr) 2021-03-31
JP2020182496A (ja) 2020-11-12
US20180105827A1 (en) 2018-04-19
EP3505634A1 (fr) 2019-07-03
JP2018148907A (ja) 2018-09-27
IL285503B1 (en) 2024-01-01
US9856489B2 (en) 2018-01-02
FR2991996A1 (fr) 2013-12-20
FR2991996B1 (fr) 2016-07-08
US20150361143A1 (en) 2015-12-17
ES2700743T3 (es) 2019-02-19
AU2013276345A1 (en) 2015-01-22
EP2861743A1 (fr) 2015-04-22
DK3505634T3 (da) 2021-06-28
AU2019201534A1 (en) 2019-03-28
JP2015519071A (ja) 2015-07-09
SG10201804515YA (en) 2018-07-30
SG11201408214WA (en) 2015-01-29
EP2861743B1 (fr) 2018-09-05
IL236152A0 (en) 2015-01-29
KR102274653B1 (ko) 2021-07-08
CA2875689C (fr) 2021-08-10
AU2013276345B2 (en) 2018-12-06
AU2019201534B2 (en) 2021-01-28
IL285503B2 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
AU2019201534A1 (en) Method for producing high-quality recombinant allergens in a plant
JPS62111689A (ja) 植物エンドキシンを発現させる形質転換ベクタ−及びその応用
Dong et al. Molecular identification and characterization of the Arabidopsis AtADF1, AtADF5 and AtADF6 genes
CA2805620C (en) Methods for producing proteins in plants
CN112707957B (zh) 大豆分生组织基因GmWUS2及其在根瘤发育中的应用
WO2016050092A1 (zh) 水稻抗高温新基因及其在作物抗高温育种中的应用
KR101852532B1 (ko) 토마토 유래 sra1 유전자를 이용한 식물의 해충 저항성을 증대시키는 방법 및 그에 따른 식물체
US5859338A (en) Plant clavata1 nucleic acids, transformed plants, and proteins
JP4271256B1 (ja) ピレトリン生合成酵素としての活性を示すタンパク質、それをコードする遺伝子、及びその遺伝子が組み込まれたベクター
CN113242906B (zh) Tpst基因在调控植物性状中的应用
CN114717256A (zh) 在水稻中高效表达Bt蛋自Cry2Ag1抗草地贪夜蛾的方法
CN1469931A (zh) 植物信号传导配体样蛋白质
KR101752324B1 (ko) 식물의 광합성 효율과 가뭄 및 염해 저항성을 동시에 증가시키는 방법
CN109912721A (zh) 创建抗虫融合基因的方法及其应用
EP1362111A2 (en) Regulatory genes suitable for use in gene expression
US6534695B2 (en) Identification and characterization of a Dwarf and Late Flowering 2 phenotype (DLF2) in Arabidopsis
KR101437606B1 (ko) 배추 유래 프로모터 및 상기 프로모터로 형질 전환된 식물
Yan et al. Identification and Characterization of the OsCR4 Extracellular Domain-Interacting Proteins OsCIP1 and OsCIP2 in Rice
US10131916B2 (en) Regulatory element for heterologous protein production in the fruiting body of filamentous fungi
Ginbot Characterization of two, desiccation linked, Group 1 LEA proteins from the resurrection plant Xerophyta humilis
KR20200128891A (ko) 질소결핍 유도성 프로모터 및 이를 포함하는 유전자 발현 시스템
CA2494573A1 (en) Novel inducible genes from alfalfa and methods of use thereof
AU2002237380A1 (en) Regulatory genes suitable for use in gene expression

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X601 Decision of rejection after re-examination