KR20190129842A - 전기 화학 소자, 전기 화학 모듈, 전기 화학 장치, 에너지 시스템, 고체 산화물형 연료 전지, 및 전기 화학 소자의 제조 방법 - Google Patents

전기 화학 소자, 전기 화학 모듈, 전기 화학 장치, 에너지 시스템, 고체 산화물형 연료 전지, 및 전기 화학 소자의 제조 방법 Download PDF

Info

Publication number
KR20190129842A
KR20190129842A KR1020197024358A KR20197024358A KR20190129842A KR 20190129842 A KR20190129842 A KR 20190129842A KR 1020197024358 A KR1020197024358 A KR 1020197024358A KR 20197024358 A KR20197024358 A KR 20197024358A KR 20190129842 A KR20190129842 A KR 20190129842A
Authority
KR
South Korea
Prior art keywords
electrochemical
mass
electrode layer
layer
metal support
Prior art date
Application number
KR1020197024358A
Other languages
English (en)
Inventor
미쓰아키 에치고
히사오 오니시
Original Assignee
오사까 가스 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오사까 가스 가부시키가이샤 filed Critical 오사까 가스 가부시키가이샤
Publication of KR20190129842A publication Critical patent/KR20190129842A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • C25B1/10
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B9/18
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)

Abstract

내구성과 고성능을 양립하고, 또한 신뢰성이 우수한 전기 화학 소자 등을 제공한다. 전기 화학 소자는 금속 지지체와, 금속 지지체 위에 형성된 전극층을 가지고, 금속 지지체가, Ti를 0.15질량% 이상 1.0질량% 이하 함유하는 Fe-Cr계 합금, Zr을 0.15질량% 이상 1.0질량% 이하 함유하는 Fe-Cr계 합금, Ti 및 Zr을 함유하고 Ti와 Zr의 합계의 함유량이 0.15질량% 이상 1.0질량% 이하인 Fe-Cr계 합금, 중 어느 하나이다.

Description

전기 화학 소자, 전기 화학 모듈, 전기 화학 장치, 에너지 시스템, 고체 산화물형 연료 전지, 및 전기 화학 소자의 제조 방법
본 발명은, 금속 지지체와 전극층을 가지는 전기 화학 소자 등에 관한 것이다.
종래의 금속지지형의 고체 산화물형 연료 전지(SOFC)에서는, 그 금속지지 기판으로서, SOFC의 전극 재료나 전해질 재료 등과 열팽창계수가 유사한 Crofer22APU와 같은 Fe-Cr계 합금이 사용되고 있었다.
I. Antepara, et al. , "Electrochemical Behavior of Metal-Supported SOFCs Under High Fuel Utilization and Their Durability", Journal of Fuel Cell Science and Technology, APRIL(2012), Vol.9/021009-1∼8
그러나, 선행 기술에 나타낸 바와 같이, 종래의 Crofer22APU와 같은 금속 기판을 사용한 금속지지형S OFC에서는, 고성능을 얻는 조건(전류밀도를 향상시킨 조건, 연료사용율을 향상시킨 조건)에서는 내구성을 확보하는 것이 곤란한 과제가 있었다.
그리고, 전술한 SOFC과, 물을 전기분해에 의해 수소를 생성하는 고체 산화물형 전해 셀(이하 「SOEC」라고 함)과, 고체 산화물을 사용한 산소 센서 등은, 기본 구조가 공통된다. 즉, 금속 기판과 전극층 및 전해질층을 가지는 전기 화학 소자가, SOFC와 SOEC과 산소 센서에 사용할 수 있다. 그리고, 전술한 과제는, 전술한 전기 화학 소자, SOFC, SOEC 및 산소 센서에 공통적으로 존재한다.
본 발명은 전술한 과제를 해결하기 위하여 이루어진 것이며, 그 목적은, 내구성과 고성능을 양립하고, 또한 신뢰성이 우수한 전기 화학 소자 등을 제공하는 것에 있다.
상기 목적을 달성하기 위한 전기 화학 소자의 특징적 구성은 금속 지지체와, 상기 금속 지지체 위에 형성된 전극층을 가지고, 상기 금속 지지체가, Ti를 0.15질량% 이상 1.0질량% 이하 함유하는 Fe-Cr계 합금, Zr을 0.15질량% 이상 1.0질량% 이하 함유하는 Fe-Cr계 합금, Ti 및 Zr을 함유하고 Ti와 Zr의 합계의 함유량이 0.15질량% 이상 1.0질량% 이하인 Fe-Cr계 합금, 중 어느 하나인 점에 있다.
Ti와 Zr은 강재(鋼材) 중에서 탄소와 반응하여 안정적인 탄화물을 형성하기 쉽다. 상기한 특징적 구성에 의하면, 금속 지지체가, Ti를 0.15질량% 이상 1.0질량% 이하 함유하는 Fe-Cr계 합금, Zr을 0.15질량% 이상 1.0질량% 이하 함유하는 Fe-Cr계 합금, Ti 및 Zr을 함유하고 Ti와 Zr의 합계의 함유량이 0.15질량% 이상 1.0질량% 이하인 Fe-Cr계 합금, 중 어느 하나이므로, Fe-Cr계 합금의 내산화성과 고온 강도를 향상시키는 효과가 얻어지므로, 고온에서 장시간 사용한 경우에도 금속 지지체로부터의 Cr의 휘발을 억제할 수 있고, 내구성이 우수한 전기 화학 소자를 실현할 수 있다.
그리고 Ti의 함유량은, 0.20질량% 이상인 것이 바람직하고, 0.25질량% 이상이면 더욱 바람직하다. 이는, Ti나 Zr을 첨가하는 것에 의한 Fe-Cr계 합금의 내산화성과 고온 강도의 향상 효과를 보다 크게 할 수 있기 때문이다. 또한 Ti의 함유량은, 0.90질량% 이하인 것이 바람직하고, 0.80질량% 이하이면 더욱 바람직하다. 이는 Ti나 Zr을 첨가하는 것에 의한 Fe-Cr계 합금의 비용 상승을 보다 작게 할 수 있기 때문이다.
그리고 Zr의 함유량은, 0.20질량% 이상인 것이 바람직하고, 0.25질량% 이상이면 더욱 바람직하다. 이는, Ti나 Zr을 첨가하는 것에 의한 Fe-Cr계 합금의 내산화성과 고온 강도의 향상 효과를 보다 크게 할 수 있기 때문이다. 또한 Zr의 함유량은, 0.90질량% 이하인 것이 바람직하고, 0.80질량% 이하이면 더욱 바람직하다. 이는, Ti나 Zr을 첨가하는 것에 의한 Fe-Cr계 합금의 비용 상승을 보다 작게 할 수 있기 때문이다.
그리고 Ti와 Zr의 합계의 함유량은, 0.20질량% 이상인 것이 바람직하고, 0.25질량% 이상이면 더욱 바람직하다. 이는, Ti나 Zr을 첨가하는 것에 의한 Fe-Cr계 합금의 내산화성과 고온 강도의 향상 효과를 보다 크게 할 수 있기 때문이다. 또한 Ti와 Zr의 합계의 함유량은, 0.90질량% 이하인 것이 바람직하고, 0.80질량% 이하이면 더욱 바람직하다. 이는, Ti나 Zr을 첨가하는 것에 의한 Fe-Cr계 합금의 비용 상승을 보다 작게 할 수 있기 때문이다.
본 발명에 따른 전기 화학 소자가 다른 특징적 구성은, 상기 금속 지지체가 Cu를 0.10질량% 이상 1.0질량% 이하 함유하는 점에 있다.
Cu는 접촉 저항(전기 저항)을 저감하는 효과가 있다. 상기한 특징적 구성에 의하면, 금속 지지체가 Cu를 0.10질량% 이상 1.0질량% 이하 함유하므로, 전기 화학 소자로서의 전기적인 저항값을 낮게 억제하고, 고성능 전기 화학 소자를 실현할 수 있다.
그리고 Cu의 함유량은, 0.20질량% 이상이면 더욱 바람직하고, 0.30질량% 이상이면 더욱 바람직하다. 이는, Fe-Cr계 합금에 Cu를 첨가하는 것에 의한 접촉 저항 저감 효과를 보다 크게 할 수 있기 때문이다. 또한 Cu의 함유량은, 0.90질량% 이하이면 더욱 바람직하고, 0.70질량% 이하이면 더욱 바람직하다. 이는, Fe-Cr계 합금에 Cu를 첨가하는 것에 의한 비용 상승을 보다 작게 할 수 있기 때문이다.
본 발명에 따른 전기 화학 소자가 다른 특징적 구성은, 상기 금속 지지체가 Cr을 18질량% 이상 25질량% 이하 함유하는 점에 있다.
상기한 특징적 구성에 의하면, 예를 들면, SOFC의 전극층의 재료나 전해질층의 재료에 포함되는 지르코니아계 재료나 세리아계 재료의 열팽창계수와 Fe-Cr계 합금의 열팽창계수를 유사하게 할 수 있으므로, 전기 화학 소자를 고온에서 사용하는 경우나 히트 사이클을 실시하는 경우라도, 전극층이나 전해질층이 깨지거나 박리하는 것을 억제할 수 있고, 신뢰성이 높은 전기 화학 소자를 실현할 수 있다.
그리고, Cr의 함유량은, 20질량% 이상이면 보다 바람직하다. 이는, Fe-Cr계 합금의 열팽창계수를 지르코니아계 재료나 세리아계 재료의 열팽창계수와 보다 유사하게 할 수 있기 때문이다. 또한, Cr의 함유량의 상한값은, 23질량% 이하이면 보다 바람직하다. 이는, Fe-Cr계 합금의 비용 상승을 보다 작게 할 수 있기 때문이다.
본 발명에 따른 전기 화학 소자의 다른 특징적 구성은, 상기 금속 지지체의 한쪽 면에 상기 전극층이 형성되고, 상기 금속 지지체가 한쪽 면으로부터 다른쪽 면으로 관통하는 관통공을 가지고 있는 점에 있다.
상기한 특징적 구성에 의하면, 전극층에서 반응하는 가스 등을 금속 지지체의 다른쪽 면으로부터 원활하게 공급할 수 있으므로, 고성능 전기 화학 소자를 실현할 수 있다.
본 발명에 따른 전기 화학 소자의 다른 특징적 구성은, 상기 금속 지지체가 자성체인 점에 있다.
상기한 특징적 구성에 의하면, 금속 지지체 위에 전극층을 적층할 때, 금속 지지체를 자석을 사용하여 고정할 수 있으므로, 금속 지지체가 관통공을 가지고 있는 경우라도, 스크린 인쇄 등의 저비용의 방법을 사용하여 전해질층을 적층할 수 있으므로, 저비용의 전기 화학 소자를 실현할 수 있다.
본 발명에 따른 전기 화학 소자의 다른 특징적 구성은, 상기 금속 지지체의 표면의 일부 또는 전부가 금속 산화물막에 의해 피복되어 있는 점에 있다.
상기한 특징적 구성에 의하면, 금속 산화물 피막에 의해 금속 지지체로부터 Cr 등의 성분이 전극층에 확산하는 것을 억제할 수 있으므로, 전극층의 성능 저하를 억제하고, 전기 화학 소자의 성능을 높일 수 있다.
본 발명은, 전해질층과 대극 전극층을 가지고, 상기 전해질층이 상기 전극층 위에 배치되고, 상기 대극 전극층이 상기 전해질층 위에 배치되어 있는 전기 화학 소자에 바람직하게 적용할 수 있다.
본 발명에 따른 전기 화학 모듈의 특징적 구성은, 전술한 전기 화학 소자가 복수 집합된 상태로 배치되는 점에 있다.
상기한 특징적 구성에 의하면, 전술한 전기 화학 소자가 복수 집합된 상태로 배치되므로, 재료 비용과 가공 비용을 억제하면서, 콤팩트하며 고성능의, 강도와 신뢰성이 우수한 전기 화학 모듈을 얻을 수 있다.
본 발명에 따른 전기 화학 장치의 특징적 구성은, 전술한 전기 화학 모듈과 개질기를 적어도 가지고, 상기 전기 화학 모듈에 대하여 환원성 성분을 함유하는 연료 가스를 공급하는 연료 공급부를 가지는 점에 있다.
상기한 특징적 구성에 의하면, 전기 화학 모듈과 개질기를 가지고 전기 화학 모듈에 대하여 환원성 성분을 함유하는 연료 가스를 공급하는 연료 공급부를 가지므로, 도시가스 등의 기존의 원연료(原燃料) 공급 인프라스트럭쳐(infrastructure)를 사용하고, 내구성·신뢰성 및 성능이 우수한 전기 화학 모듈을 구비한 전기 화학 장치를 실현할 수 있다. 또한, 전기 화학 모듈로부터 배출되는 미이용의 연료 가스를 재활용하는 시스템을 구축하기 쉬워지므로, 고효율의 전기 화학 장치를 실현할 수 있다.
본 발명에 따른 전기 화학 장치의 특징적 구성은, 전술한 전기 화학 모듈과, 상기 전기 화학 모듈로부터 전력을 취출하는 인버터를 적어도 가지는 점에 있다.
상기한 특징적 구성에 의하면, 내구성·신뢰성 및 성능이 우수한 전기 화학 모듈로부터 얻어지는 전기 출력을, 인버터에 의해 승압하거나, 직류를 교류로 변환하거나 할 수 있으므로, 전기 화학 모듈로 얻어지는 전기 출력을 이용하기 쉬워지므로 바람직하다.
본 발명에 따른 에너지 시스템의 특징적 구성은, 전술한 전기 화학 장치와, 상기 전기 화학 장치로부터 배출되는 열을 재이용하는 배열(排熱) 이용부를 가지는 점에 있다.
상기한 특징적 구성에 의하면, 전기 화학 장치와, 전기 화학 장치로부터 배출되는 열을 재이용하는 배열 이용부를 가지므로, 내구성·신뢰성 및 성능이 우수하고, 또한 에너지 효율도 우수한 에너지 시스템을 실현할 수 있다. 그리고, 전기 화학 장치로부터 배출되는 미이용의 연료 가스의 연소열을 사용하여 발전하는 발전 시스템과 조합하여 에너지 효율이 우수한 하이브리드 시스템을 실현할 수도 있다.
본 발명에 따른 고체 산화물형 연료 전지의 특징적 구성은, 전술한 전기 화학 소자를 구비하고, 발전 반응을 발생시키는 점에 있다.
상기한 특징적 구성에 의하면, 높은 발전 성능을 발휘하면서, 금속지지형 전기 화학 소자의 열화를 억제하여 연료 전지의 성능을 장기간 유지하는 것이 가능하게 된다. 그리고, 정격 운전 시에 650℃ 이상의 온도 영역에서 운전 가능한 고체 산화물형 연료 전지이면, 도시가스 등의 탄화수소계 가스를 원연료로 하는 연료 전지 시스템에 있어서, 원연료를 수소로 변환할 때 필요로 하는 열을 연료 전지의 배열로 조달할 수 있는 시스템을 구축할 수 있어, 연료 전지 시스템의 발전 효율을 높일 수 있으므로, 보다 바람직하다. 또한, 정격 운전 시에 900℃ 이하의 온도 영역에서 운전되는 고체 산화물형 연료 전지이면, 금속지지형 전기 화학 소자로부터의 Cr 휘발의 억제 효과가 높아지므로 보다 바람직하고, 정격 운전 시에 850℃ 이하의 온도 영역에서 운전되는 고체 산화물형 연료 전지이면, Cr 휘발의 억제 효과를 더욱 높일 수 있으므로 더욱 바람직하다.
본 발명에 따른 전기 화학 소자의 제조 방법의 특징적 구성은, 금속 지지체와 전극층을 가지는 전기 화학 소자의 제조 방법으로서,
상기 금속 지지체가, Ti를 0.15질량% 이상 1.0질량% 이하 함유하는 Fe-Cr계 합금, Zr을 0.15질량% 이상 1.0질량% 이하 함유하는 Fe-Cr계 합금, Ti 및 Zr을 함유하고 Ti와 Zr의 합계의 함유량이 0.15질량% 이상 1.0질량% 이하인 Fe-Cr계 합금, 중 어느 하나이며,
상기 금속 지지체 위에 기체 투과성을 가지는 전극층을 형성하는 전극층 형성 스텝을 포함하는 점에 있다.
상기한 특징적 구성에 의하면, 금속 지지체로부터 전극층으로의 원소 확산을 억제한, 성능·내구성이 우수한 전기 화학 소자를, 간편한 제조 방법으로 제조할 수 있다. 또한, 금속 지지체는, Ti를 0.15질량% 이상 1.0질량% 이하 함유하는 Fe-Cr계 합금, Zr을 0.15질량% 이상 1.0질량% 이하 함유하는 Fe-Cr계 합금, Ti 및 Zr을 함유하고 Ti와 Zr의 합계의 함유량이 0.15질량% 이상 1.0질량% 이하인 Fe-Cr계 합금, 중 어느 하나이므로, 고온에서 장시간 사용한 경우에도 합금으로의 Cr의 휘발을 억제할 수 있고, 내구성이 우수한 전기 화학 소자를 실현할 수 있다.
도 1은 전기 화학 소자의 구성을 나타낸 개략도이다.
도 2는 전기 화학 소자 및 전기 화학 모듈의 구성을 나타낸 개략도이다.
도 3은 전기 화학 장치 및 에너지 시스템의 구성을 나타낸 개략도이다.
도 4는 전기 화학 모듈의 구성을 나타낸 개략도이다.
<제1 실시형태>
이하, 도 1을 참조하면서, 본 실시형태에 따른 전기 화학 소자(E) 및 고체 산화물형 연료 전지(Solid Oxide Fuel Cell: SOFC)에 대하여 설명한다. 전기 화학 소자(E)는, 예를 들면, 수소를 포함하는 연료 가스와 공기의 공급을 받아서 발전하는 고체 산화물형 연료 전지의 구성 요소로서 사용된다. 그리고 이하, 층의 위치 관계 등을 나타낼 때, 예를 들면, 전해질층(4)으로부터 볼 때 대극 전극층(6) 측을 「위」 또는 「상측」, 전극층(2) 측을 「아래」 또는 「하측」이라고 하는 경우가 있다. 또한, 금속 기판(1)에서의 전극층(2)이 형성되어 있는 측의 면을 「표면측」, 반대측의 면을 「이면측」이라고 하는 경우가 있다.
(전기 화학 소자)
전기 화학 소자(E)는, 도 1에 나타내는 바와 같이, 금속 기판(1)(금속지지체)과, 금속 기판(1) 위에 형성된 전극층(2)과, 전극층(2) 위에 형성된 중간층(3)과, 중간층(3) 위에 형성된 전해질층(4)을 가진다. 그리고 전기 화학 소자(E)는, 전해질층(4) 위에 형성된 반응방지층(5)과, 반응방지층(5) 위에 형성된 대극 전극층(6)을 더욱 가진다. 즉 대극 전극층(6)은 전해질층(4) 위에 형성되고, 반응방지층(5)은 전해질층(4)과 대극 전극층(6) 사이에 형성되어 있다. 전극층(2)은 다공질이며, 전해질층(4)은 치밀하다.
(금속 기판)
금속 기판(1)은, 전극층(2), 중간층(3) 및 전해질층(4) 등을 지지하여 전기 화학 소자(E)의 강도를 유지하는, 지지체로서의 역할을 담당한다. 금속 기판(1)의 재료로서는, 전자전도성, 내열성, 내산화성 및 내부식성이 우수한 재료가 사용된다. 그리고 본 실시형태에서는, 금속지지체로서 판형의 금속 기판(1)이 사용되지만, 금속지지체로서는 다른 형상, 예를 들면, 상자형, 원통형 등의 형상도 가능하다.
그리고, 금속 기판(1)은, 지지체로서 전기 화학 소자를 형성하기에 충분한 강도를 가지면 되고, 예를 들면, 0.1mm∼2mm 정도, 바람직하게는 0.1mm∼1mm 정도, 보다 바람직하게는 0.1mm∼0.5mm 정도의 두께를 사용할 수 있다.
본 실시형태에서는, 금속 기판(1)은, Ti를 0.15질량% 이상 1.0질량% 이하 함유하는 Fe-Cr계 합금, Zr을 0.15질량% 이상 1.0질량% 이하 함유하는 Fe-Cr계 합금, Ti 및 Zr을 함유하고 Ti와 Zr의 합계의 함유량이 0.15질량% 이상 1.0질량% 이하인 Fe-Cr계 합금, 중 어느 하나이다. 또한 금속 기판(1)은, Cu를 0.10질량% 이상 1.0질량% 이하 함유할 수도 있고, Cr을 18질량% 이상 25질량% 이하 함유할 수도 있다.
금속 기판(1)은, 표면측의 면과 이면측의 면을 관통하여 설치되는 복수의 관통공(1a)을 가진다. 그리고, 예를 들면, 관통공(1a)은, 기계적, 화학적 혹은 광학적 천공(穿孔) 가공 등에 의해, 금속 기판(1)에 설치할 수 있다. 관통공(1a)은, 금속 기판(1)의 이면측의 면으로부터 표면측의 면에 기체를 투과시키는 기능을 가진다. 금속 기판(1)에 기체투과성을 가지게 하기 위하여, 다공질금속을 사용하는 것도 가능하다. 예를 들면, 금속 기판(1)은, 소결금속이나 발포금속 등을 사용할 수도 있다.
금속 기판(1)의 표면에, 확산 억제층으로서의 금속 산화물층(1b)이 설치된다. 즉, 금속 기판(1)과 후술하는 전극층(2) 사이에, 확산 억제층이 형성되어 있다. 금속 산화물층(1b)은, 금속 기판(1)의 외부로 노출된 면뿐만 아니라, 전극층(2)과의 접촉면(계면) 및 관통공(1a)의 내측의 면에도 설치된다. 이 금속 산화물층(1b)에 의해, 금속 기판(1)과 전극층(2) 사이의 원소상호확산을 억제할 수 있다. 예를 들면, 금속 기판(1)으로서 크롬을 함유하는 페라이트계 스테인레스를 사용한 경우에는, 금속 산화물층(1b)이 주로 크롬산화물이 된다. 그리고, 금속 기판(1)의 크롬 원자 등이 전극층(2)이나 전해질층(4)으로 확산하는 것을, 크롬산화물을 주성분으로 하는 금속 산화물층(1b)이 억제한다. 금속 산화물층(1b)의 두께는, 확산 방지 성능의 높음과 전기 저항의 낮음을 양립시킬 수 있는 두께이면 된다. 예를 들면, 서브미크론(sub-micron) 오더로부터 수 미크론 오더인 것이 바람직하다.
금속 산화물층(1b)은 다양한 방법에 의해 형성될 수 있지만, 금속 기판(1)의 표면을 산화시켜 금속 산화물로 하는 방법이 바람직하게 이용된다. 또한, 금속 기판(1)의 표면에, 금속 산화물층(1b)을 스퍼터링법이나 PLD법 등의 PVD법, CVD법, 스프레이코팅법(용사법(溶射法)이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법) 등에 의해 형성할 수도 있고, 도금이라고 산화 처리에 의해 형성할 수도 있다. 또한, 금속 산화물층(1b)은 도전성이 높은 스피넬상(相) 등을 포함할 수도 있다.
금속 기판(1)으로서 페라이트계 스테인레스 재료를 사용한 경우, 전극층(2)이나 전해질층(4)의 재료로서 사용되는 YSZ(이트리아 안정화 지르코니아)나 GDC(가돌륨·도핑·세리아, CGO라고도 함) 등과 열팽창계수가 유사하다. 따라서, 저온과 고온의 온도 사이클이 반복된 경우라도 전기 화학 소자(E)가 데미지를 받기 어렵다. 따라서, 장기 내구성이 우수한 전기 화학 소자(E)를 실현할 수 있으므로 바람직하다.
(전극층)
전극층(2)은, 도 1에 나타낸 바와 같이, 금속 기판(1)의 표면측의 면으로서 관통공(1a)이 설치된 영역보다 큰 영역에, 박측(薄層)의 상태로 설치할 수 있다. 박층으로 하는 경우에는, 그 두께를, 예를 들면, 1㎛∼100㎛ 정도, 바람직하게는, 5㎛∼50㎛로 할 수 있다. 이와 같은 두께로 하면, 고가인 전극층재료의 사용량을 저감하여 비용 저감을 도모하면서, 충분한 전극성능을 확보하는 것이 가능하게 된다. 관통공(1a)이 설치된 영역 전체가, 전극층(2)에 의해 덮어져 있다. 즉, 관통공(1a)은 금속 기판(1)에서의 전극층(2)이 형성된 영역의 내측에 형성되어 있다. 바꾸어 말하면, 모든 관통공(1a)이 전극층(2)을 향하여 설치되어 있다.
전극층(2)의 재료로서는, 예를 들면 NiO-GDC, Ni-GDC, NiO-YSZ, Ni-YSZ, CuO-CeO2, Cu-CeO2 등의 복합 재료를 사용할 수 있다. 이들 예에서는, GDC, YSZ, CeO2를 복합재의 골재로 칭할 수 있다. 그리고, 전극층(2)은, 저온소성법(예를 들면 1100℃보다 높은 고온영역에서의 소성 처리를 하지 않은 저온영역에서의 소성 처리를 사용하는 습식법)이나 스프레이코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PVD법(스퍼터링법, 펄스레이저데포지션법 등), CVD법 등에 의해 형성하는 것이 바람직하다. 이들, 저온영역에서 사용 가능한 프로세스에 의해, 예를 들면 1100℃보다 높은 고온영역에서의 소성을 사용하지 않고, 양호한 전극층(2)이 얻어진다. 이 때문에, 금속 기판(1)을 손상시키지 않고, 또한, 금속 기판(1)과 전극층(2)의 원소상호확산을 억제할 수 있고, 내구성이 우수한 전기 화학 소자를 실현할 수 있으므로 바람직하다. 또한, 저온소성법을 사용하면, 원재료의 핸들링이 용이하게 되므로 더욱 바람직하다.
전극층(2)은, 기체투과성을 가지게 하기 위하여, 그 내부 및 표면에 복수의 세공(細孔)을 가진다.
즉 전극층(2)은, 다공질의 층으로서 형성된다. 전극층(2)은, 예를 들면, 그 치밀도가 30% 이상 80% 미만으로 되도록 형성된다. 세공의 사이즈는, 전기 화학반응을 행할 때 원활한 반응이 진행되기에 적합한 사이즈를 적절하게 선택할 수 있다. 그리고 치밀도는, 층을 구성하는 재료의 공간에 차지하는 비율이며, (1-공공율(空孔率))로 표시할 수 있고, 또한, 상대(相對)밀도와 동등하다.
(중간층)
중간층(3)은, 도 1에 나타낸 바와 같이, 전극층(2)을 덮은 상태로, 전극층(2) 위에 박층의 상태로 형성할 수 있다. 박층으로 하는 경우에는, 그 두께를, 예를 들면, 1㎛∼100㎛ 정도, 바람직하게는 2㎛∼50㎛ 정도, 보다 바람직하게는 4㎛∼25㎛ 정도로 할 수 있다. 이와 같은 두께로 하면, 고가인 중간층재료의 사용량을 저감하여 비용 저감을 도모하면서, 충분한 성능을 확보하는 것이 가능하게 된다. 중간층(3)의 재료로서는, 예를 들면, YSZ(이트리아 안정화 지르코니아), SSZ(스칸듐 안정화 지르코니아)이나 GDC(가돌륨·도핑·세리아), YDC(이트륨·도핑·세리아), SDC(사마륨(samarium)·도핑·세리아) 등을 사용할 수 있다. 특히 세리아계의 세라믹스가 바람직하게 사용된다.
중간층(3)은, 저온소성법(예를 들면 1100℃보다 높은 고온영역에서의 소성 처리를 하지 않는 저온영역에서의 소성 처리를 사용하는 습식법)이나 스프레이코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PVD법(스퍼터링법, 펄스레이저데포지션법 등), CVD법 등에 의해 형성하는 것이 바람직하다. 이들, 저온영역에서 사용 가능한 성막 프로세스에 의해, 예를 들면 1100℃보다 높은 고온영역에서의 소성을 사용하지 않고 중간층(3)이 얻어진다. 이 때문에, 금속 기판(1)을 손상시키지 않고, 금속 기판(1)과 전극층(2)의 원소상호확산을 억제할 수 있고, 내구성이 우수한 전기 화학 소자(E)를 실현할 수 있다. 또한, 저온소성법을 사용하면, 원재료의 핸들링이 용이하게 되므로 더욱 바람직하다.
중간층(3)으로서는, 산소 이온(산화물 이온) 전도성을 가지는 것이 바람직하다. 또한, 산소 이온(산화물 이온)과 전자의 혼합전도성을 가지면 더욱 바람직하다. 이러한 성질을 가지는 중간층(3)은, 전기 화학 소자(E)로의 적용에 적합하다.
(전해질층)
전해질층(4)은, 도 1에 나타낸 바와 같이, 전극층(2) 및 중간층(3)을 덮은 상태로, 중간층(3) 위에 박층의 상태로 형성된다. 상세하게는 전해질층(4)은, 도 1에 나타낸 바와 같이, 중간층(3) 위와 금속 기판(1) 위에 걸쳐 설치된다. 이와 같이 구성하고, 전해질층(4)을 금속 기판(1)에 접합함으로써, 전기 화학 소자 전체로서 견뢰성(堅牢性)이 우수하도록 할 수 있다.
또한 전해질층(4)은, 도 1에 나타낸 바와 같이, 금속 기판(1)의 표면측의 면으로서 관통공(1a)이 설치된 영역보다 큰 영역에 설치된다. 즉, 관통공(1a)은 금속 기판(1)에서의 전해질층(4)이 형성된 영역의 내측에 형성되어 있다.
또한 전해질층(4)의 주위에 있어서는, 전극층(2) 및 중간층(3)으로부터의 가스의 리크(leak)를 억제할 수 있다. 설명하면, 전기 화학 소자(E)를 SOFC의 구성 요소로서 사용하는 경우, SOFC의 작성 시에는, 금속 기판(1)의 이면측으로부터 관통공(1a)을 통하여 전극층(2)에 가스가 공급된다. 전해질층(4)이 금속 기판(1)에 접하고 있는 부위에 있어서는, 개스킷 등의 별도의 부재를 설치하지 않고, 가스의 리크를 억제할 수 있다. 그리고, 본 실시형태에서는 전해질층(4)에 의해 전극층(2)의 주위를 모두 덮고 있지만, 전극층(2) 및 중간층(3)의 상부에 전해질층(4)을 설치하고, 주위에 개스킷 등을 설치하는 구성으로 할 수도 있다.
전해질층(4)의 재료로서는, YSZ(이트리아 안정화 지르코니아), SSZ(스칸듐 안정화 지르코니아)이나 GDC(가돌륨·도핑·세리아), YDC(이트륨·도핑·세리아), SDC(사마륨·도핑·세리아), LSGM(스트론튬·마그네슘 첨가 란탄갈레이트) 등을 사용할 수 있다. 특히 지르코니아계의 세라믹스가 바람직하게 사용된다. 전해질층(4)을 지르코니아계 세라믹스로 하면, 전기 화학 소자(E)를 사용한 SOFC의 가동온도를 세리아계 세라믹스에 비해 높게 할 수 있다. 예를 들면, 전기 화학 소자(E)를 SOFC에 사용하는 경우, 전해질층(4)의 재료로서 YSZ와 같은 650℃ 정도 이상의 고온영역에서도 높은 전해질성능을 발휘할 수 있는 재료를 사용하고, 시스템의 원연료에 도시가스나 LPG 등의 탄화수소계의 원연료를 사용하고, 원연료를 수증기 개질 등에 의해 SOFC의 애노드 가스로 하는 시스템 구성으로 하면, SOFC의 셀 스택에서 생기는 열을 원연료 가스의 개질에 사용하는 고효율의 SOFC 시스템을 구축할 수 있다.
전해질층(4)은, 저온소성법(예를 들면 1100℃를 초과하는 고온영역에서의 소성 처리를 하지 않는 저온영역에서의 소성 처리를 사용하는 습식법)이나 스프레이 코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PDV법(스퍼터링법, 펄스레이저데포지션법 등), CVD법 등에 의해 형성하는 것이 바람직하다. 이들, 저온영역에서 사용 가능한 성막 프로세스에 의해, 예를 들면 1100℃를 초과하는 고온영역에서의 소성을 사용하지 않고, 치밀하며 기밀성 및 가스 배리어성이 높은 전해질층(4)이 얻어진다. 이 때문에, 금속 기판(1)의 손상을 억제하고, 또한 금속 기판(1)과 전극층(2)의 원소상호확산을 억제할 수 있고, 성능·내구성이 우수한 전기 화학 소자(E)를 실현할 수 있다. 특히, 저온소성법이나 스프레이 코팅법 등을 사용하면, 저비용의 소자를 실현할 수 있으므로, 바람직하다. 또한, 스프레이 코팅법을 사용하면, 치밀하며 기밀성 및 가스 배리어성이 높은 전해질층이 저온영역에서 용이하게 얻어지기 쉬우므로 더욱 바람직하다.
전해질층(4)은, 애노드 가스나 캐소드 가스의 가스 리크를 차폐(遮蔽)하고, 또한, 높은 이온 전도성을 발현하기 위하여, 치밀하게 구성된다. 전해질층(4)의 치밀도는 90% 이상이 바람직하고, 95% 이상이면 보다 바람직하고, 98% 이상이면 더욱 바람직하다. 전해질층(4)은, 균일한 층인 경우에는, 그 치밀도가 95% 이상인 것이 바람직하고, 98% 이상이면 보다 바람직하다. 또한, 전해질층(4)이, 복수의 층형(層形)으로 구성되어 있는 경우에는, 그 중의 적어도 일부가, 치밀도가 98% 이상인 층(치밀전해질층)을 포함하고 있으면 바람직하고, 99% 이상인 층(치밀전해질층)을 포함하고 있으면 보다 바람직하다. 이와 같은 치밀전해질층이 전해질층의 일부에 포함되어 있으면, 전해질층이 복수의 층형으로 구성되어 있는 경우라도, 치밀하며 기밀성 및 가스 배리어성이 높은 전해질층을 형성하기 쉽게 되기 때문이다.
(반응방지층)
반응방지층(5)은, 전해질층(4) 위에 박층의 상태로 형성할 수 있다. 박층으로 하는 경우에는, 그 두께를, 예를 들면, 1㎛∼100㎛ 정도, 바람직하게는 2㎛∼50㎛ 정도, 보다 바람직하게는 4㎛∼25㎛ 정도로 할 수 있다. 이와 같은 두께로 하면, 고가인 반응방지층 재료의 사용량을 저감하여 비용 저감을 도모하면서, 충분한 성능을 확보하는 것이 가능하게 된다. 반응방지층(5)의 재료로서는, 전해질층(4)의 성분과 대극 전극층(6)의 성분 사이의 반응을 방지할 수 있는 재료이면 된다. 예를 들면, 세리아계 재료 등이 사용된다. 반응방지층(5)을 전해질층(4)과 대극 전극층(6) 사이에 도입함으로써, 대극 전극층(6)의 구성 재료와 전해질층(4)의 구성 재료의 반응이 효과적으로 억제되어, 전기 화학 소자(E)의 성능의 장기안정성을 향상시킬 수 있다. 반응방지층(5)의 형성은, 1100℃ 이하의 처리온도에서 형성할 수 있는 방법을 적절하게 사용하여 행하면, 금속 기판(1)의 손상을 억제하고, 또한 금속 기판(1)과 전극층(2)의 원소상호확산을 억제할 수 있고, 성능·내구성이 우수한 전기 화학 소자(E)를 실현할 수 있으므로 바람직하다. 예를 들면, 저온소성법, 스프레이 코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PVD법(스퍼터링법, 펄스레이저데포지션법 등), CVD법 등을 적절하게 사용하여 행할 수 있다. 특히, 저온소성법이나 스프레이 코팅법 등을 사용하면, 저비용의 소자를 실현할 수 있으므로 바람직하다. 또한, 저온소성법을 사용하면, 원재료의 핸들링이 용이하게 되므로 더욱 바람직하다.
(대극 전극층)
대극 전극층(6)은, 전해질층(4) 또는 반응방지층(5) 위에 박층의 상태로 형성할 수 있다. 박층으로 하는 경우에는, 그 두께를, 예를 들면, 1㎛∼100㎛ 정도, 바람직하게는, 5㎛∼50㎛로 할 수 있다. 이와 같은 두께로 하면, 고가인 대극 전극층재료의 사용량을 저감하여 비용 저감을 도모하면서, 충분한 전극성능을 확보하는 것이 가능하게 된다. 대극 전극층(6)의 재료로서는, 예를 들면, LSCF, LSM 등의 복합 산화물, 세리아(ceria)계 산화물 및 이들의 혼합물을 사용할 수 있다. 특히 대극 전극층(6)이, La, Sr, Sm, Mn, Co 및 Fe로 이루어지는 군으로부터 선택되는 2종류 이상의 원소를 함유하는 페로브스카이트형 산화물을 포함하는 것이 바람직하다. 이상의 재료를 사용하여 구성되는 대극 전극층(6)은, 캐소드로서 기능한다.
그리고, 대극 전극층(6)의 형성은, 1100℃ 이하의 처리온도에서 형성할 수 있는 방법을 적절하게 사용하여 행하면, 금속 기판(1)의 손상을 억제하고, 또한 금속 기판(1)과 전극층(2)의 원소상호확산을 억제할 수 있고, 성능·내구성이 우수한 전기 화학 소자(E)를 실현할 수 있으므로 바람직하다. 예를 들면, 저온소성법, 스프레이 코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PDV법(스퍼터링법, 펄스레이저데포지션법 등), CVD법 등을 적절하게 사용하여 행할 수 있다. 특히, 저온소성법이나 스프레이 코팅법 등을 사용하면, 저비용의 소자를 실현할 수 있으므로 바람직하다. 또한, 저온소성법을 사용하면, 원재료의 핸들링이 용이하게 되므로 더욱 바람직하다.
(고체 산화물형 연료 전지)
이상과 같이 전기 화학 소자(E)를 구성함으로써, 전기 화학 소자(E)를 고체 산화물형 연료 전지의 발전 셀로서 사용할 수 있다. 예를 들면, 금속 기판(1)의 이면측의 면으로부터 관통공(1a)을 통하여 수소를 포함하는 연료 가스를 전극층(2)에 공급하고, 전극층(2)의 대극이 되는 대극 전극층(6)에 공기를 공급하고, 예를 들면, 500℃ 이상 900℃ 이하의 온도에서 작동시킨다. 이렇게 하면, 대극 전극층(6)에 있어서 공기에 포함되는 산소 O2가 전자 e-와 반응하여 산소 이온 O2 -가 생성된다. 이 산소 이온 O2 -가 전해질층(4)을 통하여 전극층(2)에 이동한다. 전극층(2)에 있어서는, 공급된 연료 가스에 포함되는 수소 H2가 산소 이온 O2 -와 반응하여, 물 H2O와 전자 e-가 생성된다. 이상의 반응에 의해, 전극층(2)과 대극 전극층(6) 사이에 기전력(起電力)이 발생한다. 이 경우에, 전극층(2)은 SOFC의 연료극(애노드)으로서 기능하고, 대극 전극층(6)은 공기극(空氣極)(캐소드)으로서 기능한다.
(전기 화학 소자의 제조 방법)
다음으로, 전기 화학 소자(E)의 제조 방법에 대하여 설명한다.
(전극층 형성 스텝)
전극층 형성 스텝에서는, 금속 기판(1)의 표면측의 면의 관통공(1a)이 설치된 영역보다 넓은 영역에 전극층(2)이 박막의 상태로 형성된다. 금속 기판(1)의 관통공은 레이저 가공 등에 의해 설치할 수 있다. 전극층(2)의 형성은, 전술한 바와 같이, 저온소성법(1100℃ 이하의 저온영역에서의 소성 처리를 행하는 습식법), 스프레이 코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PVD법(스퍼터링법, 펄스레이저데포지션법 등), CVD법 등의 방법을 사용할 수 있다. 어느 방법을 사용하는 경우라도, 금속 기판(1)의 열화를 억제하기 위하여, 1100℃ 이하의 온도에서 행하는 것이 바람직하다.
전극층 형성 스텝을 저온소성법으로 행하는 경우에는, 구체적으로는 이하의 예와 같이 행한다. 먼저 전극층(2)의 재료분말과 용매(분산매)를 혼합하여 재료 페이스트를 작성하고, 금속 기판(1)의 표면측의 면에 도포하고, 800℃∼1100℃에서 소성한다.
(확산 억제층 형성 스텝)
전술한 전극층 형성 스텝에서의 소성 공정 시에, 금속 기판(1)의 표면에 금속 산화물층(1b)(확산 억제층)이 형성된다. 그리고, 상기 소성 공정에, 소성분위기를 산소분압이 낮은 분위기 조건으로 하는 소성 공정이 포함되어 있으면 원소의 상호확산 억제 효과가 높고, 저항값이 낮은 양질의 금속 산화물층(1b)(확산 억제층)이 형성되므로, 바람직하다. 전극층 형성 스텝을, 소성을 행하지 않는 코팅 방법으로 하는 경우를 포함하고, 별도의 확산 억제층 형성 스텝을 포함할 수도 있다. 어디에 있어서도, 금속 기판(1)의 손상을 억제 가능한 1100℃ 이하의 처리온도에서 실시하는 것이 바람직하다.
(중간층 형성 스텝)
중간층 형성 스텝에서는, 전극층(2)을 덮는 형태로, 전극층(2) 위에 중간층(3)이 박층의 상태로 형성된다. 중간층(3)의 형성은, 전술한 바와 같이, 저온소성법(1100℃ 이하의 저온영역에서의 소성 처리를 행하는 습식법), 스프레이 코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PDV법(스퍼터링법, 펄스레이저데포지션법 등), CVD법 등의 방법을 사용할 수 있다. 어느 방법을 사용하는 경우라도, 금속 기판(1)의 열화를 억제하기 위하여, 1100℃ 이하의 온도에서 행하는 것이 바람직하다.
중간층 형성 스텝을 저온소성법으로 행하는 경우에는, 구체적으로는 이하의 예와 같이 행한다. 먼저 중간층(3)의 재료 분말과 용매(분산매)를 혼합하여 재료 페이스트를 작성하고, 전극층(2) 위에 도포하고, 800℃∼1100℃에서 소성한다.
(전해질층 형성 스텝)
전해질층 형성 스텝에서는, 전극층(2) 및 중간층(3)을 덮은 상태로, 전해질층(4)이 중간층(3) 위에 박층의 상태로 형성된다. 전해질층(4)의 형성은, 전술한 바와 같이, 저온소성법(1100℃ 이하의 저온영역에서의 소성 처리를 행하는 습식법), 스프레이 코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PVD법(스퍼터링법, 펄스레이저데포지션법 등), CVD법 등의 방법을 사용할 수 있다. 어느 방법을 사용하는 경우라도, 금속 기판(1)의 열화를 억제하기 위하여, 1100℃ 이하의 온도에서 행하는 것이 바람직하다.
치밀하며 기밀성 및 가스 배리어 성능이 높은, 양질의 전해질층(4)을 1100℃ 이하의 온도 영역에서 형성하기 위해서는, 전해질층 형성 스텝을 스프레이 코팅법으로 행하는 것이 바람직하다. 이러한 경우, 전해질층(4)의 재료를 금속 기판(1) 상의 중간층(3)을 향하여 분사하여, 전해질층(4)을 형성한다.
(반응방지층 형성 스텝)
반응방지층 형성 스텝에서는, 반응방지층(5)이 전해질층(4) 위에 박층의 상태로 형성된다. 반응방지층(5)의 형성은, 전술한 바와 같이, 저온소성법, 스프레이 코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PVD법(스퍼터링법, 펄스레이저데포지션법 등), CVD법 등의 방법을 사용할 수 있다. 어느 방법을 사용하는 경우라도, 금속 기판(1)의 열화를 억제하기 위하여, 1100℃ 이하의 온도에서 행하는 것이 바람직하다. 그리고 반응방지층(5)의 상측의 면을 평탄하게 하기 위하여, 예를 들면, 반응방지층(5)의 형성 후에 레벨링 처리나 표면을 절삭·연마하는 처리를 실시하거나, 습식 형성 후 소성 전에, 프레스가공을 실시할 수도 있다.
(대극 전극층 형성 스텝)
대극 전극층 형성 스텝에서는, 대극 전극층(6)이 반응방지층(5) 위에 박층의 상태로 형성된다. 대극 전극층(6)의 형성은, 전술한 바와 같이, 저온소성법, 스프레이 코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PVD법(스퍼터링법, 펄스레이저데포지션법 등), CVD법 등의 방법을 사용할 수 있다. 어느 방법을 사용하는 경우라도, 금속 기판(1)의 열화를 억제하기 위하여, 1100℃ 이하의 온도에서 행하는 것이 바람직하다.
이상과 같이 하여, 전기 화학 소자(E)를 제조할 수 있다.
그리고 전기 화학 소자(E)에 있어서, 중간층(3)과 반응방지층(5)은, 어느 한쪽, 혹은 양쪽을 구비하지 않는 형태로 하는 것도 가능하다. 즉, 전극층(2)과 전해질층(4)이 접촉하여 형성되는 형태, 혹은 전해질층(4)과 대극 전극층(6)이 접촉하여 형성되는 형태도 가능하다. 이 경우에 전술한 제조 방법에서는, 중간층 형성 스텝, 반응방지층 형성 스텝이 생략된다. 그리고, 다른층을 형성하는 스텝을 추가하거나, 동종의 층을 복수 적층하거나 할 수도 있지만, 어느 경우라도, 1100℃ 이하의 온도에서 행하는 것이 바람직하다.
<Cr 휘발량의 측정>
금속 재료의 조성에 의한 Cr 휘발량의 차이를 확인하기 위하여, 하기 표 1에 나타내는 각각의 금속 재료에 대하여, Cr 휘발량을 측정했다. 그리고 표 1에 나타낸 조성의 값의 단위는, 질량%이다. 「-」의 난은, 검출 한계 이하인 것을 나타낸다. 그리고, 폭 25mm, 길이 250∼300 mm의 사이즈의 금속판 샘플을 사용하고, 0.5L/분의 공기(노점 20℃) 중, 750℃ 혹은 850℃의 온도에서, 각각의 금속 재료를 폭로(暴露)하여, 소정 시간에서의 Cr의 휘발량(적산량)을 측정했다. 측정 결과를 표 2에 나타내었다. 그리고, 표 2에 나타낸 Cr 휘발량의 단위는 μg/600cm2이며, 600cm2 상당의 금속표면적당의 Cr의 휘발량으로 환산한 값으로 하고 있다. 그리고, Cr 휘발량 측정 시험 전에, 모든 샘플에 대하여 850℃와 1000℃에 2단계 소성전처리(전술한 확산 억제층 형성 스텝에 상당하는 처리)를 행하였다.
[표 1]
Figure pct00001
[표 2]
Figure pct00002
표 2에 나타낸 바와 같이, 비교예 2∼4의 샘플은, 750℃ 250시간과 850℃ 100시간의 어느 하나의 조건에서 Cr 휘발량이 많아졌다. 비교예 1의 샘플은, 750℃ 250시간과 850℃ 100시간의 조건에서는 실시예 2의 샘플과 동일한 Cr 휘발량이었지만, 850℃ 1000시간의 조건에서는 실시예 2에 비해 Cr 휘발량이 큰 폭으로 많아졌다. 실시예 1 및 실시예 2의 샘플은, 어느 조건에서도 양호한 값을 나타낸다. 이상의 결과로부터, 실시예 1 및 실시예 2에서는, 고온·장시간의 환경 하에서도 금속 지지체로부터의 Cr의 휘발을 억제할 수 있는 것이 확인되었다.
<전극층을 형성한 상태에서의 전기 저항>
전극층을 형성한 상태에서의 금속 재료의 조성에 의한 전기 저항값의 차이를 확인하기 위하여, 상기 표 1에 나타내는 각각의 재료를 직경 25mm의 원형(두께0.3mm)으로 가공한 금속 기판(1)의 샘플 표면과 이면에 전극층(2)을 형성하여, 전기 저항값을 측정했다. 그리고, 실험용 샘플은 하기와 같이 하여 제작했다.
60중량%의 NiO분말과 40중량%의 YSZ분말을 혼합하고, 유기 바인더와 유기용매(분산제)를 가하여 페이스트를 제작했다. 이 페이스트를 사용하여, 금속 기판(1)의 표면과 이면의, 중심으로부터 반경 5mm의 영역에 전극층(2)을 도포했다. 그리고, 이 때, 전극층(2)의 두께가 10∼15 ㎛로 되도록 도포했다.
다음으로, 전극층(2)을 도포한 금속 기판(1)에 대하여, 850℃와 1000℃의 2단계 소성 처리(전술한 확산 억제층 형성 스텝을 겸하는 전극층 형성 스텝에서의 소성 공정에 상당하는 처리)를 행하여, 실험용의 샘플을 얻었다.
다음으로, 샘플의 표면 전극층과, 이면의 전극층 사이의 전기 저항값을 측정했다. 측정은, 연료 전지의 연료극 분위기를 모의(模擬)하고, 0.5L/분의 수소(노점 20℃) 중, 850℃의 온도에서, 100시간 폭로하기 전(초기저항값)과 후(100시간 후 저항값)에 행하였다. 결과를 표 3에 나타내었다. 표 3에 나타낸 저항값의 단위는 Ω이다.
[표 3]
Figure pct00003
표 3에 나타낸 바와 같이, 실시예 1 및 실시예 2의 샘플은, 비교예 1∼3의 샘플에 비해, 850℃ 100시간 수소 폭로의 전후에서 저항값 증가량이 적다. 이상의 결과로부터, 실시예 1 및 실시예 2에서는, 전기 저항값을 낮게 억제하여, 고성능의 전기 화학 소자를 실현할 수 있는 것이 확인되었다.
<제2 실시형태>
도 2·도 3을 사용하여, 제2 실시형태에 따른 전기 화학 소자(E), 전기 화학 모듈(M), 전기 화학 장치(Y) 및 에너지 시스템(Z)에 대하여 설명한다.
제2 실시형태에 따른 전기 화학 소자(E)는, 도 2에 나타낸 바와 같이, 금속 기판(1)의 이면에 U자형 부재(7)가 장착되어 있고, 금속 기판(1)과 U자형 부재(7)에 의해 통형 지지체를 형성하고 있다.
그리고 집전부재(26)를 사이에 협지하여 전기 화학 소자(E)가 복수 적층·집합되어, 전기 화학 모듈(M)이 구성되어 있다. 집전부재(26)는, 전기 화학 소자(E)의 대극 전극층(6)과, U자형 부재(7)에 접합되어, 양자를 전기적으로 접속하고 있다.
전기 화학 모듈(M)은, 가스 매니폴드(17), 집전부재(26), 종단부재 및 전류추출부를 가진다. 복수 적층·집합된 전기 화학 소자(E)는, 통형지지체의 한쪽의 개구단부가 가스 매니폴드(17)에 접속되어, 가스 매니폴드(17)로부터 기체의 공급을 받는다. 공급된 기체는, 통형지지체의 내부를 통류(通流)하여, 금속 기판(1)의 관통공(1a)을 통하여 전극층(2)에 공급된다.
도 3에는, 에너지 시스템(Z) 및 전기 화학 장치(Y)의 개요가 나타나 있다.
에너지 시스템(Z)은, 전기 화학 장치(Y)와, 전기 화학 장치(Y)로부터 배출되는 열을 재이용하는 배출열 이용부로서의 열교환기(53)를 가진다.
전기 화학 장치(Y)는, 전기 화학 모듈(M)과, 탈황기(31)와 개질기(34)를 가지고 전기 화학 모듈(M)에 대하여 환원성 성분을 함유하는 연료 가스를 공급하는 연료공급부와, 전기 화학 모듈(M)로부터 전력을 추출하는 인버터(38)를 가진다.
상세하게는 전기 화학 장치(Y)는, 탈황기(31), 개질수 탱크(32), 기화기(33), 개질기(34), 블로어(blower)(35), 연소부(36), 인버터(38), 제어부(39), 수납 용기(40) 및 전기 화학 모듈(M)을 가진다.
탈황기(31)는, 도시가스 등의 탄화수소계의 원연료에 포함되는 유황화합물성분을 제거(탈황)한다. 원연료 중에 유황화합물이 함유되는 경우, 탈황기(31)를 구비함으로써, 유황화합물에 의한 개질기(34) 혹은 전기 화학 소자(E)에 대한 영향을 억제할 수 있다. 기화기(33)는, 개질수 탱크(32)로부터 공급되는 개질수로부터 수증기를 생성한다. 개질기(34)는, 기화기(33)에서 생성된 수증기를 사용하여 탈황기(31)에서 탈황된 원연료를 수증기 개질하여, 수소를 포함하는 개질 가스를 생성한다.
전기 화학 모듈(M)은, 개질기(34)로부터 공급된 개질 가스와, 블로어(35)로부터 공급된 공기를 사용하여, 전기 화학 반응시켜 발전한다. 연소부(36)는, 전기 화학 모듈(M)으로부터 배출되는 반응 배기 가스와 공기를 혼합시켜, 반응 배기 가스 중의 가연성분을 연소시킨다.
전기 화학 모듈(M)은, 복수의 전기 화학 소자(E)와 가스 매니폴드(17)를 가진다. 복수의 전기 화학 소자(E)는 서로 전기적으로 접속된 상태에서 병렬로 배치되고, 전기 화학 소자(E)의 한쪽 단부(하단부)가 가스 매니폴드(17)에 고정되어 있다. 전기 화학 소자(E)는, 가스 매니폴드(17)를 통하여 공급되는 개질 가스와, 블로어(35)로부터 공급된 공기를 전기 화학 반응시켜 발전한다.
인버터(38)는, 전기 화학 모듈(M)의 출력전력을 조정하여, 상용계통(도시하지 않음)으로부터 수전(受電)하는 전력과 동일한 전압 및 동일한 주파수로 한다. 제어부(39)는 전기 화학 장치(Y) 및 에너지 시스템(Z)의 운전을 제어한다.
기화기(33), 개질기(34), 전기 화학 모듈(M) 및 연소부(36)는, 수납 용기(40) 내에 수납된다. 그리고, 개질기(34)는, 연소부(36)에서의 반응 배기 가스의 연소에 의해 발생하는 연소열을 사용하여 원연료의 개질 처리를 행한다.
원연료는, 승압 펌프(41)의 작동에 의해 원연료 공급로(42)를 통하여 탈황기(31)에 공급된다. 개질수 탱크(32)의 개질수는, 개질수 펌프(43)의 작동에 의해 개질수 공급로(44)를 통하여 기화기(33)에 공급된다. 그리고, 원연료 공급로(42)는 탈황기(31)보다 하류측의 부위에서, 개질수 공급로(44)에 합류되어 있고, 수납 용기(40) 밖에서 합류된 개질수과 원연료가 수납 용기(40) 내에 구비된 기화기(33)에 공급된다.
개질수는 기화기(33)에서 기화되어 수증기가 된다. 기화기(33)에서 생성된 수증기을 포함하는 원연료는, 수증기 함유 원연료 공급로(45)를 통하여 개질기(34)에 공급된다. 개질기(34)에서 원연료가 수증기 개질되고, 수소 가스를 주성분으로 하는 개질 가스(환원성 성분을 가지는 제1 기체)가 생성된다. 개질기(34)에서 생성된 개질 가스는, 개질 가스 공급로(46)를 통하여 전기 화학 모듈(M)의 가스 매니폴드(17)에 공급된다.
가스 매니폴드(17)에 공급된 개질 가스는, 복수의 전기 화학 소자(E)에 대하여 분배되고, 전기 화학 소자(E)와 가스 매니폴드(17)의 접속부인 하단에서 전기 화학 소자(E)에 공급된다. 개질 가스 중의 주로 수소(환원성 성분)가, 전기 화학 소자(E)에서 전기 화학 반응에 사용된다. 반응에 사용되지 않은 잔여의 수소 가스를 포함하는 반응 배기 가스가, 전기 화학 소자(E)의 상단으로부터 연소부(36)에 배출된다.
반응 배기 가스는 연소부(36)에서 연소되어, 연소 배기 가스로 되어 연소 배기 가스 배출구(50)로부터 수납 용기(40)의 외부로 배출된다. 연소 배기 가스 배출구(50)에는 연소 촉매부(51)(예를 들면, 백금계 촉매)가 배치되어, 연소 배기 가스에 함유되는 일산화탄소나 수소 등의 환원성 성분을 연소 제거한다. 연소 배기 가스 배출구(50)로부터 배출된 연소 배기 가스는, 연소 배기 가스 배출로(52)에 의해 열교환기(53)에 보내진다.
열교환기(53)는, 연소부(36)에서의 연소에서 발생한 연소 배기 가스와, 공급되는 냉수를 열교환시켜, 온수를 생성한다. 즉 열교환기(53)는, 전기 화학 장치(Y)로부터 배출되는 열을 재이용하는 배출열 이용부로서 동작한다.
그리고, 배출열 이용부 대신, 전기 화학 모듈(M)로부터 (연소되지 않고) 배출되는 반응 배기 가스를 사용하는 반응 배기 가스 이용부를 설치할 수도 있다. 반응 배기 가스에는, 전기 화학 소자(E)에서 반응에 사용되지 않은 잔여의 수소 가스가 포함된다. 반응 배기 가스 이용부에서는, 잔여의 수소 가스를 사용하여, 연소에 의한 열이용이나, 연료 전지 등에 의한 발전이 행해지고, 에너지의 효과적인 이용이 이루어진다.
<제3 실시형태>
도 4에, 전기 화학 모듈(M)의 다른 실시형태를 나타낸다. 제3 실시형태에 따른 전기 화학 모듈(M)은, 전술한 전기 화학 소자(E)를, 셀간 접속 부재(71)를 사이에 협지하여 적층함으로써, 전기 화학 모듈(M)을 구성한다.
셀간 접속 부재(71)는, 도전성을 가지고, 또한 기체투과성을 가지지 않는 판형의 부재이며, 표면과 이면에, 서로 직교하는 홈(72)이 형성되어 있다. 셀간 접속 부재(71)는 스테인레스 등의 금속이나, 금속 산화물을 사용할 수 있다.
도 4에 나타낸 바와 같이, 이 셀간 접속 부재(71)를 사이에 협지하여 전기 화학 소자(E)를 적층하면, 홈(72)을 통하여 기체를 전기 화학 소자(E)에 공급할 수 있다. 상세한 것은 한쪽 홈(72)이 제1 기체 유로(72a)가 되어, 전기 화학 소자(E)의 표면측, 즉 대극 전극층(6)에 기체를 공급한다. 다른 쪽 홈(72)이 제2 기체 유로(72b)가 되어, 전기 화학 소자(E)의 이면측, 즉 금속 기판(1)의 이면측의 면으로부터 관통공(1a)을 통하여 전극층(2)에 기체를 공급한다.
이 전기 화학 모듈(M)을 연료 전지로서 동작시키는 경우에는, 제1 기체 유로(72a)에 산소를 공급하고, 제2 기체 유로(72b)에 수소를 공급한다. 이렇게 하면 전기 화학 소자(E)에서 연료 전지로서의 반응이 진행하여, 기전력·전류가 발생한다. 발생한 전력은, 적층된 전기 화학 소자(E)의 양단의 셀간 접속 부재(71)로부터, 전기 화학 모듈(M)의 외부로 추출된다.
그리고, 본 제3 실시형태에서는, 셀간 접속 부재(71)의 표면과 이면에, 서로 직교하는 홈(72)을 형성하였으나, 셀간 접속 부재(71)의 표면과 이면에, 서로 병행하는 홈(72)을 형성할 수도 있다.
(다른 실시형태)
(1) 상기한 실시형태에서는, 전기 화학 소자(E)를 고체 산화물형 연료 전지에 사용하였지만, 전기 화학 소자(E)는, 고체 산화물형 전해 셀이나, 고체 산화물을 이용한 산소 센서 등에 이용할 수도 있다.
(2) 상기한 실시형태에서는, 금속 기판(1)을 지지체로 하는 금속지지형의 고체 산화물형 연료 전지에 사용하였지만, 본원은, 전극층(2) 혹은 대극 전극층(6)을 지지체로 하는 전극지지형의 고체 산화물형 연료 전지나 전해질층(4)을 지지체로 하는 전해질지지형의 고체 산화물형 연료 전지에 이용할 수도 있다. 이러한 경우에는, 전극층(2) 혹은 대극 전극층(6), 또는, 전해질층(4)을 필요한 두께로 하여, 지지체로서의 기능이 얻어지도록 할 수 있다.
(3) 상기한 실시형태에서는, 전극층(2)의 재료로서, 예를 들면 NiO-GDC, Ni-GDC, NiO-YSZ, Ni-YSZ, CuO-CeO2, Cu-CeO2 등의 복합 재료를 사용하고, 대극 전극층(6)의 재료로서, 예를 들면 LSCF, LSM 등의 복합 산화물을 사용했다. 이와 같이 구성된 전기 화학 소자(E)는, 전극층(2)에 수소 가스를 공급하여 연료극(애노드)으로 하고, 대극 전극층(6)으로 공기를 공급하여 공기극(캐소드)로 하여, 고체 산화물형 연료 전지 셀로서 사용할 수 있다. 이 구성을 변경하여, 전극층(2)을 공기극으로 하고, 대극 전극층(6)을 연료극으로 하는 것이 가능하도록, 전기 화학 소자(E)를 구성하는 것도 가능하다. 즉, 전극층(2)의 재료로서, 예를 들면 LSCF, LSM 등의 복합 산화물을 사용하고, 대극 전극층(6)의 재료로서, 예를 들면 NiO-GDC, Ni-GDC, NiO-YSZ, Ni-YSZ, CuO-CeO2, Cu-CeO2 등의 복합 재료를 사용한다. 이와 같이 구성한 전기 화학 소자(E)라면, 전극층(2)에 공기를 공급하여 공기극으로 하고, 대극 전극층(6)에 수소 가스를 공급하여 연료극으로 하여, 전기 화학 소자(E)를 고체 산화물형 연료 전지 셀로서 사용할 수 있다.
그리고, 상기한 실시형태에서 개시되는 구성은, 모순이 생기지 않는 한, 다른 실시형태에서 개시되는 구성과 조합하여 적용할 수 있다. 또한 본 명세서에 있어서 개시된 실시형태는 예시이며, 본 발명의 실시형태는 이것으로 한정되지 않고, 본 발명의 목적을 벗어나지 않는 범위 내에서 적절하게 개변하는 것이 가능하다.
[산업상 이용가능성]
전기 화학 소자 및 고체 산화물형 연료 전지 셀로서 이용 가능하다.
1: 금속 기판(금속 지지체)
1a: 관통공
2: 전극층
3: 중간층
4: 전해질층
4a: 전해질층 상측면
5: 반응방지층
6: 대극 전극층
E: 전기 화학 소자
M: 전기 화학 모듈
Y: 전기 화학 장치
Z: 에너지 시스템

Claims (13)

  1. 금속 지지체와, 상기 금속 지지체 위에 형성된 전극층을 포함하고, 상기 금속 지지체가, Ti를 0.15질량% 이상 1.0질량% 이하 함유하는 Fe-Cr계 합금, Zr을 0.15질량% 이상 1.0질량% 이하 함유하는 Fe-Cr계 합금, Ti 및 Zr을 함유하고 Ti와 Zr의 합계의 함유량이 0.15질량% 이상 1.0질량% 이하인 Fe-Cr계 합금 중 어느 하나인, 전기 화학 소자.
  2. 제1항에 있어서,
    상기 금속 지지체가 Cu를 0.10질량% 이상 1.0질량% 이하 함유하는, 전기 화학 소자.
  3. 제1항 또는 제2항에 있어서,
    상기 금속 지지체가 Cr을 18질량% 이상 25질량% 이하 함유하는, 전기 화학 소자.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 금속 지지체의 한쪽 면에 상기 전극층이 형성되고, 상기 금속 지지체가 한쪽 면으로부터 다른쪽 면으로 관통하는 관통공을 포함하고 있는, 전기 화학 소자.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 금속 지지체가 자성체인, 전기 화학 소자.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 금속 지지체의 표면의 일부 또는 전부가 금속 산화물막에 의해 피복되어 있는, 전기 화학 소자.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    전해질층과 대극(對極) 전극층을 포함하고, 상기 전해질층이 상기 전극층 위에 배치되고, 상기 대극 전극층이 상기 전해질층 위에 배치되어 있는, 전기 화학 소자.
  8. 제1항 내지 제7항 중 어느 한 항에 기재된 전기 화학 소자가 복수 집합된 상태로 배치되는, 전기 화학 모듈.
  9. 제8항에 기재된 전기 화학 모듈과 개질기를 적어도 포함하고, 상기 전기 화학 모듈에 대하여 환원성 성분을 함유하는 연료 가스를 공급하는 연료 공급부를 포함하는, 전기 화학 장치.
  10. 제8항에 기재된 전기 화학 모듈과, 상기 전기 화학 모듈로부터 전력을 취출하는 인버터를 적어도 포함하는, 전기 화학 장치.
  11. 제9항 또는 제10항에 기재된 전기 화학 장치와, 상기 전기 화학 장치로부터 배출되는 열을 재이용하는 배열(排熱) 이용부를 포함하는, 에너지 시스템.
  12. 제1항 내지 제7항 중 어느 한 항에 기재된 전기 화학 소자를 포함하고, 상기 전기 화학 소자에서 발전 반응을 발생시키는, 고체 산화물형 연료 전지.
  13. 금속 지지체와 전극층을 포함하는 전기 화학 소자의 제조 방법으로서,
    상기 금속 지지체가, Ti를 0.15질량% 이상 1.0질량% 이하 함유하는 Fe-Cr계 합금, Zr을 0.15질량% 이상 1.0질량% 이하 함유하는 Fe-Cr계 합금, Ti 및 Zr을 함유하고 Ti와 Zr의 합계의 함유량이 0.15질량% 이상 1.0질량% 이하인 Fe-Cr계 합금 중 어느 하나이며,
    상기 금속 지지체 위에 기체 투과성을 가지는 전극층을 형성하는 전극층 형성 스텝을 포함하는, 전기 화학 소자의 제조 방법.
KR1020197024358A 2017-03-31 2018-03-30 전기 화학 소자, 전기 화학 모듈, 전기 화학 장치, 에너지 시스템, 고체 산화물형 연료 전지, 및 전기 화학 소자의 제조 방법 KR20190129842A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017073162A JP6910179B2 (ja) 2017-03-31 2017-03-31 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法
JPJP-P-2017-073162 2017-03-31
PCT/JP2018/013689 WO2018181922A1 (ja) 2017-03-31 2018-03-30 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法

Publications (1)

Publication Number Publication Date
KR20190129842A true KR20190129842A (ko) 2019-11-20

Family

ID=63677591

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197024358A KR20190129842A (ko) 2017-03-31 2018-03-30 전기 화학 소자, 전기 화학 모듈, 전기 화학 장치, 에너지 시스템, 고체 산화물형 연료 전지, 및 전기 화학 소자의 제조 방법

Country Status (8)

Country Link
US (1) US11233262B2 (ko)
EP (1) EP3605694A4 (ko)
JP (2) JP6910179B2 (ko)
KR (1) KR20190129842A (ko)
CN (1) CN110447136B (ko)
CA (1) CA3058581A1 (ko)
TW (1) TWI761479B (ko)
WO (1) WO2018181922A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210090569A (ko) * 2020-01-10 2021-07-20 한양대학교 산학협력단 광소결을 이용한 금속지지형 고체산화물 연료전지의 제조방법
KR102305771B1 (ko) * 2020-03-24 2021-09-30 한국과학기술원 알리코 자석을 이용한 금속지지체형 고체산화물연료전지의 제조 방법

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6752387B1 (ja) * 2019-03-07 2020-09-09 日本碍子株式会社 電気化学セル
JP6752386B1 (ja) * 2019-03-07 2020-09-09 日本碍子株式会社 電気化学セル
JP7345267B2 (ja) 2019-03-29 2023-09-15 大阪瓦斯株式会社 電気化学素子、電気化学モジュール、電気化学装置及びエネルギーシステム
JP7317547B2 (ja) * 2019-03-29 2023-07-31 大阪瓦斯株式会社 燃料電池構造体、それを備えた燃料電池モジュール及び燃料電池装置
JP7414632B2 (ja) * 2020-04-28 2024-01-16 京セラ株式会社 改質ユニットおよび燃料電池装置
TWI734657B (zh) 2021-01-15 2021-07-21 電聯運通股份有限公司 燃料電池能源循環利用系統
CN113067005A (zh) * 2021-03-19 2021-07-02 东睦新材料集团股份有限公司 一种用于燃料电池的金属支撑板的制备方法
WO2023117085A1 (en) * 2021-12-22 2023-06-29 Ceres Intellectual Property Company Limited Method for manufacturing an electrochemical cell
CN114561656A (zh) * 2022-04-06 2022-05-31 北京理工大学 一种中低温金属支撑固体氧化物电解池

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306351B1 (en) * 1997-01-20 2001-10-23 Osaka Gas Co., Ltd. Nitrogen oxides detection method, and sensor element for detection of nitrogen oxides
AT4810U1 (de) 2001-05-31 2001-11-26 Plansee Ag Stromsammler für sofc-brennstoffzellen
US7037617B2 (en) * 2002-08-21 2006-05-02 Delphi Technologies, Inc. Conductive coatings for PEM fuel cell electrodes
CA2414622A1 (en) * 2002-12-17 2004-06-17 Alberta Research Council Inc. Compact solid oxide fuel cell stack
JP2005285427A (ja) 2004-03-29 2005-10-13 Toshiba Home Technology Corp 燃料電池装置
JP2006107936A (ja) * 2004-10-06 2006-04-20 Tokyo Gas Co Ltd 平板形固体酸化物燃料電池用インターコネクタ
DE102005005116A1 (de) 2005-02-04 2006-08-10 Forschungszentrum Jülich GmbH Interkonnektor für Hochtemperaturbrennstoffzellen
US8580453B2 (en) * 2006-03-31 2013-11-12 General Electric Company Electrode-supported ceramic fuel cell containing laminar composite electrode including porous support electrode, patterned structure layer and electrolyte
CA2659596C (en) 2006-07-26 2015-04-28 Sandvik Intellectual Property Ab Ferritic chromium steel
US8383293B2 (en) * 2006-11-22 2013-02-26 GM Global Technology Operations LLC Supports for fuel cell catalysts based on transition metal silicides
JP5035541B2 (ja) 2007-12-04 2012-09-26 Nok株式会社 磁気エンコーダ用パルサーリング
US20110269047A1 (en) * 2008-09-11 2011-11-03 The Regents Of The University Of California Metal-supported, segmented-in-series high temperature electrochemical device
CN102292859B (zh) * 2009-01-28 2014-07-02 京瓷株式会社 耐热性合金、燃料电池用合金部件、燃料电池单元组装置、燃料电池模块及燃料电池装置
KR20110047999A (ko) 2009-10-30 2011-05-09 포항공과대학교 산학협력단 고체 산화물 연료전지용 페라이트계 스테인리스강 및 이를 이용한 연결재
WO2011053041A2 (ko) 2009-10-30 2011-05-05 포항공과대학교 산학협력단 고체 산화물 연료전지용 페라이트계 스테인리스강 및 이를 이용한 연결재
JP5576146B2 (ja) * 2010-03-01 2014-08-20 日新製鋼株式会社 固体酸化物形燃料電池の導電部材
JP5768641B2 (ja) 2010-10-08 2015-08-26 Jfeスチール株式会社 耐食性および電気伝導性に優れたフェライト系ステンレス鋼およびその製造方法、ならびに固体高分子型燃料電池セパレータおよび固体高分子型燃料電池
US20160260991A1 (en) * 2011-03-31 2016-09-08 General Electric Company Power generation system utilizing a fuel cell integrated with a combustion engine
DE102011088566A1 (de) * 2011-07-13 2013-01-17 J. Eberspächer GmbH & Co. KG Brennstoffzellensystem
JP4962640B1 (ja) * 2011-07-22 2012-06-27 大日本印刷株式会社 固体酸化物形燃料電池
JP2013257989A (ja) 2012-06-11 2013-12-26 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池
JP2013257953A (ja) 2012-06-11 2013-12-26 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池および固体酸化物形燃料電池の組み立て方法
CN103872366B (zh) * 2012-12-12 2016-12-07 中国科学院上海硅酸盐研究所 一种金属支撑固体氧化物燃料电池及其制备方法
CN104157893B (zh) * 2013-05-13 2016-12-28 中国科学院大连化学物理研究所 一种多孔金属支撑的低温固体氧化物燃料电池及其制备方法
JP6444320B2 (ja) 2014-01-14 2019-01-09 新日鐵住金ステンレス株式会社 酸化皮膜の電気伝導性と密着性に優れたフェライト系ステンレス鋼板
US10544490B2 (en) 2014-07-29 2020-01-28 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel for fuel cell and method for producing the same
JP5902253B2 (ja) * 2014-07-29 2016-04-13 新日鐵住金ステンレス株式会社 燃料電池用フェライト系ステンレス鋼およびその製造方法
KR102423540B1 (ko) 2014-09-19 2022-07-20 오사까 가스 가부시키가이샤 전기 화학 소자, 고체 산화물형 연료 전지 셀, 및 이들의 제조 방법
JP2016098389A (ja) * 2014-11-19 2016-05-30 日立金属株式会社 フェライト系ステンレス鋼の製造方法
AT14455U3 (de) * 2015-07-14 2017-05-15 Plansee Se Elektrochemisches Modul
JP6581836B2 (ja) * 2015-08-03 2019-09-25 本田技研工業株式会社 メタルサポートセル
CN105304917A (zh) * 2015-10-29 2016-02-03 华中科技大学 一种中温平板式固体氧化物燃料电池金属连接体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
I. Antepara, et al. , "Electrochemical Behavior of Metal-Supported SOFCs Under High Fuel Utilization and Their Durability", Journal of Fuel Cell Science and Technology, APRIL(2012), Vol.9/021009-1∼8

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210090569A (ko) * 2020-01-10 2021-07-20 한양대학교 산학협력단 광소결을 이용한 금속지지형 고체산화물 연료전지의 제조방법
KR102305771B1 (ko) * 2020-03-24 2021-09-30 한국과학기술원 알리코 자석을 이용한 금속지지체형 고체산화물연료전지의 제조 방법

Also Published As

Publication number Publication date
TW201900898A (zh) 2019-01-01
US20200028193A1 (en) 2020-01-23
US11233262B2 (en) 2022-01-25
JP7105972B2 (ja) 2022-07-25
TWI761479B (zh) 2022-04-21
JP6910179B2 (ja) 2021-07-28
JP2018174115A (ja) 2018-11-08
WO2018181922A1 (ja) 2018-10-04
EP3605694A1 (en) 2020-02-05
EP3605694A4 (en) 2020-12-30
CN110447136A (zh) 2019-11-12
CA3058581A1 (en) 2018-10-04
CN110447136B (zh) 2023-01-06
JP2021166192A (ja) 2021-10-14

Similar Documents

Publication Publication Date Title
JP7105972B2 (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法
US20230392249A1 (en) Manufacturing Method for Alloy Material, Alloy Material, Electrochemical Element, Electrochemical Module, Electrochemical Device, Energy System and Solid Oxide Fuel Cell
JP7202061B2 (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、および固体酸化物形燃料電池
US20240047702A1 (en) Substrate with Electrode Layer for Metal-Supported Electrochemical Element, Electrochemical Element, Electrochemical Module, Solid Oxide Fuel Cell and Manufacturing Method
JP2020095984A (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子製造方法
JP7072558B2 (ja) 電気化学装置、エネルギーシステム、および固体酸化物形燃料電池
JP2018174116A (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法
US11677080B2 (en) Electrochemical element, electrochemical module, solid oxide fuel cell and manufacturing method
JP2020095983A (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X601 Decision of rejection after re-examination
J201 Request for trial against refusal decision