KR20180083311A - 4H-피라졸로[1,5-α]벤즈이미다졸계 화합물의 염형, 결정형 및 이의 제조방법과 중간체 - Google Patents

4H-피라졸로[1,5-α]벤즈이미다졸계 화합물의 염형, 결정형 및 이의 제조방법과 중간체 Download PDF

Info

Publication number
KR20180083311A
KR20180083311A KR1020187010733A KR20187010733A KR20180083311A KR 20180083311 A KR20180083311 A KR 20180083311A KR 1020187010733 A KR1020187010733 A KR 1020187010733A KR 20187010733 A KR20187010733 A KR 20187010733A KR 20180083311 A KR20180083311 A KR 20180083311A
Authority
KR
South Korea
Prior art keywords
compound
group
acid
solvent
metal catalyst
Prior art date
Application number
KR1020187010733A
Other languages
English (en)
Other versions
KR102664193B1 (ko
Inventor
수에하이 왕
찰스 제트. 딩
지에 쉔
슈후이 첸
리에 리
강 리
용 쑤
카이린 왕
롱후아 투
지멩 왕
양 유에
비아오 뎅
하일리앙 첸
후이 리우
웬지에 선
콩 왕
루 후앙
젱 왕
웨이동 리
Original Assignee
후베이 바이오-파마슈티컬 인더스트리얼 테크놀로지컬 인스티튜트 인크.
메드샤인 디스커버리 아이엔씨.
휴먼웰 헬스케어 (그룹) 씨오. 엘티디.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 후베이 바이오-파마슈티컬 인더스트리얼 테크놀로지컬 인스티튜트 인크., 메드샤인 디스커버리 아이엔씨., 휴먼웰 헬스케어 (그룹) 씨오. 엘티디. filed Critical 후베이 바이오-파마슈티컬 인더스트리얼 테크놀로지컬 인스티튜트 인크.
Publication of KR20180083311A publication Critical patent/KR20180083311A/ko
Application granted granted Critical
Publication of KR102664193B1 publication Critical patent/KR102664193B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/41621,2-Diazoles condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41841,3-Diazoles condensed with carbocyclic rings, e.g. benzimidazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/13Dicarboxylic acids
    • C07C57/145Maleic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

본 발명은 4H-피라졸로[1,5-α]벤즈이미다졸(4H-pyrazolo[1,5-α]benzimidazole)계 화합물의 염형, 결정형 및 이의 제조방법과 중간체를 개시한다.
Figure pct00052

Description

4H-피라졸로[1,5-α]벤즈이미다졸계 화합물의 염형, 결정형 및 이의 제조방법과 중간체
본 발명은 4H-피라졸로[1,5-α]벤즈이미다졸(4H-pyrazolo[1,5-α]benzimidazole)계 화합물의 염형, 결정형 및 이의 제조방법과 중간체에 관한 것이다.
중국 출원 번호 또는 특허 번호 201410144173.0에서 새로운 종류의 PARP억제제를 기재하였고, BRCA1과 BRCA2 결실 유형의 DNA 수선 메커니즘(mechanism)의 종양 유형에 대하여, 하나의 독립적인 치료법일 수 있다. DNA 알킬화제(Alkylating agents), 백금(platinum)계 약물, 토포아이소머라제(Topoisomerases) 억제제와 같은 수많은 유형의 항암 치료법 및 방사성 치료법과 병용할 수도 있고, 증감제 효과를 나타내며, 1차 화학 요법 약물의 항 종양 효능을 크게 향상시킬 수 있다. 이의 구조는 하기 식(B-1)으로 표시되고,
Figure pct00001
애브비(AbbVie)에서 연구 개발한 항암 약물 벨리파립 (Veliparib, ABT-888)은 신규의 폴리ADP-리보오스 중합효소(PARP) 억제제이되, 폴리ADP-리보오스 전이효소(poly ADP-ribose polymerase, PARP)는 DNA수선 효소이고, DNA수선 통로에서 관건적인 역할을 한다. 벨리파립은 신규의 고선택 PARP억제제이고, 세포에서 DNA수선 과정을 간섭하는 것으로 작용함으로써, 종양이 DNA를 손상시키는 화학 요법 약물에 더욱 민감해지도록 한다.
본 발명은 식(Ⅰ) 화합물의 제조방법에 있어서,
Figure pct00002
하기와 같은 단계를 포함하고,
Figure pct00003
여기서,
R은 선택적으로 C1- 5알킬기(alkyl group)로부터 선택되고;
R1은 아미노기(Amino group) 보호기이며;
X은 할로겐(halogen)이고;
금속 촉매는 팔라듐 금속 촉매(Palladium metal catalyst), 백금 금속 촉매(Platinum metal catalyst) 및/또는 구리 금속 촉매(Copper metal catalyst)로부터 선택되며;
리간드(Ligand)는 팔라듐 금속 촉매와 배위되는 포스핀(Phosphine) 함유 리간드 및/또는 구리 금속 촉매와 배위되는 질소(nitrogen) 함유 리간드로부터 선택되고;
염기(Alkali)는 알칼리 금속 염기(Alkali metal base), 알칼리 토금속 염기(Alkaline earth metal base), 유기 염기(Organic base) 및/또는 유기 금속 염기(Organic metal base)로부터 선택되는 식(Ⅰ) 화합물의 제조방법을 제공한다.
본 발명의 일부 해결수단에 있어서, 상기 R은 메틸기(methyl group), 에틸기(Ethyl group), 이소프로필기(Isopropyl group) 또는 tert-부틸기(Tert-butyl group)로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 상기 R1은 알콕시카르보닐기(Alkoxycarbonyl group)계 아미노기 보호기 및/또는 벤질기(Benzyl group)계 아미노기 보호기로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 상기 R1은 Bn, Cbz, Boc, Fmoc, Alloc, Teco, 메톡시카르보닐기(Methoxycarbonyl group) 또는 에톡시카르보닐기(Ethoxycarbonyl group)로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 상기 팔라듐 금속 촉매는 Pd2(dba)3, Pd(PPh3)4, Pd(dppf)Cl2, Pd(PPh3)2Cl2, Pd(OAc)2 및/또는 PdCl2로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 상기 백금 금속 촉매는 PtO2로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 상기 구리 금속 촉매는 CuI, CuBr, CuCl, Cu 및/또는 Cu2O로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 팔라듐 금속 촉매와 배위되는 상기 포스핀 함유 리간드는Xantphos, Sphos, Xphos, Ruphos 및/또는 Brettphos로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 구리 금속 촉매와 배위되는 상기 질소 함유 리간드는 1,2-시클로헥산디아민(1,2-cyclohexanediamine), N,N'-디메틸에틸렌디아민(N, N'-dimethylethylenediamine) 및/또는 1,10-페난트롤린(1,10-Phenanthroline)으로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 상기 알칼리 금속염은 수산화리튬(Lithium hydroxide), 수산화나트륨(Sodium hydroxide), 수산화칼륨(Potassium hydroxide), 수산화세슘(Cesium hydroxide), 탄산나트륨(Sodium carbonate), 탄산칼륨(Potassium carbonate), 탄산세슘(Cesium carbonate), 탄산수소나트륨(Sodium Bicarbonate), 탄산수소칼륨(Potassium bicarbonate) 및/또는 인산칼륨(Potassium phosphate)으로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 상기 알칼리 토금속염은 수소화나트륨(Sodium hydride), 수소화칼륨(Potassium hydride) 및/또는 수소화칼슘(Calcium hydride)으로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 상기 유기 염기는 트리에틸아민(Triethylamine), DIPEA, NMM 및/또는 DBU로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 상기 유기 금속 염기는 나트륨메톡시드(Sodium methoxide), 리튬tert-부톡시드(Lithium tert-butoxide), 나트륨tert-부톡시드(Sodium tert-butoxide), 칼륨tert-부톡시드(Potassium tert-butoxide), 나트륨에톡시드(Sodium ethoxide) 및/또는 알루미늄이소프로폭시드(Aluminum isopropoxide)로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 상기 화합물(II)과 상기 염기의 몰비는 1: 1 ~ 5 이고, 구체적으로 1: 2 ~ 3이다.
본 발명의 일부 해결수단에 있어서, 상기 화합물(II)과 금속 촉매 몰비는 1: 0.05 ~ 0.1이다.
본 발명의 일부 해결수단에 있어서, 상기 금속 촉매와 리간드 몰비는 1: 1 ~ 2이다.
본 발명의 일부 해결수단에 있어서, 상기 반응의 반응 온도는 100 ~ 150 ℃이고, 구체적으로 120 ~ 140 ℃이다.
본 발명의 일부 해결수단에 있어서, 상기 반응의 반응 시간은 5 ~ 12시간이고, 구체적으로 5 ~ 6시간이다.
본 발명의 일부 해결수단에 있어서, 상기 반응은 반응 용매에서 진행되고, 상기 반응 용매는 아실아미드(acylamide)계 용매로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 상기 아실아미드계 용매는 DMF, DMAC, NMP 및/또는 DMSO로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 상기 반응 용매 사용량은 화합물(II) 중량의 5 ~ 20배이고, 더욱 바람직하게는 8 ~ 12배이다.
본 발명의 일부 해결수단에 있어서, 상기 식(Ⅰ) 화합물의 제조방법은 하기와 같은 반응을 더 포함한다.
Figure pct00004
여기서,
금속 촉매, 리간드와 염기는 상기에서와 같이 정의되고;
암모니아 소스는 HMDS 및/또는 포름아미드(Formamide)로부터 선택되며;
반응의 반응 용매는 아실아미드계 용매로부터 선택되고, 구체적으로 DMF, DMAC, NMP 및/또는 DMSO로부터 선택되며;
반응의 일산화탄소(Carbon monoxide) 압력은 0.1 ~ 2 MPa이고, 구체적으로 0.8 ~ 1 MPa이며;
화합물(III)과 염기의 몰비는 1: 1 ~ 5이고, 구체적으로 1: 2 ~ 3이며;
화합물(III)과 금속 촉매 몰비는 1: 0.05 ~ 0.1이고;
화합물(III)과 암모니아 소스 몰비는 1: 1.2 ~ 10이며, 구체적으로 3 ~ 5이고;
금속 촉매와 리간드 몰비는 1: 1 ~ 2이며;
반응 용매 사용량은 화합물(III) 중량의 5 ~ 20배이고, 구체적으로 8 ~ 12배이며;
반응의 반응 온도는 80 ~ 110 ℃이고, 구체적으로 100 ~ 110 ℃이며;
반응의 반응 시간은 12 ~ 24시간이고, 구체적으로 18 ~ 20시간이다.
본 발명의 일부 해결수단에 있어서, 상기 식(Ⅰ) 화합물의 제조방법은 하기 반응을 더 포함한다.
Figure pct00005
여기서,
HB는 유기산 또는 무기산(Inorganic acid)으로부터 선택되고;
화합물(IV)과 상기 산의 몰비는 1: 1 ~ 10이며, 구체적으로 1: 5 ~ 8이고;
반응 용매는 물, 빙초산(glacial acetic acid), 알콜(alcohol)계 용매, 에테르(Ether)계 용매, 에스테르(ester)계 용매 및/또는 이들의 임의의 혼합물로부터 선택되며;
반응 용매 사용량은 화합물(IV) 중량의 3 ~ 20배이고, 구체적으로 5 ~ 10배이며;
반응의 반응 온도는 -10 ~ 30 ℃이고;
반응의 반응 시간은 2 ~ 3시간이다.
본 발명의 일부 해결수단에 있어서, 상기 알콜계 용매는 메탄올(Methanol), 에탄올(Ethanol) 및/또는 이소프로판올(Isopropanol)로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 상기 에테르계 용매는 THF, 2-METHF 및/또는 디옥산(Dioxane)으로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 상기 에스테르계 용매는 에틸아세테이트(Ethyl acetate)로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 상기 유기산은 트리플루오로아세트산(trifluoroacetic acid), 메탄설폰산(Methanesulfonic acid), p-톨루엔설폰산(p-Toluenesulfonic acid), 구연산(Citric acid), 말레산(Maleic acid) 또는 푸마르산(Fumaric acid)으로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 상기 무기산은 염산(hydrochloric acid), 브롬화수소산(Hydrobromic acid), 인산(Phosphoric acid) 및/또는 황산(sulfuric acid)으로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 상기 식(Ⅰ) 화합물의 제조방법은 하기 반응을 더 포함한다.
Figure pct00006
여기서, 염기는 상기에서와 같이 정의되고;
화합물(V)과 염기의 몰비는 1: 1 ~ 5이며, 구체적으로 1: 1 ~ 2이고;
반응 용매는 물, 알콜계 용매 및/또는 이들의 임의의 혼합물로부터 선택되며;
상기 반응 용매 사용량은 화합물(V) 중량의 5 ~ 20배이고, 구체적으로 8 ~ 12배이며;
상기 반응의 반응 온도는 0 ~ 10 ℃이고, 구체적으로 0 ~ 5 ℃이다.
본 발명의 일부 해결수단에 있어서, 상기 식(Ⅰ) 화합물의 제조방법은 하기 반응을 더 포함한다.
Figure pct00007
여기서,
수소 소스는 수소 가스, 시클로헥센(Cyclohexene) 및/또는 암모늄 포르메이트(Ammonium formate)로부터 선택되고;
R알데히드(R aldehyde)는 포름알데히드(formaldehyde), 아세트알데히드(Acetaldehyde), 이소부틸알데히드(isobutylaldehyde)로부터 선택되며;
R케톤(R Ketone)은 이소프로필케톤(Isopropyl ketone)으로부터 선택되고;
반응 용매는 아실아미드계 용매로부터 선택되며;
반응 용매 사용량은 화합물(VI) 중량의 5 ~ 20배이고, 더욱 바람직하게는 8 ~ 12배이며;
화합물(VI)과 상기 반응 시약R의 몰비는 1: 10이고, 구체적으로 1: 5 ~ 10이며;
화합물(VI)과 금속 촉매 몰비는 1: 0.05 ~ 0.1이고;
반응의 수소 가스 압력은 0.1 ~ 2 MPa이며, 구체적으로 0.8 ~ 1 MPa이고;
반응의 반응 온도는 60 ~ 100 ℃이며, 구체적으로 60 ~ 70 ℃이다.
본 발명의 일부 해결수단에 있어서, 상기 아실아미드계 용매는DMF, DMAC, NMP 및/또는 DMSO로부터 선택되고, 더욱 바람직하게는 NMP이다.
본 발명의 일부 해결수단에 있어서, 상기 식(Ⅰ)화합물의 제조방법은 하기 반응을 더 포함한다.
Figure pct00008
본 발명의 일부 해결수단에 있어서, 상기 HA는 유기산 또는 무기산으로부터 선택되고;
반응 용매는 알콜계 용매 및/또는 알콜계 용매와 물을 함유한 혼합 용매로부터 선택되며;
알콜계 용매와 물의 체적비는 1:0.05 ~ 0.1이고;
반응 용매 사용량은 화합물(VII) 중량의 5 ~ 20배이며, 구체적으로 8 ~ 12배이고;
화합물(VII)과 상기 반응 시약 HA의 몰비는 1: 0.5 ~ 2이며, 구체적으로 1: 1.05 ~ 1.2이고;
반응의 반응 온도는 50 ~ 100 ℃이며, 구체적으로 60 ~ 80 ℃이고;
유기산, 무기산과 알콜계 용매는 상기에서 정의된 바와 같다.
본 발명의 일부 해결수단에 있어서, 상기 식(Ⅰ) 화합물의 제조방법은 하기 반응을 더 포함한다.
Figure pct00009
본 발명은 화합물(Ⅰ)을 제조하는, 구조가 하기와 같은 중간체를 더 제공한다.
Figure pct00010
,
Figure pct00011
,
Figure pct00012
,
Figure pct00013
,
Figure pct00014
본 발명은 하기와 같은 반응을 포함하는, 중간체(II)의 제조방법을 더 제공한다.
Figure pct00015
여기서,
화합물(f)과 화합물(h)의 몰비는 1: 1 ~ 1.2이고;
화합물(f)과 염기의 몰비는 1: 1 ~ 5이며;
반응 용매는 메탄올, 에탄올, 이소프로판올, THF, 2-METHF, 아세토니트릴(Acetonitrile), NMP, DMF 및/또는 DMAc로부터 선택되고;
용매 사용량은 상기 화합물(f) 중량의 5 ~ 20배이며;
반응의 반응 온도는 50 ~ 100 ℃이고;
염기는 상기에서 정의된 바와 같다.
본 발명은 하기와 같이 표시되는 화합물2를 더 제공한다.
Figure pct00016
본 발명은 화합물3의 A결정형을 더 제공하고, 이의 X선 분말 회절 패턴(XRPD)은 도1에서 나타내는 바와 같다.
Figure pct00017
본 발명의 일부 해결수단에 있어서, 상기 A결정형의 X선 분말 회절 패턴 분석 데이터는 표1에서 나타내는 바와 같다.
표1: A결정형의 X선 분말 회절 패턴 분석 데이터
Figure pct00018
본 발명의 일부 해결수단에 있어서, 상기 A결정형의 시차 주사 열량 곡선은 85.44 ℃에서 흡열 피크의 시작점을 가지고, 162.95 ℃에서 흡열 피크의 시작점을 가지며, 205.63 ℃에서 흡열 피크의 시작점을 가진다.
본 발명의 일부 해결수단에 있어서, 상기 A결정형의 시차열 분석(DSC) 패턴은 도2에서 나타내는 바와 같다.
본 발명의 일부 해결수단에 있어서, 상기 A결정형의 열중량 분석 곡선은 129.34 ℃에서 3.740 % 실중되고; 194.30 ℃에서 0.4250 % 실중되며; 245.46 ℃에서 13.59 % 실중된다.
본 발명의 일부 해결수단에 있어서, 상기 A결정형의 열중량 분석(TGA) 패턴은 도3에서 나타내는 바와 같다.
본 발명은, 어느 하나의 형식의 화합물1과 말레산을 용매에 넣어 결정을 제조하는 단계를 포함하고, 여기서,
말레산과 화합물1의 몰비는 1: 1.05 ~ 1.2이고;
용매 사용량은 화합물1 중량의 8 ~ 12배이며;
반응 용매는 알콜계 용매 및/또는 알콜계 용매와 물을 함유한 혼합 용매로부터 선택되는 A결정형의 제조방법을 더 제공한다.
본 발명의 일부 해결수단에 있어서, 상기 알콜계 용매는 메탄올, 에탄올 및/또는 이소프로판올로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 상기 알콜계 용매와 물의 혼합 용매는 메탄올, 에탄올, 이소프로판올과 물의 혼합 용매로부터 선택된다.
본 발명의 일부 해결수단에 있어서, 상기 알콜계 용매와 물의 체적비는 1:0.05 ~ 0.1이다.
본 발명의 다른 하나의 목적은 PARP 수용체 관련 질병을 치료하기 위한 약물 제조에서의 화합물2 또는 화합물3의 A결정형의 응용을 제공한다.
정의와 설명
달리 설명되지 않는 한, 본 명세서에 사용된 하기 용어와 문구는 하기와 같은 의미를 갖는다. 하나의 특정된 문구 또는 용어는 특별히 정의되지 않는 경우, 불확실하거나 불명확한 것으로 간주해서는 아니되고, 통상적인 의미로 이해하여야 한다. 본 명세서에서 제품명이 나타날 때, 이와 대응되는 제품 또는 이의 활성 성분을 지칭한다.
본 발명의 중간체 화합물은 본 기술 분야의 기술자가 숙지하는 다양한 합성 방법에 의해 제조할 수 있고, 하기에서 예를 든 구체적인 실시 형태, 이와 기타 화학 합성 방법의 결합에 의해 형성된 실시 형태 및 본 기술 분야의 기술자가 숙지하는 등가 교환 형태를 포함하며, 바람직한 실시 형태로 본 발명의 실시예를 포함하지만 이에 한정되지 않는다.
본 발명의 구체적인 실시 형태의 화학 반응은 적합한 용매에서 완성되고, 상기 용매는 본 발명의 화학 변화 및 이에 수요되는 시약과 재료에 적합하다. 본 발명의 화합물을 얻기 위해, 때로는 본 기술 분야의 기술자는 기존의 실시 형태에 기초하여 합성 단계 또는 반응 과정을 보정하거나 선택한다.
본 기술 분야의 임의의 합성 경로 계획 중의 하나의 중요한 고려 요인은 반응성 관능기(예를 들어 본 발명의 아미노기)를 위해 적합한 보호기를 선택하는 것이다. 트레이닝을 받은 종사자에게 있어서, Greene and Wuts(Protective Groups In Organic Synthesis, Wiley and Sons, 1991)는 본 분야의 권위를 가지고 있다. 본 발명에서 인용된 모든 참조 문헌은 전반적으로 본 발명에 편입된다.
아래, 실시예에 의해 본 발명을 구체적으로 설명하고, 본 발명은 이들 실시예에 의해 제한되지 않는다.
본 발명에서 사용된 모든 용매는 시중에서 판매되는 것이고, 더 정제할 필요 없이 직접 사용한다. 반응은 일반적으로 불활성 질소 기체 하, 무수 용매에서 진행된다. 양성자 자기 공명(proton magnetic resonance) 데이터를 Bruker Avance III 400(400 MHz) 분광계에 기록하고, 화학적 변위를 테트라메틸실란(Tetramethylsilane) 로우필드(low field)의 (ppm)로 표시한다. 질량 스펙트럼(Mass spectrum)은 애질런트(Agilent)1200시리즈 플러스6110(&1956A)에서 측정한다. LC/MS 또는 Shimadzu MS는 하나의 DAD: SPD-M20A(LC)와 Shimadzu Micromass 2020 검측기를 포함한다. 질량 스펙트럼기에는 하나의 플러스 또는 마이너스 모드 하에서 조작되는 전자 분무 이온화 소스(ESI)가 장착되어 있다.
본 발명은 하기와 같은 약칭을 사용한다. DCM은 디클로로메탄(Dichloromethane)을 대표하고; PE는 석유 에테르(Petroleum ether)를 대표하며; EA는 에틸아세테이트를 대표하고; DMF 는 N,N-디메틸포름아미드(N,N-dimethylformamide)를 대표하며; DMAC는 N,N-디메틸아세트아미드(N,N-dimethylacetamide)를 대표하고; DMSO는 디메틸설폭시드(Dimethyl sulfoxide)를 대표하며; EtOAc는 에틸아세테이트를 대표하고; tol는 톨루엔(Toluene)을 대표하며; THF는 테트라히드로푸란(Tetrahydrofuran)을 대표하고; EtOH는 에탄올을 대표하며; MeOH는 메탄올을 대표하고; NMP는 N-메틸피롤리돈(N-methylpyrrolidone)을 대표하며; 2-METHF는 2-메틸테트라히드로푸란(2-methyltetrahydrofuran)을 대표하고; i-PrOH는 2-프로판올(2-propanol)을 대표하며; Bn는 벤질기를 대표하고; Cbz는 벤질옥시카르보닐기(Benzyloxycarbonyl group)를 대표하며, 아민 보호기이고; Boc는 tert-부틸카르보닐기(Tert-butylcarbonyl group)를 대표하며, 아민 보호기이고; Fmoc는 플루오레닐메톡시카르보닐기(fluorenylmethoxycarbonyl group)를 대표하며, 아민 보호기이고; Alloc는 알릴옥시카르보닐기(Allyloxycarbonyl group)를 대표하며, 아민 보호기이고; Teoc는 트리메틸실릴옥시카르보닐기(Trimethylsilyloxycarbonyl group)를 대표하며, 아민 보호기이고; Boc2O는 디-tert-부틸디카르보네이트(Di-tert-butyl dicarbonate)를 대표하며; HCl(g)는 염화수소(Hydrogen chloride) 기체를 대표하고; H2SO4는 황산을 대표하며; HOAc는 아세트산(Acetic acid)을 대표하고; TFA는 트리플루오로아세트산을 대표하며; DIPEA는 디이소프로필에틸아민(Diisopropylethylamine)을 대표하고; DIEA는 디이소프로필에틸아민을 대표하며; NMM는 N-메틸모르폴린(N-methylmorpholine)을 대표하고; DBU는 1,8-디아자비시클로운데센-7-엔(1,8-diazabicycloundec-7-ene)을 대표하며; Et3N는 트리에틸아민을 대표하고; LDA는 리튬디이소프로필아민(Lithium diisopropylamine)을 대표하며; NaHMDS는 나트륨비스(트리메틸실릴)아미드(Sodium bis (trimethylsilyl) amide)를 대표하고; KHMDS는 칼륨비스(트리메틸실릴)아미드(Potassium bis (trimethylsilyl) amide)를 대표하며; LiAlH4는 리튬알루미늄히드라이드(Lithium aluminum hydride)를 대표하고; t-BuOK는 칼륨tert-부톡시드를 대표하며; H2O2는 과산화수소(hydrogen peroxide)를 대표하고; NH4Cl는 염화암모늄(Ammonium chloride)을 대표하며; BaSO4는 황산바륨(Barium sulfate)을 대표하고; CaCO3은 탄산칼슘(Calcium carbonate)을 대표하며; SnCl2는 염화제1주석(Stannous chloride)을 대표하고; Zn(BH4)2는 수소화붕소아연(Zinc borohydride)을 대표하며; PPh3은 트리페닐포스핀(Triphenylphosphine)을 대표하고; HMDS는 헥사메틸디실라잔(Hexamethyldisilazane)을 대표하며; Pd/C는 팔라듐탄소(Palladium carbon)를 대표하고; PtO2는 이산화백금(Platinum dioxide)을 대표하며; Pd(OH)2는 수산화팔라듐(Palladium hydroxide)을 대표하고; Pd2(dba)3은 트리(디벤질리덴아세톤)디팔라듐(Tris (dibenzylideneacetone) dipalladium)을 대표하며; Pd(PPh3)4는 테트라키스트리페닐포스핀팔라듐(Tetrakistriphenylphosphine palladium)을 대표하고; Pd(dppf)Cl2는 1,1'-비스(디페닐포스피노)페로센팔라듐클로라이드(1,1'-bis (diphenylphosphino) ferrocenepalladium chloride)를 대표하며; Pd(PPh3)2Cl2는 디클로로비스(트리페닐포스핀)팔라듐(II)(Dichlorobis (triphenylphosphine) palladium)을 대표하고; Pd(OAc)2는 아세트산팔라듐(Palladium acetate)을 대표하며; PdCl2는 염화팔라듐(Palladium chloride)을 대표하고; CuI는 요오드화제1구리(Cuprous iodide)를 대표하며; CuBr는 브롬화제1구리(Cuprous bromide)를 대표하고; CuCl는 염화제1구리(Cuprous chloride)를 대표하며; Cu는 구리 분말을 대표하고; Cu2O는 산화제1구리(Cuprous oxide)를 대표하며; Xantphos는 4,5-비스(디페닐포스피노)-9,9-디메틸크산텐(4,5-bis(diphenylphosphino)-9,9-dimethylxanthene)을 대표하고; Sphos는 2-디시클로헥실포스피노-2',6'-디메톡시비페닐(2-dicyclohexylphosphinio-2',6'-dimethoxybiphenyl)을 대표하며; Xphos는 2-디시클로헥실포스피노-2',4',6'-트리이소프로필비페닐(2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl)을 대표하고; Ruphos는 2-디시클로헥실포스피노-2',6'-디이소프로폭시-1,1'-비페닐(2-dicyclohexylphosphino-2',6'-diisopropoxy-1,1'-biphenyl)을 대표하며; Brettphos는 2-(디시클로헥실포스피노)-3,6-디메톡시-2'-4'-6'-트리이소프로필-1,1'-비페닐(2-(dicyclohexylphosphino)-3,6-dimethoxy-2'-4'-6'-triisopropyl-1,1'-biphenyl)을 대표하고; TMZ는 테모졸로미드(Temozolomide)를 대표한다.
화합물을 수공 또는 ChemDraw® 소프트웨어로 명명하고,시중에서 판매하는 화합물은 공급 업체 목록 명칭을 사용한다.
본 발명에서 제기한 식(Ⅰ) 화합물 및 이의 중간체를 합성하기 위한 공정은 하기와 같은 이점이 있다. 출발 원료의 가격이 싸고 쉽게 얻어지며, 모든 시약의 독성이 크고, 반응 조건이 가혹하며, 분리 정제가 어렵고 공업화가 용이하지 못한 단점을 극복한다.
구체적으로 하기와 같다.
1) 본 발명의 식(Ⅰ) 화합물을 제조하기 위한 방법의 원료는 통상적인 것이거나 흔히 보는 시약으로, 시중에서 얻기 쉽고 가격이 저렴하며;
2) 중간체 화합물(IV)은 중간체 화합물(II)의 두 개의 할로겐족 라디칼을 교묘하게 이용하여 금속 촉매 및 카르보닐화(Carbonylation) 반응에 의해 3중 고리 구조 및 아실아미드 약리단(Pharmacophore)을 성공적으로 구성하였고, 반응 수율을 효과적으로 향상시켰으며;
3) 본 발명의 식(Ⅰ)의 제조에서 이소프로필기의 인입은 저렴하고 얻기 쉬운 아세톤(acetone)을 이용하여 수소화시킨 후 얻으며;
4) 각 단계 반응에서 사용된 시약은 모두 소분자이고, 정제에 용이하다.
따라서, 본 발명은 식(Ⅰ) 화합물 및 이의 중간체 제조에 있어서, 매우 높은 공업 응용 가치와 경제 가치가 있다.
본 발명의 X선 분말 회절(X-ray powder diffractometer, XRPD) 방법
기기 모델: 브루커(Bruker)D8 advance X-선 회절기
테스트 조건: 상세한 X선 분말 회절 파라미터(parameter)는 하기와 같다.
광파이프: Cu, kα, (λ=1.54056Å).
광파이프 전압: 40 kV, 광파이프 전류: 40 mA
발산 슬롯(slot): 0.60 mm
탐지기 슬롯: 10.50 mm
산란 방지 슬롯: 7.10 mm
스캔 범위: 4-40 deg
스텝 크기: 0.02 deg
스텝 길이: 0.12 초
샘플 플레이트 회전 속도: 15 rpm
본 발명의 시차열 분석(Differential Scanning Calorimeter, DSC) 방법
기기 모델: TA Q2000 시차 주사 열량계
테스트 조건: 샘플( ~ 1 mg)을 취하여 시차열 분석 알루미늄 냄비에 넣고 테스트를 진행하고, 방법은 25 ℃ ~ 350 ℃의 온도에서 진행하며, 승온 속도는 10 ℃/분이다.
본 발명의 열중량 분석(Thermal Gravimetric Analyzer, TGA) 방법
기기 모델: TA Q5000IR 열중량 분석기
테스트 조건: 샘플(2 ~ 5 mg)을 취하여 열중량 분석 백금 냄비에 넣고 테스트를 진행하고, 방법은 실온 내지 350 ℃에서 진행하며, 승온 속도는 10 ℃/분이다.
도1은 A결정형의 Cu-Kα가 방사한 X선 분말 회절 스펙트럼이다.
도2는 A결정형의 시차열 분석 패턴이다.
도3은 A결정형의 열중량 분석 패턴이다.
도4는 화합물3 단일 분자의 입체 구조 타원체도이다.
도5는 b축 방향에 따른 A결정형의 격자 집적도이다.
본 발명의 내용을 더욱 잘 이해하기 위하여, 아래 구체적인 실시예에 결부하여 더 설명하지만, 구체적인 실시 형태는 본 발명의 내용을 제한하지 않는다.
실시예1: 화합물3의 제조
흐름1:
Figure pct00019
단계1: tert-부틸4-(1-시아노-2-에톡시-2-옥소에틸리덴)피페리딘-1-카르복실레이트(Tert-Butyl4-(1-cyano-2-ethoxy-2-oxoethylidene)piperidine-1-carboxylate)
Figure pct00020
4-옥소피페리딘-1-카르복실산tert-부틸에스테르(4-Oxopiperidine-1-carboxylic acid tert-butyl ester)(3 kg, 15.05 mol)의 톨루엔 용액(24 L)을 95 ℃까지 승온시키고, 순차적으로 일회적으로 아세트산(446 g, 7.43 mol), 에틸-2-시아노아세테이트(Ethyl-2-cyanoacetate)(1.68 kg, 14.85 mol), 아세트산암모늄(Ammonium acetate)(571 g, 7.41 mol)을 넣는다. 외부 온도가 130 ℃, 내부 온도가102 ℃까지 승온되면 환류시켜 물을 분리하고, 내부 온도가 114 ℃에 도달하면, HPLC로 원료 검출이 완료되는데 약 3시간이 사용된다. 실온까지 냉각시키고, 순차적으로 물(10 L), 10 %의 Na2CO3 수용액(8 L), 포화 염수(5 L × 2)로 유기상을 세척하며, 수상과 합병하여 에틸아세테이트(5 L × 2)로 추출하고, 유기상을 합병하며 감압하여 용매를 증발시켜 제거한 후, 4.5 kg의 잔여물을 얻는다. 잔여물을 PE/EtOAc=10/1(9 L)로 비팅(beating)하여 정제한다. 백색 고체를 여과하여 수집하고, 표제 화합물(1.5 kg, 수율: 33.84 %, 순도: 98.62 %)을 얻는다. (여액을 농축시킨 후 더 정제하여 표제 화합물을 얻는다.)1H NMR (400 MHz, CHLOROFORM-d) δ ppm 1.38 (t, J=7.15 Hz, 3 H), 1.50 (s, 9 H), 2.79 (t, J=5.90 Hz, 2 H), 3.15 (t, J=5.83 Hz, 2 H), 3.56 (t, J=5.71 Hz, 2 H), 3.63 (t, J=5.83 Hz, 2 H), 4.31 (q, J=7.15 Hz, 2 H). LCMS (ESI) m/z: 295 (M+1).
단계2: tert-부틸4-(1-시아노-2-에톡시-2-옥소에틸)-4-메틸피페리딘-1-카르복실레이트(Tert-Butyl4-(1-cyano-2-ethoxy-2-oxoethyl)-4-methylpiperidine-1-carboxylate)
Figure pct00021
-50 ~ -40 ℃의 온도 조건의 질소 기체 보호 하에서, 요오드화제1구리(1.29 kg, 6.78 mol)의 무수 테트라히드로푸란(16 L) 혼합물에 3 M의 메틸마그네슘브로마이드디에틸에테르(Methyl magnesium bromide diethyl ether) 용액(5.66 L, 16.98 mol)(적가 속도는 내부 온도가 -40 ℃를 초과하지 않는 것이 적합함)을 적가한다. 적가 완료 후, -5 ℃ ~ 0 ℃의 온도 하에서 1시간 동안 교반하고, -50 ~ -40 ℃로 감온하며, tert-부틸4-(1-시아노-2-에톡시-2-옥소에틸리덴)피페리딘-1-카르복실레이트(2 kg, 6.79 mol)의 테트라히드로푸란(4 L) 용액(적가 속도는 내부 온도가 -40 ℃를 초과하지 않는 것이 적합함)을 적가하고, 적가 완료 후, 혼합물을 천천히 실온까지 승온시켜, 15시간 동안 교반한 후, 0 ~ 5 ℃까지 감온시켜 포화 염화암모늄 수용액/물(W/W=1:1)(2 L)로 퀀칭(quenching)하며, 퀀칭 완료 후, 규조토로 여과하고, 여액을 분층하며, 여과 찌꺼기를 EtOAc(5 L×2)로 세척하고, 합병한 유기층을 포화 염화암모늄 수용액(5 L×2), 염수(5 L×2)로 세척하며, 증발시켜, 황색 오일 물질의 조표제 화합물(2.1 kg)을 얻고, 이를 더 정제할 필요 없이 직접 다음 단계에 사용한다.
단계3: 2-(1-(tert-부톡시카르보닐)-4-메틸피페리딘-4-일)-2-시아노아세트산(2-(1-(tert-Butoxycarbonyl)-4-methylpiperidin-4-yl)-2-cyanoacetic acid)
Figure pct00022
0 ℃의 온도 하에서, tert-부틸4-(1-시아노-2-에톡시-2-옥소에틸)-4-메틸피페리딘-1-카르복실레이트(2 kg, 조품, 6.44 mol)의 THF/MeOH=10:1 (3.52 L) 혼합 용액에 수산화나트륨(1.03 kg, 25.75 mol)의 수용액(2.6 L)을 적가하고, 적가 속도를 내부 온도가 0 ~ 10 ℃로 제어하는 것이 적합하다. 적가 완료 후, 혼합물을 실온에서 2시간 동안 교반한 후, TLC로(원료&제품은 220nm에서 흡수가 약함) 원료 반응이 완료된 것을 모니터링하고, EtOAc(2 L)/tert-부틸메틸에테르(Tert-butyl methyl ether)(4 L) 혼합 용액을 넣어 교반하며, 정치시켜 물층을 분리하고, 유기상을 물(1 L×3)로 세척한다. 합병한 물층을 tert-부틸메틸에테르(1 L×2)로 추출한 후, 1 N의 염산으로 pH를3 ~ 4로 조절하고, DCM(5 L×2)으로 추출한다. 합병한 디클로로메탄 유기층을 염수(5 L×2)로 세척하고, 증발시켜, 백색 고체의 조표제 화합물(1.5 kg)을 얻으며, 이를 더 정제할 필요 없이 직접 다음 단계에 사용한다.
단계4: tert-부틸4-(시아노메틸)-4-메틸피페리딘-1-카르복실레이트(Tert-Butyl4-(cyanomethyl)-4-methylpiperidine-1-carboxylate)
Figure pct00023
2-(1-(tert-부톡시카르보닐)-4-메틸피페리딘-4-일)-2-시아노아세트산(4 kg, 조품, 14.17 mol)과 Cu2O(405.45 g, 2.83 mol)의 아세토니트릴(20 L) 혼합물을 85 ℃의 온도 하에서 2시간 동안 교반하고, TLC로(원료&제품은 220nm에서 흡수가 약함) 원료 반응이 완료된 것을 모니터링하며, 실온까지 냉각시킨 후, 불용성 물질을 여과하여 제거하고, 여액을 증발시키며, 잔여물을 에틸아세테이트(20 L)로 용해시키고, 순차적으로 0.5 N의 염산(10 L×2), 포화 염수(20 L×2)로 세척하며, 건조될 때까지 증발시키고, 잔여물을 PE/EtOAc=10/1(16 L)로 비팅하여 정제한다. 백색 고체를 여과하여 수집하여, 표제 화합물(2.5 kg, 수율: 74.03 %, 순도: 제품이 220nm에서 흡수가 약하므로, 순도를 등몰비 내부 표준을 더한 것으로 판단함)을 얻는다. 1H NMR (400 MHz, CHLOROFORM-d)ppm 1.16 (s, 3 H), 1.43 - 1.54 (m, 13 H), 2.31 (s, 2 H), 3.23 (ddd, J=13.68, 8.78, 4.39 Hz, 2 H), 3.52 - 3.70 (m, 2 H). LCMS (ESI) m/z: 239 (M+1).
단계5: tert-부틸4-(1-시아노-2-옥소에틸)-4-메틸피페리딘-1-카르복실레이트(Tert-Butyl4-(1-cyano-2-oxoethyl)-4-methylpiperidine-1-carboxylate)
Figure pct00024
-60 ~ -50 ℃의 온도 조건의 질소 기체 보호 하에서, tert-부틸4-(시아노메틸)-4-메틸피페리딘-1-카르복실레이트(1 kg, 4.2 mol)의 THF(8L) 혼합물에 2 M의 LDA(3.15 L, 6.3 mol)를 적가한다. -60 ~ -50 ℃에서 1시간 동안 교반한 후, 에틸포르메이트(Ethyl formate)(622 g, 8.4 mol)를 적가하고, 적가 완료 후 실온까지 천천히 승온시켜 15시간 동안 더 교반한다. 반응 완료 후 -30 ~ -20 ℃까지 감온시키고, 1 N의 염산 수용액(5L)으로 퀀칭하며, 물층을 EtOAc(2 L×3 )로 추출하고, 합병한 유기상을 0.5 N의 염산( 5 L×2 ), 염수(5 L×2)로 세척한 후, 건조될 때까지 증발시키며, 얻은 잔여물을 PE/EtOAc=10 /1(2 L)로 비팅하여 정제한다. 백색 고체를 여과하여 수집하여, 표제 화합물(900 g, 수율: 80.46 %, 순도: 100 %)을 얻는다. 1H NMR (400 MHz, CHLOROFORM-d) ppm 1.22 (s, 3 H), 1.47 - 1.55 (m, 11 H), 1.73 - 2.07 (m, 4 H), 3.38 - 3.48 (m, 4 H), 6.97 (s, 1 H), 7.55 - 8.14 (m, 1 H). LCMS (ESI) m/z: 289 (M+23).
단계6: (2,6-디브로모-4-플루오로페닐)히드라진히드로클로라이드((2,6-dibromo-4-fluorophenyl)hydrazine hydrochloride)
Figure pct00025
-5 ~ 0 ℃의 온도 하에서, 2,6-디브로모-4-플루오로아닐린(2,6-dibromo-4-fluoroaniline)(500 g, 1.86 mol)의 농염산(1.8 L) 용액에 아질산나트륨(Sodium nitrite)(141 g, 2.05 mol)의 수용액(1.8 L)을 적가한다. 적가 완료 후 -5 ~ 0 ℃의 온도 하에서 40분 동안 교반한 후, -10 ~ -5 ℃의 온도 하에서 상기 반응 혼합물을 이수화 염화제1주석(629 g, 2.79 mol)의 농염산(2 L) 용액에 넣되, 적가 속도는 -5 ℃를 초과하지 않는 것이 적합하고, 얻은 혼합물을 20 ℃ 정도까지 천천히 승온시켜 12시간 동안 교반하며, 고체는 여과를 통하여 수집하고, 이소프로판올(0.5 L×4)로 세척한 후 진공 건조시켜, 회백색 고체의 표제 화합물(430 g, 수율: 72 %, 순도: 97.75 %)을 얻으며, 더 정제할 필요 없이 다음 단계에 사용한다. 1H NMR (400 MHz, DMSO-d6) δ ppm 2.37 - 2.68 (m, 1 H), 6.94 - 7.28 (m, 1 H), 7.80 (d, J=8.03 Hz, 2 H), 10.13 (br. s., 3 H).
단계7: tert-부틸4-(5-아미노-1-(2,6-디브로모-4-플루오로페닐)-1H-피라졸-4-일)-4-메틸피페리딘-1-카르복실레이트(Tert-Buty4-(5-amino-1-(2,6-dibromo-4-fluorophenyl)-1H-pyrazol-4-yl)-4-methylpiperidine-1-carboxylate)
Figure pct00026
아세트산칼륨(Potassium acetate)(1.11 kg, 11.27 mol)과 (2,6-디브로모-4-플루오로페닐)히드라진히드로클로라이드((2,6-dibromo-4-fluorophenyl)hydrazine hydrochloride)(2.65 kg, 8.27 mol)의 에탄올(25 L) 혼합물을 실온 하에서 0.5시간 동안 교반한 후, tert-부틸4-(1-시아노-2-옥소에틸)-4-메틸피페리딘-1-카르복실레이트(2 kg, 7.51 mol)를 넣어, 혼합물을 60 ℃의 온도 하에서 2시간 동안 교반한다. 반응이 완료된 후, 상기 혼합물에 NaHCO3(1.89 kg, 22.5 mol)을 차수를 나누어 넣고, 80 ~ 90 ℃의 온도 하에서 15시간 동안 더 교반하며, 실온까지 냉각시킨 후, 얻은 혼합물을 증발시키고, 잔여물에 물(20 L)을 넣으며, EtOAc(10 L×2)로 추출하고, 합병한 유기상을 염수(10 L×2)로 세척하며, 증발시켜, 잔여물을 PE/ EtOAc = 10/1(6L)로 비팅하여 정제한다. 백색 고체를 여과하여 수집하여, 표제 화합물(3.5 kg, 수율: 87.5 %, 순도: 99.84 %)을 제공한다. 1H NMR (400 MHz, CHLOROFORM-d)ppm 1.32 (s, 3 H), 1.48 (s, 9 H), 1.57 - 1.63 (m, 2 H), 2.03 - 2.14 (m, 2 H), 3.30 (br. s., 4 H), 3.67 (d, J=13.30 Hz, 2 H), 7.41 - 7.52 (m, 3 H).
흐름2:
Figure pct00027
단계1: tert-부틸4-(8-브로모-6-플루오로-4H-벤조[4,5]이미다조[1,2-B]피라졸-3-일)-4-메틸피페리딘-1-카르복실레이트(Tert-butyl4-(8-Bromo-6-fluoro-4H-benzo[4,5]imidazo[1,2-B]pyrazol-3-yl)-4-methylpiperidine-1-carboxylate)
Figure pct00028
질소 기체 보호 하에서, tert-부틸4-(5-아미노-1-(2,6-디브로모-4-플루오로페닐)-1H-피라졸-4-일)-4-메틸피페리딘-1-카르복실레이트(Tert-butyl4-(5-Amino-1-(2,6-dibromo-4-fluorophenyl)-1H-pyrazol-4-yl)-4-methylpiperidine-1-carboxylate)(2.1 kg, 3.95 mol), Pd2(dba)3(289.37 g, 0.316 mol), Xantphos(365.69 g, 0.632 mol)과 탄산세슘(2.57 kg, 7.9 mol)의 DMF (16.8 L) 혼합물을 125 ~ 135 ℃의 온도 하에서 5 ~ 6시간 동안 교반한다. 실온까지 냉각시킨 후, 얻은 혼합물을 규조토로 여과하고, 여액을 EtOAc(20L)과 물(40 L)로 희석한 후 교반하여 분층시키며, 수상을 에틸아세테이트(20 L×2)로 추출하고, 유기상을 건조될 때가지 감압 증발시켜, 조품 표제 화합물(2.68 kg)을 얻으며, 더 정제할 필요 없이 다음 단계에 사용한다. LCMS (ESI) m/z: 451, 453 (M, M+2).
단계2: tert-부틸4-(8-카바모일-6-플루오로-4H-벤조[4,5]이미다조[1,2-B]피라졸-3-일)-4-메틸피페리딘-1-카르복실레이트(Tert-butyl4-(8-carbamoyl-6-fluoro-4H-benzo[4,5]imidazo[1,2-B]pyrazol-3-yl)-4-methylpiperidine-1-carboxylate)
Figure pct00029
10 L의 오토클레이브(Autoclave)에 tert-부틸4-(8-브로모-6-플루오로-4H-벤조[4,5]이미다조[1,2-B]피라졸-3-일)-4-메틸피페리딘-1-카르복실레이트(535 g, 1.19 mol), HMDS(956.55 g, 5.93 mol), Pd(dppf)Cl2(43.37 g, 0.0593 mol), Xantphos(34.29 g, 0.0593 mol), DIPEA(306.40 g, 2.37 mol)과 DMF(5L)를 넣고, 일산화탄소로 3번 치환하며, 0.8 ~ 1 MPa로 가압하고, 100 ~ 110 ℃까지 승온시켜 18 ~ 20시간 동안 교반한다. 실온까지 냉각시킨 후, 혼합물을 규조토로 여과하고, 여액을 에틸아세테이트(5 L)와 물(15 L)로 희석한 후 교반하여 분층시키며, 수상을 에틸아세테이트(5 L×2)로 추출하고, 유기상을 식염수(5 L)로 세척한 후, 건조될 때까지 감압 농축시켜, 표제 화합물 조품(552 g, 조품)을 얻으며, 더 정제할 필요 없이 다음 단계에 사용한다. LCMS (ESI) m/z: 416 (M+1).
단계3: 6-플루오로-3-(4-메틸피페리딘-4-일)-4H-벤조[4,5]이미다조[1,2-b]피라졸-8-카르복사미드(6-Fluoro-3-(4-methylpiperidin-4-yl)-4H-benzo[4,5]imidazo[1,2-b] pyrazole-8-carboxamide)
Figure pct00030
-10 ~ 0 ℃의 온도 하에서, 4 M의 HCl(g)/MeOH 용액(11 L)을 tert-부틸4-(8-카바모일-6-플루오로-4H-벤조[4,5]이미다조[1,2-B]피라졸-3-일)-4-메틸피페리딘-1-카르복실레이트(2.7 kg, 6.5 mol)의 MeOH(10 L) 용액에 천척히 적가하고, 적가 완료 후 20 ~ 25 ℃까지 승온시켜 2 ~ 3시간 동안 교반한다. 반응 완료 후, 얻은 혼합물을 5 L까지 농축시키고, 여과하여 고체를 얻는다. 고체를 물(12 L)에 분산시키고, 혼합물을 0 ~ 5 ℃까지 감온시키며, pH가 9 ~ 10으로 될 때까지 20 %의 수산화나트륨 용액(1 L)을 천천히 적가하고, 적가 완료 후, 0 ~ 5 ℃의 온도에서 1시간 동안 교반하며, 여과하고, 필터 케이크를 물로 중성이 될 때까지 세척한 후 건조시켜, 담황색 고체의 표제 화합물(1.03 kg, 수율: 82 %, 순도: 99.72 %)을 얻는다. 1H NMR (400 MHz, DMSO-d6) ppm 1.31 (s, 3 H), 1.68 - 1.85 (m, 2 H), 2.27 (d, J=14.81 Hz, 2 H), 2.83 (t, J=9.79 Hz, 2 H), 3.00 - 3.13 (m, 2 H), 7.42 (dd, J=8.66, 2.51 Hz, 1 H), 7.53 (dd, J=11.11, 2.57 Hz, 1 H), 7.78 (s, 1 H), 8.06 (s, 1 H), 10.66 (s, 1 H). LCMS (ESI) m/z: 316 (M+1).
단계4: 6-플루오로-3-(1-이소프로필-4-메틸피페리딘-4-일)-4H-벤조[4,5]이미다조[1,2-b]피라졸-8-카르복사미드(6-Fluoro-3-(1-isopropyl-4-methylpiperidin-4-yl)-4H-benzo[4,5]imidazo[1,2-b]pyrazole-8-carboxamide)
Figure pct00031
10 L의 오토클레이브에 6-플루오로-3-(4-메틸피페리딘-4-일)-4H-벤조[4,5]이미다조[1,2-b]피라졸-8-카르복사미드(505 g, 1.6 mol), 10 %의 Pd/C(51 g), 아세톤(930.12 g, 16 mol)과 NMP(5 L)를 넣고, 수소 가스로 3번 치환하며, 0.8 ~ 1 MPa로 가압하고, 60 ~ 70 ℃까지 승온시켜 18 ~ 20시간 동안 교반한다. 실온까지 냉각시킨 후, 혼합물을 규조토로 여과하고, 여액에 물( 20 L)을 넣어 교반하며, 필터 케이크를 물로 중성이 될 때가지 세척한 후, 담황색 고체의 표제 화합물(405 g, 수율: 78.8 %, 순도: 99.05 %)을 얻는다. 1H NMR (400 MHz, DMSO-d6) ppm 0.92 (d, J=6.53 Hz, 6 H), 1.26 (s, 3 H), 1.58 - 1.75 (m, 2 H), 1.86 - 1.93 (m, 1 H), 2.09 - 2.20 (m, 2 H), 2.35 (t, J=7.72 Hz, 2 H), 2.63 - 2.74 (m, 2 H), 7.43 (dd, J=8.41, 2.64 Hz, 1 H), 7.59 (dd, J=11.11, 2.57 Hz, 1 H), 7.76 (s, 1 H), 8.12 (s, 1 H), 10.62 (s, 1 H). LCMS (ESI) m/z: 358 (M+1).
단계5: 6-플루오로-3-(1-이소프로필-4-메틸피페리딘-4-일)-4H-벤조[4,5]이미다조[1,2-b]피라졸-8-카르복사미드.말레산염(Maleate) 일수화물
Figure pct00032
6-플루오로-3-(1-이소프로필-4-메틸피페리딘-4-일)-4H-벤조[4,5]이미다조[1,2-b]피라졸-8-카르복사미드(0.404 kg, 1.13 mol), 말레산(0.137 kg, 1.18 mol)의 95 %의 메탄올(5.25 L)을 2시간 동안 가열한 후 열 여과하고, 여액을 정치시켜 냉각시키며, 여과하여 백색 결정(420 g, 수율: 78.2 %, 순도: 99.66 %)을 얻는다. 1H NMR (400 MHz, DMSO-d6) ppm 0.63 - 1.70 (m, 10 H), 1.81 - 2.32 (m, 3 H), 2.82 (br. s., 1 H), 3.11 - 3.36 (m, 4 H), 6.04 (s, 2 H), 7.52 (dd, J=8.28, 2.51 Hz, 1 H), 7.62 (dd, J=11.04, 2.51 Hz, 1 H), 7.77 - 7.98 (m, 1 H), 8.16 (s, 1 H), 8.91 (br. s., 1 H), 10.54 (br. s., 1 H), 12.20 (br. s., 1 H). LCMS (ESI) m/z: 358 (M+1).
상이한 용매에서 A결정형의 안정성 시험
50 mg의 A결정형을 여러부 취하여, 각각 0.3 ~ 0.4 mL의 하기 표에서의 단일 용매 또는 혼합 용매를 넣고, 25 ℃의 조건 하에서 교반한다. 3일 동안 교반한 후, 샘플을 원심 분리하고, 모든 샘플 중의 고체를 수집하여, X선 분말 회절로 이의 결정형 상태를 검출한다. 결과는 표2에서 나타내는 바와 같다.
표2: 상이한 용매에서 A결정형의 안정성 실험
Figure pct00033
A결정형이 고온, 고습 및 강한 조명 조건 하에서의 안정성 시험
A결정형 샘플을 약 10 mg 취하여, 유리 샘플병 저부에 놓고, 얇게 편다. 60 ℃의 온도 및 92.5 %의 상대 습도 조건 하에서 놓은 샘플을 알루미늄 호일(Foil)로 병구를 밀봉하고, 알루미늄 호일에 작은 구멍을 뚫어, 샘플이 환경 공기와 충분히 접촉하도록 하며; 강한 조명(5 Klux) 조건 하에서 놓은 샘플을 나선 병뚜껑으로 밀봉한다. 상이한 조건하에서 놓은 샘플을 10일째에 취하여 검출하고, 검출 결과와 0일째의 초기 검출 결과를 비교하며, 시험 결과는 표3에서 표시되는 바와 같다.
표3: A결정형의 고체 안정성 시험
Figure pct00034
체외 활성 평가
세포 PARylation 분석
HCC1937세포를 4×104개 세포/웰로 965웰 플레이트에 접종하고, 37 ℃의 인큐베이터에서 하룻밤 배양한다. 피시험 화합물로 세포를 30분 동안 처리한 후, 1 mM의 과산화수소로 10분 동안 처리한다. 세포를 200 UL의 예냉된 PBS로 2번 세척하고, 100 ul의 예냉된 메탄올/아세톤(7:3)으로 아이스 배스(ice bath) 하에서 30분 동안 고정시킨다. 건조시킨 후, 5 %의 탈지 분유가 함유된 PBS-Tween-20 밀봉액(0.05 %)으로 실온 하에서 30분 동안 밀봉한다. 세포와 anti-PAR 10H 항체를 1: 100 비율로 밀봉액에서 실온 하에서 1시간 동안 배양한 후, PBS-Tween-20로 3번 헹구고, 다음, 염소 항 마우스를 함유한 플루오레세인-5(6)-이소티오시아네이트(Fluorescein-5(6)-isothiocyanate, FITC)와 병용되는 2차 항체 및 1 μg/mL의 DAPI를 함유한 밀봉액에 넣고 실온 하에서 어둠속에서 1시간 동안 배양한다. PBS-Tween-20으로 3번 헹군 후, 형광 마이크로형 계수기(Flexstation III, Molecular Device)로 데이터를 분석한다. PARP 효소를 시험한다(HT 통용 PARP1 비색법 분석 시약 키트(kit) 설명서에 따른다). 히스톤(Histone)을 96웰 플레이트에 포매하여 4 ℃에서 하룻밤 배양한다. 200 UL의 PBST 용액으로 상기 플레이트를 3번 세척한 후, 이를 밀봉액으로 밀봉하고, 실온에서 30분 동안 배양한 후, PBST 용액으로 3번 세척한다. 피시험 화함물로 처리하여 웰 플레이트에 넣고, 이어서 20 ml의 희석된 PARP1(1 nM) 또는 20 ml의 PARP2(3nM) 용액을 반응 체계에 넣어 1시간 또는 2시간 동안 배양한다. 50 μl의 스트렙타비딘-HRP(Streptavidin-HRP)(1:50)의 혼합액을 웰 플레이트에 넣어 실온 하에서 30분 동안 배양한 후, PBST 완충액으로 3번 세척한다. 100 ml(HRP)(화학 발광 기질A와 기질B(1:1))를 웰 플레이트에 넣는다. 즉시 마이크로 플레이트 리더기(Envision, PerkinElmer)로 리딩(reading)한다.
항 증식 시험
MDA-MB-436과 MDA-MB-231 세포를 각각 500/웰과 2000/웰의 세포의 밀도로 96웰 플레이트에 접종하고 하룻밤 배양한다. 배지는 RPMI 1640이고, 10 %(V/V)의 FBS 와 1 %(V/V)의 페니실린-스트렙토마이신(Penicillin-Streptomycin)을 함유하고 있다. 피시험 화합물을 넣은 후, 8일 동안 처리한다. 세포 생존 능력은 CCK8 키드로 측정한다. 구체적인 방법은 10 UL의 CCK8 시약을 각각의 웰에 넣고, 37 ℃의 온도와 5 %의 CO2조건의 인큐베이터에서 3시간 동안 배양한다. 10분 동안 진탕시킨 후, Flexstation III(Molecular Device)의 450nm에서 광흡수 값을 측정(OD값)한다.
화합물 조합 시험(DNA 손상 약물과 병용)에 대하여, PF50값은 약물의 협동 작용을 계산하기 위한 것으로 사용된다. PF50 = [피시험 화합물의 IC50]/[DNA 손상 약물 농도를 고정할 때의 상기 화합물의 IC50]. 본 연구에서 테모졸로미드(TMZ)을 DNA 손상 약물로 사용한다.
MDA-MB-231/436 세포 증식에 대한 화합물1과 ABT888단일 약용 및 TMZ 협동 작용의 억제 검출 IC50 데이터는 표4에 표시된 바와 같다.
표4: 본 발명의 화합물의 체외 선별 시험 결과
Figure pct00035
결론: 화합물1은 BRAC 돌연변이된 MDA-MB-436 세포주에 대하여 비교적 강한 억제 작용을 나타내고, TMZ와 병용하면 더욱 우수한 협동 효과를 나타낸다.

Claims (14)

  1. 식(Ⅰ) 화합물의 제조방법에 있어서,
    Figure pct00036

    하기와 같은 단계를 포함하고,
    Figure pct00037

    R은 선택적으로 C1- 5알킬기(alkyl group)로부터 선택되며;
    R1은 아미노기(Amino group) 보호기이고;
    X은 할로겐(halogen)이며;
    금속 촉매는 팔라듐 금속 촉매(Palladium metal catalyst), 백금 금속 촉매(Platinum metal catalyst) 및/또는 구리 금속 촉매(Copper metal catalyst)로부터 선택되고;
    리간드(Ligand)는 팔라듐 금속 촉매와 배위되는 포스핀(Phosphine) 함유 리간드 및/또는 구리 금속 촉매와 배위되는 질소(nitrogen) 함유 리간드로부터 선택되며;
    염기(Alkali)는 알칼리 금속 염기(Alkali metal base), 알칼리 토금속 염기(Alkaline earth metal base), 유기 염기(Organic base) 및/또는 유기 금속 염기(Organic metal base)로부터 선택되는 식(Ⅰ) 화합물의 제조방법.
  2. 제1항에 있어서,
    하기와 같은 단계를 포함하고,
    Figure pct00038

    암모니아 소스는 HMDS 및/또는 포름아미드(Formamide)로부터 선택되는 제조방법.
  3. 제1항 또는 제2항에 있어서,
    하기와 같은 단계를 포함하고,
    Figure pct00039
    ; 또는
    Figure pct00040
    ; 또는
    Figure pct00041
    ; 또는
    Figure pct00042
    ; 또는
    Figure pct00043
    또는
    Figure pct00044
    ;
    HB는 유기산(Organic acids) 또는 무기산(Inorganic acid)으로부터 선택되며;
    HA는 유기산 또는 무기산으로부터 선택되고;
    R알데히드(R aldehyde)는 포름알데히드(formaldehyde), 아세트알데히드(Acetaldehyde), 이소부틸알데히드(isobutylaldehyde)로부터 선택되며;
    R케톤(R Ketone)은 이소프로필케톤(Isopropyl ketone)으로부터 선택되고;
    수소 소스는 수소 가스, 시클로헥센(Cyclohexene) 및/또는 암모늄 포르메이트(Ammonium formate)로부터 선택되는 제조방법.
  4. 제3항에 있어서,
    상기 유기산은 트리플루오로아세트산(trifluoroacetic acid), 메탄설폰산(Methanesulfonic acid), p-톨루엔설폰산(p-Toluenesulfonic acid), 구연산(Citric acid), 말레산(Maleic acid) 또는 푸마르산(Fumaric acid)으로부터 선택되거나;
    무기산은 염산(hydrochloric acid), 브롬화수소산(Hydrobromic acid), 인산(Phosphoric acid) 및/또는 황산(sulfuric acid)으로부터 선택되는 제조방법.
  5. 제1항 또는 제2항에 있어서,
    R은 메틸기(methyl group), 에틸기(Ethyl group), 이소프로필기(Isopropyl group) 또는 tert-부틸기(Tert-butyl group)로부터 선택되고;
    R1은 (Alkoxycarbonyl group)계 아미노기 보호기 및/또는 벤질기(Benzyl group)계 아미노기 보호기로부터 선택되며;
    팔라듐 금속 촉매는 Pd2(dba)3, Pd(PPh3)4, Pd(dppf)Cl2, Pd(PPh3)2Cl2, Pd(OAc)2 및/또는 PdCl2로부터 선택되고;
    구리 금속 촉매는 CuI, CuBr, CuCl, Cu 및/또는 Cu2O로부터 선택되며;
    백금 금속 촉매는 PtO2로부터 선택되고;
    팔라듐 금속 촉매와 배위되는 포스핀 함유 리간드는Xantphos, Sphos, Xphos, Ruphos 및/또는 Brettphos로부터 선택되며;
    구리 금속 촉매와 배위되는 질소 함유 리간드는 1,2-시클로헥산디아민(1,2-cyclohexanediamine), N,N'-디메틸에틸렌디아민(N,N'-dimethylethylenediamine) 및/또는 1,10-페난트롤린(1,10-Phenanthroline)으로부터 선택되고;
    알칼리 금속염은 수산화리튬(Lithium hydroxide), 수산화나트륨(Sodium hydroxide), 수산화칼륨(Potassium hydroxide), 수산화세슘(Cesium hydroxide), 탄산나트륨(Sodium carbonate), 탄산칼륨(Potassium carbonate), 탄산세슘(Cesium carbonate), 탄산수소나트륨(Sodium Bicarbonate), 탄산수소칼륨(Potassium bicarbonate) 및/또는 인산칼륨(Potassium phosphate)으로부터 선택되며;
    알칼리 토금속염은 수소화나트륨(Sodium hydride), 수소화칼륨(Potassium hydride) 및/또는 수소화칼슘(Calcium hydride)으로부터 선택되고;
    유기 염기는 트리에틸아민(Triethylamine), DIPEA, NMM 및/또는 DBU로부터 선택되며;
    유기 금속 염기는 나트륨메톡시드(Sodium methoxide), 리튬tert-부톡시드(Lithium tert-butoxide), 나트륨tert-부톡시드(Sodium tert-butoxide), 칼륨tert-부톡시드(Potassium tert-butoxide), 나트륨에톡시드(Sodium ethoxide) 및/또는 알루미늄이소프로폭시드(Aluminum isopropoxide)로부터 선택되는 제조방법.
  6. 식(Ⅰ) 화합물 중간체를 제조하기 위한 하기 화합물.
    Figure pct00045
    ,
    Figure pct00046
    ,
    Figure pct00047
    ,
    Figure pct00048
    ,
    Figure pct00049
  7. 하기 식으로 표시되는 화합물2.
    Figure pct00050
  8. X선 분말 회절(XRPD) 패턴은 도1에서 나타내는 바와 같은 화합물3의 A결정형.
    Figure pct00051
  9. 제8항에 있어서,
    시차 주사 열량 곡선은 85.44 ℃에서 흡열 피크의 시작점을 가지고, 162.95 ℃에서 흡열 피크의 시작점을 가지며, 205.63 ℃ ± 3 ℃에서 흡열 피크의 시작점을 가지는 A결정형.
  10. 제8항에 있어서,
    상기 결정형의 시차열 분석(DSC) 패턴은 도2에서 나타내는 바와 같은 A결정형.
  11. 제8항에 있어서,
    열중량 분석 곡선은 129.34 ℃에서 3.740 % 실중되고; 194.30 ℃에서 0.4250 % 실중되며; 245.46 ℃에서 13.59 % 실중되는 A결정형.
  12. 제8항에 있어서,
    결정형의 열중량 분석(TGA) 패턴은 도3에서 나타내는 바와 같은 A결정형.
  13. 어느 하나의 형식의 식(1) 화합물과 말레산을 용매에 넣어 결정을 제조하는 단계를 포함하고,
    말레산과 식(1) 화합물의 몰비는 1: 1.05 ~ 1.2이며;
    용매 사용량은 식(1) 화합물 중량의 8 ~ 12배이고;
    반응 용매는 알콜(alcohol)계 용매 및/또는 알콜계 용매와 물을 함유한 혼합 용매로부터 선택되며;
    구체적으로, 상기 알콜계 용매는 메탄올(Methanol), 에탄올(Ethanol) 및/또는 이소프로판올(Isopropanol)로부터 선택되고;
    구체적으로, 상기 알콜계 용매와 물의 혼합 용매는 메탄올, 에탄올, 이소프로판올과 물의 혼합 용매로부터 선택되며;
    구체적으로, 상기 알콜계 용매와 물의 체적비는 1:0.05 ~ 0.1인 제8항에 따른 A결정형의 제조방법.
  14. PARP 수용체 관련 질병을 치료하기 위한 약물 제조에서의 제7항에 따른 염 또는 제8항에 따른 A결정형의 응용.
KR1020187010733A 2015-09-30 2016-09-29 4H-피라졸로[1,5-α]벤즈이미다졸계 화합물의 염형, 결정형 및 이의 제조방법과 중간체 KR102664193B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510643088 2015-09-30
CN201510643088.3 2015-09-30
PCT/CN2016/100821 WO2017054755A1 (zh) 2015-09-30 2016-09-29 4H-吡唑并[1, 5-α]苯并咪唑类化合物的盐型、晶型及其制备方法和中间体

Publications (2)

Publication Number Publication Date
KR20180083311A true KR20180083311A (ko) 2018-07-20
KR102664193B1 KR102664193B1 (ko) 2024-05-10

Family

ID=58422684

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187010733A KR102664193B1 (ko) 2015-09-30 2016-09-29 4H-피라졸로[1,5-α]벤즈이미다졸계 화합물의 염형, 결정형 및 이의 제조방법과 중간체

Country Status (12)

Country Link
US (2) US10428073B2 (ko)
EP (1) EP3357925B1 (ko)
JP (1) JP6858762B2 (ko)
KR (1) KR102664193B1 (ko)
CN (1) CN108137598B (ko)
AU (1) AU2016333293B2 (ko)
CA (1) CA3003122C (ko)
ES (1) ES2901152T3 (ko)
HK (1) HK1258757A1 (ko)
IL (1) IL258451B (ko)
TW (1) TWI716463B (ko)
WO (1) WO2017054755A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10428073B2 (en) * 2015-09-30 2019-10-01 Hubei Bio-Pharmaceutical Industrial Technological Institute Inc. Salt type and crystal type of 4H-pyrazolo [1, 5-alpha] benzimidazole compound and preparation method and intermediate thereof
WO2018192445A1 (zh) * 2017-04-17 2018-10-25 广州丹康医药生物有限公司 作为parp抑制活性的多环化合物及其用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007149907A2 (en) * 2006-06-20 2007-12-27 Abbott Laboratories Pyrazoloquinazolinones as parp inhibitors
JP2011515450A (ja) * 2008-03-27 2011-05-19 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Parpおよびチューブリン重合阻害剤としてのテトラヒドロフェナントリジノンおよびテトラヒドロシクロペンタキノリノン

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19920936A1 (de) 1999-05-07 2000-11-09 Basf Ag Heterozyklisch substituierte Benzimidazole, deren Herstellung und Anwendung
EP1973909A2 (en) * 2005-12-22 2008-10-01 Biogen Idec MA Inc. Transforming growth factor modulators
WO2007144669A1 (en) * 2006-06-15 2007-12-21 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Pyrazolo[1,5-a]quinazolin-5(4h)-ones as inhibitors of poly(adp-ribose)polymerase (parp)
CN104974161B (zh) 2014-04-10 2019-11-01 湖北生物医药产业技术研究院有限公司 作为PARP抑制剂的4H-吡唑并[1,5-α]苯并咪唑化合物的类似物
DK3130592T3 (da) * 2014-04-10 2019-11-04 Hubei Bio Pharmaceutical Industrial Tech Institute Inc ANALOGER AF 4H-PYRAZOLO[1,5-á]BENZIMIDAZOL-FORBINDELSER SOM PARPINHIBITORER
US10428073B2 (en) * 2015-09-30 2019-10-01 Hubei Bio-Pharmaceutical Industrial Technological Institute Inc. Salt type and crystal type of 4H-pyrazolo [1, 5-alpha] benzimidazole compound and preparation method and intermediate thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007149907A2 (en) * 2006-06-20 2007-12-27 Abbott Laboratories Pyrazoloquinazolinones as parp inhibitors
JP2011515450A (ja) * 2008-03-27 2011-05-19 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Parpおよびチューブリン重合阻害剤としてのテトラヒドロフェナントリジノンおよびテトラヒドロシクロペンタキノリノン

Also Published As

Publication number Publication date
EP3357925B1 (en) 2021-10-27
CN108137598A (zh) 2018-06-08
US10941150B2 (en) 2021-03-09
US20190375756A1 (en) 2019-12-12
JP6858762B2 (ja) 2021-04-14
IL258451B (en) 2021-03-25
ES2901152T3 (es) 2022-03-21
CN108137598B (zh) 2021-02-12
TWI716463B (zh) 2021-01-21
TW201718594A (zh) 2017-06-01
AU2016333293B2 (en) 2020-07-30
IL258451A (en) 2018-05-31
EP3357925A1 (en) 2018-08-08
US10428073B2 (en) 2019-10-01
KR102664193B1 (ko) 2024-05-10
HK1258757A1 (zh) 2019-11-22
CA3003122C (en) 2023-10-03
AU2016333293A1 (en) 2018-05-10
EP3357925A4 (en) 2019-05-01
JP2018535934A (ja) 2018-12-06
CA3003122A1 (en) 2017-04-06
WO2017054755A1 (zh) 2017-04-06
US20180258093A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
CA2940488C (en) 2,4-disubstituted phenylene-1,5-diamine derivatives and applications thereof, and pharmaceutical compositions and pharmaceutically acceptable compositions prepared therefrom
WO2015002926A1 (en) Tricyclic pyrido-carboxamide derivatives as rock inhibitors
CA3009669A1 (en) Bruton's tyrosine kinase inhibitors
TW201247665A (en) Tri- and tetracyclic pyrazolo[3,4-b]pyridine compounds as antineoplastic agent
TW200829555A (en) Chemical compounds
KR102485412B1 (ko) 벤조옥사졸옥사진 케톤계 화합물의 제조방법 및 이의 중간체와 결정형
AU2010212560B2 (en) Derivatives of azaindoles as inhibitors of protein kinases Abl and Src
CA3105099A1 (en) Inhibiting creb binding protein (cbp)
CA2842531A1 (en) Antibacterial piperidinyl substituted 3,4-dihydro-1h-[1,8]naphthyridinones
ES2446307T3 (es) Piridazinas tetrasustituidas antagonistas de la ruta de Hedgehog
US10941150B2 (en) Salt type and crystal type of 4h-pyrazolo [1, 5-alpha] benzimidazole compound and preparation method and intermediate thereof
RU2595136C2 (ru) Азотсодержащие насыщенные гетероциклические соединения
CN110818609A (zh) 3-乙酰基吲哚类brpf1抑制剂的制备方法及其用途
WO2014154723A1 (en) Novel pyrrole derivatives for the treatment of cancer
DK2991984T3 (en) PALLADIUM-CATALYST COUPLING OF PYRAZOLAMIDES
ES2408213T3 (es) Nuevo procedimiento de síntesis de ivabradina y de sus sales de adición de un ácido farmacéuticamente aceptable
TW201718587A (zh) 4H-吡唑並[1,5-α]苯並咪唑類化合物晶型及其製備方法和中間體
WO2004085436A2 (en) Pyrido[2,3-d]pyrimidin-7-carboxylic acid derivatives, their manufacture and use as pharmaceutical agents
CA2579406A1 (en) 6-(2-alkyl-phenyl) - pyrido[2,3-d] pyrimidines useful as protein kinase inhibitors
EP3527209A1 (en) Pharmaceutical 6,5 heterobicyclic ring derivatives
JP6997769B2 (ja) 2-(6-ニトロピリジン-3-イル)-9H-ジピリド[2,3-b;3’,4’-d]ピロールの製造方法
CA2602532A1 (en) Pyrrolo [2,3-d] imidazoles for the treatment of hyperproliferative disorders
CN116425796A (zh) 一类嘧啶并杂环类化合物、制备方法和用途
WO2015081783A1 (zh) 吡咯并[2,1-f][1,2,4]三嗪类衍生物及其制备方法和用途
JPH07509240A (ja) 新規ピリドンカルボン酸誘導体及びその調製方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right