KR20180040652A - 전기 부품용 리드선 및 전기 부품 - Google Patents

전기 부품용 리드선 및 전기 부품 Download PDF

Info

Publication number
KR20180040652A
KR20180040652A KR1020187007165A KR20187007165A KR20180040652A KR 20180040652 A KR20180040652 A KR 20180040652A KR 1020187007165 A KR1020187007165 A KR 1020187007165A KR 20187007165 A KR20187007165 A KR 20187007165A KR 20180040652 A KR20180040652 A KR 20180040652A
Authority
KR
South Korea
Prior art keywords
strip
shaped conductor
lead wire
width
insulating film
Prior art date
Application number
KR1020187007165A
Other languages
English (en)
Other versions
KR102121675B1 (ko
Inventor
유타카 마츠무라
신야 니시카와
유타카 후쿠다
게이타로 미야자와
도모유키 오카다
Original Assignee
스미토모 덴키 고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미토모 덴키 고교 가부시키가이샤 filed Critical 스미토모 덴키 고교 가부시키가이샤
Publication of KR20180040652A publication Critical patent/KR20180040652A/ko
Application granted granted Critical
Publication of KR102121675B1 publication Critical patent/KR102121675B1/ko

Links

Images

Classifications

    • H01M2/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • H01M2/021
    • H01M2/0212
    • H01M2/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본 발명의 일 실시 형태에 따른 전기 부품용 리드선은 스트립 형상 도체와, 이 스트립 형상 도체의 양면을 피복하는 1쌍의 절연 필름을 구비하고, 스트립 형상 도체의 탄성률을 Dm[㎩], 폭 1㎜당의 단면 2차 모멘트를 Im[m4/1㎜]로 하고, 또한 상기 1쌍의 절연 필름의 평균 탄성률을 Di[㎩], 폭 1㎜당의 단면 2차 모멘트를 Ii[m4/1㎜]로 한 경우에, 수식 (1)에서 나타내어지는 스트립 형상 도체의 폭 1㎜당의 형상 유지력 H[N·㎡/1㎜]에 대한 수식 (2)에서 나타내어지는 절연 필름의 폭 1㎜당의 탄성 회복력 R[N·㎡/1㎜]의 비(R/H)가 0.15 이하이다.
H=Dm×Im …(1)
R=Di×Ii …(2)

Description

전기 부품용 리드선 및 전기 부품
본 발명은 전기 부품용 리드선 및 전기 부품에 관한 것이다.
전자 기기의 소형화의 요구에 따라, 그 전원으로서 이용되는 배터리의 소형화, 경량화의 요구가 강해지고 있다. 한편, 배터리에 대한 고에너지 밀도화, 고에너지 효율화도 요구되고 있다. 이러한 요구를 만족시키기 위해, 봉지체의 내부에 전극 및 전해액 등이 봉입된 비수 전해질 배터리(예를 들면 리튬 이온 배터리 등)에의 기대가 높아지고 있다.
이러한 비수 전해질 배터리에서는, 전류를 외부로 취출하기 위해서, 봉지체로부터 리드선이 연장되어 있는 것이 일반적이다. 리드선으로서는, 알루미늄 등의 금속제의 리드 도체만으로 이루어지는 것 외에, 리드 도체를 열가소성 수지의 절연층에 의해 피복한 것이 알려져 있다. 그리고, 리드선은, 예를 들면 봉지체의 개구 단부의 내면에 의해 리드선을 사이에 둔 상태에서 그 개구 단부를 가열 밀봉(heat seal)함으로써, 봉지체에 부착된다.
이러한 가열 밀봉에 의해 리드 도체를 봉지체에 부착하는 방법에서는, 절연층이 가열 밀봉시의 열에 의해 용융되어 리드 도체가 봉지체의 금속층과 쇼트될 가능성이 있다. 그래서, 절연층을 가교 폴리올레핀(crosslinked polyolefin)으로 이루어지는 가교층을 포함하는 것으로 함으로써, 절연층의 용융을 회피하는 것이 제안되어 있다(예를 들면 특허문헌 1, 2 참조).
특허문헌 1: 일본 특허 공개 제2001-102016호 공보 특허문헌 2: 일본 특허 공개 제2009-259739호 공보
본 발명의 일 형태에 따른 전기 부품용 리드선은, 스트립 형상 도체(strip-shaped conductor)와, 이 스트립 형상 도체의 양면을 피복하는 1쌍의 절연 필름을 구비하는 전기 부품용 리드선으로서, 상기 스트립 형상 도체의 탄성률을 Dm[㎩], 폭 1㎜당의 단면(斷面) 2차 모멘트(moment of inertia of area)를 Im[m4/1㎜]으로 하고, 또한 상기 1쌍의 절연 필름의 평균 탄성률을 Di[㎩], 폭 1㎜당의 단면 2차 모멘트를 Ii[m4/1㎜]로 한 경우에, 하기 수식 (1)에서 나타내어지는 스트립 형상 도체의 폭 1㎜당의 형상 유지력 H[N·㎡/1㎜]에 대한 하기 수식 (2)에서 나타내어지는 절연 필름의 폭 1㎜당의 탄성 회복력 R[N·㎡/1㎜]의 비(R/H)가 0.15 이하이다.
H=Dm×Im …(1)
R=Di×Ii …(2)
본 발명의 일 형태에 따른 전기 부품은 상기 전기 부품용 리드선을 구비한다.
도 1은 본 발명의 다른 일 형태에 따른 리튬 이온 배터리의 일례를 설명하기 위한 일부를 파단하여 나타낸 모식적 사시도이다.
도 2는 도 1의 A-A선에 따른 모식적 단면도이다.
도 3(a)는 본 발명의 일 형태에 따른 전기 부품용 리드선에서의 스트립 형상 도체 및 절연 필름의 단면 2차 모멘트를 설명하기 위한 길이 방향에서 본 모식적 단면도이다.
도 3(b)는 도 3(a)의 전기 부품용 리드선의 스트립 형상 도체만을 나타내는 모식적 단면도이다.
도 3(c)는 도 3(a)의 전기 부품용 리드선의 절연 필름만을 나타내는 모식적 단면도이다.
도 4(a)는 스프링 백(spring back) 각도의 평가에 이용한 리드선을 설명하기 위한 모식적 평면도이다.
도 4(b)는 도 4(a)의 리드선의 모식적 단면도이다.
도 5(a)는 스프링 백 각도의 평가 방법의 일 공정을 설명하기 위한 모식적 단면도이다.
도 5(b)는 도 5(a)의 다음의 공정을 설명하기 위한 모식적 단면도이다.
도 6은 스프링 백 각도의 측정 결과와, 스트립 형상 도체의 폭 1㎜당의 형상 유지력 H에 대한 1쌍의 절연 필름의 폭 1㎜당의 탄성 회복력 R의 비(R/H)의 관계를 나타내는 그래프이다.
[본 개시가 해결하고자 하는 과제]
상기 종래의 리드선을 구비하는 비수 전해질 배터리는 상기 리드선을 구부린 상태로 전자 기기에 수납되는 경우가 많다. 그 때문에, 상기 전자 기기의 제조시, 상기 비수 전해질 배터리가 구비하는 리드선은, 리드 도체가 절연층으로 피복되어 있는 개소에서 구부러지고, 이 구부러진 형상을 유지한 채로 하류 공정으로 보내지는 경우가 있다. 그 때문에, 리드선을 구부려 사용하는 것을 상정한 경우, 스프링 백이 생기기 어려워 구부림 형상을 적절하게 유지할 수 있는 리드선이 요구되고 있다.
여기서, 리드 도체는 알루미늄 등의 금속이고, 구부렸을 때에 소성 변형되고, 구부림 형상을 유지하려고 하는 힘을 생성한다. 한편, 절연층은 수지 등이기 때문에, 구부렸을 때에 탄성 변형되고, 구부림 형상으로부터 본래의 형상으로 복귀하려고 하는 힘이 생긴다. 이 2개의 힘 중, 절연층의 탄성 변형에 기인하는 구부림 형상으로부터 본래의 형상으로 복귀하려고 하는 힘이 강하게 작용한 경우, 상기 리드선이 구부림 형상을 유지할 수 없어 약간 본래의 형상으로 복귀하는 현상(스프링 백)이 생긴다. 그러나, 스프링 백은, 금속제 리드 도체 및 수지제 절연층이라는 재질이 상이한 2개의 부재의 상호 작용에 의해 생기는 복잡한 현상이기 때문에, 리드 도체 및 절연층에 어떠한 부재를 적용하면 스프링 백을 충분히 억제할 수 있을지를 정확하게 예측하는 것은 곤란하다.
본 발명은, 구부려 사용할 때에 스프링 백이 생기기 어렵고, 구부림 형상을 적절하게 유지할 수 있는 전기 부품용 리드선 및 전기 부품을 제공하는 것을 목적으로 한다.
[발명의 효과]
상기 발명에 의하면, 구부려 사용할 때에 스프링 백이 생기기 어려워, 구부림 형상을 적절하게 유지할 수 있는 전기 부품용 리드선과, 작업 효율이 우수한 전기 부품을 제공할 수 있다.
[본 발명의 실시 형태의 설명]
본 발명의 일 형태에 따른 전기 부품용 리드선은, 스트립 형상 도체와, 이 스트립 형상 도체의 양면을 피복하는 1쌍의 절연 필름을 구비하는 전기 부품용 리드선으로서, 상기 스트립 형상 도체의 탄성률을 Dm[㎩], 폭 1㎜당의 단면 2차 모멘트를 Im[m4/1㎜]으로 하고, 또한 상기 1쌍의 절연 필름의 평균 탄성률을 Di[㎩], 폭 1㎜당의 단면 2차 모멘트를 Ii[m4/1㎜]로 한 경우에, 하기 수식 (1)에서 나타내어지는 스트립 형상 도체의 폭 1㎜당의 형상 유지력 H[N·㎡/1㎜]에 대한 하기 수식 (2)에서 나타내어지는 절연 필름의 폭 1㎜당의 탄성 회복력 R[N·㎡/1㎜]의 비(R/H)가 0.15 이하이다.
H=Dm×Im …(1)
R=Di×Ii …(2)
여기서, 리드선에 스프링 백이 생기는 이유는, 상술한 바와 같이 스트립 형상 도체의 소성 변형에 기인하는 구부림 형상을 유지하려고 하는 힘보다, 절연 필름의 탄성 변형에 기인하는 구부림 형상으로부터 본래의 형상으로 복귀하려고 하는 힘이 강하게 작용하기 때문이라고 생각된다. 그 때문에, 스트립 형상 도체의 소성 변형에 기인하는 힘을 크게 하는 한편, 절연 필름의 탄성 변형에 기인하는 힘을 작게 하면, 스프링 백이 억제되어 리드선의 구부림 형상을 유지하기 쉬워진다고 생각된다. 여기서, 리드선이 구부림 형상을 유지할 수 있는지 여부, 즉 스프링 백의 발생의 용이함은 스트립 형상 도체나 절연 필름의 재질뿐만 아니라, 이들의 두께, 형상에도 의존한다고 생각된다. 그래서, 본 발명자 등은 당해 전기 부품용 리드선의 스트립 형상 도체가 스프링 백에 미치는 영향을 그 탄성률 및 폭 1㎜당의 단면 2차 모멘트를 파라미터로 하는 상기 수식 (1)에서 나타내어지는 폭 1㎜당의 형상 유지력으로 판단할 수 있다는 것을 찾아냈다. 또한, 본 발명자 등은 당해 전기 부품용 리드선의 절연 필름이 스프링 백에 미치는 영향을 그 탄성률 및 폭 1㎜당의 단면 2차 모멘트를 파라미터로 하는 상기 수식 (2)에서 나타내어지는 폭 1㎜당의 탄성 회복력으로 판단할 수 있다는 것을 찾아냈다. 또, 본 발명자 등은 당해 전기 부품용 리드선의 절연 필름 및 스트립 형상 도체에 의한 스프링 백에 대한 영향을 스트립 형상 도체의 폭 1㎜당의 형상 유지력에 대한 1쌍의 절연 필름의 폭 1㎜당의 탄성 회복력의 비에 관련짓고, 그 비를 상기 상한 이하로 함으로써, 구부려 사용할 경우에 스프링 백이 생기기 어려워, 구부림 형상을 적절하게 유지할 수 있다는 것을 찾아냈다.
이와 같이 당해 전기 부품용 리드선은, 스트립 형상 도체의 폭 1㎜당의 형상 유지력에 대한 1쌍의 절연 필름의 폭 1㎜당의 탄성 회복력의 비를 상기 상한 이하로 함으로써, 스프링 백이 생기기 어려워, 구부림 형상을 적절하게 유지할 수 있다. 그 때문에, 리드선을 구부려 사용하는 경우, 그 구부림 형상이 유지되고 쉽기 때문에, 리드선을 구부린 후에 고착용 테이프 등을 이용하여 구부린 리드선을 다른 요소에 고정할 필요가 없다. 그 결과, 당해 전기 부품용 리드선은, 구부려 사용하는 경우의 제조 공정을 간략화할 수 있고, 또한 구부려 사용함으로써 공간 절약화에 기여할 수 있다.
여기서, 「평균 두께」란, 임의의 5점에서 측정한 두께의 평균치를 의미한다. 「탄성률」이란, 스트립 형상 도체 및 절연 필름에 정밀 만능 시험기(인장 시험기; precision universal testing instrument)를 이용하여 인장 변형을 가했을 때의 SS 커브(응력-변형 곡선(stress-strain curve))의 상승 기울기를 나타낸다. 이 탄성률의 측정에서는, 인장 시험기의 샘플 파지(척) 간격을 50㎜로 하고, 50㎜/min로 인장하는 것으로 한다. 단, 스트립 형상 도체의 탄성률 측정시에는, 시료와 시험기의 그리퍼(gripper) 사이에서의 미끄러짐의 영향을 고려하기 위해, 미소 변위를 측정 가능한 변형 게이지를 시료에 마련하여 측정하는 것으로 한다. 또, 이 탄성률의 측정에서 직접 구해지는 것은 시험력[N]-이동 거리[㎜] 곡선이 되지만, 하기 수식 (3) 및 (4)에 나타내는 바와 같이 샘플 사이즈 및 척 간격을 이용하여 응력[㎩]-변형[%] 곡선으로 변환해서, 탄성률을 구하는 것으로 한다. 또한, 스트립 형상 도체 및 절연 필름이 다층 구조체인 경우에도, 상술한 방법에 의해 탄성률을 구할 수 있다. 또, 「1쌍의 절연 필름의 평균 탄성률」이란, 2매의 절연 필름의 각각의 탄성률의 측정치의 평균을 의미한다. 이하, 「평균 두께」 또는 「탄성률」이라고 하는 경우에는 동일하게 정의된다.
응력[㎩]=시험력[N]÷폭[㎜]÷두께[㎜] …(3)
변형[%]=이동 거리[㎜]÷척 간격[㎜]×100 …(4)
당해 전기 부품용 리드선은 180° 구부려진 후의 구부림 복원 각도가 20° 이하라고 좋다. 이러한 리드선에 의하면, 180° 구부려진 후의 구부림 복원 각도, 즉 스프링 백 각도가 20° 이하인 것에 의해, 구부림 형상을 보다 적절하게 유지할 수 있기 때문에, 리드선을 구부리고, 그 형상을 유지시키는 작업이 보다 용이해져 작업성이 보다 향상된다.
상기 탄성 회복력 R로서는, 3.0×10-5N·㎡/1㎜ 이상 6.0×10-3N·㎡/1㎜ 이하가 바람직하다. 이러한 리드선에 의하면, 상기 탄성 회복력 R이 상기 범위인 것에 의해, 당해 전기 부품용 리드선이 구부려진 후의 스프링 백을 적절히 작게 할 수 있다. 그 결과, 당해 전기 부품용 리드선의 구부림 작업이 보다 용이해져 작업성이 보다 향상된다.
상기 형상 유지력 H로서는, 3.0×10-4N·㎡/1㎜ 이상 6.0×10-2N·㎡/1㎜ 이하가 바람직하다. 이러한 리드선에 의하면, 상기 형상 유지력 H가 상기 범위인 것에 의해, 구부림 형상을 보다 적절하게 유지할 수 있기 때문에, 당해 전기 부품용 리드선에 구부림 형상을 적절히 유지할 수 있는 형상 유지성을 부여할 수 있다. 그 결과, 당해 전기 부품용 리드선의 구부림 작업이 보다 용이해져 작업성이 보다 향상된다.
상기 스트립 형상 도체의 평균 두께로서는, 30㎛ 이상 200㎛ 이하가 바람직하고, 상기 스트립 형상 도체의 탄성률로서는, 50㎬ 이상 300㎬ 이하가 바람직하다. 이러한 리드선에 의하면, 스트립 형상 도체의 형상 유지력을 적절한 범위로 하고, 당해 전기 부품용 리드선에 구부림 형상을 적절히 유지할 수 있는 형상 유지성을 부여할 수 있다. 그 결과, 당해 전기 부품용 리드선의 구부림 작업이 보다 용이해져 작업성이 보다 향상된다.
상기 각 절연 필름의 평균 두께로서는, 모두 25㎛ 이상 200㎛ 이하가 바람직하고, 상기 각 절연 필름의 탄성률로서는, 모두 100㎫ 이상 1,400㎫ 이하가 바람직하다. 이러한 리드선에 의하면, 절연 필름의 탄성 회복력을 적절한 범위로 하고, 당해 전기 부품용 리드선의 구부림 후의 스프링 백을 적절히 작게 할 수 있다. 그 결과, 당해 전기 부품용 리드선의 구부림 작업이 보다 용이해져, 작업성이 보다 향상된다.
본 발명의 일 형태에 따른 전기 부품은 당해 전기 부품용 리드선을 구비한다. 당해 전기 부품은, 당해 전기 부품용 리드선을 구비하기 때문에, 당해 전기 부품용 리드선의 구부림, 그 형상을 유지하는 작업을 간략화할 수 있음으로써, 작업 효율을 향상할 수 있다.
당해 전기 부품은 비수 전해질 배터리라도 좋다. 이와 같이, 당해 전기 부품은, 작업 효율이 우수하기 때문에, 비수 전해질 배터리로서 적절하게 이용할 수 있다.
[본 발명의 실시 형태의 상세]
본 발명의 실시 형태에 따른 전기 부품용 리드선 및 전기 부품의 구체예에 대해 도면을 참조하여 설명한다. 또, 본 발명은 이들 예시에 한정되는 것이 아니고, 특허청구범위에 의해 나타내어지며, 특허청구범위와 균등한 의미 및 범위 내에서의 모든 변경이 포함되는 것이 의도된다.
<전기 부품용 리드선>
도 1 및 도 2에 나타내는 바와 같이, 본 발명의 실시 형태에 따른 전기 부품용 리드선(1)은 스트립 형상 도체(2)와, 이 스트립 형상 도체(2)의 양면을 피복하는 1쌍의 절연 필름(3)을 구비한다.
(스트립 형상 도체)
스트립 형상 도체(2)는 리튬 이온 배터리(4) 등의 전기 부품의 전극(양극(5A) 및 음극(5B)) 등에 접속되는 것이다. 이 스트립 형상 도체(2)는 도전성이 높은 재료에 의해 형성되어 있다. 이러한 도전성이 높은 재료로서는, 예를 들면 알루미늄, 티탄, 니켈, 구리, 알루미늄 합금, 티탄 합금, 니켈 합금, 구리 합금 등의 금속 재료나, 이들 금속 재료를 니켈, 금 등으로 도금한 재료 등을 들 수 있다. 리튬 이온 배터리(4) 등의 전기 부품의 양극(5A)에 접속되는 스트립 형상 도체(2)의 형성 재료로서는, 방전시에 용해하지 않는 것, 구체적으로는 알루미늄, 티탄, 알루미늄 합금 및 티탄 합금이 바람직하다. 한편, 음극(5B)에 접속되는 스트립 형상 도체(2)의 형성 재료로서는, 니켈, 구리, 니켈 합금, 구리 합금, 니켈 도금 구리 및 금 도금 구리가 바람직하다. 또, 스트립 형상 도체(2)는, 전해액 내성의 향상 등을 위해, 크로메이트 처리(chromate treatment), 3가 크롬 처리, 논크로메이트 처리, 조면화 처리 등의 표면 처리가 실시되어 있어도 좋다. 이러한 표면 처리에 의해, 스트립 형상 도체(2)의 전해 용액 내성을 향상할 수 있다.
스트립 형상 도체(2)의 탄성률을 Dm[㎩], 폭 1㎜당의 단면 2차 모멘트를 Im[m4/1㎜]로 한 경우에 하기 수식 (1)에서 나타내어지는 스트립 형상 도체(2)의 폭 1㎜당의 형상 유지력 H[N·㎡/1㎜]의 하한치로서는, 3.0×10-4N·㎡/1㎜가 바람직하고, 2.0×10-3N·㎡/1㎜가 보다 바람직하다. 이 형상 유지력 H의 상한치로서는, 6.0×10-2N·㎡/1㎜가 바람직하고, 1.0×10-2N·㎡/1㎜가 보다 바람직하다.
H=Dm×Im …(1)
스트립 형상 도체(2)는, 상기 형상 유지력 H가 상기 범위인 것에 의해, 구부림 형상을 보다 적절하게 유지할 수 있기 때문에, 전기 부품용 리드선(1)에 구부림 형상을 적절히 유지할 수 있는 형상 유지성을 부여할 수 있다. 그 결과, 전기 부품용 리드선(1)의 구부림, 그 형상을 유지시키는 작업이 보다 용이해져 작업성이 보다 향상된다.
여기서, 상기 수식 (1)에서의 스트립 형상 도체(2)의 폭 1㎜당의 단면 2차 모멘트와, 후술하는 수식 (2)에서의 1쌍의 절연 필름(3)의 폭 1㎜당의 단면 모멘트의 산출 방법에 대해 도 3(a)의 전기 부품용 리드선(11)을 예로 설명한다. 도 3(a)에 나타내는 전기 부품용 리드선(11)은, 1쌍의 절연 필름(13)의 평균 두께가 동일하고, 또한 평균 폭이 동일하다. 이 전기 부품용 리드선(11)의 평균 두께를 T, 스트립 형상 도체(12)의 평균 두께를 Tm[m], 1쌍의 절연 필름(13)의 각 평균 두께를 Ti[m]로 한다. 또한, 스트립 형상 도체(12)의 평균 폭을 Wm[m], 1쌍의 절연 필름(13)의 평균 폭을 Wi[m]로 한다. 또, 전기 부품용 리드선(11)을 두께 방향으로 2등분하는 면(스트립 형상 도체(12)를 두께 방향으로 2등분하는 면)을 전기 부품용 리드선(11)의 구부림 변형의 중심면 M으로 간주할 수 있다.
다음에, 스트립 형상 도체(12)의 단면 모멘트는 도 3(b)에 나타내는 단면 형상을 기초로 하기 수식 (5)에 의해 산출될 수 있다. 마찬가지로, 1쌍의 절연 필름(13)의 단면 모멘트는 도 3(c)에 나타내는 단면 형상을 기초로 하기 수식 (6)에 의해 산출될 수 있다.
스트립 형상 도체의 폭 1㎜당의 단면 2차 모멘트[m4/1㎜]=1/12×스트립 형상 도체의 평균 폭 Wm[m]×(스트립 형상 도체의 평균 두께 Tm[m])3/스트립 형상 도체의 평균 폭 Wm[㎜] …(5)
1쌍의 절연 필름의 폭 1㎜당의 단면 2차 모멘트[m4/1㎜]=1/12×1쌍의 절연 필름의 평균 폭 Wi[m]×{(전기 부품용 리드선의 평균 두께 T[m])3-(스트립 형상 도체의 평균 두께 Tm[m])3}/1쌍의 절연 필름의 평균 폭 Wi[㎜] …(6)
또, 전기 부품용 리드선(1)의 1쌍의 절연 필름(3)의 평균 두께 또는 평균 폭이 동일하지 않는 경우, 1쌍의 절연 필름(3)의 각 평균 두께 또는 각 평균 폭의 평균치를 구하고, 1쌍의 절연 필름(3)의 평균 두께 또는 평균 폭이 모두 상기 평균치라고 가정하여 상술한 계산을 행한다. 그리고, 이 계산에 의해 얻어지는 스트립 형상 도체(2) 및 1쌍의 절연 필름(3)의 폭 1㎜당의 단면 2차 모멘트를 이용하여, 상기 형상 유지력 H 및 탄성 회복력 R을 구하는 것으로 한다.
스트립 형상 도체(2)의 폭 1㎜당의 단면 모멘트의 하한치로서는, 5.0×10-15m4/1㎜가 바람직하고, 2.0×10-14m4/1㎜가 보다 바람직하다. 한편, 상기 단면 모멘트의 상한치로서는, 8.0×10-13m4/1㎜가 바람직하고, 1.0×10-13m4/1㎜가 보다 바람직하다. 상기 단면 모멘트가 상기 범위인 것으로 함으로써, 스트립 형상 도체(2)의 폭 1㎜당의 형상 유지력 H를 용이하고 또한 확실히 상기 범위로 조절할 수 있다.
스트립 형상 도체(2)의 평균 두께로서는, 30㎛ 이상 200㎛ 이하가 바람직하다. 스트립 형상 도체(2)의 평균 두께의 하한치로서는, 40㎛가 보다 바람직하고, 47㎛가 더 바람직하다. 한편, 스트립 형상 도체(2)의 평균 두께의 상한치로서는, 150㎛가 보다 바람직하고, 120㎛가 더 바람직하다. 스트립 형상 도체(2)의 평균 두께가 상기 하한 미만인 경우, 전기 부품용 리드선(1)의 전기 저항치가 증대할 우려가 있다. 반대로, 상기 평균 두께가 상기 상한을 넘는 경우, 전기 부품용 리드선(1)이 불필요하게 두꺼워져, 두께 박형화의 요구에 충분히 대응하지 못할 우려가 있다.
스트립 형상 도체(2)의 탄성률로서는, 50㎬ 이상 300㎬ 이하가 바람직하다. 스트립 형상 도체(2)의 탄성률의 하한치로서는, 60㎬가 보다 바람직하고, 67㎬가 더 바람직하다. 한편, 스트립 형상 도체(2)의 탄성률의 상한치로서는, 250㎬가 보다 바람직하고, 210㎬가 더 바람직하다. 스트립 형상 도체(2)의 탄성률이 상기 하한 미만인 경우, 전기 부품용 리드선(1)의 스프링 백을 억제하기 어려워질 우려가 있다. 반대로, 상기 탄성률이 상기 상한을 넘는 경우, 전기 부품용 리드선(1)의 구부림 작업에 힘을 필요로 함으로써 작업성이 저하될 우려가 있다. 또, 스트립 형상 도체(2)의 탄성률은, 그 재질의 변경에 의해 조절이 가능하고, 특히 스트립 형상 도체(2)를 합금으로 함으로써 합금 성분의 변경에 의해 탄성률의 미세 조절이 가능하다.
또한, 스트립 형상 도체(2)는, 평균 두께가 30㎛ 이상 200㎛ 이하이고, 또한 탄성률이 50㎬ 이상 300㎬ 이하이므로, 그 형상 유지력 H를 매우 적합한 범위로 하고, 전기 부품용 리드선(1)에 구부림 형상을 적절히 유지할 수 있는 형상 유지성을 부여할 수 있다. 그 결과, 전기 부품용 리드선(1)의 구부림시의 형상 고정 작업이 보다 용이해져 작업성이 보다 향상된다.
(1쌍의 절연 필름)
1쌍의 절연 필름(3)은, 스트립 형상 도체(2)의 양단부를 노출시킨 상태에서, 스트립 형상 도체(2)의 중앙부의 양면을 피복하는 것이고, 예를 들면 리튬 이온 배터리(4) 등의 전기 부품의 봉지체(6)에 고착되는 부분이다.
각 절연 필름(3)은 절연성이 높은 수지 재료에 의해 형성되어 있다. 이 수지 재료는 스트립 형상 도체(2)에의 접착성이 높은 수지 재료이거나, 봉지체(6)를 가열 밀봉할 때의 가열에 의해 용융되기 어려운 수지 재료가 바람직하다.
스트립 형상 도체(2)에의 접착성이 높은 수지 재료로서는, 예를 들면 열가소성 폴리올레핀 등을 들 수 있다. 이 열가소성 폴리올레핀으로서는, 예를 들면 폴리에틸렌, 산변성 폴리에틸렌(acid modified polyethylene), 폴리프로필렌, 산변성 폴리프로필렌(예를 들면 무수 말레산 변성 폴리프로필렌), 아이오노머(ionomer) 등의 반응성 수지 또는 이들의 혼합물 등을 들 수 있다.
한편, 봉지체(6)를 가열 밀봉할 때의 가열에 의해 용융되기 어려운 수지 재료로서는, 예를 들면 가교 폴리올레핀 등을 들 수 있다. 이 가교 폴리올레핀으로서는, 앞서 예시한 폴리올레핀을 가교한 것을 이용할 수 있다. 폴리올레핀을 가교하는 방법으로서는, 전자선이나 감마선 등의 전리 방사선의 조사에 의한 가교, 퍼옥사이드(peroxide) 등에 의한 화학 가교, 실란 가교(silane crosslinking) 등이 이용된다. 폴리올레핀을 전리 방사선에 의해 가교하는 경우, 필요에 따라 폴리올레핀에 가교조제(cross-linking assistant)가 첨가된다. 이 가교조제로서는, 예를 들면 트리메틸올 프로판 메타크릴레이트(trimethylol propane methacrylate), 펜타에리쓰리톨 트리아크릴레이트(pentaerythritol triacrylate), 에틸렌 글리콜 디메타크릴레이트(ethylene glycol dimethacrylate), 트리알릴 시아누레이트(triallyl cyanurate), 트리알릴 이소시아누레이트(triallyl isocyanurate) 등이 이용된다.
가교 폴리올레핀에서의 겔분율(gel fraction)로서는, 20% 이상 90% 이하가 바람직하다. 또, 겔분율은, 가교의 정도를 나타내는 지표이고, 크실렌 등의 용매에 녹지 않은 가교 폴리올레핀 중의 겔(녹지 않은 고분자 사슬)의 비율을 말한다. 겔분율이 20% 미만에서는, 가교의 정도가 불충분하고, 가열 밀봉시에 절연 필름(3)이 용융될 우려가 있다. 반대로, 겔분율이 90%를 넘으면, 가교의 정도가 너무 커서, 가교 폴리올레핀과 봉지체(6) 등의 접착성이 악화될 우려가 있다.
또한, 각 절연 필름(3)은, 단층이어도, 복수층으로 적층된 것이어도 좋다. 절연 필름(3)을 복수층으로서 구성하는 경우, 절연 필름(3)은, 스트립 형상 도체(2)에의 접착성이 높은 수지 재료에 의해 형성된 절연층과, 봉지체(6)를 가열 밀봉할 때의 가열에 의해 용융되기 어려운 수지 재료에 의해 형성된 절연층을 포함하는 것이 바람직하다. 이러한 적층 구조의 절연 필름(3)을 채용한 경우, 스트립 형상 도체(2)에의 접착성을 확보할 수 있음과 동시에, 가열 밀봉시의 용융을 방지할 수 있다.
1쌍의 절연 필름(3)의 평균 탄성률을 Di[㎩], 폭 1㎜당의 단면 2차 모멘트를 Ii[m4/1㎜]로 한 경우에 하기 수식 (2)에서 나타내어지는 1쌍의 절연 필름(3)의 폭 1㎜당의 탄성 회복력 R[N·㎡/1㎜]의 하한치로서는, 3.0×10-5N·㎡/1㎜가 바람직하고, 1.0×10-4N·㎡/1㎜가 더 바람직하다. 한편, 탄성 회복력 R의 상한치로서는, 6.0×10-3N·㎡/1㎜가 바람직하고, 1.0×10-3N·㎡/1㎜가 보다 바람직하다.
R=Di×Ii …(2)
1쌍의 절연 필름(3)의 폭 1㎜당의 탄성 회복력이 상기 범위인 것으로 함으로써, 전기 부품용 리드선(1)의 구부림 후의 스프링 백을 적절히 억제할 수 있다. 그 결과, 전기 부품용 리드선(1)을 구부리고, 그 형상을 유지시키는 작업이 보다 용이해져 작업성이 보다 향상된다. 또, 절연 필름(3)의 탄성률은, 그 재질의 변경에 의해 조절이 가능하고, 각 절연 필름(3)을 가교 수지에 의해 형성하는 경우에는 가교도의 변경에 의해서도 탄성률의 조절이 가능하다.
1쌍의 절연 필름(3)의 폭 1㎜당의 단면 모멘트의 하한치로서는, 1.0×10-13m4/1㎜가 바람직하고, 5.0×10-13m4/1㎜가 보다 바람직하다. 한편, 상기 단면 모멘트의 상한치로서는, 8.0×10-12m4/1㎜가 바람직하고, 1.0×10-12m4/1㎜가 보다 바람직하다. 상기 단면 모멘트가 상기 범위인 것으로 함으로써, 1쌍의 절연 필름(3)의 폭 1㎜당의 탄성 회복력을 용이하고 또한 확실히 상기 범위로 조절할 수 있다.
각 절연 필름(3)의 평균 두께로서는, 모두 25㎛ 이상 200㎛ 이하가 바람직하다. 상기 평균 두께의 하한치로서는, 40㎛가 보다 바람직하고, 60㎛가 더 바람직하다. 한편, 상기 평균 두께의 상한치로서는, 120㎛가 보다 바람직하고, 80㎛가 더 바람직하다. 각 절연 필름(3)의 평균 두께가 상기 하한치 미만인 경우, 절연 필름(3)의 두께가 스트립 형상 도체(2)의 두께에 대해 너무 얇아지고, 그 결과, 전기 부품용 리드선(1)을 봉지체(6)에 부착하기 위해 가열 밀봉했을 때에 스트립 형상 도체(2) 및 봉지체(6) 사이에서 쇼트될 우려가 있다. 이 쇼트의 우려는 스트립 형상 도체(2)의 에지부(폭 방향의 양단)에서 특히 현저하다. 반대로, 상기 평균 두께가 상기 상한을 넘는 경우, 전기 부품용 리드선(1)의 스프링 백을 충분히 억제할 수 없을 우려가 있다.
각 절연 필름(3)의 각각의 평균 두께 및 탄성률은 대략 동일한 것이 바람직하다. 구체적으로는, 한쪽측의 절연 필름(3)의 평균 두께에 대한 다른쪽측의 절연 필름(3)의 평균 두께의 비(한쪽측의 절연 필름(3)의 평균 두께/다른쪽측의 절연 필름(3)의 평균 두께)가 0.95 이상 1.05 이하인 것이 바람직하다. 또한, 한쪽측의 절연 필름(3)의 탄성률에 대한 다른쪽측의 절연 필름(3)의 탄성률의 비(한쪽측의 절연 필름(3)의 탄성률/다른쪽측의 절연 필름(3)의 탄성률)가 0.7 이상 1.5 이하인 것이 바람직하다.
또한, 스트립 형상 도체(2)의 평균 두께에 대한 각 절연 필름(3)의 평균 두께의 비(절연 필름의 평균 두께/스트립 형상 도체의 평균 두께)의 하한치로서는, 모두 0.2가 바람직하고, 0.3이 보다 바람직하고, 0.35가 더 바람직하다. 한편, 상기 비의 상한치로서는, 1.5가 바람직하고, 1.2가 보다 바람직하고, 1.0이 더 바람직하다. 스트립 형상 도체(2)의 평균 두께에 대한 각 절연 필름(3)의 평균 두께의 비가 모두 상기 범위인 것으로 함으로써, 스트립 형상 도체(2)의 형상 유지력에 대한 1쌍의 절연 필름(3)의 탄성 회복력의 비를 적절한 범위로 조절할 수 있고, 그 결과, 스프링 백 각도를 작게 하여, 소망하는 구부림 형상을 유지하는 것이 가능해진다.
스트립 형상 도체(2)의 폭 1㎜당의 단면 2차 모멘트에 대한 1쌍의 절연 필름(3)의 폭 1㎜당의 단면 2차 모멘트의 비(1쌍의 절연 필름의 폭 1㎜당의 단면 2차 모멘트/스트립 형상 도체의 폭 1㎜당의 단면 2차 모멘트)의 하한치로서는, 1.0이 바람직하고, 3.0이 보다 바람직하다. 한편, 상기 비의 상한치로서는, 4.0×10이 바람직하고, 2.5×10이 보다 바람직하다. 상기 비가 상기 범위인 것으로 함으로써, 스트립 형상 도체(2)의 형상 유지력에 대한 1쌍의 절연 필름(3)의 탄성 회복력의 비를 적절한 범위로 조절할 수 있고, 그 결과, 스프링 백 각도를 작게 하여, 소망으로 하는 구부림 형상을 유지하는 것이 가능해진다.
각 절연 필름(3)의 탄성률로서는, 모두 100㎫ 이상 1,400㎫ 이하가 바람직하다. 상기 탄성률의 하한치로서는, 150㎫가 보다 바람직하고, 200㎫가 더 바람직하다. 한편, 상기 탄성률의 상한치로서는, 720㎫가 보다 바람직하고, 350㎫가 더 바람직하다. 절연 필름(3)의 탄성률이 상기 범위인 것으로 함으로써, 절연 필름(3)의 탄성 회복력을 적절한 것으로 할 수 있다.
또한, 각 절연 필름(3)은, 평균 두께가 모두 25㎛ 이상 200㎛ 이하이고, 탄성률이 모두 100㎫ 이상 1,400㎫ 이하인 것으로 함으로써, 전기 부품용 리드선(1)의 구부림 후의 스프링 백 각도를 적절히 작게 할 수 있다. 그 결과, 전기 부품용 리드선(1)을 구부리고, 그 형상을 유지시키는 작업이 보다 용이해져, 작업성이 보다 향상된다.
스트립 형상 도체(2)의 탄성률에 대한 1쌍의 절연 필름(3)의 평균 탄성률의 비(1쌍의 절연 필름(3)의 평균 탄성률/스트립 형상 도체(2)의 탄성률)의 하한치로서는, 1.0×10-3이 바람직하고, 2.0×10-3이 보다 바람직하다. 한편, 상기 비의 상한치로서는, 4.0×10-2가 바람직하고, 1.5×10-2가 보다 바람직하다. 상기 비가 상기 범위인 것으로 함으로써, 스트립 형상 도체(2)의 형상 유지력에 대한 1쌍의 절연 필름(3)의 탄성 회복력의 비를 적절한 범위로 조절할 수 있고, 그 결과, 스프링 백 각도를 작게 하여, 소망으로 하는 구부림 형상을 유지하는 것이 가능해진다.
전기 부품용 리드선(1)은, 스트립 형상 도체(2)의 폭 1㎜당의 형상 유지력 H에 대한 1쌍의 절연 필름(3)의 폭 1㎜당의 탄성 회복력 R의 비가 0.15 이하이다. 상기 비의 상한치로서는, 0.10이 바람직하고, 0.05가 보다 바람직하다. 또, 상기 비의 하한치에 대해서는 특별히 제한은 없지만, 0.001이 바람직하고, 0.002가 보다 바람직하다.
전기 부품용 리드선(1)은, 180° 구부림 후의 구부림 복원 각도(스프링 백 각도)가 20° 이하인 것이 바람직하다. 이러한 전기 부품용 리드선(1)에 의하면, 180° 구부림 후의 구부림 복원 각도(스프링 백 각도)가 20° 이하인 것으로 함으로써, 구부림 형상을 보다 적절하게 유지할 수 있기 때문에, 구부림시의 형상 고정 작업이 보다 용이해져 작업성이 보다 향상된다. 또, 상기 구부림 복원 각도는, 작으면 작을수록 좋고, 12° 이하가 보다 바람직하고, 5° 이하가 더 바람직하고, 0°가 가장 바람직하다.
<전기 부품>
본 발명의 실시 형태에 따른 전기 부품은 전기 부품용 리드선(1)을 구비한다. 이 전기 부품용 리드선(1)이 사용되는 전기 부품으로서는, 예를 들면 리튬 이온 배터리 등의 비수 전해질 배터리나, 리튬 이온 캐패시터, 전기 이중층 콘덴서(Electric double-layer capacitor: EDLC) 등의 캐패시터를 들 수 있다. 물론, 전기 부품용 리드선(1)은, 리드선을 필요로 하는 전기 부품 전반에 적용 가능하고, 비수 전해질 배터리 이외의 배터리 등에 적용해도 동일한 효과를 얻을 수 있다.
이하, 전기 부품용 리드선(1)을 구비하는 비수 전해질 배터리에 대해, 리튬 이온 배터리를 예로 하여 도면을 참조하면서 설명한다.
(리튬 이온 배터리)
도 1 및 도 2에 나타내는 리튬 이온 배터리(4)는 봉지체(6)의 내부에 비수 전해액을 유지한 배터리 소자를 봉입한 것이다. 배터리 소자는 양극(5A)과 음극(5B) 사이에 세퍼레이터(separator)(도시 생략)를 개재시킨 상태에서 비수 전해액을 유지한 것이다. 비수 전해액으로서는, 예를 들면 프로필렌 카보네이트,γ-부티로락톤(γ-butyrolactone) 등의 유기 용매에 리튬 화합물(LiClO4, LiBF4 등)을 용해한 것이 이용된다.
전기 부품용 리드선(1)은 절연 필름(3)에서 봉지체(6)에 고정되어 있다. 전기 부품용 리드선(1)은, 스트립 형상 도체(2)의 한쪽의 단부(2A) 및 다른쪽의 단부(2B)가 절연 필름(3)으로부터 노출되고, 이 스트립 형상 도체(2)의 노출된 한쪽의 단부(2A)가 배터리 소자의 양극(5A) 또는 음극(5B)에 도통 접속되어 있음과 아울러, 스트립 형상 도체(2)의 노출된 다른쪽의 단부(2B)가 봉지체(6)로부터 돌출되어 있다.
이러한 리튬 이온 배터리(4)는, 전기 부품용 리드선(1)을 구비하기 때문에, 전기 부품용 리드선(1)을 구부리고, 그 형상을 유지하기 위한 작업을 간략화할 수 있음으로써, 작업 효율을 향상할 수 있다.
또, 전기 부품용 리드선(1)을 리튬 이온 배터리(4) 이외의 전기 부품에 적용한 경우이더라도, 구부림 형상을 유지하기 위한 작업을 간략화할 수 있음으로써, 작업 효율을 향상할 수 있다.
(실시예)
다음에, 실험예에 의해 본 발명을 구체적으로 설명하지만, 본 발명은 하기 실험예에 의해 제한받는 것이 아니고, 본 발명의 취지에 적합한 범위에서 적당히 변경을 가해 실시하는 것도 가능하며, 그들은 모두 본 발명의 기술적 범위에 포함된다.
본 실험예에서는, 리드선의 스프링 백 각도를 평가하였다.
<리드선>
리드선은, 스트립 형상 도체의 양단부가 노출되도록, 스트립 형상 도체의 중앙부를 1쌍의 절연 필름에 의해 피복함으로써 형성하였다. 도 4(a) 및 도 4(b)에 나타내는 바와 같이, 스트립 형상 도체(7)로서는, 길이 Lm이 80㎜, 폭 Wm이 5㎜이고, 탄성률 및 평균 두께 Tm이 하기 표 1에 나타내는 값인 것을 이용하였다. 절연 필름(8)으로서는, 모두 길이 Li가 6㎜, 폭 Wi가 7㎜이고, 탄성률 및 평균 두께 Ti가 하기 표 1에 나타내는 값인 것을 이용하였다. 또, 2매의 절연 필름(8)은 동일한 것을 이용하였다. 또한, 스트립 형상 도체(7)와 1쌍의 절연 필름(8)의 합계 평균 두께를 리드선의 평균 두께 T로 하였다.
<단면 2차 모멘트>
스트립 형상 도체(7)의 폭 1㎜당의 단면 2차 모멘트[m4/1㎜]는 1/12×Wm[m]×(Tm[m])3/Wm[㎜]에 각 수치를 대입하여 구했다. 1쌍의 절연 필름(8)의 단면 2차 모멘트[m4/1㎜]는 1/12×Wi[m]×{(T[m])3-(Tm[m])3}/Wi[㎜]에 각 수치를 대입하여 구했다.
<스프링 백 각도의 평가>
스프링 백 각도는 이하와 같이 평가하였다. 우선 도 5(a)에 나타내는 바와 같이, 리드선의 한쪽측의 절연 필름(8)의 길이 방향 중앙 부근에 두께 0.5㎜의 판재 X의 단면을 맞닿게 하고, 판재 X를 샌드위치하도록 리드선을 천천히 180° 구부린 후, 다른쪽의 절연 필름(8) 상에 질량 200g의 추를 설치함으로써 부하 F를 작용시키고, 이 상태를 10초간 유지하였다. 다음에, 도 5(b)에 나타내는 바와 같이 부하를 제거하고 5초 이상 방치했을 때의 스프링 백 각도 θ[deg](리드선이 이루는 각도)를 측정함으로써 평가하였다. 스프링 백 각도의 측정 결과는 하기 표 1에 나타냈다. 또한, 스프링 백 각도 θ와, 스트립 형상 도체의 폭 1㎜당의 형상 유지력 H에 대한 1쌍의 절연 필름의 폭 1㎜당의 탄성 회복력 R의 비(R/H)의 관계를 도 6에 나타냈다. 또, 리드선의 탄성 회복력 R 및 형상 유지력 H는 각각 상기 수식 (1) 및 (2)에 근거하여 산출하였다.
Figure pct00001
표 1 및 도 6에 나타내는 바와 같이, 스트립 형상 도체의 평균 두께 T1을 변화시키고, 다른 조건을 동일하게 한 그룹 A(제조예 1~4), 그룹 B(제조예 5~8), 및 그룹 C(제조예 9~12)에서는, 어느 그룹에서도, 스트립 형상 도체의 평균 두께 T1의 증대, 즉 탄성 회복력 R의 형상 유지력 H에 대한 비(R/H)의 저감에 따라 스프링 백 각도 θ도 작아졌다. 또한, 그룹 A~C 상호간에는 절연 필름의 두께 T2가 상이한 것이지만, 이들 그룹 A~C를 비교한 경우, 절연 필름의 두께 T2의 증대, 즉 탄성 회복력 R의 형상 유지력 H에 대한 비(R/H)의 증대에 따라 스프링 백 각도 θ도 커졌다. 이들 결과로부터, 리드선의 스트립 형상 도체의 평균 두께 및 절연 필름의 평균 두께를 조절하여, 탄성 회복력 R의 형상 유지력 H에 대한 비(R/H)를 0.15 이하로 함으로써 스프링 백 각도 20° 이하라는 양호한 구부림 복원 형상의 유지가 가능해진다고 판단된다.
절연 필름의 탄성률을 변화시키고, 다른 조건을 동일하게 한 그룹 D(제조예 13~14) 및 그룹 E(제조예 15~16)에서는, 그룹 D 및 E의 모두, 절연 필름의 탄성률의 증대, 즉 탄성 회복력 R의 형상 유지력 H에 대한 비(R/H)의 증대에 따라 스프링 백 각도 θ도 커졌다. 이 결과로부터, 리드선의 절연 필름의 탄성률을 조절하여, 탄성 회복력 R의 형상 유지력 H에 대한 비(R/H)를 0.15 이하로 함으로써 스프링 백 각도 20° 이하라는 양호한 구부림 복원 형상의 유지가 가능해진다고 판단된다.
스트립 형상 도체 및 절연 필름의 두께를 일정하게 하고, 탄성률을 변화시킨 그룹 F(제조예 17~20)에서는, 스트립 형상 도체의 탄성률의 증대, 절연 필름의 탄성률의 저감 또는 이들 조합에 의해 탄성 회복력 R의 형상 유지력 H에 대한 비(R/H)를 저감하면, 이에 따라 스프링 백 각도 θ가 감소하였다. 이 결과로부터, 리드선의 절연 필름의 탄성률을 조절하여, 탄성 회복력 R의 형상 유지력 H에 대한 비(R/H)를 0.15 이하로 함으로써 스프링 백 각도 20° 이하라는 양호한 구부림 복원 형상의 유지가 가능해진다고 판단된다.
또한, 도 6에 나타내는 바와 같이, 탄성 회복력 R의 형상 유지력 H에 대한 비(R/H)와 스프링 백 각도는 높은 상관성을 나타내고, 특히 상기 비(R/H)가 작은(예를 들면 0.2 이하) 제조예에서는 보다 높은 상관성을 나타냈다. 그 때문에, 스프링 백 각도를 저감함에 있어서는, 상기 비(R/H)를 조절하는 것이 매우 유효하다는 것을 확인할 수 있다.
1, 11: 전기 부품용 리드선
2, 7, 12: 스트립 형상 도체
2A: 한쪽의 단부
2B: 다른쪽의 단부
3, 8, 13: 절연 필름
4: 리튬 이온 배터리
5A: 양극
5B: 음극
6: 봉지체
M: 구부림 변형의 중심면

Claims (8)

  1. 스트립 형상 도체(strip-shaped conductor)와, 이 스트립 형상 도체의 양면을 피복하는 1쌍의 절연 필름을 구비하는 전기 부품용 리드선으로서,
    상기 스트립 형상 도체의 탄성률을 Dm[㎩], 폭 1㎜당의 단면 2차 모멘트를 Im[m4/1㎜]로 하고, 또한 상기 1쌍의 절연 필름의 평균 탄성률을 Di[㎩], 폭 1㎜당의 단면 2차 모멘트를 Ii[m4/1㎜]로 한 경우에, 하기 수식 (1)에서 나타내어지는 스트립 형상 도체의 폭 1㎜당의 형상 유지력 H[N·㎡/1㎜]에 대한 하기 수식 (2)에서 나타내어지는 절연 필름의 폭 1㎜당의 탄성 회복력 R[N·㎡/1㎜]의 비(R/H)가 0.15 이하인
    전기 부품용 리드선.
    H=Dm×Im …(1)
    R=Di×Ii …(2)
  2. 제 1 항에 있어서,
    180° 구부림 후의 구부림 복원 각도가 20° 이하인
    전기 부품용 리드선.

  3. 제 1 항 또는 제 2 항에 있어서,
    상기 탄성 회복력 R은 3.0×10-5N·㎡/1㎜ 이상 6.0×10-3N·㎡/1㎜ 이하인
    전기 부품용 리드선.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 형상 유지력 H는 3.0×10-4N·㎡/1㎜ 이상 6.0×10-2N·㎡/1㎜ 이하인
    전기 부품용 리드선.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 스트립 형상 도체의 평균 두께는 30㎛ 이상 200㎛ 이하이고,
    상기 스트립 형상 도체의 탄성률은 50㎬ 이상 300㎬ 이하인
    전기 부품용 리드선.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 각 절연 필름의 평균 두께는 모두 25㎛ 이상 200㎛ 이하이고,
    상기 각 절연 필름의 탄성률은 모두 100㎫ 이상 1,400㎫ 이하인
    전기 부품용 리드선.
  7. 청구항 1에 기재된 전기 부품용 리드선을 구비하는 전기 부품.
  8. 제 7 항에 있어서,
    비수 전해질 배터리인
    전기 부품.
KR1020187007165A 2016-07-21 2017-07-07 전기 부품용 리드선 및 전기 부품 KR102121675B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2016-143806 2016-07-21
JP2016143806A JP6705322B2 (ja) 2016-07-21 2016-07-21 電気部品用リード線及び電気部品
PCT/JP2017/024915 WO2018016347A1 (ja) 2016-07-21 2017-07-07 電気部品用リード線及び電気部品

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020207015918A Division KR102229067B1 (ko) 2016-07-21 2017-07-07 전기 부품용 리드선 및 전기 부품

Publications (2)

Publication Number Publication Date
KR20180040652A true KR20180040652A (ko) 2018-04-20
KR102121675B1 KR102121675B1 (ko) 2020-06-10

Family

ID=60992997

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020227001887A KR102469860B1 (ko) 2016-07-21 2017-07-07 전기 부품용 리드선 및 전기 부품
KR1020207015918A KR102229067B1 (ko) 2016-07-21 2017-07-07 전기 부품용 리드선 및 전기 부품
KR1020187007165A KR102121675B1 (ko) 2016-07-21 2017-07-07 전기 부품용 리드선 및 전기 부품
KR1020217006690A KR102362932B1 (ko) 2016-07-21 2017-07-07 전기 부품용 리드선 및 전기 부품

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020227001887A KR102469860B1 (ko) 2016-07-21 2017-07-07 전기 부품용 리드선 및 전기 부품
KR1020207015918A KR102229067B1 (ko) 2016-07-21 2017-07-07 전기 부품용 리드선 및 전기 부품

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020217006690A KR102362932B1 (ko) 2016-07-21 2017-07-07 전기 부품용 리드선 및 전기 부품

Country Status (4)

Country Link
JP (1) JP6705322B2 (ko)
KR (4) KR102469860B1 (ko)
CN (4) CN112310572A (ko)
WO (1) WO2018016347A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119586A1 (ja) * 2021-12-23 2023-06-29 住友電気工業株式会社 非水電解質電池用リード線、絶縁膜及び非水電解質電池
US11973197B2 (en) * 2021-12-27 2024-04-30 Sumitomo Electric Industries, Ltd. Lead wire for nonaqueous electrolyte battery, insulating film and nonaqueous electrolyte battery
WO2023153301A1 (ja) * 2022-02-08 2023-08-17 住友電気工業株式会社 非水電解質電池用リード線、絶縁膜及び非水電解質電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102016A (ja) 1999-07-27 2001-04-13 Sumitomo Electric Ind Ltd 非水電解質電池用リード線
KR20050058991A (ko) * 2002-08-29 2005-06-17 가부시키가이샤 네오맥스 마테리아르 알루미늄/니켈 클래드재와 그 제조방법 및 전지용 외부단자
KR20060084430A (ko) * 2003-09-05 2006-07-24 히다치 가세고교 가부시끼가이샤 비수전해액 이차전지용 음극재, 그 제조방법, 상기음극재를 이용한 비수전해액 이차전지용 음극 및비수전해액 이차전지
KR20080064590A (ko) * 2007-01-05 2008-07-09 삼성에스디아이 주식회사 리튬 전지용 애노드 및 이를 채용한 리튬 전지
JP2009259739A (ja) 2008-04-21 2009-11-05 Sumitomo Electric Ind Ltd 電気部品、非水電解質電池、並びに、それらに用いられるリード線及び封入容器
KR20150022213A (ko) * 2013-08-22 2015-03-04 삼성에스디아이 주식회사 파우치형 이차 전지

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2999657B2 (ja) * 1993-09-06 2000-01-17 松下電器産業株式会社 半導体装置の製造方法
JPH09143595A (ja) * 1995-11-24 1997-06-03 Sumitomo Electric Ind Ltd 端子用金属材料
ATE219296T1 (de) * 1997-03-19 2002-06-15 Asahi Chemical Ind Nichtwässrige dünne batterie
JP2001256960A (ja) * 2000-03-10 2001-09-21 Mitsubishi Chemicals Corp 電 池
JP2002203534A (ja) * 2000-12-27 2002-07-19 Toshiba Electronic Engineering Corp 薄型二次電池および電池パック
JP2004063133A (ja) * 2002-07-25 2004-02-26 Toshiba Corp 薄型二次電池
KR20040054128A (ko) * 2002-12-17 2004-06-25 삼성에스디아이 주식회사 파우치형 리튬 이차 전지
JP2004263032A (ja) * 2003-02-28 2004-09-24 Tsutsunaka Plast Ind Co Ltd 絶縁材料用樹脂フィルム
KR100959090B1 (ko) * 2007-12-18 2010-05-20 주식회사 엘지화학 안전성이 개선된 파우치형 이차전지
JP5402547B2 (ja) * 2009-11-11 2014-01-29 住友電気工業株式会社 リード部材、リード部材付蓄電デバイス及びリード部材の製造方法
WO2012032720A1 (ja) * 2010-09-10 2012-03-15 パナソニック株式会社 電子部品及び電子部品用リード線
JP5611251B2 (ja) * 2012-01-27 2014-10-22 トヨタ自動車株式会社 密閉型二次電池
US9017861B2 (en) * 2012-03-15 2015-04-28 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
JP2014220176A (ja) * 2013-05-10 2014-11-20 住友電気工業株式会社 リード部材、非水電解質蓄電デバイス
WO2014203965A1 (ja) * 2013-06-21 2014-12-24 東京応化工業株式会社 非水二次電池及びその製造方法
JP5804037B2 (ja) * 2013-12-13 2015-11-04 株式会社豊田自動織機 電流遮断装置を備えた蓄電装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102016A (ja) 1999-07-27 2001-04-13 Sumitomo Electric Ind Ltd 非水電解質電池用リード線
KR20050058991A (ko) * 2002-08-29 2005-06-17 가부시키가이샤 네오맥스 마테리아르 알루미늄/니켈 클래드재와 그 제조방법 및 전지용 외부단자
KR20060084430A (ko) * 2003-09-05 2006-07-24 히다치 가세고교 가부시끼가이샤 비수전해액 이차전지용 음극재, 그 제조방법, 상기음극재를 이용한 비수전해액 이차전지용 음극 및비수전해액 이차전지
KR20080064590A (ko) * 2007-01-05 2008-07-09 삼성에스디아이 주식회사 리튬 전지용 애노드 및 이를 채용한 리튬 전지
JP2009259739A (ja) 2008-04-21 2009-11-05 Sumitomo Electric Ind Ltd 電気部品、非水電解質電池、並びに、それらに用いられるリード線及び封入容器
KR20150022213A (ko) * 2013-08-22 2015-03-04 삼성에스디아이 주식회사 파우치형 이차 전지

Also Published As

Publication number Publication date
WO2018016347A1 (ja) 2018-01-25
KR102362932B1 (ko) 2022-02-14
KR20210028743A (ko) 2021-03-12
JP2018014272A (ja) 2018-01-25
CN108028329B (zh) 2020-11-24
CN108028329A (zh) 2018-05-11
CN112310571B (zh) 2022-11-15
JP6705322B2 (ja) 2020-06-03
CN112310572A (zh) 2021-02-02
KR102229067B1 (ko) 2021-03-16
KR20220013587A (ko) 2022-02-04
CN112310573B (zh) 2023-01-03
KR102469860B1 (ko) 2022-11-23
CN112310571A (zh) 2021-02-02
KR102121675B1 (ko) 2020-06-10
KR20200067925A (ko) 2020-06-12
CN112310573A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
KR20180040652A (ko) 전기 부품용 리드선 및 전기 부품
DE102013102018A1 (de) Anschlusszunge und verfahren zur herstellung derselben
KR102275332B1 (ko) 이차 전지
KR20170109070A (ko) Ptc 디바이스를 갖는 2차 전지
US20120214060A1 (en) Lead member
KR101483422B1 (ko) 레이저 조사에 의한 전극단자의 표면처리 방법
KR20210152969A (ko) 파우치 필름 적층체, 파우치 형 전지 케이스 및 파우치 형 이차 전지
JP6992840B2 (ja) 電気部品用リード線及び電気部品
JP7211473B2 (ja) 電気部品用リード線及び電気部品
JP6511271B2 (ja) 基板ユニットおよび電気化学セルユニット
JP6136069B2 (ja) リード導体、及び電力貯蔵デバイス
US20140038013A1 (en) Method for manufacturing a connecting contact for an electrode of an electrochemical store, method for manufacturing an electrochemical store, and electrochemical store
JP2013020878A (ja) リード部材とその製造方法
JP7354349B1 (ja) 導体
KR20180003439U (ko) 리드 부재
WO2023223971A1 (ja) 非水電解質電池用タブリード
JP7354345B1 (ja) 非水電解質電池用タブリード
WO2023223970A1 (ja) 非水電解質電池用タブリード
US10784489B2 (en) Electrode assembly
KR20190024452A (ko) 플렉서블 전지용 금속탭
KR20090084178A (ko) 파우치형 리튬 이차전지
JP2015170576A (ja) 基板ユニットおよび電気化学セルユニット

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant