KR20180128082A - 배출 퇴적물 제거를 위한 온도 제어식 원격 플라즈마 세정 - Google Patents

배출 퇴적물 제거를 위한 온도 제어식 원격 플라즈마 세정 Download PDF

Info

Publication number
KR20180128082A
KR20180128082A KR1020187033749A KR20187033749A KR20180128082A KR 20180128082 A KR20180128082 A KR 20180128082A KR 1020187033749 A KR1020187033749 A KR 1020187033749A KR 20187033749 A KR20187033749 A KR 20187033749A KR 20180128082 A KR20180128082 A KR 20180128082A
Authority
KR
South Korea
Prior art keywords
sensors
downstream
exhaust system
temperature
process chamber
Prior art date
Application number
KR1020187033749A
Other languages
English (en)
Other versions
KR102194085B1 (ko
Inventor
마틴 에이. 힐켄
데이비드 케이. 칼슨
매튜 디. 스코트니-캐슬
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20180128082A publication Critical patent/KR20180128082A/ko
Application granted granted Critical
Publication of KR102194085B1 publication Critical patent/KR102194085B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32963End-point detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/335Cleaning

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Mechanical Engineering (AREA)

Abstract

본 개시내용의 실시예들은 일반적으로, 배출 시스템들, 예컨대, 에피택셜 실리콘의 형성을 위한 프로세스 챔버들과 함께 사용되는 배출 시스템들을 세정하기 위한 방법들 및 장치들에 관한 것이다. 배출 시스템은 배출 시스템을 통하는 이온화된 가스를 공급하기 위한 원격 플라즈마 공급원, 및 원격 플라즈마 공급원의 하류에 위치된 하나 이상의 온도 센서를 포함한다.

Description

배출 퇴적물 제거를 위한 온도 제어식 원격 플라즈마 세정
본 개시내용의 양상들은 일반적으로, 배출 시스템들, 예컨대, 에피택셜 실리콘의 형성을 위한 프로세스 챔버들과 함께 사용되는 배출 시스템들을 세정하기 위한 방법들 및 장치들에 관한 것이다.
에피택셜 실리콘은 프로세스 챔버들에서 실리콘 함유 전구체 가스들(silicon-containing precursor gases)을 사용하여 증착된다. 프로세스 챔버에서 미리 결정된 횟수의 증착 주기들 이후에, 프로세스 챔버는 염소 함유 가스를 사용하여 세정된다. 염소 함유 가스로부터의 클로라이드 라디칼들은 실리콘과 반응하여 클로로실란을 형성하고, 클로로실란은 프로세스 챔버로부터 배출된다. 클로로실란은 배출 시스템의 내부 표면들 상에 퇴적되는 가연성 물질이고, 반드시 주기적으로 제거되야 한다. 클로로실란을 제거하기 위한 세정 시간들은, 요구되는 제거의 정도에 따라, 한나절에서 최대 1 개월까지의 범위일 수 있다. 부가적으로, 클로로실란은 배출 시스템의 분해 시 주위 환경의 산소와 반응하여 클로로실록산을 형성할 수 있는데, 이는 촉발성 폭발물이다. 클로로실록산의 형성은, 작업자에 의해 취해지는 추가 예방조치들 때문에, 세정 및 유지보수를 위해 요구되는 시간을 더 연장시킨다.
그러므로, 배출 시스템들을 세정하기 위한 개선된 방법 및 장치가 필요하다.
일 양상에서, 처리 시스템은 프로세스 챔버; 및 프로세스 챔버에 결합된 배출 시스템을 포함한다. 배출 시스템은, 이온화된 세정 가스를 프로세스 챔버의 하류에 있는 배출 시스템에 공급하기 위한 원격 플라즈마 공급원; 및 배출 시스템의 하나 이상의 위치에서 배출 시스템의 온도를 측정하기 위한 하나 이상의 센서를 포함한다.
다른 양상에서, 처리 시스템은 프로세스 챔버; 및 프로세스 챔버에 결합된 배출 시스템을 포함한다. 배출 시스템은, 이온화된 세정 가스를 프로세스 챔버의 하류에 있는 배출 시스템에 공급하기 위한 원격 플라즈마 공급원; 배출 시스템의 하나 이상의 위치에서 배출 시스템의 온도를 측정하기 위한, 원격 플라즈마 공급원의 하류에 있는 하나 이상의 센서; 하나 이상의 센서의 하류에 있는 종점 검출 시스템; 및 종점 검출 시스템의 하류에 있는 진공 펌프를 포함한다.
다른 실시예에서, 배출 시스템을 세정하기 위한 프로세스는, 하나 이상의 이온화된 가스를 프로세스 챔버의 하류에 있는 배출 시스템에 도입하는 단계; 배출 시스템 내의 온도를 모니터링하는 단계; 및 모니터링된 온도에 기초하여, 하나 이상의 이온화된 가스의 유량을 조정하는 단계를 포함한다.
위에서 언급된 본 개시내용의 특징들이 상세하게 이해될 수 있도록, 위에 간략하게 요약된 본 개시내용의 더 구체적인 설명이 양상들을 참조하여 이루어질 수 있으며, 이들 중 일부는 첨부 도면들에 예시되어 있다. 그러나, 첨부 도면들은 예시적인 양상들만을 예시하며 따라서 그것의 범위를 제한하는 것으로 간주되어서는 안되며, 본 개시내용이, 동등한 효과의 다른 양상들을 허용할 수 있다는 점에 주목해야 한다.
도 1은, 본 개시내용의 일 양상에 따른 처리 시스템(100)의 개략도이다.
도 2는, 세정 주기들 동안 배출 시스템의 온도 반응을 예시하는 그래프이다.
도 3은, 본원에서 설명되는 양상들에 따른 세정 이후 배출 시스템의 구획들의 내부도들을 예시한다.
이해를 용이하게 하기 위해, 가능한 경우에, 도면들에 공통인 동일한 요소들을 지시하는 데에 동일한 참조 번호들이 사용되었다. 일 양상의 요소들 및 특징들이, 추가적인 언급 없이 다른 양상들에 유익하게 포함될 수 있다는 것이 고려된다.
본 개시내용의 양상들은 일반적으로, 배출 시스템들, 예컨대, 에피택셜 실리콘의 형성을 위한 프로세스 챔버들과 함께 사용되는 배출 시스템들을 세정하기 위한 방법들 및 장치들에 관한 것이다. 배출 시스템은 배출 시스템을 통하는 이온화된 가스를 공급하기 위한 원격 플라즈마 공급원, 및 원격 플라즈마 공급원의 하류에 위치된 하나 이상의 온도 센서를 포함한다. 본원에서 설명되는 방법들 및 장치들의 사용이, 다른 프로세스들, 예컨대, 식각, 또는 에피택셜 실리콘 이외의 재료들의 증착에 대해 고려된다는 것이 주목되어야 한다.
도 1은, 본 개시내용의 일 양상에 따른 처리 시스템(100)의 개략도이다. 처리 시스템(100)은, 배출 시스템(102)에 결합된 프로세스 챔버(101), 예컨대, 에피택셜 증착 반응기를 포함한다. 배출 시스템(102)은, 배출 시스템(102)의 하류에 위치된 스크러버(122)로의 유출물의 유동을 용이하게 하기 위해, 배출 시스템의 하류 말단에서 진공 펌프(103)에 결합된다. 배출 시스템(102)은 벨로우즈(105)를 통해 배출 시스템에 결합된 종점 검출 시스템(104)을 포함할 수 있다. 배출 시스템(102) 및 벨로우즈(105)는, 세정 작동의 종점의 결정을 용이하게 하기 위해, 진공 펌프(103)의 상류에 배치될 수 있다.
원격 플라즈마 공급원(RPS)(106)은, 세정, 퍼지, 캐리어, 또는 다른 프로세스 가스들을 이온화하고, 이온화된 가스들을 배출 시스템(102)에 제공하기 위해, 배출 시스템(102)에 결합된다. 예를 들어, 제1 가스 공급원(107)은, RPS(106)를 통해 배출 시스템(102)에 불활성 또는 비반응성 가스, 예컨대, 아르곤을 제공하기 위해, RPS에 결합될 수 있다. 부가적으로, 제2 가스 공급원(108)은, RPS(106)를 통해 배출 시스템(102)에 세정 가스, 예컨대, NF3를 제공하기 위해, RPS에 결합될 수 있다. 고려되는 다른 세정 가스들은 NF2H, CHF3, CF4 등을 포함한다. 다른 세정 가스들 및 다른 비반응성 가스들이 고려된다는 것이 주목되어야 한다. 이온화된 가스들은 축적된 퇴적물들의, 배출 시스템(102)의 내부로부터의 제거를 용이하게 하여, 배출 시스템(102)의 세정을 위한 분해의 필요성을 감소시키거나 제거한다.
배출 시스템(102)은, 프로세스 챔버(101) 내로의 배출 가스들의 역류를 방지하는 제1 격리 밸브(109)를 포함한다. 프로세스 챔버(101)는 벽(120)에 의해 진공 펌프(103)로부터 분리될 수 있다. RPS(106)는, 가스 통로(110)를 통해, 제1 격리 밸브(109)의 하류에 있는 배출 시스템(102)에 결합된다. 가스 통로(110)는, 가스 통로를 통하는 가스 유동을 제어하고 따라서 RPS(106)로부터 배출 시스템(102)으로의 가스 유동을 제어하기 위해, 가스 통로 내에 배치된 제2 격리 밸브(111)를 포함한다. 격리 밸브들(109 및 111)은 제어기(도시되지 않음)에 의해 제어될 수 있다.
배출 시스템(102)은 또한, 온도를 감지하기 위한 하나 이상의 센서(112a-112g)(7개가 도시됨)를 포함한다. 제1 온도 센서(112a)는 격리 밸브들(109 및 111)의 하류에 그리고 압력 제어 밸브(113)의 상류에 배치된다. 나머지 센서들(112b-112g)은 압력 제어 밸브(113)의 하류에 그리고 벨로우즈(105)의 상류에 위치된다. 센서들(112a-112g)은 배출 시스템(102)의 상이한 위치들에서의 배출 온도의 모니터링을 용이하게 한다. 일 양상에서, 센서들(112a-112g)은 배출 시스템(102)의, 유출물의 퇴적을 증가시키기 쉬운 위치들에 위치된다. 예를 들어, 밸브들, 엘보우들, T-피팅들 등은 물질의 퇴적을 증가시키기 쉽다. 일 예에서, 센서들(112a-112g)은 열전대들일 수 있다. 일 예에서, 온도 센서들(112e 및 112f)은 바닥(121) 아래에 위치된다.
온도 센서들(112a-112g)은 배출 시스템(102) 내에서의 세정 작동의 모니터링을 용이하게 한다. 세정 가스로부터의 플루오라이드 라디칼들과 클로로실란 퇴적물들의 반응은 발열 반응이다. 따라서, 반응의 정도는 일반적으로, 온도 측정들을 통해 한정될 수 있다. 예를 들어, 세정 작동의 종점 검출은 배출 시스템(102) 내의 온도를 추적함으로써 모니터링될 수 있다. 센서(112a-112g)에서의 상승된 온도는 세정 가스와 퇴적된 물질의 반응을 나타내는 반면, 주위 온도(또는 RPS(106)를 빠져나가는 세정 가스의 온도)와 대략 동등하거나 그에 접근하는 온도는, 퇴적된 물질의 완료된 반응/제거로 인해, 실질적으로 완료된 세정 작동을 나타낸다.
부가적으로 또는 대안적으로, 센서들(112a-112g)은 세정 작동의 모니터링 및 제어를 용이하게 하는 데에 활용될 수 있다. 예를 들어, 센서들(112a-112g)은 배출 시스템 내에서 급격한 발열 반응들을 방지하기 위해 온도를 모니터링할 수 있다. 특정 센서(112a-112g)에서 측정된 온도가, 미리 결정된 한계치에 접근할 때, 신호가 제어기에 중계될 수 있다. 차례로, 제어기는 RPS(106)를 빠져나가는 세정 가스의 유량을 조정할 수 있다(그리고/또는 유량을 중단시킬 수 있다). 세정 가스의 양을 감소시키는 것은, 배출 시스템(102)에서의 반응의 정도를 제한하여, 온도들을 원하는 수준들에서 유지한다.
각각의 센서(112a-112g)가, 동일하거나 상이한 온도 한계치들로 프로그래밍될 수 있다는 것이 고려된다. 예를 들어, 압력 제어 밸브(113)는 온도 민감성일 수 있고, 따라서, 압력 제어 밸브(113)에 인접한 센서들(112a 및 112b)은 상대적으로 더 낮은 온도로, 예컨대, 섭씨 약 70 도 내지 섭씨 약 80 도로 제한될 수 있다. 센서들(112c-112g)은 덜 온도 민감성인 구성요소들, 예컨대, T-피팅들 또는 엘보우들에 인접하게 위치될 수 있다. 그러한 예에서, 센서들(112c-112g)에 대한 피드백 신호가, 상대적으로 더 높은 온도로, 예컨대, 섭씨 약 110 도 내지 섭씨 약 130 도로 설정될 수 있다.
또한, 온도 센서들(112a-112g) 중 하나 초과의 온도 센서들의 판독값들에 기초하여 제어기가 반응할 수 있다는 것이 고려된다. 예를 들어, 온도 센서들(112a-112g) 중 오직 하나만이 높은 온도를 기록한다면, 제어기는 하나 이상의 추가적인 온도 센서(112a-112g)가, 높은 온도를 기록할 때까지 반응하지 않도록 구성될 수 있다.
다른 예에서, 각각의 센서(112a-112g)는 2단 한계치들을 포함할 수 있다. 예를 들어, 제1 한계치에 도달하면, 세정 가스의 유동을 감소시키기 위해 신호가 중계될 수 있다. 더 높은 제2 한계치에 도달하면, 세정 가스의 유동은, 배출 시스템(102)에서의 모든 반응들을 켄칭하기 위해 완전히 중단될 수 있다. 가스 유동의 제어 또는 정보의 전달을 용이하게 하기 위해, 임의의 적합한 중계 또는 통신 링크에 센서들(112a-112g)이 결합될 수 있다는 것이 고려된다. 일 예에서, 배출 시스템(102) 내의 가스 유동을 제어하기 위해, 스냅 스위치들 및/또는 연동 스위치들이 활용될 수 있다. 스냅 스위치들 및/또는 연동 스위치들은 각각의 센서(112a-112g)에 인접하게 위치될 수 있거나 결합될 수 있다.
다른 예에서, 제어기는 센서들(112a-112g) 중 하나 이상에서의 온도 상승률이 한계치를 넘을 때 반응하도록 구성될 수 있다. 제어기는, 설정된 간격에 따라 센서들(112a-112g)로부터의 온도 판독값들을 표본화하고, 온도 변화를 결정하기 위해 센서들(112a-112g)의 연속적인 판독값들을 비교하고, 모든 센서들(112a-112g)에 대해 동일하거나 센서들(112a-112g) 중 임의의 센서 또는 모든 센서들에 대해 상이할 수 있는 한계치와 온도 변화를 비교할 수 있다. 그 다음, 제어기는, 임의의 또는 모든 온도 변화들이 센서들의 각각의 한계치들을 넘는 경우에, 세정 가스의 유동을 조정할 수 있다.
세정 작동은 미리 결정된 간격 이후에, 예컨대, 프로세스 챔버(101)에서 특정 개수의 기판들을 처리한 후에, 배출 시스템에서 수행될 수 있다. 세정 프로세스에서, 프로세스 챔버 내로의 세정 가스의 역류를 방지하기 위해 격리 밸브(109)가 폐쇄된다. 프로세스 챔버(101) 내의 압력은, 격리 밸브가 누설되지 않고 따라서 세정 가스가 바람직하지 않게 프로세스 챔버에 진입하는 것을 허용하지 않는다는 것을 보장하기 위해, 모니터링될 수 있다. 후속하여, 제2 격리 밸브(111)가, RPS(106)에 의해 이온화된 가스가 배출 시스템(102)을 통해 이동하는 것을 허용하기 위해 개방되고, 추가적으로, 압력 제어 밸브(113)는, 플라즈마를 점화하기에 적합한, 예를 들어, 약 0.5 torr 내지 약 1.5 torr의 압력을 제공하는 위치에 설정된다. 그 다음, 아르곤이 RPS(106)를 통해 약 500 표준 입방 센티미터/분(sccm) 내지 약 3000 sccm의 범위 내의 유량으로 유동하는 것이 허용된다. 그 다음, 플라즈마가 RPS(106)에서 점화되고, 예컨대, 약 5 초 내지 약 10 초 동안 안정화되는 것이 허용된다.
일단 플라즈마가 안정화되면, 세정 가스, 예컨대, NF3가 100 sccm 내지 약 500 sccm의 범위 내의 유량으로 RPS(106)에 제공되고, 축적된 물질을 배출 시스템(102) 내로부터 제거하기 위해 배출 시스템(102)을 통해 유동하는 것이 허용된다. 하나 이상의 센서(112a-112g)에 결합된 제어 시스템은 배출 구성요소 온도를 모니터링한다. 배출 구성요소들이, 미리 결정된 임계값에 도달하면, 배출 시스템(102)이 냉각되는 것을 허용하기 위해, 세정 가스의 유동이 감소되거나 중단된다. 일단 온도가, 미리 결정된 설정점으로 냉각되면, 세정 가스 유동이 재개되거나 상승된다. 프로세스는 배출 시스템(102)이 충분히 세정될 때까지 반복될 수 있다. 온도의 계속된 모니터링은 세정 종점의 식별을 용이하게 한다. 구성요소들의 온도가 주위 온도에 접근함에 따라, 세정 종점이 나타내진다. 대안적으로, 세정 프로세스 종점 검출은, 예를 들어, 비분산 적외선 센서일 수 있는 종점 검출 시스템(104)을 사용하여 결정될 수 있다.
세정 작동 동안, 배출 시스템 내의 온도는 캐리어 가스 대 세정 가스의 가변성 유동비를 사용하여 제어될 수 있다. 예를 들어, 세정 작동을 시작할 때 아르곤 및 NF3는 RPS(106)에서 약 2:1 내지 약 4:1의 유동비를 사용하여 이온화될 수 있다. 특정 양상에서, 약 1 표준 리터/분(slm)의 아르곤이 RPS(106)에 제공되는 동안, 250 sccm의 NF3가 RPS에 제공된다. 세정 작동이 계속됨에 따라, NF3의 유량은, 온도가 허용된다면, 아르곤 대 NF3의 1:1 비율에 도달할 때까지 증가될 수 있다. 유동비의 변화는 세정 프로세스가, 프로세스 파라미터들에 의해 안전하게 허용되는 바와 같이 촉진되는 것을 허용한다.
다른 대안에서, NF3 가스의 유동은 원하는 듀티 사이클에 따라 펄싱될 수 있다. NF3 가스를 펄싱하는 것이, 배출 시스템(102) 내의 온도 증가율을 늦출 수 있다는 것이 고려된다. 다른 대안으로서, 온도 임계값이 도달되었을 때 세정 가스의 유동을 감소시키거나 중단하는 대신에, RPS(106)의 플라즈마가 소화될 수 있다는 것이 고려된다. 그러한 양상에서, 세정 가스의 유동은, RPS(106)에 의해 이온화되지 않으면 세정 가스가 덜 반응성이기 때문에, 계속해서 유동하도록 허용될 수 있다. 대안적으로, 플라즈마가 소화될 때 NF3 가스의 유동이 또한 중단될 수 있다.
도 2는, 세정 주기들 동안 배출 시스템의 온도 반응을 예시하는 그래프이다. 각각의 센서(112b-112g)(예를 들어, 압력 제어 밸브(113)의 하류에 있는 센서들)에서 측정된 온도들이 도시된다. 온도에서의 상대적 급등들은, 이온화된 세정 가스가 퇴적된 물질과 반응할 때 발열 반응으로 인한 온도의 증가, 및 세정 가스의 유동이, 임계 온도에 도달하는 것에 대한 반응으로 감소되거나 중단될 때 온도의 감소를 나타낸다. 일단 온도가, 미리 결정된 설정점으로 감소되면, 온도에서의 후속하는 증가에 의해 나타내지는 바와 같이, 세정 가스의 유동이 재개된다. 도 2에 도시되는 바와 같이, 센서(112c)에서 약 500 초에 섭씨 약 100 도의 임계 온도에 도달하여, 세정 가스 유량의 감소를 촉발한다. 세정 가스의 유량은, 센서(112c)에서의 온도가 섭씨 30 도에 접근할 때 재개된다. 후속하여, 약 1100 초 주변에서 센서(112d)에서 약 120 도의 임계 온도에 도달하여, 세정 가스 유동의 감소를 촉발한다. 유사한 피크 사건들이 1900 초, 2500 초, 3200 초, 4000 초, 5000 초, 및 6000 초 주변에 예시된다.
위에서 언급한 바와 같이, 세정 가스 유동의 주기는 배출 시스템이 충분히 세정될 때까지 계속된다. 피크 진폭의 계속적인 감소는, 배출 시스템 내의 퇴적된 물질의 감소, 예를 들어, 반응물(이를테면, 클로로실란)의 감소를 나타낸다. 예시된 바와 같이, 약 7000 초에서, 모든 센서들의, 배출 시스템 내의 온도가 주위 온도에 접근하여, 프로세스 종점을 나타낸다.
배출 시스템(102)이, 위에서 설명된 바와 같이 세정된 이후, 배출 시스템(102)은 배출 시스템(102)으로부터 반응 부산물들 또는 모든 세정 가스를 제거하기 위해 퍼징될 수 있다. 일 예에서, 배출 시스템(102)은 세정 프로세스로부터의 캐리어 가스, 예컨대, 아르곤을 사용하여 플러싱될 수 있다. 다른 양상에서, 격리 밸브들(109 및 111)이 폐쇄된 위치에 있는 동안, 배출 시스템(102)은 질소로 재충전되고 플러싱될 수 있다. 배출 시스템(102)은 여러 회, 예컨대, 약 5-10회 재충전되고 플러싱될 수 있다.
도 3은, 본원에서 설명되는 양상들에 따른 세정 이후 배출 시스템의 구획들의 내부도들을 예시한다. 특히, 도 3은 압력 제어 밸브(113)의 내부도들을 예시한다. 예시된 바와 같이, 본원에서 설명된 양상들은 압력 제어 밸브(113)를 충분히 세정했고, 퇴적물들이 보이지 않는다. 세정은 압력 제어 밸브(113)에 대한 열적 손상 없이 이루어졌다.
본원에서 설명된 양상들의 이점들은 배출 시스템들의 더 안전하고 더 빠른 세정을 포함한다. 본원에서 설명된 양상들은 세정 시간들을 최대 1 개월로부터 100 분 이하로 감소시킬 수 있다. 부가적으로, 적시의 비용이 드는 예방 유지보수들 간의 지속 기간이 연장될 수 있다. 게다가, 본원에서 설명된 양상들은 배출 시스템을 분해할 필요성을 감소시키거나 제거하는데, 이는, 그렇지 않았으면 클로로실란을 주위 산소에 노출시켜 클로로실록산을 형성할 것이다. 분해가 요구되는 경우에도, 노출된 구성요소들은 본 개시내용의 양상들에 따라 세정된 후에 구성요소들 상에 클로로실란이 훨씬 적게 존재한다.
일 예에서, 배출 시스템은 본원에서 설명된 양상들에 따라 세정된다. 분해 시, (클로로실란이 주위 산소와 반응할 때 가스방출되는)염산은 주위 환경에서, 5 백만분율(ppm)의 임계값보다 낮은 1.5 ppm의 농도로 측정된다. 반면에, 세정을 위해 분해된 종래의 배출 시스템은 주위 환경에 노출될 때 5 ppm의 HCl 농도를 아마도 초과할 것이다.
전술한 내용은 본 개시내용의 양상들에 관한 것이지만, 이의 기본 범위로부터 벗어나지 않고 본 개시내용의 다른 양상들 및 추가 양상들이 고안될 수 있으며, 본 개시내용의 범위는 이하의 청구항들에 의해 결정된다.

Claims (15)

  1. 처리 시스템으로서,
    프로세스 챔버; 및
    상기 프로세스 챔버에 결합된 배출 시스템을 포함하고, 상기 배출 시스템은:
    이온화된 세정 가스를 상기 프로세스 챔버의 하류에 있는 상기 배출 시스템에 공급하기 위한 원격 플라즈마 공급원; 및
    상기 배출 시스템의 하나 이상의 위치에서 상기 배출 시스템의 온도를 측정하기 위한 하나 이상의 센서를 포함하는, 처리 시스템.
  2. 제1항에 있어서,
    상기 하나 이상의 센서의 상류에 그리고 상기 프로세스 챔버의 하류에 있는 제1 격리 밸브를 더 포함하는, 처리 시스템.
  3. 제2항에 있어서,
    상기 하나 이상의 센서의 상류에 그리고 상기 원격 플라즈마 공급원의 하류에 있는 제2 격리 밸브, 및 상기 제1 격리 밸브 및 상기 제2 격리 밸브의 하류에 있는 압력 제어 밸브를 더 포함하고, 상기 압력 제어 밸브는 상기 하나 이상의 센서 중 적어도 하나의 센서의 하류에 있으며, 상기 하나 이상의 센서 중 적어도 하나의 다른 센서의 상류에 있는, 처리 시스템.
  4. 제1항에 있어서,
    상기 하나 이상의 센서는 상기 원격 플라즈마 공급원의 하류에 있는, 처리 시스템.
  5. 제1항에 있어서,
    상기 하나 이상의 센서의 하류에 위치된 종점 검출 시스템, 및 상기 종점 검출 시스템의 하류에 위치된 진공 펌프를 더 포함하는, 처리 시스템.
  6. 제1항에 있어서,
    상기 하나 이상의 센서는 복수의 센서들인, 처리 시스템.
  7. 제1항에 있어서,
    상기 하나 이상의 센서의 하위세트는 배출 라인의 T 피팅들에 결합되는, 처리 시스템.
  8. 처리 시스템으로서,
    프로세스 챔버; 및
    상기 프로세스 챔버에 결합된 배출 시스템을 포함하고, 상기 배출 시스템은:
    이온화된 세정 가스를 상기 프로세스 챔버의 하류에 있는 상기 배출 시스템에 공급하기 위한 원격 플라즈마 공급원;
    상기 배출 시스템의 하나 이상의 위치에서 상기 배출 시스템의 온도를 측정하기 위한, 상기 원격 플라즈마 공급원의 하류에 있는 하나 이상의 센서; 및
    상기 하나 이상의 센서의 하류에 있는 종점 검출 시스템; 및
    상기 종점 검출 시스템의 하류에 있는 진공 펌프를 포함하는, 처리 시스템.
  9. 제8항에 있어서,
    상기 하나 이상의 센서의 상류에 그리고 상기 프로세스 챔버의 하류에 있는 제1 격리 밸브를 더 포함하는, 처리 시스템.
  10. 제9항에 있어서,
    상기 하나 이상의 센서의 상류에 그리고 상기 원격 플라즈마 공급원의 하류에 있는 제2 격리 밸브를 더 포함하는, 처리 시스템.
  11. 제10항에 있어서,
    상기 제1 격리 밸브 및 상기 제2 격리 밸브의 하류에 있는 압력 제어 밸브를 더 포함하고, 상기 압력 제어 밸브는 상기 하나 이상의 센서 중 적어도 하나의 센서의 하류에 있으며, 상기 하나 이상의 센서 중 적어도 하나의 다른 센서의 상류에 있는, 처리 시스템.
  12. 제8항에 있어서,
    상기 하나 이상의 센서는 복수의 센서들인, 처리 시스템.
  13. 제8항에 있어서,
    상기 하나 이상의 센서의 하위세트는 배출 라인의 T 피팅들에 결합되는, 처리 시스템.
  14. 배출 시스템을 세정하기 위한 프로세스로서,
    하나 이상의 이온화된 가스를 프로세스 챔버의 하류에 있는 상기 배출 시스템에 도입하는 단계;
    상기 배출 시스템 내의 온도를 모니터링하는 단계; 및
    모니터링된 온도에 기초하여, 상기 하나 이상의 이온화된 가스의 유량을 조정하는 단계를 포함하는, 프로세스.
  15. 제14항에 있어서,
    상기 하나 이상의 이온화된 가스는 원격 플라즈마 공급원에 의해 발생되고, 상기 하나 이상의 이온화된 가스는 펄싱된 유동으로 상기 배출 시스템 내에 도입되는, 방법.
KR1020187033749A 2016-04-26 2017-04-04 배출 퇴적물 제거를 위한 온도 제어식 원격 플라즈마 세정 KR102194085B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662327870P 2016-04-26 2016-04-26
US62/327,870 2016-04-26
PCT/US2017/025999 WO2017189194A1 (en) 2016-04-26 2017-04-04 Temperature controlled remote plasma clean for exhaust deposit removal

Publications (2)

Publication Number Publication Date
KR20180128082A true KR20180128082A (ko) 2018-11-30
KR102194085B1 KR102194085B1 (ko) 2020-12-22

Family

ID=60089372

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187033749A KR102194085B1 (ko) 2016-04-26 2017-04-04 배출 퇴적물 제거를 위한 온도 제어식 원격 플라즈마 세정

Country Status (6)

Country Link
US (1) US10500614B2 (ko)
JP (1) JP6924775B2 (ko)
KR (1) KR102194085B1 (ko)
CN (1) CN109069990B (ko)
TW (1) TWI702093B (ko)
WO (1) WO2017189194A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11332824B2 (en) * 2016-09-13 2022-05-17 Lam Research Corporation Systems and methods for reducing effluent build-up in a pumping exhaust system
JP7301075B2 (ja) * 2018-06-14 2023-06-30 エムケーエス インストゥルメンツ,インコーポレイテッド リモートプラズマ源用のラジカル出力モニタ及びその使用方法
JP7374158B2 (ja) * 2021-10-15 2023-11-06 株式会社荏原製作所 生成物除去装置、処理システム及び生成物除去方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872365B1 (en) * 1999-05-19 2005-03-29 Daimlerchrysler Ag Exhaust gas cleaning system having internal ammonia production for reducing nitrogen oxides
US20070286766A1 (en) * 2006-06-12 2007-12-13 Teratech Co., Ltd. Apparatus for cleaning exhaust part and vacuum pump of reaction chamber for semiconductor device and LCD manufacturing equipment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592817B1 (en) * 2000-03-31 2003-07-15 Applied Materials, Inc. Monitoring an effluent from a chamber
US20030207021A1 (en) * 2000-04-28 2003-11-06 Hiroshi Izawa Deposited-film formation apparatus, deposited-film formation process, vacuum system, leak judgment method, and computer-readable recording medium with recorded leak-judgment- executable program
JP2006004962A (ja) * 2004-06-15 2006-01-05 Canon Inc 堆積膜形成装置およびそのクリーニング方法
JP2006086156A (ja) * 2004-09-14 2006-03-30 Canon Inc 生成物の除去方法
TWI279260B (en) * 2004-10-12 2007-04-21 Applied Materials Inc Endpoint detector and particle monitor
US7819981B2 (en) * 2004-10-26 2010-10-26 Advanced Technology Materials, Inc. Methods for cleaning ion implanter components
US20060211253A1 (en) * 2005-03-16 2006-09-21 Ing-Shin Chen Method and apparatus for monitoring plasma conditions in an etching plasma processing facility
US20060266288A1 (en) * 2005-05-27 2006-11-30 Applied Materials, Inc. High plasma utilization for remote plasma clean
US7210338B2 (en) * 2005-07-29 2007-05-01 Honda Motor Co., Ltd. Valve testing device having integrated purge circuit and method of valve testing
JP2009510269A (ja) * 2005-10-03 2009-03-12 アドバンスト テクノロジー マテリアルズ,インコーポレイテッド チャンバのクリーニングプロセスのエンドポイントを決定するためのシステム及び方法
JP4876242B2 (ja) * 2005-12-16 2012-02-15 国立大学法人静岡大学 結晶成長方法及び結晶成長装置
JP2011111655A (ja) * 2009-11-27 2011-06-09 Sharp Corp プラズマcvd装置のクリーニング方法、半導体薄膜の成膜方法、光電変換素子の製造方法およびプラズマcvd装置
CN102758669A (zh) * 2011-04-26 2012-10-31 陈温乐 车辆排放废气中和降温处理装置
KR101427726B1 (ko) * 2011-12-27 2014-08-07 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치 및 반도체 장치의 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872365B1 (en) * 1999-05-19 2005-03-29 Daimlerchrysler Ag Exhaust gas cleaning system having internal ammonia production for reducing nitrogen oxides
US20070286766A1 (en) * 2006-06-12 2007-12-13 Teratech Co., Ltd. Apparatus for cleaning exhaust part and vacuum pump of reaction chamber for semiconductor device and LCD manufacturing equipment

Also Published As

Publication number Publication date
US10500614B2 (en) 2019-12-10
TWI702093B (zh) 2020-08-21
CN109069990A (zh) 2018-12-21
CN109069990B (zh) 2021-11-16
US20170304877A1 (en) 2017-10-26
TW201801813A (zh) 2018-01-16
JP2019518327A (ja) 2019-06-27
KR102194085B1 (ko) 2020-12-22
JP6924775B2 (ja) 2021-08-25
WO2017189194A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
KR100767804B1 (ko) 세정 주기 제어 방법 및 장치
KR100887906B1 (ko) 에칭 적용을 위한 고압력 웨이퍼리스 자동 세정
US6844273B2 (en) Precleaning method of precleaning a silicon nitride film forming system
KR102194085B1 (ko) 배출 퇴적물 제거를 위한 온도 제어식 원격 플라즈마 세정
US8262800B1 (en) Methods and apparatus for cleaning deposition reactors
US20130133697A1 (en) Prevention of post-pecvd vacuum and abatement system fouling using a fluorine containing cleaning gas chamber
US20050284575A1 (en) Processing system and operating method of processing system
KR20210009366A (ko) 웨이퍼들의 신속한 프로세싱을 위한 고온 세정을 가능하게 하기 위한 기법
EP2231898A2 (en) Methods for in-situ chamber cleaning process for high volume manufacture of semiconductor materials
US10889891B2 (en) Apparatus for gaseous byproduct abatement and foreline cleaning
CN110140190B (zh) 用于前级固体形成量化的石英晶体微量天平的利用
KR100806041B1 (ko) 반도체 소자 제조 장치 및 이를 이용한 반도체 소자 제조방법
JP7187890B2 (ja) 基板搬送モジュール及び基板搬送方法
KR101045697B1 (ko) 인시튜 챔버 세정 방법
KR100706810B1 (ko) 박박 형성 장치의 세정 방법 및 이를 이용한 박막 형성방법
JP2005108932A (ja) 半導体製造装置
JP2012077924A (ja) 除害装置および半導体製造装置
JPH08209350A (ja) 薄膜形成装置及び薄膜形成装置のクリーニング方法
JP2003051452A (ja) 半導体装置の製造方法および基板処理装置
CN108114585B (zh) 等离子体气体洗涤器运行方法
TWI841035B (zh) 半導體製程還原劑添加系統與方法
KR101717847B1 (ko) 플라즈마 가스 스크러버 운전방법
KR20060047824A (ko) 아르곤으로 희석한 고압 f2 플라즈마를 이용한 고속에칭법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant