KR20200028940A - 검사장치 - Google Patents

검사장치 Download PDF

Info

Publication number
KR20200028940A
KR20200028940A KR1020207001109A KR20207001109A KR20200028940A KR 20200028940 A KR20200028940 A KR 20200028940A KR 1020207001109 A KR1020207001109 A KR 1020207001109A KR 20207001109 A KR20207001109 A KR 20207001109A KR 20200028940 A KR20200028940 A KR 20200028940A
Authority
KR
South Korea
Prior art keywords
unit
defective
imaging
dimensional surface
surface shape
Prior art date
Application number
KR1020207001109A
Other languages
English (en)
Inventor
테루아키 요고
Original Assignee
가부시키가이샤 옵톤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 옵톤 filed Critical 가부시키가이샤 옵톤
Publication of KR20200028940A publication Critical patent/KR20200028940A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95607Inspecting patterns on the surface of objects using a comparative method
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/174Segmentation; Edge detection involving the use of two or more images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/845Objects on a conveyor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8829Shadow projection or structured background, e.g. for deflectometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20021Dividing image into blocks, subimages or windows
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30116Casting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

제어장치는 촬상부에 의해 특정의 광학 패턴이 투영되어 촬상된 워크의 화상으로부터 워크의 삼차원 표면형상을 계측한다. 제어장치는 계측된 워크의 삼차원 표면형상과, 워크에 대응하는 양품의 삼차원 표면형상을 나타내는 기준형상 데이터를 대조하고, 워크에 있어서 양품의 삼차원 표면형상과는 다른 형상을 나타내면 인식된 장소를 성형 불량장소의 후보로서 검출한다. 제어장치는 검출된 성형 불량장소의 후보 가운데, 그 형상의 치수가 성형 불량장소의 기준을 나타내는 판정 기준값 이상인 것에 대해서만 성형 불량장소로 특정한다.

Description

검사장치
(관련출원의 상호참조)
본 국제출원은 2017년 06월 16일에 일본국 특허청에 출원된 일본국 특허출원 제2017-118775호에 의거하는 우선권을 주장하는 것이며, 일본국특허출원 제2017-118775호의 전체 내용을 참조에 의해 본 국제출원에 원용한다.
본 개시는 성형품에서의 성형 불량장소를 검사하는 검사장치에 관한 것이다.
종래, 프레스 가공이나 사출 성형 등의 성형가공에 의해 생산되는 성형품에 대해서, 성형 불량장소의 유무를 육안이나 측정기를 수동에 의해 조작해서 검사하는 것이 실시되어 왔다. 여기에서 말하는 성형 불량장소란 성형 과정에서 발생하는 스크래치, 타흔(맞은 자국), 부분 결락, 버(burr), 균열, 드로스, 및 도금 벗겨짐 등을 포함하는 성형불량에 해당하는 장소이다. 육안이나 측정기를 수동에 의해 조작해서 실시되는 검사방법은 1개의 성형품을 검사하는데 비교적 오랜 시간을 필요로 한다. 그 때문에 대량 생산되는 성형품에서는 전수 검사에 필요로 하는 시간이나 코스트를 허용할 수 없게 되는 경우가 있다. 전수 검사에 필요로 하는 시간이나 코스트를 허용할 수 없을 경우, 전체 로트로부터 일부를 추출해서 검사를 하는 표본 검사를 적용하지 않을수 없었다.
일본 공개특허공보 2015-114309호
그런데 대상물의 표면형상을 고속으로 고정밀도로 계측하는 수법으로서, 예를 들면, 특허문헌 1에 기재된 바와 같은 삼차원 화상계측의 수법이 알려져 있다. 그래서, 발명자는 이 종류의 삼차원 화상계측의 수법을 응용하고, 성형품에서의 성형 불량장소의 유무를 고속, 동시에 고정밀도로 검사 가능하게 하고, 대량생산의 성형품에 대한 전수 검사도 실현시킬 수 있는 시스템의 개발을 예의 진행시켜 왔다. 본 개시의 일 국면은 삼차원 화상계측을 이용해서 성형품에서의 성형 불량장소의 유무를 고속, 동시에 고정밀도로 검사할 수 있도록 하는 것이 바람직하다.
본 개시의 1형태에 따른 검 사장치는 투영부와, 촬상부와, 계측부와, 비교 검출부와, 불량 특정부를 구비한다. 투영부는 소정의 촬상 범위에 특정의 광학 패턴을 투영하도록 구성되어 있다. 촬상부는 촬상 범위 내에 있는 검사 대상물에 대하여 투영된 광학 패턴을 포함하는 화상을 촬상하도록 구성되어 있다. 계측부는 촬상장치에 의해 촬상된 화상에 포함되는 광학 패턴에 의거하여 검사 대상물의 삼차원 표면형상을 계측하도록 구성되어 있다.
비교 검출부는 계측부에 의해 계측된 삼차원 표면형상과, 검사 대상물에 대응하는 양품의 삼차원 표면형상을 나타내는 주어진 기준형상 데이터를 대조한다. 그리고 비교 검출부는 검사 대상물의 삼차원 표면형상에서 양품의 삼차원 표면형상과는 다른 형상을 나타낸다고 인식된 부분을, 당해 형상의 치수와 함께 성형 불량장소의 후보로서 검출하도록 구성되어 있다. 불량 특정부는 비교 검출부에 의해 검출된 성형 불량장소의 후보 가운데, 그 형상의 치수가 성형 불량장소의 기준을 나타내는 소정의 판정 기준값 이상인 것에 대해서만 성형 불량장소로 특정하도록 구성되어 있다.
본 개시의 검사장치에 의하면, 삼차원 화상계측을 이용해서 성형품에서의 성형 불량장소의 유무를 고속으로 동시에, 고정밀도로 검사할 수 있다. 구체적으로는 본 개시의 검사장치는 삼차원 화상계측의 수법에 의해 계측된 검사 대상물의 삼차원 표면형상과, 양품의 삼차원 표면형상을 나타내는 기준형상 데이터와 대조하는 것에 의해, 검사 대상물에 있는 성형 불량장소의 후보를 검출할 수 있다.
또, 상기 구성에 부가해서, 본 개시의 검사장치는 검출된 성형 불량장소의 후보 가운데, 그 치수가 성형 불량장소로서의 판정 기준값 이상이 되는 것만을 성형 불량장소로 특정하도록 구성되어 있다. 삼차원 화상계측에서는 예를 들면, 촬상부에 의해 촬상되는 화상의 해상도가 충분하게 높은 경우, 제품으로서 결함이 될 수 없는 것과 같은 미소한 스크래치조차도 검출 가능하게 된다. 그렇지만, 제품으로서 결함이 될 수 없는 것과 같은 미소한 스크래치조차도 모두 성형 불량장소로 판정하는 것은 검사에 요구되는 품질로서는 과잉이다. 그래서, 전술한 바와 같이, 기준값을 만족시키지 않는 미소한 스크래치에 대해서는 성형 불량장소의 대상으로부터 제외함으로써, 제품으로서 결함이 될 수 있는 크기의 성형 불량장소만을 정확하게 검출할 수 있다.
또, 본 개시의 검사장치에 있어서, 추가로 다음과 같이 구성되어 있을 수도 있다. 즉, 검사장치는 판정 기준값을 사용자의 임의에 의해 설정 및 변경 가능하게 구성되어 있다. 그리고 불량 특정부는 사용자의 임의에 의해 설정 및 변경된 판정 기준값을 사용해서 성형 불량장소를 특정하도록 구성되어 있다. 이러한 구성에 의하면, 제품에 요구되는 품질에 따라서 성형 불량장소의 판정 기준값을 자유롭게 변경할 수 있으므로 편리하다.
또, 본 개시의 검사장치에 있어서, 추가로 다음과 같이 구성되어 있을 수도 있다. 즉, 검사장치는 기준형상 데이터로 나타내는 삼차원 표면형상이 복수 개 영역으로 분할된 개개의 영역마다 판정 기준값을 개별적으로 설정 가능하게 구성되어 있다. 그리고 불량 특정부는 비교 검출부에 의해 검출된 성형 불량장소의 후보 위치에 해당하는 영역의 판정 기준값을 사용해서 성형 불량장소를 특정하도록 구성되어 있다.
예를 들면, 성형가공에 의해 소재가 가파르고 험한 형상으로 변형된 부위와, 완만한 면과 그러면 각각의 표면에 발생할 수 있는 성형불량의 성상이 다른 것이 생각된다. 그래서, 상술한 바와 같이 구성에 의하면, 성형품의 부위마다의 형상에 대응한 적절한 판정 기준값을 설정하는 것이 가능하게 되고, 성형 불량장소를 정확하게 검출할 수 있다.
또, 본 개시의 검사장치에 있어서, 추가로 다음과 같이 구성되어 있을 수도 있다. 즉, 검사장치는 기준형상 데이터로 나타내는 삼차원 표면형상을 소정의 간격마다 구분된 구획마다 부여된 구획번호를 나타내는 정보를 구비한다. 그리고 출력부는 불량 특정부에 의해 특정된 성형 불량장소를 나타내는 정보를, 당해 성형 불량장소의 위치에 해당하는 구획의 구획번호에 대응시켜서 출력하도록 구성되어 있다. 또 이 출력부는 불량 특정부에 의해 특정된 성형 불량장소의 종류와, 당해 성형 불량장소의 위치에 해당하는 구획번호를 나타내는 마크를 검사 대상물에 붙이도록 구성되어 있을 수도 있다. 이러한 구성에 의하면, 성형품을 실제로 볼 때에 성형 불량장소를 용이하게 파악할 수 있으므로 편리하다.
그런데 금형에 의해 가공된 성형품의 표면에는 금형과의 마찰에 의해 찰과흔이 발생하는 경우가 있다. 금형에 의한 찰과흔은 예를 들면, 주변보다 강한 광택을 나타내는 부위로서 형성된다. 이러한 찰과흔에 대해서는 제품의 형상에 문제가 없으면, 통상은 성형 불량장소로 취급되지 않는다. 그러나 찰과흔이 강하게 나와 있는 경우에는 금형의 수정을 해야 할 시기가 가까워졌다고 판단할 수 있기 때문에, 성형 불량장소와는 구별해서 검출할 수 있도록 되어 있는 것이 바람직하다.
그래서, 본 개시의 검사장치에 있어서, 추가로 다음과 같이 구성할 수 있다. 즉, 검사장치는 광택 계측부와, 찰과흔 특정부와, 경보 출력부를 추가로 구비한다. 광택 계측부는 촬상장치에 의해 촬상된 화상으로부터, 상기 검사 대상물의 표면 광택 정도를 계측하도록 구성되어 있다. 찰과흔 특정부는 계측부에 의해 계측된 삼차원 표면형상과, 광택 계측부에 의해 계측된 광택의 정도의 분포에 의거하고, 소정의 찰과흔의 판정기준을 충족시키는 부분을 찰과흔으로 특정하도록 구성되어 있다. 경보 출력부는 찰과흔 특정부에 의해 특정된 찰과흔에 관한 경보를 출력하도록 구성되어 있다. 이러한 구성에 의하면, 성형 불량장소와 구별해서 찰과흔을 검출하는 것이 가능하게 되고, 금형의 수정 시기를 정확하게 판단할 수 있다.
또, 본 개시의 검사장치에 있어서, 추가로 다음과 같이 구성되어 있을 수도 있다. 즉, 검사장치는 촬상 범위 내에 배치되는 적어도 1개의 표준기를 추가로 구비한다. 또, 계측부는 촬상장치에 의해 검사 대상물과 함께 촬상된 표준기의 삼차원 표면형상도 계측하도록 구성되어 있다. 그리고 판정부는 계측부에 의해 계측된 표준기의 삼차원 표면형상과, 표준기에 대응하는 정상의 삼차원 표면형상을 나타내는 주어진 교정 데이터를 대조하고, 상기 표준기의 삼차원 표면형상이 상기 교정 데이터에 적합한 것인지의 여부에 따라서, 검사 대상물에 관한 검사결과의 시비를 판정하도록 구성되어 있다. 이러한 구성에 의하면, 개개의 성형품에 대한 검사마다, 그 검사결과의 정당성을 보증 수 있으므로, 검사결과에 대한 신뢰성을 향상시킬 수 있다.
또, 본 개시의 검사장치에 있어서, 추가로 다음과 같이 구성되어 있을 수도 있다. 즉, 검사장치는 검사 대상물의 다른 복수의 부위를 각각 촬상하도록 구성된 복수의 촬상부를 구비한다. 그리고 계측부는 복수의 촬상장치 각각에 촬상된 화상에 대해서, 부위마다의 삼차원 표면형상을 계측하도록 구성되어 있다. 또, 비교 검출부는 계측부에 의해 계측된 부위마다의 삼차원 표면형상과, 부위마다 준비된 기준형상 데이터를 대조하고, 성형 불량장소의 후보를 검출하도록 구성되어 있다. 이러한 구성에 의하면, 1대의 촬상장치로는 전체를 전부 촬상할 수 없는 대형의 성형품이나, 표리가 있는 성형품, 사각이 있는 복잡한 형상의 성형품 등에 대해서 한 번에 검사를 실시할 수 있어, 검사의 고속화가 실현된다.
또, 본 개시의 검사장치에 있어서, 추가로 다음과 같이 구성되어 있을 수도 있다. 즉, 검사장치는 로봇 암과, 제1 투영부와, 제1 촬상부와, 제2 투영부와, 제2 촬상부를 구비한다. 로봇 암은 전단의 제조공정을 거친 검사 대상물을 잡아서 운반하고, 검사 대상물을 싣고 다음 제조공정으로 반송하는 반송장치에 건네 주도록 구성되어 있다. 제1 투영부는 검사 대상물의 표리를 구성하는 2개의 면 가운데, 제1 면에 대하여 광학 패턴을 투영하도록 구성되어 있다. 제1 촬상부는 제1 면에 투영된 광학 패턴을 포함하는 화상을 촬상하도록 구성되어 있다. 제2 투영부는 검사 대상물의 표리를 구성하는 2개의 면 가운데, 제2 면에 대하여 광학 패턴을 투영하도록 구성되어 있다. 제2 촬상부는 제2 면에 투영된 광학 패턴을 포함하는 화상을 촬상하도록 구성되어 있다.
그리고 제1 투영부 및 제1 촬상부는 로봇 암에 잡혀서 운반되고 있을 때의 검사 대상물에 대하여 광학 패턴의 투영 및 촬상이 가능하는 위치에 배치되어 있다. 또, 로봇 암은 검사 대상물을 잡아서 제1 면을 제1 투영부 및 제1 촬상부를 향하는 동작을 거쳐서, 검사 대상물을 반송장치에 제2 면을 상향으로 해서 싣도록 구성되어 있다. 한편, 제2 투영부 및 제2 촬상부는, 반송장치 위에 올려진 검사 대상물의 제2 면에 대하여 광학 패턴의 투영 및 촬상이 가능하는 위치에 배치되어 있다.
이러한 구성에 의하면, 성형품이 제조공정 중에서 반송되어 가는 일련의 동작 중에서, 반송의 흐름을 방해하지 않고 성형품에 대한 검사를 실시할 수 있다. 이것에 의해, 성형품의 생산성의 향상과 검사의 고속화를 양립시킬 수 있다.
도 1은 검사 시스템의 외관을 나타내는 사시도이다.
도 2는 검사 시스템의 구성을 모식적으로 나타내는 블럭도이다.
도 3(A)는 소형 단안식 카메라 유닛의 구성을 모식적으로 나타내는 블럭도이고, 도 3(B)는 대형 2안식 카메라 유닛의 구성을 모식적으로 나타내는 블럭도이다.
도 4는 기준형상 데이터의 삼차원 표면형상으로 설정된 구획번선의 일례를 나타내는 도면이다.
도 5는 제어장치가 실행하는 검사처리의 스텝을 나타내는 플로우차트이다.
이하, 본 개시의 실시형태를 도면에 의거하여 설명한다. 또, 본 개시는 하기의 실시형태에 한정되는 것은 아니고, 여러 가지 형태로 실시하는 것이 가능하다.
[검사 시스템의 구성 설명]
실시형태의 검사 시스템(1)의 구성에 대해서, 도 1 및 도 2를 참조하면서 설명한다. 또, 본 실시형태에 있어서 도 1에 붙여진 상하 전후 좌우의 방향을 나타내는 화살표는 구성요소 상호의 관계를 이해하기 쉽도록 하기 위해서 기재한 것이다. 본 개시는 도 1에 붙여진 화살표의 방향으로 한정되는 것은 아니다.
검사 시스템(1)은 검사 대상물인 워크(100)를 반송하는 제조라인에 부수해서 설치된다. 검사 시스템(1)이 적용되는 제조라인은 프레스 기계(2)와, 반송용 컨베이어(3)와, 불량품 배출용 컨베이어(4)를 구비한다. 프레스 기계(2)는 금속재료를 프레스 성형에 의해 가공해서 워크(100)를 제조한다. 반송용 컨베이어(3)는 프레스 기계(2)로부터 나온 워크를 다음 제조공정으로 반송한다. 워크(100)는 프레스 기계(2)에 의해 생산되는 성형품이다. 워크(100)는 표면형상에 요철을 가진다. 검사 시스템(1)은 프레스 기계(2)로부터 나온 워크(100)가 다음 제조공정으로 반송되는 과정에서, 모든 워크(100)에 대해서 성형 불량장소의 유무를 검사 가능하게 구성되어 있다. 또, 검사 시스템(1)에 의한 검사의 대상이 되는 성형 불량장소란 성형의 과정에서 발생하는 스크래치, 타흔(맞은 자국), 부분 결락, 버(burr), 균열, 드로스, 및 도금 벗겨짐 등을 포함하는 성형불량에 해당하는 장소이다.
도 1 및 도 2에 예시되는 바와 같이, 검사 시스템(1)은 워크 꺼냄용 로봇(10), 제1 촬상부(20), 제2 촬상부(30), 표준 게이지(40a, 40b), 불량 워크 배출기(50), 마킹 로봇(60), 및 제어장치(70)를 구비한다. 또, 검사 시스템(1)이 부수되는 제조라인에 있어서, 프레스 기계(2)의 전방에는 반송용 컨베이어(3)가 설치되어 있다. 반송용 컨베이어(3)는 프레스 기계(2)로부터 나온 워크(100)를 다음 제조공정으로 반송하기 위한 반송기기이다. 또, 반송용 컨베이어(3)의 옆에는 불량품 배출용 컨베이어(4)가 병설되어 있다. 불량품 배출용 컨베이어(4)는성형 불량장소가 검출된 워크(100)를 제조라인으로부터 배출하기 위한 반송기기이다. 반송용 컨베이어(3) 및 불량품 배출용 컨베이어(4)는 예를 들면, 벨트 컨베이어나 롤러 컨베이어 등에 의해 구현화된다. 반송용 컨베이어(3) 및 불량품 배출용 컨베이어(4)는 실린 워크(100)를 전방으로 반송한다.
워크 꺼냄용 로봇(10)은 프레스 기계(2)로부터 워크(100)가 나오는 출구 부근에 설치되어 있다. 워크 꺼냄용 로봇(10)은 선단에 워크(100)를 흡착하기 위한 진공 집게를 구비하는 다관절의 로봇 암이다. 워크 꺼냄용 로봇(10)은 제어장치(70)에 의한 제어에 의거하여 동작한다. 워크 꺼냄용 로봇(10)은 프레스 기계(2)로부터 나온 워크(100)를 진공 집게로 흡착해서 잡아 올린다. 그리고 워크 꺼냄용 로봇(10)은 잡아 올린 워크(100)를 반송용 컨베이어(3) 또는 불량품 배출용 컨베이어(4)로 운반해서 건네 주는 동작을 실행한다.
본 실시형태에서는 워크(100)가 표리를 구성하는 2개의 면을 가지는 것을 전제로 한다. 워크(100)의 한쪽 면(예를 들면, 이면의 면)을 제1 면, 다른 쪽의 면(예를 들면, 표면측의 면)을 제2 면이라고 부른다. 워크 꺼냄용 로봇(10)은 우선, 프레스 기계(2)로부터 나온 워크(100)의 제2 면측을 잡아서 들어 올린다. 추가로, 워크 꺼냄용 로봇(10)은 워크(100)를 잡은 채, 그 워크(100)를 근방에 설치된 제1 촬상부(20)에 의한 소정의 촬상 범위 내로 운반해서, 정해진 자세로 워크(100)의 제1 면을 제1 촬상부(20)를 향하게 하는 동작을 실행한다. 워크(100)의 제1 면이 제1 촬상부(20)를 향한 상태에서 제1 촬상부(20)에 의해 워크(100)의 제1 면의 화상이 촬상된다.
제1 촬상부(20)는 워크 꺼냄용 로봇(10)에 의해 들어 올려진 워크(100)의 제1 면측을 촬상하는 장치이다. 본 실시형태에서는 제1 촬상부(20)가 2대의 카메라 유닛(21a, 21b)으로 구성되는 사례에 대해서 설명한다. 이에 한정하지 않고, 제1 촬상부(20)가 1대의 카메라 유닛으로 이루어지는 구성일 수도 있고, 3대 이상의 카메라 유닛으로 이루어지는 구성일 수도 있다.
제1 촬상부(20)는 반송용 컨베이어(3)의 옆에 세워진 지주(5)에 장착되어 있다. 카메라 유닛(21a, 21b)을 지주(5)로의 장착은 워크 꺼냄용 로봇(10)에 의해 지지를 받는 워크(100)의 제1 면 전체를, 다른 방향에서 각각 촬상 가능한 위치에 장착할 수 있다. 혹은, 카메라 유닛(21a)이 워크(100)의 제1 면 전체를 2개의 영역으로 구분한 것의 한쪽 영역을 촬영범위 내에 들어오도록 장착되어 있을 수도 있고, 카메라 유닛(21b)가 다른 쪽의 영역을 촬영범위 내에 들어오도록 장착해서 되어 있을 수도 있다. 카메라 유닛(21a, 21b)은 촬상된 화상의 데이터를 제어장치(70)에 출력한다.
그리고 제어장치(70)에서, 촬상된 제1 면의 화상으로부터 워크(100)의 제1 면의 삼차원 표면형상이 계측되고, 워크(100)의 제1 면에서의 성형 불량장소의 유무가 검사된다. 검사의 결과, 워크 꺼냄용 로봇(10)은 제어장치(70)의 제어에 의거해서, 검사에 합격한 워크(100)를, 제2 면측을 위로 해서 반송용 컨베이어(3) 위에 둔다. 한편, 워크 꺼냄용 로봇(10)은 제어장치(70)의 제어에 의거해서, 불량품 고 판정된 워크(100)를 불량품 배출용 컨베이어(4) 위에 둔다.
제1 촬상부(20)에서의 촬상 후, 워크 꺼냄용 로봇(10)에 의해 반송용 컨베이어(3)에 올려진 워크(100)는 반송용 컨베이어(3)에 의해 전방으로 반송된다. 그리고 반송되는 워크(100)가 제2 촬상부(30)의 소정의 촬상 범위 내에 도달한 타이밍에서 제어장치(70)의 제어에 의거해서 제2 촬상부(30)에 의해 워크(100)의 제2 면의 화상이 촬상된다.
제2 촬상부(30)는 반송용 컨베이어(3)에 의해 반송되는 워크(100)의 제2 면측을 상방에서 촬상하는 장치이다. 본 실시형태에서는 제2 촬상부(30)가 2대의 카메라 유닛(31a, 31b)으로 구성되는 사례에 대해서 설명한다. 이에 한정하지 않고, 제2 촬상부(30)가 1대의 카메라 유닛으로 이루어지는 구성일 수도 있고, 3대 이상의 카메라 유닛으로 이루어지는 구성일 수도 있다.
제2 촬상부(30)는 제1 촬상부(20)보다도 전방에 설치된 프레임 가대(6)에 장착되어 있다. 이 프레임 가대(6)는 병설되어 있는 반송용 컨베이어(3) 및 불량품 배출용 컨베이어(4)의 상방에 걸치도록 설치된 기둥 및 보로 이루어지는 프레임 상의 구조물이다. 카메라 유닛(31a)을 프레임 가대(6)으로의 장착은 반송용 컨베이어(3) 위에서 반송되는 워크(100)가 소정의 촬상 위치에 도달했을 때에, 그 워크(100)의 제2 면 전체를, 다른 방향에서 각각 촬상 가능한 위치에 장착할 수 있다. 혹은, 카메라 유닛(31a)이 워크(100)의 제2 면 전체를 2개의 영역으로 구분한 것 중의 제1 영역을 촬영범위 내에 들어오도록 장착되어 있을 수도 있고, 카메라 유닛(31b)이 제2 영역을 촬영범위 내에 들어오도록 장착되어 있을 수도 있다.
제2 촬상부(30)의 각 카메라 유닛(31a, 31b)은 촬상된 화상의 데이터를 제어장치(70)에 출력한다. 제2 촬상부(30)에 의해 워크(100)의 제2 면의 화상이 촬상되면, 제어장치(70)에서, 촬상된 화상으로부터 워크(100)의 제2 면의 삼차원 표면형상이 계측되고, 워크(100)의 제2 면에서의 성형 불량장소의 유무가 검사된다.
제1 촬상부(20) 및 제2 촬상부(30)의 각 카메라 유닛(21a, 21b, 31a, 31b)은 소정의 줄무늬 프린지 상의 패턴 화상을 구성하는 소정의 대역의 파장광을 조사하도록 구성되어 있다. 또, 카메라 유닛(21a, 21b, 31a, 31b)은 광이 조사된 영역(즉, 촬상 범위)을 촬상하도록 구성되어 있다. 또, 각 카메라 유닛(21a, 21b, 31a, 31b)이 조사하는 광은 레드, 그린, 블루의 삼원색으로부터 다른 조합의 색의 광을 사용함으로써, 각각의 카메라 유닛으로부터 조사되는 줄무늬 프린지 패턴이 간섭하는 것을 피할 수 있다. 또, 주지의 위상 시프트법의 수법에 의해, 줄무늬 모양의 하나 하나의 광량 분포를 정현파로 변조한 줄무늬 프린지 패턴을, 위상을 달리하면서 복수 종류 투영 가능한 구성을 채용함으로써, 정밀도가 높은 계측을 실시할 수 있다.
여기에서, 제1 촬상부(20) 및 제2 촬상부(30)에 사용되는 각 카메라 유닛(21a, 21b, 31a, 31b)의 구체적인 구성의 예에 대해서, 도 3(A) 및 도 3(B)를 참조하면서 설명한다. 또, 각 카메라 유닛(21a, 21b, 31a, 31b)을 특별하게 구별하지 않을 경우, 단순하게 카메라 유닛이라고 표기한다.
도 3(A)는 1예로서, 조사기(22)와 카메라(23)를 1개씩 구비하는 소형 단안식 카메라 유닛의 구성을 나타내고 있다. 조사기(22)는 소정의 줄무늬 프린지 패턴의 광으로 구성되는 화상과, 무 모양의 광으로 구성되는 화상을 선택적으로 조사 가능하게 구성된 발광 장치이다 이 조사기(22)에 사용되는 광원으로서는 예를 들면, 발광 다이오드나 레이저 다이오드 등이 있다. 또, 조사기(22)로서 줄무늬 모양의 하나 하나의 광량 분포를 정현파로 변조한 줄무늬 프린지 패턴을, 위상을 달라하면서 복수 종류 투영 가능한 구성을 채용할 수 있다. 이렇게 함으로써, 주지의 위상 시프트법의 수법에 의해, 정밀도가 높은 계측을 실시할 수 있다. 이렇게 복수 종류의 줄무늬 프린지 패턴의 화상을 형성하는 수단으로서는 예를 들면, 액정 패널을 사용할 수 있다. 카메라(23)는 조사기(22)에 의해 조사된 광이 투영되는 범위의 화상을 촬상하는 촬상장치이다. 카메라(23)는 예를 들면, CCD 이미지 센서나 CMOS 이미지 센서 등의 주지의 촬상 소자를 구비한다.
도 3(A)의 사례에서는 1개의 조사기(22)에 의해 광이 조사되는 범위와 1개의 카메라(23)의 시야가 겹치도록, 조사기(22) 및 카메라(23)가 하우징(24)에 위치 결정되어 설치되어 있다. 이러한 소형 단안식의 카메라 유닛은 비교적 작은 검사 대상물을 촬상하는 용도에 적합하다.
한편, 도 3(B)는 1예로서, 1개의 조사기(22)와 2개의 카메라(23)를 구비하는, 대형 2안식의 카메라 유닛의 구성을 나타내고 있다. 도 3(B)의 사례에서는 1개의 조사기(22)에 의해 광이 조사되는 범위를 2개로 나눈 영역과, 2개의 카메라(23)의 시야가 각각 겹치도록, 조사기(22) 및 카메라(23)가 하우징(25)에 위치 결정되어 설치되어 있다. 이러한 대형 2안식의 카메라 유닛은 비교적 큰 검사 대상물을 촬상하는 용도에 적합하다.
도 1 및 도 2의 설명으로 되돌아간다. 워크 꺼냄용 로봇(10)의 암 선단부 부근에는 표준 게이지(40a)가 장착되어 있다. 표준 게이지(40a)는 제1 촬상부(20)의 촬상 화상에 의거하는 삼차원 화상계측의 정밀도 평가에 사용하는 표준기이다. 표준 게이지(40a)를 워크 꺼냄용 로봇(10)으로의 장착은 워크 꺼냄용 로봇(10)이 워크(100)의 제1 면을 제1 촬상부(20)을 향하는 자세를 취했을 때에, 제1 촬상부(20)의 촬영범위 내로 찍히는 위치에 장착된다.
또, 프레임 가대(6)의 제2 촬상부(30)의 하방으로는 표준 게이지(40b)가 장착되어 있다. 표준 게이지(40b)는 제2 촬상부(30)의 촬상 화상에 의거하는 삼차원 화상계측의 정밀도 평가에 사용하는 표준기이다. 표준 게이지(40b)를 프레임 가대(6)로의 장착은 제2 촬상부(30)의 촬영범위 내에 찍히는 위치에 장착된다. 이것들의 표준 게이지(40a, 40b)에는 예를 들면, 블록 게이지나 스텝 게이지 등의 주지 표준기를 사용할 수 있다.
프레임 가대(6)의 천장부에는 불량 워크 배출기(50)가 설치되어 있다. 불량 워크 배출기(50)는 제2 촬상부(30)의 촬상 화상에 의거하는 검사에 있어서 불량품으로 판정된 워크(100)를 반송용 컨베이어(3)로부터 배출하는 동작을 실행 가능하게 구성되어 있다. 구체적으로는, 불량 워크 배출기(50)는 그래스프 수단과 이동 수단을 구비한다. 그래스프 수단은 반송용 컨베이어(3) 위에 있는 워크(100)를 잡아서 들어 올린다. 이동수단은 프레임 가대(6)의 보를 따라서 반송용 컨베이어(3)의 상방과 불량품 배출용 컨베이어(4)의 상방 사이에서 그래스프 수단을 왕복시킨다. 그래스프 수단에는 예를 들면, 워크(100)를 흡착 가능한 진공 집게 등을 사용할 수 있다. 불량 워크 배출기(50)는 제어장치(70)의 제어에 의거해서 불량품으로 판정된 워크(100)를 반송용 컨베이어(3)로부터 들어 올려, 불량품 배출용 컨베이어(4) 위로 이동시키고, 불량품 배출용 컨베이어(4) 위에 두고 건네 준다.
제2 촬상부(30)의 촬상 화상에 의거하는 검사에서 합격품으로 판정된 워크(100)는 그대로 반송용 컨베이어(3)에 의해 전방으로 반송되어, 다음 제조공정으로 공급된다. 한편, 불량품으로 판정되어 불량품 배출용 컨베이어(4)에 올려진 워크(100)는 불량품 배출용 컨베이어(4)에 의해 전방으로 반송되어, 제조라인으로부터 배출된다.
불량품 배출용 컨베이어(4)의 앞부 측방의 프레임 가대(6)에는 마킹 로봇(60)이 배치되어 있다. 마킹 로봇(60)은 불량품 배출용 컨베이어(4)에 의해 반송되어 온 불량품의 워크(100)에, 당해 워크(100)에 있어서 검출된 성형 불량장소의 내용을 나타내는 마크를 붙이는 동작을 실행한다. 구체적으로는 마킹 로봇(60)은 다관절의 로봇 암 선단에 잉크젯 방식의 프린트 헤드를 구비한다. 마킹 로봇(60)은 제어장치(70)의 제어에 의거해서 성형 불량장소의 종류나 성형 불량장소의 위치 등을 나타내는 문자나 기호를 워크(100)의 표면에 인자하는 구성으로 할 수 있다.
제어장치(70)는 도면에 나타나 있지 않은 CPU, RAM, ROM, 및 입출력 인터페이스나, 기억장치(73) 등을 중심으로 구성된 정보 처리장치이다 기억장치(73)는 예를 들면 HDD나 SSD 등을 포함하는 보조 기억장치이다. 제어장치(70)는 적당한 정보 처리능력을 구비한 컴퓨터 시스템 등에 의해 구현화된다. 제어장치(70)의 기능은 CPU가, ROM이나 기억장치(73) 등의 실체적인 기억매체에 수용된 프로그램을 실행 하는 것에 의해 실현된다. 또, 제어장치(70)를 구성하는 컴퓨터의 수는 1개일 수도 복수일 수도 있다.
제어장치(70)는 기능의 구성요소로서 계측 처리부(71)와, 시스템 통합 관리부(72)를 구비한다. 또, 제어장치(70)를 구성하는 이것들의 요소를 실현시키는 수법은 소프트웨어에 한정되는 것이 아니고, 그 일부 또는 전부의 요소를 논리 회로나 아날로그 회로 등을 조합한 하드웨어를 사용해서 실현시킬 수도 있다.
계측 처리부(71)는 제1 촬상부(20) 및 제2 촬상부(30)에 의해 촬상된 화상을 사용해서 워크(100)의 삼차원 표면형상을 계측한다. 그리고 계측 처리부(71)는 계측된 삼차원 표면형상 중에서 성형 불량장소를 검출한다. 구체적으로는, 계측 처리부(71)는 워크(100)로부터 계측된 삼차원 표면형상과, 주어진 기준형상 데이터로 나타내는 삼차원 표면형상을 비교해서, 워크(100)로부터 계측된 삼차원 표면형상에 있어서 형상이 상위하는 부분을 성형 불량장소의 후보로 특정한다.
또, 본 실시형태에서는 주지의 패턴 투영법을 사용한다. 패턴 투영법은 삼차원 표면형상으로서, 검사 대상물에 소정의 줄무늬 프린지 패턴을 투영하고, 검사 대상물에 투영된 줄무늬 프린지 패턴의 변형 정도에 의거하여 삼차원 표면형상을 계측하는 수법이다. 이 종류의 패턴 투영법의 일례로서 위상 시프트법이 있다. 위상 시프트법은 투영강도를 정현파로 변조한 줄무늬 프린지 패턴을, 위상을 달리하면서 복수 회 투영해서 계측하는 수법이다.
성형 불량장소의 검출에 사용되는 기준형상 데이터는 워크(100)의 양품 기준이 되는 삼차원 표면형상을 나타내는 데이터이다. 기준형상 데이터는 제어장치(70)의 기억장치(73) 등에 미리 수납되어 있다. 또, 워크(100)의 표면을 복수 개 영역으로 나누고, 개개의 영역마다 따로 따로 화상을 촬상하는 경우, 개개의 영역에 대응하는 복수 종류의 기준형상 데이터를 구비할 수 있다. 본 실시형태에서는 기준형상 데이터로서 워크(100)의 제1 면측의 삼차원 표면형상에 대응하는 기준형상 데이터와, 제2 면측의 삼차원 표면형상에 대응하는 기준형상 데이터를 개별적으로 구비한다.
또, 기준형상 데이터에는 그 기준형상 데이터로 나타내는 삼차원 표면형상에 대하여 소정의 간격(예를 들면, 50mm) 마다 구획선이 있고, 그 구획선으로 구분된 삼차원 표면형상의 구획마다 고유한 번호(이하, ‘구획번호’ 라고 한다)가 부여되어 있다. 그 구체예에 대해서, 도 4를 참조하면서 설명한다. 도 4에 있어서, 부합(200)은 기준형상 데이터로 나타내는 삼차원 표면형상을 나타낸다. 부합(201)은 삼차원 표면형상(200)의 X축 방향 및 y축 방향으로, 각각 동일한 간격으로 붙여진 복수의 구획선을 나타낸다. 부합(202)은 복수의 구획선(201)으로 둘러싸인 개개의 구획을 나타낸다. 복수의 구획선(201)으로 구분된 복수의 구획(202)에는 각각 고유의 구획번호가 부여되어 있다.
제어장치(70)는 기준형상 데이터가 신규로 등록되었을 때에, 그 기준형상 데이터로 나타내는 삼차원 표면형상에 대하여 구획선 및 구획번호를 부여하고, 기준형상 데이터와 함께 기억장치(73) 등에 보존한다. 계측 처리부(71)는 워크(100)에 있어서 검출된 성형 불량장소에 대해서, 당해 성형 불량장소의 위치에 해당하는 구획번호에 대응시켜서 위치를 특정한다.
도 1 및 도 2의 설명으로 되돌아간다. 계측 처리부(71)는 기준형상 데이터를 사용해서 워크(100)의 삼차원 표면형상으로부터 검출된 성형 불량장소의 후보 가운데, 그 이형(異形) 부위의 치수가 소정의 판정 기준값 이상인 것에 대해서만, 성형 불량장소로 특정한다. 이형 부위의 치수는 길이나, 깊이 또는 높이를 포함한다. 이 판정 기준값은 제품으로서 실용 상의 결함이 될 수 있는 성형 불량장소의 치수 기준을 나타내는 값이고, 제어장치(70)의 기억장치(73) 등에 미리 등록되어 있다. 또, 판정 기준값은 검사 시스템(1)의 사용자에 의해 임의의 값으로 설정 및 변경 가능하다. 그 경우, 제어장치(70)는 소정의 입력장치을 통해서 사용자에 의해 입력된 판정 기준값을 기억장치(73)에 보존한다.
또, 판정 기준값은 어디까지나 제품으로서의 실용상의 결함이 될 수 있는 성형 불량장소의 치수를 규정하는 것으로, 촬상된 화상의 해상도에 따라서 이론상 검출 가능한 이형 부위의 최소의 치수와는 다르다. 즉, 카메라가 예를 들면 100분의 1 mm∼1000분의 1mm 단위의 이형 부위를 검출 가능한 정밀도를 가지고 있었다고 해도 판정 기준값으로서 10분의 1mm 단위의 치수가 설정되고 있으면, 그 판정 기준값에 미치지 않는 미소한 이형 부위에 대해서는 성형 불량장소로 판정되지 않는다.
또, 판정 기준값은 기준형상 데이터로 나타내는 삼차원 표면형상의 부위 마다 다른 값을 설정 가능하다. 구체적으로는, 제어장치(70)는 기준형상 데이터의 삼차원 표면형상을 복수 개 영역으로 분할하고, 그 분할된 개개의 영역마다 설정된 판정 기준값을 기억장치(73)에 보존한다. 예를 들면, 가파르고 험한 휨 가공이 실시된 부위와, 완만하게 가공된 부위에서 서로 다른 판정 기준값을 설정함으로써, 각각의 부위에서 특징적인 성형 불량장소를 정확하게 검출할 수 있다.
또, 계측 처리부(71)는 성형 불량장소의 유무 검사와 함께, 워크(100)의 표면에 형성될 수 있는 찰과흔의 상황에 의거해서 프레스 기계(2)의 금형 열화를 진단하도록 구성되어 있다. 프레스 성형가공에 있어서 금속 소재와 금형과의 마찰에 의해 성형품의 표면에 형성될 수 있는 찰과흔은 강한 광택을 나타낸다. 그래서, 본 실시형태에서는 계측 처리부(71)는 워크(100)의 촬상 화상으로부터, 형상이 가파르고 험한 특정한 부위에 대해서 화상의 각 점의 휘도값을 산출하고, 산출된 휘도값에 대해서 금형과의 마찰에 의한 찰과흔의 유무를 판정한다.
시스템 통합 관리부(72)는 반송용 컨베이어(3)와 불량품 배출용 컨베이어(4)를 포함하는 제조라인, 및 검사 시스템(1)의 동작을 통괄적으로 제어한다. 구체적으로는 시스템 통합 관리부(72)는 프레스 기계(2)에 의한 워크(100)의 제조에 맞추어서, 검사 시스템(1)의 각부 동작과, 반송용 컨베이어(3) 및 불량품 배출용 컨베이어(4)의 동작을 연동시켜서 제어한다. 여기에서 말하는 검사 시스템(1)의 각 부란 즉, 워크 꺼냄용 로봇(10), 제1 촬상부(20), 제2 촬상부(30), 불량 워크 배출기(50), 및 마킹 로봇(60)이다.
예를 들면, 시스템 통합 관리부(72)는 워크 꺼냄용 로봇(10)을 제어해서 워크(100)를 제1 촬상부(20)의 촬상 범위에 배치한 타이밍에서, 제1 촬상부를 제어해서 워크(100)의 촬상을 실시한다. 또, 시스템 통합 관리부(72)는 반송용 컨베이어(3)를 제어해서 워크(100)를 제2 촬상부(30)의 촬상 범위까지 반송하고, 그 타이밍에서 제2 촬상부를 제어해서 워크(100)의 촬상을 실시한다. 또, 시스템 통합 관리부(72)는 불량품 배출용 컨베이어(4)를 제어해서 불량품의 워크(100)를 마킹 로봇(60)의 작업 에리어까지 반송하고, 그 타이밍에서 마킹 로봇(60)을 제어해서 워크(100)의 표면에 마킹을 실시한다.
[검사 처리의 스텝 설명]
제어장치(70)가 실행하는 검사 처리의 스텝에 대해서, 도 5의 플로우차트를 참조하면서 설명한다. 이 검사 처리는 워크 꺼냄용 로봇(10) 및 반송용 컨베이어(3)에 의해, 워크(100)가 제1 촬상부(20) 및 제2 촬상부(30) 각각의 촬상 범위에 배치되었을 때에, 각각의 워크(100)를 대상으로 실행된다.
(S100)에서는 제어장치(70)는 워크(100)가 촬상 범위에 배치된 제1 촬상부(20) 또는 제2 촬상부(30)의 각 카메라 유닛을 제어해서, 당해 워크(100)의 제1 면 또는 제2 면을 촬영한다. 구체적으로는, 제어장치(70)에 의한 제어에 의거하고, 촬상을 실시하는 각 카메라 유닛의 조사기(22)가 줄무늬 프린지 패턴의 광으로 구성되는 화상과, 무 모양의 광으로 구성되는 화상을 교호로 조사한다. 그리고 촬상을 실시하는 각 카메라 유닛의 카메라(23)가 워크(100) 및 표준 게이지(40a, 40b)에 투영된 줄무늬 프린지 패턴의 화상과 무 모양의 화상을 촬상한다. (S102)에서는 (S100)에 있어서 촬상을 실시한 각 카메라(23)가 촬상된 줄무늬 프린지 패턴의 촬상 화상 및 무 모양의 촬상 화상의 데이터를 제어장치(70)의 계측 처리부(71)에 전송한다.
(S104)에서는 제어장치(70)는 (S102)에서 전송된 줄무늬 프린지 패턴의 촬상 화상 각각에 대해서, 높이 변위 맵을 작성한다. 여기에서 말하는 높이 변위 맵이란 촬상 화상 상의 각 화소의 높이 변위 분포를 나타내는 맵 데이터이다. 높이 변위 맵의 작성에는 주지의 위상 시프트법을 사용할 수 있다. 즉, 제어장치(70)는 정현파로 변조된 줄무늬 프린지 패턴을 위상을 달리하면서 복수 회 투영된 촬상 화상을 사용해서 촬상 화상에서의 화소마다의 높이 변위를 산출한다. 또, (S104)에서는 제어장치(70)는 (S102)에서 전송된 무 모양의 촬상 화상 각각에 대해서, 휘도 맵을 작성한다. 여기에서 말하는 휘도 맵이란 촬상 화상 상의 각 화소의 휘도값의 분포를 나타내는 맵 데이터이다.
(S106)에서는 제어장치(70)는 (S104)에서 작성된 높이 변위 맵을 삼차원 좌표계로 나타내는 삼차원점군으로 변환한다. 그리고 계측 처리부(71)는 그 변환된 삼차원점군의 각 점에, (S104)에서 동일한 카메라에 의한 촬상 화상으로부터 작성된 휘도 맵에서의 대응하는 점의 휘도값을 할당해서 삼차원점군ㆍ휘도 데이터를 작성한다.
(S108)에서는 제어장치(70)는 복수 대의 카메라 유닛에 의한 촬상 화상으로부터 각각 작성된 삼차원점군ㆍ휘도 데이터를 공통의 삼차원 좌표계로 통합한다. 구체적으로는, 제어장치(70)는 제1 촬상부(20)에 의해 촬상을 실시했을 경우, 제1 촬상부(20)를 구성하는 2개의 카메라 유닛(21a, 21b)에 의한 촬상 화상으로부터 작성된 삼차원점군ㆍ휘도 데이터를 1개로 통합하고, 워크(100)의 제1 면 전체의 삼차원점군ㆍ휘도 데이터를 얻는다. 혹은, 제어장치(70)는 제2 촬상부(30)에 의해 촬상을 실시했을 경우, 제2 촬상부(30)를 구성하는 2개의 카메라 유닛(31a, 31b)에 의한 촬상 화상으로부터 작성된 삼차원점군ㆍ휘도 데이터를 1개로 통합하고, 워크(100)의 제2 면 전체의 삼차원점군ㆍ휘도 데이터를 얻는다.
(S110)에서는 제어장치(70)는 (S100)에 있어서 촬상된 워크(100)의 제1 면 또는 제2 면에 대응하는 기준형상 데이터로부터, 가파르고 험한 부분을 특정한다. 여기에서 말하는 가파르고 험한 부분이란 기준형상 데이터가 나타내는 삼차원 표면형상에서 휨 곡률이 소정의 임계값보다도 작은 가파르고 험한 형상을 나타내는 부분이다. (S112)에서는 제어장치(70)는 (S108)에서 통합된 삼차원점군ㆍ휘도 데이터에 대해서, 가파르고 험한 부분에 해당하는 부위에 할당된 휘도값의 분포가 찰과흔에 해당하는지의 여부를 판정한다. 구체적으로는, 제어장치(70)는 가파르고 험한 부분에 해당하는 부위에 있어서, 찰과흔의 기준이 되는 휘도의 임계값을 넘는 점이 소정의 치수 범위를 넘어서 연속해서 분포되고 있는 것을 조건으로, 찰과흔이라고 판정한다.
가파르고 험한 부분에 해당하는 휘도값의 분포가 찰과흔에 해당하지 않는 경우((S112): NO), 제어장치(70)는 처리를 (S116)으로 이동한다. 한편, 가파르고 험한 부분에 해당하는 휘도값의 분포가 찰과흔에 해당하는 경우((S112): YES), 제어장치(70)는 처리를 (S114)에 이동한다. (S114)에서는 프레스 기계(2)의 금형이 열화하고 있는 것을 경고하는 취지의 정보를, 소정의 출력처(예를 들면, 표시장치나 기록장치 등)에 출력한다.
다음 (S116)에서는 제어장치(70)는 (S108)에서 통합된 삼차원점군ㆍ휘도 데이터로부터, 표준 게이지(40a, 40b)에 해당하는 삼차원점군의 데이터를 추출한다. 그리고 제어장치(70)는 추출된 삼차원점군 데이터를 사용해서 삼차원 화상계측의 정밀도를 평가한다. 구체적으로는, 제어장치(70)는 표준 게이지(40a, 40b)에 해당하는 삼차원점군으로 나타내는 삼차원 표면형상과, 주어진 교정 데이터로 나타내는 삼차원 표면형상을 대조한다. 그리고 제어장치(70)는 표준 게이지(40a, 40b)의 삼차원 표면형상과 교정 데이터의 삼차원 표면형상과의 일치 정도에 따라서 계측의 정밀도를 평가한다. (S115)에서의 정밀도 평가에 사용되는 교정 데이터는 화상의 촬상이 적정하게 실시되었을 때의 표준 게이지(40a, 40b)의 기준 삼차원 표면형상을 나타내는 데이터이다. 본 실시형태에서는 구성 데이터는 제어장치(70)의 기억장치(73) 등에 미리 수용되어 있다.
(S118)에서는 제어장치(70)는 (S116)에서 평가된 정밀도가 계측의 정밀도에 관한 소정의 허용 범위내 인지의 여부에 따라서 처리를 분기한다. 평가된 정밀도가 허용 범위를 일탈하고 있는 경우((S118): NO), 제어장치(70)는 처리를 (S120)으로 이동한다. (S120)에서는 제어장치(70)는 워크(100)에 대한 검사의 재시도를 지시하는 취지의 정보를, 소정의 출력처(예를 들면, 표시장치나 기록장치 등)에 출력한다.
한편, 평가된 정밀도가 허용 범위 내라고 판정되었을 경우((S118): NO), 제어장치(70)는 처리를 (S122)로 이동한다. (S122)에서는 제어장치(70)는 (S108)에서 통합된 삼차원점군ㆍ휘도 데이터로 나타내는 검사대상의 삼차원 표면형상과, 당해 검사 대상으로 대응하는 기준형상 데이터로 나타내는 삼차원 표면형상을 대조하고, 성형 불량장소의 후보가 될 수 있는 이형점을 특정한다. 구체적으로는, 제어장치(70)는 검사대상의 삼차원 표면형상과, 기준형상 데이터의 삼차원 표면형상을 비교하고, 검사대상의 형상 동이성(同異性)을 나타내는 편차값 분포도를 작성한다. 그리고 제어장치(70)는 작성한 편차값 분포도에서 성형 양부에 관한 허용치를 넘는 이형점을 불량 요소점으로서 검출한다.
(S124)에서는 제어장치(70)는 (S122)에서 검출된 불량 요소점을 선별한다. 구체적으로는, 제어장치(70)는 (S122)에서 검출된 불량 요소점 중에서, 복수 점(예를 들면, 3점 이상) 연속하는 부분만을 성형 불량장소의 후보로서 남긴다. 한편, 제어장치(70)는 기타 흩어져 있는 불량 요소점을 제거한다. 또, 제어장치(70)는 선별된 성형 불량장소의 후보 치수를 산출한다. 여기에서 말하는 치수란 예를 들면, 성형 불량장소의 후보가 이루는 형상의 길이나, 깊이 또는 높이를 포함한다. (S126)에서는, 제어장치(70)는 (S124)에서 선별된 성형 불량장소의 후보가 이루는 형상의 치수가 이루는 성형 불량장소에 관한 판정 기준값 이상인지의 여부를 판정한다.
이 (S126)에서는 계측 처치부(71)가 검사 대상물인 워크(100)에 대응하는 1종류의 판정 기준값을 사용해서 판정을 실시할 수도 있다. 혹은, 계측 처치부(71)가 워크(100)의 복수 부위 각각에 설정된 복수 종류의 판정 기준값을 사용해서 판정을 실시할 수도 있다. 복수 종류의 판정 기준값을 사용하는 경우, 계측 처리부(71)는 성형 불량장소의 후보가 존재하는 부위에 해당하는 판정 기준값을 판정에 사용한다.
성형 불량장소의 후보 치수가 판정 기준값 미만인 경우((S126): NO), 제어장치(70)는 처리를 (S128)로 이동한다. (S128)에서는, 제어장치(70)는 (S126)에서 판정된 워크(100)를 합격품으로서 반송한다. 구체적으로는, 제1 촬상부에 의해 촬상된 워크(100)에 대해서 합격품으로 판정했을 경우에는, 제어장치(70)는 워크 꺼냄용 로봇(10)을 다음과 같이 제어한다. 즉, 제어장치(70)는 워크 꺼냄용 로봇(10)이 보유하고 있는 워크(100)를 반송용 컨베이어(3)로 건네 주는 동작을 워크 꺼냄용 로봇(10)에게 실행시킨다. 또, 제2 촬상부에 의해 촬상된 워크(100)에 대해서 합격품으로 판정했을 경우에는, 제어장치(70)는 반송용 컨베이어(3)를 제어해서 당해 워크(100)를 전방으로 반송한다.
한편, (S126)에서, 성형 불량장소의 후보 치수가 판정 기준값 이상으로 판정되었을 경우((S126): YES), 제어장치(70)는 처리를 (S130)으로 이동한다. (S130)에서는, 제어장치(70)는 (S126)에서 판정 기준값 이상으로 판정된 성형 불량장소의 후보를, 성형 불량장소로서 확정한다. 그리고 제어장치(70)는 확정한 성형 불량장소에 관한 정보를 소정의 기록처(예를 들면, 기억장치(73))에 기록한다.
구체적으로는 제어장치(70)는 당해 워크(100)로부터 계측된 삼차원점군 데이터나, 성형 불량장소를 구성하는 형상의 치수, 성형 불량장소의 발생 위치, 성형 불량장소가 검출된 시각, 당해 워크(100)를 식별하는 식별번호를 포함하는 정보를 기록한다. 본 실시형태에서는 성형 불량장소의 발생 위치를 나타내는 정보로서, 기준형상 데이터에 설정된 구획(도 4 참조)마다 부여된 구획번호를 사용한다. 즉, 제어장치(70)는 검출된 성형 불량장소가 존재하는 위치에 해당하는 구획번호를, 성형 불량장소의 발생 위치로서 기록한다. 또, 제어장치(70)는 성형 불량장소를 구성하는 삼차원점군으로 나타내는 삼차원 표면형상으로 셰이딩 처리를 실시해서 입체감을 부여한 화상을 작성하고, 그 작성한 화상을 보존한다.
(S132)에서는 제어장치(70)는 성형 불량장소가 검출된 워크(100)를 불량품으로서 배출한다. 구체적으로는, 제1 촬상부에 의해 촬상된 워크(100)에 대해서 성형 불량장소가 검출되었을 경우에는, 제어장치(70)는 워크 꺼냄용 로봇(10)을 다음과 같이 제어한다. 즉, 제어장치(70)는 워크 꺼냄용 로봇(10)이 보유하고 있는 워크(100)를 불량품 배출용 컨베이어(4)로 건네 주는 동작을 실행시킨다. 또, 제2 촬상부에 의해 촬상된 워크(100)에 대해서 성형 불량장소가 검출되었을 경우에는, 제어장치(70)는 불량 워크 배출기(50)를 다음과 같이 제어한다. 즉, 제어장치(70)는 반송용 컨베이어(3)로부터 당해 워크(100)를 들어 올리고, 들어 올린 워크(100)를 불량품 배출용 컨베이어(4)로 운반해서 건네 주는 동작을 워크 꺼냄용 로봇(10)에게 실행시킨다.
그 후에 제어장치(70)는 불량품 배출용 컨베이어(4)를 동작시켜서 불량품의 워크(100)를 전방으로 반송한다. 그리고 불량품 배출용 컨베이어(4)로 반송되는 워크(100)가 마킹 로봇(60)의 작업 에리어 내에 도달했을 때에, 제어장치(70)는 마킹 로봇(60)을 제어해서 당해 워크(100)의 표면에 성형 불량장소에 관한 정보를 인자한다. 마킹 로봇(60)이 워크(100)에 인자하는 정보에는 예를 들면, 성형 불량장소의 위치를 나타내는 구획번호나, 성형 불량장소의 종류 등을 나타내는 정보가 포함될 수 있다. 성형불량의 종류에 대해서는 제어장치(70)가 성형 불량장소의 치수나 형상에 의거하여 예를 들면, 스크래치, 타흔(맞은 자국), 부분 결락, 버(burr), 균열, 드로스, 도금 벗겨짐 등을 판별하도록 구성하는 것이 생각된다.
[효과]
실시형태의 검사 시스템(1)에 의하면, 이하의 효과를 얻을 수 있다.
검사 시스템(1)에 의하면, 삼차원 화상계측을 이용해서 워크(100)에서의 성형 불량장소의 유무를 고속으로, 동시에 고정밀도로 검사할 수 있다. 구체적으로는, 검사 시스템(1)은 삼차원 화상계측의 수법에 의해 계측된 워크(100)의 삼차원 표면형상과, 워크(100)의 양품 삼차원 표면형상을 나타내는 기준형상 데이터와 대조하는 것에 의해, 워크(100)에 있는 성형 불량장소의 후보를 검출할 수 있다.
그리고 검사 시스템(1)은 검출된 성형 불량장소의 후보 가운데, 그 치수가 판정 기준값 이상이 되는 것만을 성형 불량장소로 특정한다. 삼차원 화상계측에서는 예를 들면, 촬상되는 화상의 해상도가 충분하게 높은 경우, 제품으로서 결함이 될 수 없은 것과 같은 미소한 스크래치조차도 검출할 수 있다. 그래서, 판정 기준값을 만족시키지 않는 미소한 스크래치에 대해서는 성형 불량장소의 대상에서 제외함으로써, 제품으로서 결함이 될 수 있는 크기의 성형 불량장소만을 정확하게 검출할 수 있다.
또, 검사 시스템(1)에서, 판정 기준값을 사용자의 임의에 의해 설정 및 변경 가능하게 구성함으로써, 제품에 요구되는 품질에 따라서 성형 불량장소의 판정 기준값을 자유롭게 변경할 수 있다. 또, 기준형상 데이터로 나타내는 삼차원 표면형상이 복수 개 영역으로 분할된 개개의 영역마다 판정 기준값을 개별적으로 설정 가능하게 구성함으로써, 워크(100)의 부위마다의 형상에 따라서 성형 불량장소를 정확하게 검출할 수 있다.
또, 검사 시스템(1)에서, 기준형상 데이터로 나타내는 삼차원 표면형상을 소정의 간격으로 구분한 구획번호를 사용해서 성형 불량장소의 위치를 나타낼 수 있다. 또, 마킹 로봇(60)에 의해, 성형 불량장소의 종류나 위치를 나타내는 마크를 워크(100)의 표면에 직접 인자할 수 있다. 이렇게 함으로써, 성형 불량장소가 검출된 워크(100)를 실제로 볼 때에 성형 불량장소의 장소을 용이하게 파악할 수 있다.
또, 검사 시스템(1)에서, 성형 불량장소와는 별도로, 가파르고 험한 형상으로 가공된 부분에서의 찰과흔을 검출함으로써, 금형의 열화에 관한 경고를 출력할 수 있다. 이러한 구성에 의하면, 금형의 수정 시기를 정확하게 판단할 수 있다.
또, 검사 시스템(1)에 있어서, 제1 촬상부(20) 및 제2 촬상부(30) 각각의 촬상 범위 내에 표준 게이지(40a, 40b)를 배치하는 것에 의해, 개개의 워크(100)에 대한 검사마다, 그 검사결과의 정당성을 보증할 수 있다.
또, 검사 시스템(1)에서, 워크(100)의 형상이나 규모에 따라서, 제1 촬상부(20) 및 제2 촬상부(30)를 구성하는 카메라 유닛의 수를 단수로 하거나, 복수로 할 수 있다. 한 번의 촬상에 있어서, 복수 대의 카메라 유닛을 사용함으로써, 1대의 카메라 유닛으로는 전체를 전부 촬상할 수 없는 대형의 성형품이나, 표리가 있는 성형품, 사각이 있는 복잡한 형상의 성형품 등에 대해서 한 번에 검사를 실시할 수 있어, 검사의 고속화를 실현된다.
또, 검사 시스템(1)에서, 제조라인을 구성하는 반송용 컨베이어(3) 및 불량품 배출용 컨베이어(4)와 연휴해서 프레스 기계(2)로부터 나온 워크(100)가 다음 제조공정으로 반송되어 가는 흐름을 방해하지 않고 워크(100)에 대한 검사를 실시할 수 있다. 이것에 의해, 성형품의 생산성의 향상과 검사의 고속화를 양립시킬 수 있고, 대량생산의 성형품에 대한 전수 검사도 실현시킬 수 있다.
여기에서, 문언의 대응 관계를 설명한다. 제1 촬상부(20)의 카메라 유닛(21a, 21b)이 제1 조사부 및 제1 촬상부의 1예에 상당한다. 제2 촬상부(30)의 카메라 유닛(31a, 31b)이 제2 조사부 및 제2 촬상부의 1예에 상당한다. 제어장치(70)가 실행하는 (S104), (S106), 및 (S108)의 처리가, 계측부 및 광택 계측부로서의 처리의 1예에 상당한다. 제어장치(70)가 실행하는 (S122) 및 (S124)의 처리가, 비교 검출부로서의 처리의 1예에 상당한다. 제어장치(70)가 실행하는 (S126)의 처리가 불량 특정부로서의 처리의 1예에 상당한다.
제어장치(70)가 실행하는 (S130) 및 (S132)의 처리, 및 마킹 로봇(60)이, 출력부의 1예에 상당한다. 제어장치(70)가 실행하는 (S110) 및 (S112)의 처리가, 찰과흔 특정부로서의 처리의 1예에 상당한다. 표준 게이지(40a, 40b)가 표준기의 1예에 상당한다. 제어장치(70)가 실행하는 (S116) 및 (S118)의 처리가, 판정부로서의 처리의 1예에 상당한다. 워크 꺼냄용 로봇(10)이 로봇 암의 1예에 상당한다.
[ 변형예 ]
상기 각실시형태에서의 1개의 구성요소가 가지는 기능을 복수의 구성요소로 분담시키거나, 복수의 구성요소가 가지는 기능을 1개의 구성요소로 발휘시키거나 할 수도 있다. 또, 상기 각 실시형태의 구성 일부를 생략할 수도 있다. 또, 상기 각 실시형태의 구성의 적어도 일부를 다른 상기 실시형태의 구성에 대하여 부가, 치환할 수도 있다. 또, 청구범위에 기재된 문언으로부터 특정되는 기술사상에 포함되는 모든 태양이 본 개시의 실시형태이다.
상기한 제어장치(70)로서 컴퓨터를 기능시키기 위한 프로그램, 이 프로그램을 기록한 반도체 메모리 등의 실체적인 기억매체, 성형품의 검사방법 등이 여러 형태로 본 개시를 실현시킬 수도 있다.
상술한 검사 시스템(1)에서는 성형품에서의 스크래치 등의 성형 불량장소를 검사의 대상으로 삼는 사례에 대해서 설명했다. 상술한 검사 시스템(1)의 기능에 부가해서 추가로, 성형품의 치수에 관한 검사를 실시하는 기능을 겸비하도록 구성할 수도 있다. 여기에서 말하는 치수에 관한 검사란 기하학 형상의 임의점 사이의 거리 등을 계측하는 것에 의해, 예를 들면, 성형품에 형성된 구멍과 구멍과의 거리나 성형품의 단부로부터 구멍까지의 거리와 같은, 성형품에서의 가공 부위의 치수 정확성을 검사하는 것이다. 이러한 치수에 관한 검사는 종래의 비접촉 삼차원 측정기에서 표준적인 기능이다.
상기 실시형태의 검사 시스템(1)에, 성형품의 치수에 관한 검사를 실시하는 기능을 추가로 부여하는 경우, 다음과 같이 구성할 수 있다. 즉, (1) 성형 불량장소의 검사만을 실시하는 모드, (2) 치수의 검사만을 실시하는 모드, 및 (3) 성형 불량장소의 검사 및 치수의 검사를 양쪽 동시에 실시하는 모드의, 3종류의 검사방법을 사용자가 임의로 선택적으로 실행 가능하게 구성한다.
상술한 검사 시스템(1)에서는 프레스가공에 의해 제조되는 성형품을 대상으로 검사를 실시하는 사례에 대해서 설명했다. 본 개시는 프레스 가공에 한정하지 않고, 사출 성형이나, 단조, 주조, 압출성형 등의 다양한 가공방법에 의한 성형품에 적용 가능하다.
1: 검사 시스템 2: 프레스 기계
3: 반송용 컨베이어 4: 불량품 배출용 컨베이어
5: 지주 6: 프레임 가대
10: 워크 꺼냄용 로봇 20: 제1 촬상부
21a, 21b: 카메라 유닛 22: 조사기
23: 카메라 30: 제2 촬상부
31a, 31b: 카메라 유닛 40a, 40b: 표준 게이지
50: 불량 워크 배출기 60: 마킹 로봇
70: 제어장치 71: 계측 처리부
72: 시스템 통합 관리부 73: 기억장치
100: 워크

Claims (9)

  1. 소정의 촬상 범위에 특정한 광학 패턴을 투영하도록 구성된 적어도 1개의 조사부와,
    상기 촬상 범위 내에 있는 검사 대상물에 대하여 투영된 광학 패턴을 포함하는 화상을 촬상하도록 구성된 적어도 1개의 촬상부와,
    상기 촬상부에 의해 촬상된 화상에 포함되는 광학 패턴에 의거하여 상기 검사 대상물의 삼차원 표면형상을 계측하도록 구성된 계측부와,
    상기 계측부에 의해 계측된 삼차원 표면형상과, 상기 검사 대상물에 대응하는 양품의 삼차원 표면형상을 나타내는 주어진 기준형상 데이터를 대조하고, 상기 검사 대상물의 삼차원 표면형상에서 상기 양품의 삼차원 표면형상과는 다른 형상을 나타낸다고 인식된 장소를, 당해 형상의 치수와 함께 성형 불량장소의 후보로서 검출하도록 구성된 비교 검출부와,
    상기 비교 검출부에 의해 검출된 성형 불량장소의 후보 가운데, 그 형상의 치수가 성형 불량장소의 기준을 나타내는 소정의 판정 기준값 이상인 것에 대해서만, 성형 불량장소로 특정하도록 구성된 불량 특정부를 구비하는 검사장치.
  2. 제1 항에 있어서,
    상기 판정 기준값을 사용자의 임의에 의해 설정 및 변경 가능하게 구성되어 있고,
    상기 불량 특정부는 사용자의 임의에 의해 설정 및 변경된 판정 기준값을 사용해서 성형 불량장소를 특정하도록 구성되어 있는 검사장치.
  3. 제1 항 또는 제2 항에 있어서,
    상기 기준형상 데이터로 나타내는 삼차원 표면형상이 복수 개 영역으로 분할된 개개의 영역마다 상기 판정 기준값을 개별적으로 설정 가능하게 구성되어 있고,
    상기 불량 특정부는 상기 비교 검출부에 의해 검출된 성형 불량장소의 후보 위치에 해당하는 영역의 판정 기준값을 사용해서 성형 불량장소를 특정하도록 구성되어 있는 검사장치.
  4. 제1 항 내지 제3 항 중 어느 한 항에 있어서,
    상기 기준형상 데이터로 나타내는 삼차원 표면형상을 소정의 간격마다 구분된 구획마다 부여된 구획번호를 나타내는 정보를 구비하고,
    상기 불량 특정부에 의해 특정된 성형 불량장소를 나타내는 정보를, 당해 성형 불량장소의 위치에 해당하는 구획의 구획번호에 대응시켜서 출력하도록 구성된 출력부를 추가로 구비하는 검사장치.
  5. 제4 항에 있어서,
    상기 출력부는 상기 불량 특정부에 의해 특정된 성형 불량장소의 내용과, 그 당해 성형 불량장소의 위치에 해당하는 구획번호를 나타내는 마크를, 상기 검사 대상물에 붙이도록 구성되어 있는 검사장치.
  6. 제1 항 내지 제5 항 중 어느 한 항에 있어서,
    상기 촬상장치에 의해 촬상된 화상으로부터, 상기 검사 대상물의 표면의 광택의 정도를 계측하도록 구성된 광택 계측부와,
    상기 계측부에 의해 계측된 삼차원 표면형상과, 상기 광택 계측부에 의해 계측된 광택의 정도의 분포에 의거하고, 찰과흔에 관한 소정의 판정기준을 충족시키는 장소를 찰과흔으로서 특정하도록 구성된 찰과흔 특정부와,
    상기 찰과흔 특정부에 의해 특정된 찰과흔에 관한 경보를 출력하도록 구성된 경보 출력부를 추가로 구비하는 검사장치.
  7. 제1 항 내지 제6 항 중 어느 한 항에 있어서,
    상기 촬상 범위 내에 배치되는 적어도 1개의 표준기를 추가로 구비하고,
    상기 계측부는 상기 촬상장치에 의해 상기 검사 대상물과 함께 촬상된 상기 표준기의 삼차원 표면형상도 계측하도록 구성되어 있고,
    상기 계측부에 의해 계측된 상기 표준기의 삼차원 표면형상과, 상기 표준기에 대응하는 정상의 삼차원 표면형상을 나타내는 주어진 교정 데이터를 대조하고, 상기 표준기의 삼차원 표면형상이 상기 교정 데이터에 적합한지의 여부에 따라서, 상기 검사 대상물에 관한 검사결과의 시비를 판정하도록 구성된 판정부를 추가로 구비하는 검사장치.
  8. 제1 항 내지 제7 항 중 어느 한 항에 있어서,
    상기 검사 대상물의 다른 복수의 부위를 각각 촬상하도록 구성된 복수의 상기 촬상부를 구비하고,
    상기 계측부는 복수의 상기 촬상장치 각각에 촬상된 화상에 대해서, 상기 부위마다의 삼차원 표면형상을 계측하도록 구성되어 있고,
    상기 비교 검출부는 상기 계측부에 의해 계측된 상기 부위마다의 삼차원 표면형상과, 상기 부위마다 준비된 상기 기준형상 데이터를 대조하고, 상기 성형 불량장소의 후보를 검출하도록 구성되어 있는 검사장치.
  9. 제8 항에 있어서,
    전단의 제조공정을 거친 검사 대상물을 잡아서 운반하고, 상기 검사 대상물을 실어서 다음 제조공정으로 반송하는 반송장치에 건네 주도록 구성된 로봇 암과,
    상기 검사 대상물의 표리를 구성하는 2개의 면 가운데, 제1 면에 대하여 상기 광학 패턴을 투영하도록 구성된 제1 조사부와,
    상기 제1 면에 투영된 광학 패턴을 포함하는 화상을 촬상하도록 구성된 제1 촬상부와,
    상기 검사 대상물의 표리를 구성하는 2개의 면 가운데, 제2 면에 대하여 상기 광학 패턴을 투영하도록 구성된 제2 조사부와,
    상기 제2 면에 투영된 광학 패턴을 포함하는 화상을 촬상하도록 구성된 제2 촬상부를 구비하고,
    상기 제1 조사부 및 상기 제1 촬상부는 상기 로봇 암에 잡혀서 운반되고 있을 때의 상기 검사 대상물에 대하여 상기 광학 패턴의 투영 및 촬상이 가능한 위치에 배치되어 있고,
    상기 로봇 암은 상기 검사 대상물을 잡아서 상기 제1 면을 상기 제1 조사부 및 상기 제1 촬상부를 향하는 동작을 거쳐서, 상기 검사 대상물을 상기 반송장치에 상기 제2 면을 상향으로 해서 싣도록 구성되어 있고,
    상기 제2 조사부 및 상기 제2 촬상부는 상기 반송장치 위에 올려진 상기 검사 대상물의 제2 면에 대하여 상기 광학 패턴의 투영 및 촬상이 가능한 위치에 배치되어 있는 검사장치.
KR1020207001109A 2017-06-16 2018-04-16 검사장치 KR20200028940A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2017-118775 2017-06-16
JP2017118775A JP6408654B1 (ja) 2017-06-16 2017-06-16 検査装置
PCT/JP2018/015712 WO2018230134A1 (ja) 2017-06-16 2018-04-16 検査装置

Publications (1)

Publication Number Publication Date
KR20200028940A true KR20200028940A (ko) 2020-03-17

Family

ID=63855311

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207001109A KR20200028940A (ko) 2017-06-16 2018-04-16 검사장치

Country Status (6)

Country Link
US (1) US20210150695A1 (ko)
EP (1) EP3640584A4 (ko)
JP (1) JP6408654B1 (ko)
KR (1) KR20200028940A (ko)
CN (1) CN111886474A (ko)
WO (1) WO2018230134A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102640549B1 (ko) * 2023-08-17 2024-02-27 (주)쎄미콤 3d스캐너를 이용한 프로파일 온도센서의 불량검사방법

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194065A1 (ja) * 2018-04-02 2019-10-10 日本電産株式会社 画像処理装置、画像処理方法、外観検査システムおよび外観検査方法
KR102206753B1 (ko) * 2019-01-24 2021-01-22 주식회사 수아랩 결함 검사 장치
CN112330594B (zh) * 2020-10-13 2024-01-30 浙江华睿科技股份有限公司 一种纸筒缺陷检测方法、装置、电子设备及存储介质
CN113849000B (zh) * 2021-09-15 2024-03-29 山东泰开智能配电有限公司 高压隔离开关镀银件镀层厚度自动检测系统的控制方法
WO2023106013A1 (ja) * 2021-12-07 2023-06-15 Jfeスチール株式会社 プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
WO2023139900A1 (ja) * 2022-01-21 2023-07-27 Jfeスチール株式会社 プレス成形解析の解析精度評価方法
JP7416106B2 (ja) 2022-01-21 2024-01-17 Jfeスチール株式会社 プレス成形解析の解析精度評価方法
FR3133924A1 (fr) * 2022-03-24 2023-09-29 Psa Automobiles Sa Procede de detection et de marquage de defauts sur une piece et installation pour la mise en œuvre du procede
JP7274026B1 (ja) 2022-07-05 2023-05-15 株式会社ジーテクト プレス機
JP7343015B1 (ja) * 2022-08-29 2023-09-12 Jfeスチール株式会社 プレス成形品の製造方法
CN116007526B (zh) * 2023-03-27 2023-06-23 西安航天动力研究所 一种膜片刻痕深度自动测量系统及测量方法
CN118009889A (zh) * 2024-04-09 2024-05-10 常州铭赛机器人科技股份有限公司 工件点胶槽位置的测量方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114309A (ja) 2013-12-16 2015-06-22 株式会社オプトン 計測装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180933A (ja) * 1982-04-16 1983-10-22 Hitachi Ltd パタ−ン欠陥検査装置
US6462813B1 (en) * 1996-04-12 2002-10-08 Perceptron, Inc. Surface defect inspection system and method
US6956963B2 (en) * 1998-07-08 2005-10-18 Ismeca Europe Semiconductor Sa Imaging for a machine-vision system
JP2008064595A (ja) * 2006-09-07 2008-03-21 Olympus Corp 基板検査装置
JP2008267851A (ja) * 2007-04-17 2008-11-06 Ushio Inc パターン検査装置およびパターン検査方法
JP5693834B2 (ja) * 2009-09-17 2015-04-01 アルパイン株式会社 音声認識装置及び音声認識方法
CN102822666A (zh) * 2009-11-30 2012-12-12 株式会社尼康 检查装置、三维形状测定装置、构造物的制造方法
JP2013024852A (ja) * 2011-07-25 2013-02-04 Muramatsu:Kk 成形品画像処理検査装置
JP5934546B2 (ja) * 2012-03-29 2016-06-15 株式会社Screenホールディングス 描画装置および描画方法
JP6177017B2 (ja) * 2013-06-12 2017-08-09 住友化学株式会社 欠陥検査システム
JP6371044B2 (ja) * 2013-08-31 2018-08-08 国立大学法人豊橋技術科学大学 表面欠陥検査装置および表面欠陥検査方法
JP6382074B2 (ja) * 2014-11-05 2018-08-29 古河電気工業株式会社 外観検査装置、外観検査システム、及び外観検査方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114309A (ja) 2013-12-16 2015-06-22 株式会社オプトン 計測装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102640549B1 (ko) * 2023-08-17 2024-02-27 (주)쎄미콤 3d스캐너를 이용한 프로파일 온도센서의 불량검사방법

Also Published As

Publication number Publication date
JP2019002834A (ja) 2019-01-10
EP3640584A1 (en) 2020-04-22
WO2018230134A1 (ja) 2018-12-20
CN111886474A (zh) 2020-11-03
EP3640584A4 (en) 2021-03-10
JP6408654B1 (ja) 2018-10-17
US20210150695A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
KR20200028940A (ko) 검사장치
KR102090856B1 (ko) 물질 도포기
EP3234861B1 (en) Screening of electronic components for detection of counterfeit articles using automated inspection system
KR102178903B1 (ko) 외관 검사 장치, 및 외관 검사 장치의 조명 조건 설정 방법
CN104508423B (zh) 用于被检查对象的表面的检查的方法和装置
KR100894684B1 (ko) 영상 측정장치 및 레이저 깊이 측정장치를 이용한 금속판재표면결함 검사 장치 및 금속판재 표면결함 검사 방법
CN113196337B (zh) 图像处理装置、作业机器人、基板检查装置及检体检查装置
US20080175466A1 (en) Inspection apparatus and inspection method
US10861179B2 (en) Image inspecting apparatus, image inspecting method and image inspecting program
JP2019196964A (ja) 分類器の学習支援システム、学習データの収集方法、検査システム
JP6285037B2 (ja) 部品の製造方法及びそれを用いた製造装置、容積測定方法、形状測定方法
CN110608681A (zh) 借助于激发荧光进行表面测量
US20100039510A1 (en) Method and DEVICE for PRINT INSPECTION
JP2015114226A (ja) 外観検査装置及び外観検査方法
US10228239B2 (en) Measuring apparatus, measuring method, and article manufacturing method
JP2019039798A (ja) 金属帯表面の検査方法および検査装置
JP2014009996A (ja) 品質検査方法及び品質検査装置
JP2022105581A (ja) 成形不良の検出方法
JP7268341B2 (ja) 検査性能診断装置、検査性能診断方法、検査性能診断装置用のプログラム、および、検査性能診断システム
JP3545127B2 (ja) 把手付ボトルの検査方法
JP4420796B2 (ja) 容器の外観検査方法
JP2021018064A (ja) 外観検査方法及び外観検査装置
US20200070351A1 (en) Detection system
JP6358884B2 (ja) 検査装置
KR20240028111A (ko) 표면 품질 자동화 측정을 위한 머신비전 시스템