KR20190014708A - 당뇨병성망막증 진단용 바이오마커 및 이의 용도 - Google Patents

당뇨병성망막증 진단용 바이오마커 및 이의 용도 Download PDF

Info

Publication number
KR20190014708A
KR20190014708A KR1020170098505A KR20170098505A KR20190014708A KR 20190014708 A KR20190014708 A KR 20190014708A KR 1020170098505 A KR1020170098505 A KR 1020170098505A KR 20170098505 A KR20170098505 A KR 20170098505A KR 20190014708 A KR20190014708 A KR 20190014708A
Authority
KR
South Korea
Prior art keywords
diabetic
glutamic acid
subject
glutamine
complication
Prior art date
Application number
KR1020170098505A
Other languages
English (en)
Other versions
KR102000827B1 (ko
Inventor
이충환
우정택
이상열
정은성
Original Assignee
건국대학교 산학협력단
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단, 경희대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020170098505A priority Critical patent/KR102000827B1/ko
Publication of KR20190014708A publication Critical patent/KR20190014708A/ko
Application granted granted Critical
Publication of KR102000827B1 publication Critical patent/KR102000827B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8818Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/04Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/04Endocrine or metabolic disorders
    • G01N2800/042Disorders of carbohydrate metabolism, e.g. diabetes, glucose metabolism

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

본 발명은 당뇨병성망막증 진단용 바이오마커 및 이의 용도에 관한 것으로, 구체적으로 당뇨병 노인 환자 집단에 대한 임상 데이터 및 생체 샘플을 수집하여 당뇨병성망막증 표현형을 확인하고, 크로마토그래피/질량분석법을 이용하여 혈청 대사체를 프로파일링하여, 대사체 중 글루타민, 글루탐산 및 글루타민/글루탐산 비를 이용한 경우 당뇨병 환자에서 당뇨병성망막증 여부를 판별할 수 있음을 확인하였으므로, 상기 대사체 마커를 당뇨병성망막증 여부를 판단하는데 유용하게 이용할 수 있다.

Description

당뇨병성망막증 진단용 바이오마커 및 이의 용도{Biomarkers for diagnosing diabetic retinopathy and uses thereof}
본 발명은 당뇨병성망막증(diabetic retinopathy) 진단용 바이오마커 및 이의 용도에 관한 것이다.
당뇨병의 이환 기간이 길어짐에 따라 전신의 다양한 합병증을 동반하게 되는데, 대표적인 당뇨합병증으로 심혈관계 질환, 당뇨병성신증, 당뇨신경병증, 당뇨망막병증이 발생하게 된다. 당뇨망막병증 (Diabetic Retinopathy, DR)은 당뇨 환자 에게서 당뇨 진단 10년 내에 60% 이상에서, 20년 내에 90% 이상에서 나타난다.
당뇨병성망막증은 당뇨병의 미세혈관 합병증(microangiopathy)의 하나로 당뇨병의 진단에서 직접적으로 참조가 되는 만성 합병증이다. 당뇨병성망막증은 다른 만성 당뇨병 관련 합병증보다 고혈당증에 특이적인 것으로 잘 알려져 있으며, 망막혈관의 투과성 변화와 혈관 폐쇄, 허혈 변화(ischemia), 신생혈관 생성(neovascularization) 및 섬유혈관 증식(fibrovascular proliferation)을 보이는 것이 특징이다.
당뇨병성망막증은 진행 정도에 따라 초기의 비증식성 당뇨병성망막증(NPDR, non-proliferative diabetic retinopathy)과 후기의 증식성 당뇨병성망막증(PDR, proliferative diabetic retinopathy)으로 구분할 수 있다. NPDR은 망막 모세혈관의 폐쇄 및 투과성 변화 등으로 망막출혈, 미세혈관류(microaneurysm), 삼출물(exudate), 망막 부종(edema) 등이 나타나면서 조금씩 시력이 떨어지게 된다. 또한 황반부의 부종(DME, 당뇨황반부종)을 동반하게 되면 이 시기에서도 심각한 시력 저하를 보일 수 있다. PDR은 망막의 광범위한 혈관 폐쇄에 따르는 허혈 상태로 인해 신생혈관이 증식하는 단계이다. 이러한 증식은 망막에서 유리체로 진행되고 섬유혈관 증식이 일어 나 견인막에 의해 유리체출혈(vitreous hemorrhage)이나 망막이 원래 부착 부위에서 떨어지는 견인망막박리 (tractional retinal detachment), 신생혈관녹내장 등의 합병증이 발생해 실명이 진행되는 단계이다.
이러한 당뇨병성망막증이 일찍 발견되면 적절한 관리로 망막증의 진행 및 악화를 예방할 수 있지만, 그 상태가 적절하게 관리되지 않으면 심한 시력 상실이나 실명을 초래할 수 있다. 현재 당뇨병성망막증은 성인에게 실명의 주요 원인으로 여겨지고 있으며, 이러한 임상적 의의가 있음에도 불구하고, 다른 합병증에 비해 잘 진단되지 않는다. 한 연구에 따르면 한국에서 당뇨병성망막증 진단율은 36.3%로 다른 합병증보다 현저히 낮은 것으로 나타났다. 당뇨병성망막증의 진단율이 낮은 이유는 안저 카메라(fundus camera)와 같은 추가 장비와 숙련된 의료진을 필요로 하여 다른 검사와 비해 쉽게 수행하기 어렵기 때문이다.
이러한 현실을 개선하기 위해서는 진단 및 치료 예후 예측을 위한 바이오 마커를 선별하는 것이 필요하다. 현재까지 당뇨망막병증 연구는 유리체의 개별 단백질에 대한 생화학 및 분자생물학적 연구를 중심으로 주로 이루어지고 있다. 또한 당뇨망막병증의 단백질체 연구도 환자 유리체에서 단백질을 2-DE 및 Mass spcectrometry로 동정하는 유리체 단백질체의 Profiling(Discovery) 단계의 연구이다. 또한 이들 유리체 단백질들이 혈액에서 발현이 되는지 혹은 이들을 임상적인 바이오마커로 이용할 수 있는지에 대한 검증(validation) 연구는 거의 이루어지지 않은 상태이다. 이처럼 관련 분야에 대한 연구는 성공적이지 못하고, 당뇨병성망막증의 진단 및 치료 예후를 예측하기 위한 바이오마커에 대한 임상 연구도 거의 없는 실정이다.
이에, 본 발명자들은 당뇨병성망막증의 진단 및 치료 예후를 예측하기 위한 바이오마커를 개발하기 위해 노력한 결과, 당뇨병 노인 환자 집단에 대한 임상 데이터 및 생체 샘플을 수집하여 당뇨병성망막증 표현형을 확인하고, 크로마토그래피/질량분석법을 이용하여 혈청 내 대사체를 프로파일링하여, 대사체 중 글루타민(glutamine) 및 글루탐산(glutamic aicd)이 당뇨병성망막증을 갖는 당뇨병 환자에 대한 정확한 바이오마커임을 확인함으로써, 본 발명을 완성하였다.
대한민국 공개특허 제10-2016-0137859호 대한민국 공개특허 제10-2013-0009205호
Byun SH, Ma SH, Jun JK, Jung KW, Park B. Screening for diabetic retinopathy and nephropathy in patients with diabetes: a nationwide survey in Korea. PLoS One 2013;8:e62991 Mukamel DB, Bresnick GH, Wang Q, Dickey CF. Barriers to compliance with screening guidelines for diabetic retinopathy. Ophthalmic Epidemiol 1999;6:61-72
본 발명의 목적은 실험군으로서 당뇨병 피검개체로부터 분리된 시료에서 대사체의 수준을 측정하고 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하는 단계를 포함하는, 당뇨합병증 여부를 판단하기 위한 정보제공방법을 제공하는 것이다.
또한, 본 발명의 목적은 글루타민 및 글루탐산으로 이루어진 군으로부터 선택된 어느 하나 이상의 대사체에 대한 검출 제제를 포함하는 당뇨합병증 여부 판단용 조성물을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 실험군으로서 당뇨병 피검개체로부터 분리된 시료에서 대사체의 수준을 측정하고 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하는 단계를 포함하는, 당뇨합병증 여부를 판단하기 위한 정보제공방법을 제공한다.
또한, 본 발명은 글루타민 및 글루탐산으로 이루어진 군으로부터 선택된 어느 하나 이상의 대사체에 대한 검출 제제를 포함하는 당뇨합병증 여부 판단용 조성물을 제공한다.
본 발명은 당뇨병 노인 환자 집단에 대한 임상 데이터 및 생체 샘플을 수집하여 당뇨병성망막증 표현형을 확인하고, 크로마토그래피/질량분석법을 이용하여 혈청 내 대사체를 프로파일링하여, 대사체 중 글루타민, 글루탐산 및 글루타민/글루탐산 비를 이용하여 당뇨병성망막증을 갖는 당뇨병 환자를 구별할 수 있음을 확인함으로써, 상기 대사체 마커를 당뇨병성망막증 여부를 판단하는데 유용하게 이용할 수 있다.
도 1은 본 발명의 임상시험 진행 과정을 모식화한 도이다.
도 2a는 GC-TOF-MS 분석 데이터를 이용한 OPLS-DA(orthogonal partial least squares discriminant analysis) 스코어 플롯을 나타낸 도이다:
CON: 비-당뇨병 대조군;
no DR: 당뇨병성망막증(diabetic retinopathy)을 갖지 않는 당뇨병 군; 및
DR: 당뇨병성망막증을 갖는 당뇨병 군.
도 2b는 UPLC-Q-TOF-MS 분석 데이터를 이용한 OPLS-DA 스코어 플롯을 나타낸 도이다.
도 3a는 당뇨병성망막증을 갖지 않는 당뇨병 군 및 당뇨병성망막증을 갖는 당뇨병 군 간 글루타민(glutamine) 및 글루탐산(glutamic acid), 또는 이들의 조합에 대한 ROC 곡선을 나타낸 도이다.
도 3b는 당뇨병성망막증을 갖지 않는 당뇨병 군 및 당뇨병성망막증을 갖는 당뇨병 군 간 글루타민/글루탐산 비율의 ROC 곡선을 나타낸 도이다.
이하 본 발명을 상세히 설명한다.
본 발명은 실험군으로서 당뇨병 피검개체로부터 분리된 시료에서 대사체의 수준을 측정하고 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하는 단계를 포함하는, 당뇨합병증 여부를 판단하기 위한 정보제공방법을 제공한다.
본 발명에서, 상기 시료는 혈액, 혈장, 혈청, 뇨, 눈물, 침, 객담, 비분비물, 기관지 분비물, 기관지 세척액, 폐분비물, 또는 폐포 세척액일 수 있고, 보다 구체적으로 혈청일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서, 상기 "대사체"는 생체 기원의 시료로부터 수득한 대사물질을 말하며, 상기 대사체는 구체적으로 글루타민(glutamine) 또는 글루탐산(glutamic acid)인 것이 바람직하다.
본 발명에서, 상기 "대사체의 수준"은 대사체의 농도 또는 대사체의 양을 말하며, 상기 대사체의 수준은 예를 들어 크로마토그래피/질량분석법, 광흡수분석법 및 발광분광분석법으로 측정할 수 있으나, 이에 제한되지 않고 당업계에서 통상적으로 사용되는 모든 정량법을 사용할 수 있다. 또한, 상기 크로마토그래피/질량분석법은 예를 들어 UPLC-Q-TOF-MS(ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry) 또는 GC-TOF-MS(gas chromatography/time-of-flight mass spectrometry)일 수 있다.
본 발명의 대사체는 UPLC 또는 GC에서 각 성분들이 분리되며 Q-TOF-MS 또는 TOF-MS를 거쳐 얻어진 정보를 이용하여 정확한 분자량 정보뿐만 아니라 구조 정보(elmental composition)을 통해 구성 성분을 확인할 수 있다.
본 발명에서, 상기 당뇨합병증은 당뇨병성망막증(diabetic retinopathy), 당뇨병성 백내장(diabetic cataract) 또는 당뇨병성신증(diabetic nephropathy)일 수 있다.
본 발명은, 상기 당뇨병 피검개체로부터 분리된 시료에서 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 글루타민의 수준이 높은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것이 바람직하다. 보다 구체적으로 글루타민의 수준이 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 10% 이상 높은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것이 바람직하고, 보다 더 구체적으로 글루타민의 수준이 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 20% 이상 높은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것이 바람직하나, 이에 한정되는 것은 아니다.
또한, 상기 당뇨병 피검개체로부터 분리된 시료에서 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 글루탐산의 수준이 낮은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것이 바람직하다. 보다 구체적으로 글루탐산의 수준이 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 10% 이상 낮은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것이 바람직하고, 보다 더 구체적으로 글루탐산의 수준이 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 20% 이상 높은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것이 바람직하나, 이에 한정되는 것은 아니다.
또한, 상기 당뇨병 피검개체로부터 분리된 시료에서 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 글루타민/글루탐산 비율이 높은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것을 특징으로 하는, 당뇨합병증 여부를 판단하는 것이 바람직하다.
본 발명의 구체적인 실시예에서, 본 발명자들은 당뇨병 노인 환자 집단에 대한 임상 데이터 및 생체 샘플을 수집하여 당뇨병성망막증 표현형을 확인하고, 크로마토그래피/질량분석법을 이용하여 혈청 대사체를 프로파일링하였다.
또한, 당뇨병성망막증을 갖는 당뇨병 군과 당뇨병성망막증을 갖지 않는 당뇨병 군을 비교하여, 당뇨병성망막증을 갖지 않는 당뇨병 군보다 당뇨병성망막증을 갖는 당뇨병 군에서 혈청 대사체 중 글루타민의 농도가 유의적으로 높고, 글루탐산의 농도가 유의적으로 낮으며, 글루타민/글루탐산 비가 유의적으로 높은 것을 확인하여, 글루타민, 글루탐산 및 글루타민/글루탐산 비율을 이용하여 당뇨병 환자에서 당뇨병성망막증 여부를 구별할 수 있음을 확인하였으므로, 상기 대사체 마커를 당뇨병성망막증을 포함한 당뇨합병증 여부를 판단하는데 유용하게 이용할 수 있다.
또한, 본 발명은 글루타민 및 글루탐산으로 이루어진 군으로부터 선택된 어느 하나 이상의 대사체에 대한 검출 제제를 포함하는 당뇨합병증 여부 판단용 조성물을 제공한다.
본 발명에서, 상기 "검출 제제"는 당뇨병 환자로부터 분리된 생체 시료로부터 글루타민 또는 글루탐산을 정량적으로 검출하기 위한 제제를 의미하며, 상기 제제는 특별히 제한되는 것은 아니며, 상기 대사체를 정량화할 수 있는 시약 또는 화학 물질일 수 있다.
본 발명에서, 상기 당뇨합병증은 당뇨병성망막증, 당뇨병성 백내장 또는 당뇨병성신증일 수 있다.
본 발명에서, 상기 글루타민의 수준이 당뇨병 피검개체로부터 분리된 시료에서 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 높은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것이 바람직하다.
또한, 상기 글루탐산의 수준이 당뇨병 피검개체로부터 분리된 시료에서 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 낮은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것이 바람직하다.
또한, 상기 글루타민/글루탐산 비율이 당뇨병 피검개체로부터 분리된 시료에서 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 높은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것이 바람직하다.
또한, 본 발명은
(a) 당뇨합병증을 갖는 개체에 피검물질을 처리하는 단계;
(b) 상기 단계 (a)의 피검물질을 처리한 개체로부터 분리된 시료에서 무처리 대조군과 비교하여 글루타민의 수준을 감소시키거나, 글루탐산의 수준을 증가시키는 물질을 선별하는 단계를 포함하는, 당뇨합병증 예방 또는 치료제의 스크리닝 방법을 제공한다.
본 발명의 방법에 있어서, 상기 단계 (a)의 피검물질은, 펩티드, 단백질, 비펩티드성 화합물, 활성 화합물, 발효 생산물, 세포 추출액, 식물 추출액, 동물조직 추출액 및 혈장으로 이루어진 군으로부터 선택되는 어느 하나인 것이 바람직하나 이에 한정되지 않는다.
본 발명의 방법에 있어서, 상기 단계 (b)의 글루타민 수준 또는 글루탐산 수준은 예를 들어 크로마토그래피/질량분석법, 광흡수분석법 및 발광분광분석법으로 측정할 수 있으나, 이에 제한되지 않고 당업계에서 통상적으로 사용되는 모든 정량법을 사용할 수 있다. 또한, 상기 크로마토그래피/질량분석법은 예를 들어 UPLC-Q-TOF-MS(ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry) 또는 GC-TOF-MS(gas chromatography/time-of-flight mass spectrometry)일 수 있다.
또한, 상기 단계 (b)에서 상기 단계 (a)의 피검물질을 처리한 개체로부터 분리된 시료에서 무처리 대조군과 비교하여 글루타민/글루탐산 비를 감소시키는 물질을 선별하는 단계를 추가적으로 포함할 수 있다.
본 발명의 방법에 있어서, 상기 당뇨합병증은 당뇨병성망막증, 당뇨병성 백내장 또는 당뇨병성신증일 수 있다.
이하 본 발명을 실시예 및 실험예에 의해 상세히 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.
< 실시예 1> 피험자 및 임상시험 디자인
임상시험은 2014년 9월부터 2015년 6월까지 수집한 전향코흐트연구(prospective cohort study) 등록자의 기본적인 특징을 이용한, 인체자원중앙은행(National Biobank) 프로젝트의 일부분으로 수행되었다. 본 코흐트의 피험자는 15년 이상 제2형 당뇨병을 앓고 있는 환자였다.
상기 피험자의 임상 정보는 대한당뇨병학회(Korean Diabetes Association)에 의해 승인된 다기관 임상 데이터 등록 표준화 방법에 기초하여 등록되었고, 생물정보(biospecimens)는 한국인체자원중앙은행(National Biobank of Korea)의 가이드라인에 따라 수집하였다.
또한, 임상시험을 위하여 경희대학교 병원의 임상시험심사위원회(Institutional review board)의 승인을 받았다(IRB No. KMC IRB 1428-04). 모든 피험자로부터 서면 동의를 얻었다. 또한, 임상시험 정보는 세계보건기구의 ICTRP(International Clinical Trials Registry Platform)와 연계된 한국 국가서비스인 임상연구정보서비스(http://cris.nih.go.kr)에서 제공하였다(CRIS, No. KCT0001269).
< 실시예 2> 당뇨병성망막증((Diabetic retinopathy) 표현형 분석
상기 <실시예 1>의 피험자 각각의 당뇨병성망막증(Diabetic retinopathy; DR) 증상은 색안경 사진(color fundus photography)(FF 540 Plus; Carl Zeiss Meditech, Jena, Germany) 및 광학단층촬영(optical coherence tomography)(HD-OCT; Carl Zeiss Meditech, Dublin, CA, USA)을 통해 평가하였다. ETDRS(Early Treatment Diabetic Retinopathy Study) 기준에 따라, DR을 3가지 범주로 분류하였다: DR을 갖지 않는 비-DR(no DR), 비-증식성 DR(non-proliferative diabetic retinopathy; NPDR) 또는 증식성 DR을 갖는 증식성 DR(proliferative diabetic retinopathy; PDR). 2명 이상의 안과 의사가 시험 결과를 기초로 DR 상태를 분류하였다. 의사 간 불일치가 발생하는 경우 다시 이미지를 검토하여 최종 해석에 도달하였다.
< 실시예 3> 임상시험 결과에 대한 통계 분석
오랜 기간 제2형 당뇨병을 앓으면서도 망막병증을 가지지 않은 피험자의 특징을 파악하는 데 초점을 맞춰, DR 환자 및 비-DR 환자의 임상 특성을 비교하였다. 임상 자료의 검증과 통계 분석은 통계학자에 의해 독립적으로 수행되었다. 환자의 DR 유무에 관계없이 평균, 비율(proportions), 분산(dirtributions)를 비교하였다. 초기 분석 후, DR과 유사한 임상 특성을 갖는 성향점수매칭(propensity score matching; PSM)을 통해 케이스 및 대조군 세트(case and control set)를 선별하였고, 상기와 동일한 샘플을 대사체학 연구에 사용하였다. 모든 통계 분석을 위해 SAS 소프트웨어(버전 9.3, SAS Institute Inc., Cary, NC, USA)를 사용하였다.
< 실시예 4> 혈청 샘플을 이용한 대사체학 연구
<4-1> 샘플 준비
연령이 일치하는 비-당뇨병 군을 대사체학 연구의 대조군으로 이용하였다. 대사체는 200 ㎕의 혈장에서 추출하였다. 600 ㎕ 메탄올 용액 및 10 ㎕ 내부 표준 용액(물 중 2-클로로페닐알라닌(2-chlorophenylalanine) 1 mg/㎖)을 혈청에 첨가하고, 5분 동안 초음파분쇄기로 균질화하였다. 균질화 후, 현탁액을 60분 동안 -20℃에서 유지한 다음 12,000 rpm, 4℃에서 10분 동안 원심분리하였다. 상층액을 0.2-㎛ PTFE(polytetrafluoroethylene) 필터로 여과하고 고속진공농축기(Modulspin 31; Biotron, South Korea)를 이용하여 건조하였다. 건조한 추출물은 UPLC-Q-TOF-MS(ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry) 분석을 위해 250 ㎕ 메탄올로 재용해하고, 100 ㎕ 샘플을 GC-TOF-MS(gas chromatography/time-of-flight mass spectrometry) 분석을 위해 진공 하에 건조하였다.
<4-2> GC - TOF -MS 분석
GC-TOF-MS 분석을 위하여, 상기 실시예 <4-1>에서 건조한 샘플을 50 ㎕ 메톡시아민 염산염(methoxyamine hydrochloride)(피리미딘 중 20 mg/㎖)을 이용하여 90분 동안 30℃에서 옥심화(oximate)하고 50 ㎕ MSTFA(N-methyl-N-(trimethylsilyl) trifluoroacetamide)를 이용하여 30분 동안 37℃에서 실릴레이트화(silylate)하였다. GC-TOF-MS 분석은 Agilent 7693 auto-sampler (Agilent Technologies)가 결합되고 Pegasus® HT TOF MS system(LECO Corp., St. Joseph, MI, USA)이 장착된 Agilent 7890 gas chromatography system(Agilent Technologies, Palo Alto, CA, USA)을 이용하여 수행하였다. 컬럼은 Rtx-5MS 컬럼(i.d., 30 m × 0.25 mm, 0.25 ㎛ particle size; Restek Corp., Bellefonte, PA, USA)을 이용하였고, 운반 기체로 유량 1.5 ㎖/분의 헬륨을 이용하였다. 1 ㎕로 분주한 샘플을 splitless 모드로 GC에 주입하였다. 온도는 2분 동안 75℃로 유지한 후, 15℃/분으로 상승시켜 300℃가 되도록 한 후 3분 동안 유지하였다. 전면 유입구 및 이송라인(transfer line) 온도는 각각 250℃ 및 240℃로 하였다. 전자 이온화는 -70 eV에서 수행하였고, 데이터 수집을 위해 50-1000 m/z 범위에서 전체 스캐닝을 수행하였다.
<4-3> UPLC -Q- TOF -MS 분석
UPLC는 이성분 용매 전달 시스템, UV 검출기 및 자동 샘플러가 장착된 Waters ACQUITY UPLCTM system(Waters Corp., Milford, MA, USA)을 이용하여 수행하였다. 크로마토그래피 분리는 Waters ACQUITY BEH C18 컬럼(i.d., 100 mm × 2.1 mm, 1.7 ㎛ particle size; Waters Corp.)를 이용하여 수행하였고 주입부피는 5 ㎕로 하였다. 상기 컬럼 온도는 37℃로 설정하였고 유량은 0.3 ㎖/분으로 하였다. 이동상은 물 중 0.1% v/v 포름산(A) 및 아세토나이트릴(acetonitril) 중 0.1% v/v 포름산(B)으로 구성되었다. 초기 조건은 1분 동안 5% B로 하였고, 9분에 걸쳐 100% B로 선형 증가하였다. 총 수행시간은 초기 조건에서 컬럼을 재-평형화하는 것을 포함하여 14분이었다. MS의 경우, Waters Q-TOF Premier (Micromass MS Technologies, Manchester, UK)를 100-1000 m/z 범위에서 음이온 모드로 작동시켰다. 소스 온도(source temperature)는 100℃로 설정하였고, 충돌에너지는 10 eV로 설정하였으며, 충돌가스 유량은 0.3 ㎖/분으로 하였다. 또한, 탈용매 가스는 300℃ 온도에서 650 L/h로 설정하였다. 모세관 전압 및 샘플 콘(cone) 전압은 각각 2.5 kV 및 50 V로 설정하였다. 질량 분광계로 V 모드를 이용하였고, 0.2 s의 스캔 축적으로 센트로이드 모드(centroid mode)에서 데이터를 수집하였다. 류신 엔케팔린(leucine encephalin)을 독립적인 LockSpray 간섭에 의한 reference lock mass (m/z 554.2615)로 이용하였다.
<4-4> 대사체학 연구를 위한 데이터 가공 및 다변량 통계분석
상기 실시예 <4-2>에 기재된 방법으로 GC-TOF-MS 분석을 수행한 후 LECO Chroma TOFTM 소프트웨어(version 4.44, LECO Corp.)를 이용하여 GC-TOF-MS 데이터를 획득하여 전처리하고, NetCDF format (*.cdf)으로 변환하였다. 또한, 상기 실시예 <4-3>에 기재된 방법으로 UPLC-Q-TOF-MS 분석을 수행한 후, 미가공 데이터를 MassLynx software (version 4.1, Waters Corp.)를 이용하여 획득하였다. 미가공 데이터 파일은 MassLynx DataBridge software (version 4.1, Waters Corp.)를 이용하여 NetCDF format (*.cdf)으로 변환하였다. 변환 후, 피크 검출, 머무름 시간(retention time) 보정 및 정렬(alignment)은 Metalign software package (http://www.metalign.nl)를 이용하여 처리하였다. 결과 데이터는 Microsoft Excel 파일로 저장하였다. 다변량 통계 분석(Multivariate statistical analysis)은 SIMCA-P+ (version 12.0; Umetrics, Umea, Sweden)을 이용하여 수행하였다. 데이터 세트는 자동으로 단위 분산 스케일링 되었고, 열 기준으로 평균 중심화 되었다. 각각의 데이터 세트를 비교하기 위하여 OPLS-DA(orthogonal partial least squares-discriminant analysis)를 수행하였다. OPLS-DA의 VIP(variable importance to projection) 값에 기초하여 변수를 선택하였다. 통계학적으로 유의적인 차이는 PASW Statistics 18 software (SPSS Inc., Chicago, IL, USA)를 이용하여 ANOVA 분석, Student's t-test 및 Duncan's multiple range tests에 의해 검증되었다. ROC(Receiver operating characteristic), 및 곡선 및 로지스틱 회귀 분석은 Medcalc software (version 14.8.1; Medcalc Software, Mariakerke, Belgium)을 이용하여 획득하였다.
< 실험예 1> PSM 에 따른 피험자의 임상 특성 확인
도 1에 나타낸 모식도와 같이 상기 <실시예 1>에 기재된 방법으로 모집한 220명의 피험자 중 동의를 얻은 198명의 피험자로부터 임상 데이터 및 샘플을 수집하였다. 동의 후 15명의 피검자가 동의를 철회하여, 총 183명의 피검자를 대상으로 안과 검사를 수행하였다(도 1). 임상시험 참여자의 평균 연령은 66.8 세, 당뇨병의 평균 기간은 22.6년, 남성은 49.7%였다. 안과 검사를 받은 총 183명의 임상시험 참여자 중 124명(67.8 %)이 DR(diabetic retinopathy)로 진단받았으며, 이 중 72명 (39.3 %)이 NPDR(non-proliferative diabetic retinopathy)이 있었고, 52명(28.4 %)이 PDR(proliferative diabetic retinopathy)이었다. 또한, 다양한 요인에서 통계적으로 유의한 차이를 확인하였다. 따라서 PSM을 시행한 결과를 기초로 하여 하기 표 1에 나타낸 바와 같이 DR의 유무를 제외하고 임상 특성에 유의한 차이가 없는 32쌍의 환자와 대조군을 선정하였다 (표 1). 또한, 상기 환자에 대해 대사체학 연구를 수행하였다.
Category Variables No DR (n=32) DR (n=32) p
Clinical characteristics Gender (male, %) 17 (53.1) 12 (37.5) 0.383
DM duration (yr) 21.72±6.63 22.66±7.77 0.624
Age (yrs) 65.25±8.06 67.59±8.47 0.312
Height (cm) 161.81±8.9 162.3±9.14 0.850
Weight (kg) 64.1±8.94 62.98±12.49 0.684
BMI (kg/m2) 24.5±3.01 23.75±3.32 0.375
Max weight in lifetime (kg) 70.65±11.13 70.04±11.34 0.813
Waist circumference (cm) 88.91±7.74 87.74±9.65 0.759
Hip circumference (cm) 92.62±5.53 92.25±8.03 0.953
Neck circumference (cm) 35.89±2.74 34.92±3.48 0.220
Chest circumference (cm) 92.67±5.39 91.33±8.05 0.440
Thigh circumference (Lt., cm) 49.36±2.69 49.04±3.65 0.634
Thigh circumference (Rt., cm) 49.72±3.03 49.54±4.01 0.771
Systolic blood pressure (mmHg) 127.56±15.09 125.66±14.06 0.573
Diastolic blood pressure (mmHg) 72.91±10.59 68.62±9.67 0.073
Pulse rate (bpm) 79.94±15.11 81.47±12.94 0.682
HbA1c (%) 7.92±1.49 7.83±1.19 0.778
Fasting plasma glucose (mg/dL) 151.81±57.22 143.5±41.24 0.524
Total cholesterol (mg/dL) 178.28±34.26 161.62±35.84 0.052
Triglyceride (mg/dL) 129.47±91.91 104.62±52.57 0.181
LDL cholesterol (mg/dL) 103.78±27.66 95.38±31.56 0.235
HDL cholesterol (mg/dL) 55.91±16.86 50.19±14.63 0.168
Spot urine Microalbumin (ug/mg Cr) 77.83±221.27 71.96±175.21 0.911
BUN (mg/dL) 16.41±5.78 18.69±5.37 0.071
Creatinine (mg/dL) 0.8±0.28 0.83±0.36 0.705
Creatinine Clearance (mL/min/1.73m2) 98.04±31.23 102.16±40.51 0.640
AST (IU/L) 24.34±9.67 23.53±6.33 0.690
ALT (IU/L) 22.22±16.81 22.19±11.87 0.994
GGT (IU/L) 30.5±16.27 34.19±43.47 0.659
ALP (IU/L) 74.19±23.67 76.25±17.06 0.681
History of Macrovascular complication Hypertension (n, %) 23 (71.9) 28 (87.5) 0.228
Dyslipidemia (n, %) 22 (68.8) 21 (65.6) 1.000
Myocardial infarction (n, %) 0 (0.0) 0 (0.0) -
Angina (n, %) 3 (9.4) 2 (6.3) 1.000
Heart failure (n, %) 0 (0.0) 1 (3.1) -
Atrial fibrillation (n, %) 0 (0.0) 0 (0.0) -
Any Stroke, (n, %) 5 (15.6) 4 (12.5) 1.000
Peripheral arterial disease (n, %) 2 (6.3) 2 (6.3) 1.000
Coronary artery ballooning (n, %) 1 (3.1) 0 (0.0) -
CAG with stent insertion (n, %) 1 (3.1) 1 (3.1) 1.000
Coronary artery bypass graft (n, %) 0 (0.0) 0 (0.0) -
Intervention for peripheral arterial disease (n, %) 0 (0.0) 0 (0.0) -
Amputation(n,%) 0 (0.0) 0 (0.0) -
History of microvascular complication Glaucoma (n, %) 4 (12.5) 4 (12.5) 1.000
Cataract (n, %) 15 (46.9) 16 (50.0) 1.000
Blindness (n, %) 0 (0.0) 1 (3.1) -
Microalbuminuria (n, %) 12 (37.5) 9 (28.1) 0.579
Overt proteinuria (n, %) 6 (18.8) 4 (12.5) 0.752
Chronic Kidney Disease (n, %) 6 (18.8) 2 (6.3) 0.289
Peripheral neuropathy (n, %) 16 (50.0) 16 (50.0) 1.000
Autonomic neuropathy (n, %) 7 (21.9) 11 (34.4) 0.343
Photocoagulation (n, %) 0 (0.0) 10 (31.3) -
Intra-vitreal injection (n, %) 0 (0.0) 1 (3.1) -
Ophthalmologic operation (n, %) 11 (34.4) 14 (43.8) 0.606
Dialysis (n, %) 0 (0.0) 0 (0.0) -
History of Other comorbidity Any Cancer (n, %) 6 (18.8) 2 (6.3) 0.289
Auto-immune disease (n, %) 1 (3.1) 1 (3.1) 1.000
Chronic B viral hepatitis (n, %) 1 (3.1) 2 (6.3) 1.000
Chronic C viral hepatitis (n, %) 0 (0.0) 0 (0.0) -
Liver cirrhosis (n, %) 0 (0.0) 0 (0.0) -
Tuberculosis (n, %) 2 (6.3) 0 (0.0) -
Hyperthyroidism (n, %) 1 (3.1) 1 (3.1) 1.000
Hypothyroidism (n, %) 6 (18.8) 3 (9.4) 0.505
Depression (n, %) 5 (15.6) 1 (3.1) 0.134
Periodontitis (n, %) 5 (15.6) 7 (21.9) 0.724
Family history Family history of DM (n, %) 22 (68.8) 24 (75.0) 0.789
Family history of hypertension (n, %) 10 (31.3) 9 (28.1) 1.000
Family history of dyslipidemia (n, %) 0 (0.0) 1 (3.1) 1.000
Family history of obesity (n, %) 6 (18.8) 6 (18.8) 1.000
Family history of cardiovascular disease (n, %) 0 (0.0) 1 (3.1) -
Family history of stroke (n, %) 7 (21.9) 3 (9.4) 0.343
Family history of any cancer (n, %) 10 (31.3) 7 (21.9) 0.579
Family history of depression (n, %) 0 (0.0) 2 (6.3) -
Family history of early (or sudden) death (n, %) 1 (3.1) 2 (6.3) 1.000
Lifestyle Marriage (n, %) 32 (100.0) 32 (100.0) -
Monthly income (10,000 KRW) 247.85±289.62 301.46±336.16 0.858
Regular exercise (n/week) 3.47±2.87 2.44±2.6 0.104
Average sleep hour within 1 year (hour) 6.69±1.4 6.25±2.09 0.246
Skip breakfast (n/wk) 0.47±1.57 0.44±1.72 0.942
Average Meal time (min) 16.09±7.48 14.38±8.01 0.400
Eating out (n/wk) 2.06±2.94 1.94±2.31 0.858
Night time worker (n, %) 2 (6.3) 5 (15.6) 0.450
Self-monitoring of blood glucose (n, %) 18 (56.3) 18 (56.3) 1.000
Average number of glucose monitoring (n/wk) 4.56±2.64 3.61±2.64 0.283
Hypoglycemia (n/month) 0.56±1.29 1.17±2.43 0.819
DM education within 1 year (n, %) 0 (0.0) 3 (9.4) -
Any hospitalization within 1 year (n, %) 9 (28.1) 8 (25.0) 1.000
Any operation within 1 year (n, %) 5 (15.6) 4 (12.5) 1.000
Any ED visit within 1 year (n, %) 3 (9.4) 5 (15.6) 0.724
Any dietary supplements within 1 year (n, %) 16 (50.0) 15 (46.9) 1.000
Current Medications Metformin (n, %) 23 (71.9) 23 (71.9) 1.000
Sulfonylurea (n, %) 20 (62.5) 20 (62.5) 1.000
DPP-4 inhibitor (n, %) 11 (34.4) 10 (31.3) 1.000
Meglitinide (n, %) 1 (3.1) 0 (0.0) -
Thiazolidinedione (n, %) 1 (3.1) 3 (9.4) 0.617
SGLT-2 inhibitor (n, %) 0 (0.0) 0 (0.0) -
Alpha glucosidase inhibitor (n, %) 0 (0.0) 1 (3.1) -
Rapid acting insulin (n, %) 1 (3.1) 3 (9.4) 0.480
Basal insulin (n, %) 7 (21.9) 11 (34.4) 0.289
Pre-mixed insulin (n, %) 7 (21.9) 6 (18.8) 1.000
GLP-1 agonist (n, %) 0 (0.0) 0 (0.0) -
Angiotensin Receptor Blocker (n, %) 15 (46.9) 14 (43.8) 1.000
Angiotension Converting Enzyme inhibitor (n, %) 1 (3.1) 5 (15.6) 0.221
Calcium channel blocker (n, %) 11 (34.4) 10 (31.3) 1.000
Diuretics (n, %) 1 (3.1) 4 (12.5) 0.371
Beta blocker (n, %) 2 (6.3) 2 (6.3) 1.000
Statin (n, %) 12 (37.5) 15 (46.9) 0.628
Fibrate (n, %) 1 (3.1) 0 (0.0) -
Aspirin (n, %) 6 (18.8) 8 (25.0) 0.724
Clopidogrel (n, %) 5 (15.6) 5 (15.6) 1.000
Cilostazol (n, %) 17 (53.1) 11 (34.4) 0.211
* Paried sample t- test 또는 McNemar test에 의한 것으로, 평균±SD 또는 n(%)로 나타냄.
* DM: diabets mellitus; BMI: body mass index; LDL: Low density lipoprotein; HDL: high density lipoprotein; BUN: blood urea nitrogen; AST: aspartate aminotransferase; ALT: alanine aminotransferase; GGT: gamma-glutamyl transferase; ALP: alkaline phosphatase; CAG: coronary angiography; DPP: dipeptidylpeptidase; 및 SGLT: sodium-glucose transporter
< 실험예 2> DR 유무에 따른 다변량 통계분석 결과 확인
비-당뇨병 대조군과 DR을 갖지 않는 비-DR 당뇨병 피험자, NPDR 또는 PDR을 갖는 당뇨병 피험자 간에 유의적으로 구별되는 대사체를 DR의 바이오마커로 이용할 수 있는지 알아보기 위하여, 상기 <실시예 4>에 기재된 방법으로 혈청 샘플을 이용하여 GC-TOF-MS 및 UPLC-Q-TOF-MS 분석을 수행하였다. 그 다음, GC-TOF-MS를 위한 39,154 질량 스펙트럼 변수 및 UPLC-Q-TOF-MS를 위한 6,185 질량 스펙트럼 변수를 이용하여 다변량 통계분석법으로 OPLS-DA를 수행하였다.
그 결과, 도 2a에 나타낸 바와 같이, GC-TOF-MS 데이터 세트에 대하여 OPLS-DA를 수행한 결과 R2X(cum) = 0.214, R2Y(cum) = 0.977 및 Q2 (cum) = 0.449로 비-당뇨병 대조군(CON), 비-DR 당뇨병 군(no DR) 및 DR을 갖는 당뇨병 군(DR) 세 그룹 모두가 명확히 구분되었다. 상기 값은 모델의 적합성과 예측 정확도를 나타낸다. 또한, 교차 검증(cross-validation) 분석으로 p-값 = 2.25e-18을 확인하였다(도 2a).
또한, 도 2b에 나타낸 바와 같이, UPLC-Q-TOF-MS 데이터 세트의 OPLS-DA에서도 유사한 분포 패턴이 관찰되었다. 즉, R2X(cum) = 0.145, R2Y(cum) = 0.933, Q2 (cum) = 0.497로 비-당뇨병 대조군(CON), 비-DR 당뇨병 군(no DR) 및 DR을 갖는 당뇨병 군(DR) 세 그룹이 명확히 구별됨을 확인하였다. 또한, 교차 검증(cross-validation) 분석으로 p-값 = 1.64e-26을 확인하였다(도 2b).
< 실험예 3> DR 진단을 위한 바이오마커 확인
상기 <실험예 2>의 다변량 통계분석 결과를 바탕으로 DR 유무에 따른 구별을 담당하는 대사체를 선별하기 위하여, OPLS-DA의 VIP값 > 0.7을 이용하였다. VIP값은 생물학적 상태가 다른 대사체의 상관 관계를 반영하는 잠재적인 바이오마커 후보를 검출하는 데 중요한 매개 변수이다. 또한 통계적 유의성을 평가하기 위해 일원 분산 분석(one-way ANOVA)에서 유도된 p <0.05를 적용하였다. 선별된 대사체는 상업 표준 화합물 및 NIST (National Institutes of Standard and Technology) 라이브러리, Human Metabolome Database (HMDB, http://www.hmdb.ca/) 및 Wiley 8를 포함한 다양한 데이터베이스와 MS 단편 패턴을 비교하여 확인하였다. 이들 대사체의 상세한 정보는 하기 표 2 및 표 3에 나타내었다. 하기 표 2의 결과는 GC-TOF-MS 분석을 통해 획득하였고, 하기 표 3의 결과는 UPLC-Q-TOF-MS 분석을 통해 획득하였다. 또한, 비-당뇨병 대조군(CON), 비-DR 당뇨병 군(no DR) 및 DR을 갖는 당뇨병 군(DR) 간 대사체의 상대적인 양의 차이는 배수 변화로 전환하여 나타내었다.
Figure pat00001
Figure pat00002
그 결과, 상기 표 2 및 표 3에 나타낸 바와 같이, 7 개의 아미노산, 6 개의 유기 화합물, 7개의 탄수화물, 11개의 리소포스파티딜콜린 (lysophosphatidylcholines, lysoPCs)을 포함한 총 31 개의 대사체가 비-당뇨병 대조군 대비 비-DR 당뇨병 군에서 유의하게 차이를 보이는 대사체임을 확인하였다. 또한, 31개의 대사체 중 일부 아미노산은 비-당뇨병 대조군과 비교하여 비-DR 당뇨병 군에서 통계학적으로 유의적인 증가 및 감소를 보임을 확인하였다. 보다 구체적으로 비-DR 당뇨병 군에서는 아스파라긴(Asparagine) (2.30 배), 글루타민(glutamine) (2.83 배)이 유의적으로 현저히 증가하였고, 아스파르트산(aspartic acid) (0.46배), 글루탐산(glutamic acid)(0.25 배)이 유의적으로 현저히 감소하는 것을 확인하였다. 특히, DR을 갖는 당뇨병 군과 비-DR 당뇨병 군 간 글루타민 양의 배수 변화가 1.19배로 DR을 갖는 당뇨병 군에서 글루타민이 유의적으로 현저히 증가하였고, 글루탐산 양의 배수 변화가 0.72배로 DR을 갖는 당뇨병 군에서 글루탐산이 유의적으로 현저히 감소하는 것을 확인하였다.
또한, 상기 표 2 및 표 3에 나타낸 바와 같이 DR을 갖는 당뇨병 군과 비-DR 당뇨병 간 유의적인 배수 변화를 보이는 글루타민 및 글루탐산, 글루타민/글루탐산 비율에 대하여 상기 <실시예 4>에 기재된 방법으로 ROC 곡선을 획득하였다.
그 결과, 상기 표 2 및 표 3, 도 3a 및 도 3b에 나타낸 바와 같이, DR을 갖는 당뇨병 군과 비-DR 당뇨병 군 간 글루타민 및 글루탐산의 AUC 값은 각각 0.671, 0.656으로 다른 대사체의 AUC 값과 비교하여 가장 높게 나타나므로, 글루타민 및 글루탐산의 양을 비교하여 비-DR 당뇨병 환자 및 DR을 갖는 당뇨병 환자를 구별할 수 있음을 확인하였다. 또한, 글루타민 및 글루탐산을 조합할 경우 AUC 값이 0.739로 DR을 갖는 당뇨병 군과 비-DR 당뇨병 군을 구별할 수 있는 능력이 향상됨을 확인하였다.
< 실험예 4> DR 진단을 위한 바이오마커로서 글루타민 및 글루탐산 확인
상기 <실험예 3>의 결과를 바탕으로, 대사체 중 글루타민 및 글루탐산, 이들의 비율을 DR 진단을 위한 바이오마커로 이용할 수 있는지 알아보기 위하여, 상기 <실시예 4>에 기재된 방법으로 비-당뇨병 대조군(CON), 비-DR 당뇨병 군(No DR) 및 DR을 갖는 당뇨병 군(DR)의 혈청 샘플을 이용하여 GC-TOF-MS 분석을 통해 비-당뇨병 대조군 대비 비-DR 당뇨병 군에서 유의적인 차이를 나타낸 아스파라긴, 아스파르트산, 글루타민 및 글루탐산의 평균 농도를 정량하고, 글루타민/글루탐산 비율을 확인하였다.
그 결과, 하기 표 4에 나타낸 바와 같이, 비-당뇨병 대조군에 비해 비-DR 당뇨병 군에서 혈청 내 아스파라긴 및 아스파르트산의 유의적인 차이가 없는 반면, 글루탐산 및 글루타민의 경우 비-당뇨병 대조군과 비교하여 비-DR 당뇨병 군 및 DR 당뇨병 군에서 현저한 차이가 있음을 확인하였다. 특히, 상기 <실험예 3>의 결과에서 비-DR 당뇨병 군 및 DR을 갖는 당뇨병 군 간 유의적인 배수 변화를 보인 글루탐산의 경우 비-DR 당뇨병 군과 비교하여 DR을 갖는 당뇨병 군의 혈청 내에서 높게 나타나고, 글루탐산의 경우 낮게 나타나는 것을 확인하였다. 또한, 비-DR 당뇨병 군 및 DR을 갖는 당뇨병 군 간 글루타민/글루탐산 비율을 계산하여 비교한 결과, 비-DR 당뇨병 군에 비하여 DR 당뇨병 군에서 글루타민/글루탐산 비율이 약 1.5배 이상 높게 나타나는 것을 확인하였다.
따라서, 상기 <실험예 1> 내지 <실험예 4>의 결과를 통해 글루타민, 글루탐산 및 글루타민/글루탐산 비율을 당뇨병 환자에서 DR 여부를 판단하기 위한 바이오마커로 이용할 수 있음을 확인하였고, 글루타민, 글루탐산 및 글루타민/글루탐산 비율을 측정하여 당뇨병 환자 중 DR을 갖는 당뇨병 환자를 구별할 수 있음을 확인하였다.
Metabolite
평균 농도(ng/80 ㎕ 혈청)
CON No DR DR
Asparagine 8.06 9.56 9.80
Aspartic acid 10.01 9.44 9.40
Glutamine 52.62 135.36 160.05
Glutamic acid 50.17 16.62 13.50
Glutamine/Glutamic acid 1.04 8.14 11.86

Claims (11)

  1. 실험군으로서 당뇨병 피검개체로부터 분리된 시료에서 대사체의 수준을 측정하고 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하는 단계를 포함하는, 당뇨합병증 여부를 판단하기 위한 정보제공방법.
  2. 제 1항에 있어서, 상기 시료는 혈액, 혈장, 혈청, 뇨, 눈물, 침, 객담, 비분비물, 기관지 분비물, 기관지 세척액, 폐분비물, 및 폐포 세척액으로 구성된 군에서 선택된 것을 특징으로 하는, 당뇨합병증 여부를 판단하기 위한 정보제공방법.
  3. 제 1항에 있어서, 상기 대사체는 글루타민(glutamine) 또는 글루탐산(glutamic acid)인 것을 특징으로 하는, 당뇨합병증 여부를 판단하기 위한 정보제공방법.
  4. 제 1항에 있어서, 상기 대사체 수준은 크로마토그래피/질량분석법, 광흡수분석법 및 발광분광분석법으로 이루어진 군으로부터 선택된 어느 하나 이상을 이용하여 측정하는 것을 특징으로 하는, 당뇨합병증 여부를 판단하기 위한 정보제공방법.
  5. 제 1항에 있어서, 상기 크로마토그래피/질량분석법은 UPLC-Q-TOF-MS(ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry) 또는 GC-TOF-MS(gas chromatography/time-of-flight mass spectrometry)인 것을 특징으로 하는, 당뇨합병증 여부를 판단하기 위한 정보제공방법.
  6. 제 1항에 있어서, 상기 당뇨합병증은 당뇨병성망막증(diabetic retinopathy), 당뇨병성 백내장(diabetic cataract) 및 당뇨병성신증(diabetic nephropathy)으로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 당뇨합병증 여부를 판단하기 위한 정보제공방법.
  7. 제 1항에 있어서, 상기 당뇨병 피검개체로부터 분리된 시료에서 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 글루타민의 수준이 높은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것을 특징으로 하는, 당뇨합병증 여부를 판단하기 위한 정보제공방법.
  8. 제 1항에 있어서, 상기 당뇨병 피검개체로부터 분리된 시료에서 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 글루탐산의 수준이 낮은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것을 특징으로 하는, 당뇨합병증 여부를 판단하기 위한 정보제공방법.
  9. 제 1항에 있어서, 상기 당뇨병 피검개체로부터 분리된 시료에서 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 글루타민/글루탐산 비율이 높은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것을 특징으로 하는, 당뇨합병증 여부를 판단하기 위한 정보제공방법.
  10. 글루타민 및 글루탐산으로 이루어진 군으로부터 선택된 어느 하나 이상의 대사체에 대한 검출 제제를 포함하는 당뇨합병증 여부 판단용 조성물.
  11. (a) 당뇨합병증을 갖는 개체에 피검물질을 처리하는 단계;
    (b) 상기 단계 (a)의 피검물질을 처리한 개체로부터 분리된 시료에서 무처리 대조군과 비교하여 글루타민의 수준을 감소시키거나, 글루탐산의 수준을 증가시키는 물질을 선별하는 단계를 포함하는, 당뇨합병증 예방 또는 치료제의 스크리닝 방법.
KR1020170098505A 2017-08-03 2017-08-03 당뇨병성망막증 진단용 바이오마커 및 이의 용도 KR102000827B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170098505A KR102000827B1 (ko) 2017-08-03 2017-08-03 당뇨병성망막증 진단용 바이오마커 및 이의 용도

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170098505A KR102000827B1 (ko) 2017-08-03 2017-08-03 당뇨병성망막증 진단용 바이오마커 및 이의 용도

Publications (2)

Publication Number Publication Date
KR20190014708A true KR20190014708A (ko) 2019-02-13
KR102000827B1 KR102000827B1 (ko) 2019-07-16

Family

ID=65366385

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170098505A KR102000827B1 (ko) 2017-08-03 2017-08-03 당뇨병성망막증 진단용 바이오마커 및 이의 용도

Country Status (1)

Country Link
KR (1) KR102000827B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114236110A (zh) * 2021-12-22 2022-03-25 上海市第一人民医院 一种用于糖尿病视网膜病变早期诊断的代谢标志物及应用
WO2022145511A1 (ko) * 2020-12-29 2022-07-07 경상국립대학교병원 당뇨병성 백내장 예측을 위한 정보제공 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102334303B1 (ko) * 2020-05-06 2021-12-01 건국대학교 산학협력단 당뇨병성 황반부종에 대한 혈액내 바이오마커 및 이의 용도

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130009205A (ko) 2011-07-14 2013-01-23 서울대학교산학협력단 당뇨망막병증 진단용 마커 및 이의 용도
KR20160137859A (ko) 2015-05-22 2016-12-01 가천대학교 산학협력단 당뇨병에 대한 신규 바이오마커 및 그의 용도

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130009205A (ko) 2011-07-14 2013-01-23 서울대학교산학협력단 당뇨망막병증 진단용 마커 및 이의 용도
KR20160137859A (ko) 2015-05-22 2016-12-01 가천대학교 산학협력단 당뇨병에 대한 신규 바이오마커 및 그의 용도

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Byun SH, Ma SH, Jun JK, Jung KW, Park B. Screening for diabetic retinopathy and nephropathy in patients with diabetes: a nationwide survey in Korea. PLoS One 2013;8:e62991
J liu et al., Mol. Biosyst., Vol. 9, pp. 2645-2652.(2013.11.)* *
JY Kim et al., Journal of proteome research, Vol. 9, pp. 4368-4375.(2010.06.18.)* *
LK Mandal et al., Canadian Journal of Diabetes, Vol. 37.(2013.12.)* *
Mukamel DB, Bresnick GH, Wang Q, Dickey CF. Barriers to compliance with screening guidelines for diabetic retinopathy. Ophthalmic Epidemiol 1999;6:61-72
Rui Curi et al., Frontiers in Bioscience, Vol.12, pp. 344-357.(2007.01.01.)* *
Yu Xu-hui et al., Experimental Eye research, Vol. 89, pp. 967-971. (2009.08.20.)* *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145511A1 (ko) * 2020-12-29 2022-07-07 경상국립대학교병원 당뇨병성 백내장 예측을 위한 정보제공 방법
CN114236110A (zh) * 2021-12-22 2022-03-25 上海市第一人民医院 一种用于糖尿病视网膜病变早期诊断的代谢标志物及应用

Also Published As

Publication number Publication date
KR102000827B1 (ko) 2019-07-16

Similar Documents

Publication Publication Date Title
Dunlop et al. Abnormalities of 5-hydroxytryptamine metabolism in irritable bowel syndrome
Ethen et al. The proteome of central and peripheral retina with progression of age-related macular degeneration
KR102000827B1 (ko) 당뇨병성망막증 진단용 바이오마커 및 이의 용도
Ruiz-Argüelles et al. Metabolomic profile of insulin resistance in patients with multiple sclerosis is associated to the severity of the disease
Öhrfelt et al. Screening for new biomarkers for subcortical vascular dementia and Alzheimer’s disease
Tang et al. Metabolomic profiling of aqueous humor and plasma in primary open angle glaucoma patients points towards novel diagnostic and therapeutic strategy
JP2011515680A (ja) 糖尿病のためのバイオマーカーおよびアッセイ
Riaz et al. Effect of high dose thiamine on the levels of urinary protein biomarkers in diabetes mellitus type 2
Wu et al. Association between hyperhomocysteinemia and stroke with atherosclerosis and small artery occlusion depends on homocysteine metabolism-related vitamin levels in Chinese patients with normal renal function
CN110220987B (zh) 胆汁酸联合标志物在制备用于预测或诊断糖尿病的检测试剂或检测物的用途
CN109991342A (zh) 一种诊断或预防糖尿病视网膜病变的生物标志物、检测试剂及用途
Weger et al. The role of hyperhomocysteinemia and methylenetetrahydrofolate reductase (MTHFR) C677T mutation in patients with retinal artery occlusion
AU2023270246A1 (en) Method for the diagnosis of cystic fibrosis
Kasturi et al. Two‐vs one‐hour glucose tolerance testing: Predicting prediabetes in adolescent girls with obesity
Park et al. Neutrophil gelatinase-associated lipocalin as a predictor of acute kidney injury in patients during treatment with colistimethate sodium
Di et al. Lipoprotein (a) as a marker for predicting the presence and severity of coronary artery disease in untreated Chinese patients undergoing coronary angiography
KR102377089B1 (ko) 전당뇨 진단 키트 및 진단 방법
Deng et al. Relationship between Serum Osteocalcin and Carotid Atherosclerosis in Middle‐Aged Men in China: A Cross‐Sectional Study
WO2012116074A1 (en) Biomarkers of insulin sensitivity
KR102334303B1 (ko) 당뇨병성 황반부종에 대한 혈액내 바이오마커 및 이의 용도
KR101764323B1 (ko) 혈청 대사체를 이용한 제2형 당뇨병 진단 키트 및 진단 방법
Toson et al. Noninvasive estimation of liver fibrosis in biopsy-proven hepatitis C virus-infected patients: angiogenic fibrogenic link
CN114755313B (zh) 包含尿液nad+代谢物的急性肾损伤标志物
Shankar et al. Positive association between plasma homocysteine level and chronic kidney disease
Nakano et al. Effect of pioglitazone on various parameters of insulin resistance including lipoprotein subclass according to particle size by a gel-permeation high-performance liquid chromatography in newly diagnosed patients with type 2 diabetes

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant