KR20180015761A - 무선 통신 기지국 장치 및 제어 채널 배치 방법 - Google Patents

무선 통신 기지국 장치 및 제어 채널 배치 방법 Download PDF

Info

Publication number
KR20180015761A
KR20180015761A KR1020187003212A KR20187003212A KR20180015761A KR 20180015761 A KR20180015761 A KR 20180015761A KR 1020187003212 A KR1020187003212 A KR 1020187003212A KR 20187003212 A KR20187003212 A KR 20187003212A KR 20180015761 A KR20180015761 A KR 20180015761A
Authority
KR
South Korea
Prior art keywords
downlink
response signal
code
cce
mobile station
Prior art date
Application number
KR1020187003212A
Other languages
English (en)
Other versions
KR102200354B1 (ko
Inventor
마사루 후쿠오카
아키히코 니시오
세이고 나카오
에들러 본 엘브바트 알렉산더 골리트세크
Original Assignee
옵티스 와이어리스 테크놀로지, 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39875343&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20180015761(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 옵티스 와이어리스 테크놀로지, 엘엘씨 filed Critical 옵티스 와이어리스 테크놀로지, 엘엘씨
Publication of KR20180015761A publication Critical patent/KR20180015761A/ko
Application granted granted Critical
Publication of KR102200354B1 publication Critical patent/KR102200354B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/12Frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

하향 회선 제어 채널의 주파수 다이버시티 효과를 최대한으로 얻을 수 있는 무선 통신 기지국 장치. 이 장치에 있어서, RB 할당부(101)는, 주파수 스케줄링에 의해 각 무선 통신 이동국 장치에 대해서, 주파수축 상에서 연속된 상향 회선 리소스 블록을 할당하고, 어느 상향 회선 리소스 블록을 어느 무선 통신 이동국 장치에 할당했는지를 나타내는 할당 정보를 생성하고, 배치부(109)는, 그 할당 정보에 기초하여, 그 연속된 상향 회선 리소스 블록에 대응화되어 주파수축 상에 분산 배치된 하향 회선 제어 채널에 무선 통신 이동국 장치로의 응답 신호를 배치한다.

Description

무선 통신 기지국 장치 및 제어 채널 배치 방법{RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD}
본 발명은 무선 통신 기지국 장치 및 제어 채널 배치 방법에 관한 것이다.
이동체 통신에서는, 상향 회선으로 무선 통신 이동국 장치(이하, 이동국이라고 약칭함)로부터 무선 통신 기지국 장치(이하, 기지국이라고 함)에 전송되는 상향 회선 데이터에 대해서 ARQ(Automatic Repeat Request)가 적용되어, 상향 회선 데이터의 오류 검출 결과를 나타내는 응답 신호가 하향 회선으로 이동국에 피드백된다. 기지국은 상향 회선 데이터에 대해 CRC(Cyclic Redundancy Check)를 행하여, CRC=OK(오류 없음)이면 ACK(Acknowledgment) 신호를, CRC=NG(오류 있음)이면 NACK (Negative Acknowledgment) 신호를 응답 신호로서 이동국에 피드백한다.
하향 회선의 통신 리소스를 효율적으로 사용하기 위해, 상향 회선 데이터를 전송하기 위한 상향 회선 리소스 블록(Resource Block;RB)과, 하향 회선으로 응답 신호를 전송하기 위한 하향 회선 제어 채널을 대응시키는 ARQ에 대해서 최근 검토되고 있다(예를 들면, 비특허 문헌 1 참조). 이에 의해, 이동국이 기지국으로부터 통지받는 RB의 할당 정보에 따라, 제어 채널의 할당 정보를 별도 통지받지 않아도, 자국으로의 응답 신호가 전송되는 제어 채널을 판단할 수 있다.
또, 응답 신호의 인접 셀간 또는 인접 섹터간에 있어서의 간섭을 평균화함과 동시에, 응답 신호에 주파수 다이버시티 게인을 얻기 위해, 응답 신호를 확산하고, 그 확산한 응답 신호를 다시 리피티션하는 ARQ에 대해서도 최근 검토되고 있다(예를 들면, 비특허 문헌 2 참조).
비특허 문헌 1: 3GPP RAN WG1 Meeting document, R1-070932, "Assignment of Downlink ACK/NACK Channel", Panasonic, February 2007
비특허 문헌 2: 3GPP RAN WG1 Meeting document, R1-070734, "ACK/NACK Channel Transmission in E-UTRA Downlink", TI, February 2007
발명의 개시
발명이 해결하고자 하는 과제
최근 검토되고 있는 상기 2개의 ARQ를 조합해서 이용하는 것이 생각된다. 이하, 하향 회선 제어 채널에 대한 응답 신호의 구체적인 배치예에 대해서 설명한다. 이하의 설명에서는, 도 1에 나타내는 상향 회선 RB#1~RB#8 중 어느 하나를 이용하여 이동국으로부터 송신된 상향 회선 데이터를 기지국이 수신하고, 기지국은, 도 2에 나타내는 서브캐리어 f1~f4, 서브캐리어 f9~f12, 서브캐리어 f17~f20, 및 서브캐리어 f25~f28의 4개의 주파수대에 배치되어 있는 하향 회선 제어 채널 CH#1~CH#8에 상향 회선 데이터에 대한 응답 신호(ACK 신호 또는 NACK 신호)를 배치하여 이동국에 송신하는 것으로 한다. 또, 기지국은, 응답 신호를 확산율(Spreading Factor;SF) SF=4의 확산 부호로 확산하고, 다시 확산 후의 응답 신호에 대해서 리피티션 팩터(Repetition Factor;RF) RF=2의 리피티션을 행한다. 따라서, 도 2에 나타내는 것처럼, 하향 회선 제어 채널 CH#1~CH#4가 서브캐리어 f1~f4 및 서브캐리어 f17~f20의 동일 주파수대에 로컬라이즈드(Localized) 배치되고, 하향 회선 제어 채널 CH#5~CH#8이 서브캐리어 f9~f12 및 서브캐리어 f25~f28의 동일 주파수대에 로컬라이즈드 배치된다.
또, 도 3에 나타내는 바와 같이, 도 1에 나타내는 상향 회선 RB와 도 2에 나타내는 하향 회선 제어 채널과는 1대1로 대응화되어 있다. 따라서, 도 1에 나타내는 RB#1을 이용하여 송신된 상향 회선 데이터에 대한 응답 신호는, 도 3에 나타내는 바와 같이 하향 회선 제어 채널 CH#1, 즉, 도 2에 나타내는 서브캐리어 f1~f4 및 서브캐리어 f17~f20에 배치된다. 마찬가지로, 도 1에 나타내는 RB#2를 이용하여 송신된 상향 회선 데이터에 대한 응답 신호는, 도 3에 나타내는 바와 같이 하향 회선 제어 채널 CH#2, 즉, 도 2에 나타내는 서브캐리어 f1~f4 및 서브캐리어 f17~f20에 배치된다. RB#3~RB#8에 대해서도 마찬가지이다.
또, 주파수축 상에서 연속된 복수의 RB로 부호화 블록이 구성되어, 1부호화 블록 단위로 RB 할당이 행해지는 경우에는, 기지국은, 1부호화 블록에 포함되는 복수의 상향 회선 RB에 각각 대응화된 복수의 하향 회선 제어 채널에 응답 신호를 배치하여 이동국에 송신한다. 예를 들면, 도 1에 나타내는 상향 회선 RB#1~RB#8 중, RB#1, RB#2 및 RB#3의 3개의 연속된 상향 회선 RB로 1부호화 블록이 구성되는 경우에는, 기지국은, 도 2에 있어서, 서브캐리어 f1~f4 및 서브캐리어 f17~f20의 동일 주파수대에 로컬라이즈드 배치된 하향 회선 제어 채널 CH#1, CH#2 및 CH#3에 확산 후의 응답 신호를 부호 다중해서 배치한다.
이와 같이, 하향 회선 제어 채널 CH#1~CH#8은 16개의 서브캐리어 f1~f4, f9~f12, f17~f20, f25~f28에 걸쳐서 배치되어 있지만, 상기의 예에서는, 응답 신호는 서브캐리어 f1~f4 및 서브캐리어 f17~f20의 8개 서브캐리어 밖에 배치되지 않는다. 즉, 상기의 예에서는, 응답 신호는, 하향 회선 제어 채널이 배치되어 있는 전체 서브캐리어 중에서, 절반수의 서브캐리어 밖에 배치되지 않게 된다.
이와 같이 한정된 주파수 영역에 배치된 하향 회선 제어 채널이 이용되는 경우, 하향 회선 제어 채널의 배치 위치에 따라서는, 약간의 주파수 다이버시티 효과 밖에 얻지 못하는 경우가 있다.
본 발명의 목적은, 하향 회선 제어 채널의 주파수 다이버시티 효과를 최대한으로 얻을 수 있는 기지국 및 제어 채널 배치 방법을 제공하는 것이다.
과제를 해결하기 위한 수단
본 발명의 기지국은, 연속된 복수의 RB, 또는, 연속된 복수의 CCE로 구성되는 제 1 제어 채널을 이동국에 할당하는 할당 수단과, 상기 복수의 RB 또는 상기 복수의 CCE에 각각 대응화되어 주파수축 상에 분산 배치된 복수의 제 2 제어 채널에 상기 이동국으로의 제어 신호를 배치하는 배치 수단을 구비하는 구성을 취한다.
발명의 효과
본 발명에 의하면, 하향 회선 제어 채널의 주파수 다이버시티 효과를 최대한으로 얻을 수 있다.
도 1은 상향 회선 RB배치예,
도 2는 하향 회선 제어 채널 배치예,
도 3은 상향 회선 RB와 하향 회선 제어 채널의 대응을 나타내는 도면,
도 4는 본 발명의 실시형태 1에 따른 기지국의 구성을 나타내는 블록도,
도 5는 본 발명의 실시형태 1에 따른 이동국의 구성을 나타내는 블록도,
도 6은 본 발명의 실시형태 1에 따른 하향 회선 제어 채널 배치를 나타내는 도면,
도 7은 본 발명의 실시형태 2에 따른 하향 회선 제어 채널 배치를 나타내는 도면,
도 8은 본 발명의 실시형태 3에 따른 셀 2에 있어서의 하향 회선 제어 채널 배치를 나타내는 도면,
도 9는 본 발명의 실시형태 4에 따른 SCCH와 하향 회선 CCE의 대응을 나타내는 도면,
도 10은 본 발명의 실시형태 4에 따른 하향 회선 CCE 배치예,
도 11은 본 발명의 실시형태 4에 따른 하향 회선 CCE와 하향 회선 제어 채널의 대응을 나타내는 도면,
도 12는 본 발명의 실시형태 4에 따른 기지국의 구성을 나타내는 블록도,
도 13은 본 발명의 실시형태 4에 따른 이동국의 구성을 나타내는 블록도,
도 14는 본 발명의 실시형태 4에 따른 SCCH와 하향 회선 CCE의 대응을 나타내는 도면(베리에이션),
도 15는 본 발명의 실시형태 4에 따른 하향 회선 제어 채널 배치를 나타내는 도면,
도 16은 본 발명의 실시형태 5에 따른 각 다중 OFDM수에서 사용되는 하향 회선 CCE를 나타내는 도면,
도 17은 본 발명의 실시형태 5에 따른 기지국의 구성을 나타내는 블록도,
도 18(a)는 본 발명의 실시형태 5에 따른 물리 리소스를 나타내는 도면(다중 OFDM수:1),
도 18(b)는 본 발명의 실시형태 5에 따른 물리 리소스를 나타내는 도면(다중 OFDM수:2),
도 19는 본 발명의 실시형태 5에 따른 이동국의 구성을 나타내는 블록도,
도 20은 본 발명의 실시형태 5에 따른 하향 회선 제어 채널 배치를 나타내는 도면,
도 21은 그 외의 하향 회선 제어 채널 배치를 나타내는 도면(예 1),
도 22는 그 외의 하향 회선 제어 채널 배치를 나타내는 도면(예 2).
[실시예]
이하, 본 발명의 실시형태에 대해서, 첨부 도면을 참조하여 상세히 설명한다. 본 발명의 실시형태에 따른 기지국은, OFDM 방식에 의해 응답 신호를 송신한다. 또, 본 발명의 실시형태에 따른 이동국은, DFTs-FDMA(Discrete Fourier Transform spread Frequency Division Multiple Access)에 의해 상향 회선 데이터를 송신한다. DFTs-FDMA에 의해 상향 회선 데이터가 송신되는 경우, 상기와 같이, 주파수축 상(주파수 영역)에서 연속된 복수의 RB로 부호화 블록이 구성되고, 기지국은 1부호화 블록 단위로 각 이동국에 대한 RB 할당을 행한다.
(실시형태 1)
본 실시형태에 따른 기지국(100)의 구성을 도 4에 나타내고, 본 실시형태에 따른 이동국(200)의 구성을 도 5에 나타낸다.
또한, 설명이 번잡하게 되는 것을 피하기 위해, 도 4에서는, 본 발명과 밀접하게 관련된 상향 회선 데이터의 수신 및, 그 상향 회선 데이터에 대한 응답 신호의 하향 회선에서의 송신과 관계되는 구성부를 나타내고, 하향 회선 데이터의 송신과 관계되는 구성부의 도면 표시 및 설명을 생략한다. 마찬가지로, 도 5에서는, 본 발명과 밀접하게 관련된 상향 회선 데이터의 송신, 및, 그 상향 회선 데이터에 대한 응답 신호의 하향 회선에서의 수신과 관계되는 구성부를 나타내고, 하향 회선 데이터의 수신과 관계되는 구성부의 도면 표시 및 설명을 생략한다.
도 4에 나타내는 기지국(100)에 있어서, RB 할당부(101)는, 주파수 스케줄링에 의해 각 이동국에 대해서 상향 회선 RB를 할당하고, 어느 상향 회선 RB를 어느 이동국에 할당했는지를 나타내는 RB 할당 정보(즉, RB 할당 결과를 나타내는 할당 정보)를 생성해 부호화부(102) 및 배치부(109)에 출력한다. 또, RB 할당부(101)는, 1부호화 블록에 포함되는 연속된 복수의 RB를 1단위로서 RB 할당을 행한다. 또한, RB는 코히런트 대역폭 정도로 인접하는 서브캐리어를 몇 개 모아서 블록화한 것이다.
부호화부(102)는 RB 할당 정보를 부호화하여 변조부(103)에 출력한다.
변조부(103)는 부호화 후의 RB 할당 정보를 변조해 RB 할당 정보 심볼을 생성하여, S/P부(직렬/병렬 변환부)(104)에 출력한다.
S/P부(104)는 변조부(103)로부터 직렬로 입력되는 RB 할당 정보 심볼을 병렬로 변환해서 배치부(109)에 출력한다.
변조부(105)는 CRC부(117)로부터 입력되는 응답 신호를 변조해 확산부(106)에 출력한다.
확산부(106)는 변조부(105)로부터 입력되는 응답 신호를 확산하고, 확산 후의 응답 신호를 리피티션부(107)에 출력한다.
리피티션부(107)는 확산부(106)로부터 입력되는 응답 신호를 복제(리피티션)하여, 동일한 응답 신호를 포함한 복수의 응답 신호를 S/P부(108)에 출력한다.
S/P부(108)는 리피티션부(107)로부터 직렬로 입력되는 응답 신호를 병렬로 변환하여 배치부(109)에 출력한다.
배치부(109)는, RB 할당 정보 심볼 및 응답 신호를, OFDM 심볼을 구성하는 복수의 서브캐리어 중 어느 하나에 배치하여 IFFT(Inverse Fast Fourier Transform)부(110)에 출력한다. 여기서, 배치부(109)는, RB 할당부(101)로부터 입력되는 RB 할당 정보에 기초하여, 상향 회선 RB에 대응화되어 주파수축 상에 배치된 하향 회선 제어 채널에 응답 신호를 배치한다. 예를 들면, RB 할당부(101)로부터 상기 도 1에 나타내는 RB#1~RB#3이 이동국(200)으로의 RB 할당 정보로서 입력된 경우, 배치부(109)는, 도 3에 나타내는 바와 같이, RB#1~RB#3을 이용해서 이동국(200)으로부터 송신된 상향 회선 데이터에 대한 응답 신호를 하향 회선 제어 채널 CH#1~CH#3에 배치한다. 배치부(109)에 있어서의 배치 처리의 상세한 것에 대해서는 후술한다.
IFFT부(110)는, 복수의 서브캐리어 중 어느 하나에 배치된 RB 할당 정보 심볼 및 응답 신호에 대해서 IFFT를 행해서 OFDM 심볼을 생성하여, CP(Cyclic Prefix) 부가부(111)에 출력한다.
CP 부가부(111)는 OFDM 심볼의 후미 부분과 동일한 신호를 CP로서 OFDM 심볼의 선두에 부가한다.
무선 송신부(112)는 CP 부가 후의 OFDM 심볼에 대해 D/A 변환, 증폭 및 업 컨버트 등의 송신 처리를 행하여 안테나(113)로부터 이동국(200)에 송신한다.
한편, 무선 수신부(114)는 이동국(200)으로부터 송신된 상향 회선 데이터를 안테나(113)를 경유해서 수신하고, 이 상향 회선 데이터에 대해 다운 컨버트, A/D 변환 등의 수신 처리를 행한다.
복조부(115)는 상향 회선 데이터를 복조하고, 복조 후의 상향 회선 데이터를 복호부(116)에 출력한다.
복호부(116)는 복조 후의 상향 회선 데이터를 복호하고, 복호 후의 상향 회선 데이터를 CRC부(117)에 출력한다.
CRC부(117)는 복호 후의 상향 회선 데이터에 대해서 CRC를 이용한 오류 검출을 행하고, CRC=OK(오류 없음)의 경우는 ACK 신호를, CRC=NG(오류 있음)의 경우는 NACK 신호를 응답 신호로서 생성하고, 생성한 응답 신호를 변조부(105)에 출력한다. 또, CRC부(117)는 CRC=OK(오류 없음)의 경우, 복호 후의 상향 회선 데이터를 수신 데이터로서 출력한다.
한편, 도 5에 나타내는 이동국(200)에 있어서, 무선 수신부(202)는, 기지국(100)으로부터 송신된 OFDM 심볼을 안테나(201)를 경유하여 수신하고, 이 OFDM 심볼에 대해 다운 컨버트, A/D 변환 등의 수신 처리를 행한다.
CP 제거부(203)는 수신 처리 후의 OFDM 심볼로부터 CP를 제거한다.
FFT(Fast Fourier Transform)부(204)는, CP 제거 후의 OFDM 심볼에 대해서 FFT를 행하여 RB 할당 정보 심볼 및 응답 신호를 얻고, 그것들을 분리부(205)에 출력한다.
분리부(205)는 입력되는 신호를 RB 할당 정보 심볼과 응답 신호로 분리하여, RB 할당 정보 심볼을 P/S부(206)에 출력하고, 응답 신호를 P/S부(210)에 출력한다. 여기서, 분리부(205)는 배치 특정부(209) 로부터 입력되는 특정 결과에 기초하여, 입력 신호로부터 응답 신호를 분리한다.
P/S부(206)는 분리부(205)로부터 병렬로 입력되는 RB 할당 정보 심볼을 직렬로 변환해 복조부(207)에 출력한다.
복조부(207)는 RB 할당 정보 심볼을 복조하고, 복조 후의 RB 할당 정보를 복호부(208)에 출력한다.
복호부(208)는 복조 후의 RB 할당 정보를 복호하고, 복호 후의 RB 할당 정보를 송신 제어부(214) 및 배치 특정부(209)에 출력한다.
배치 특정부(209)는 복호부(208)로부터 입력되는 RB 할당 정보에 기초하여, 자국으로부터 송신한 상향 회선 데이터에 대한 응답 신호가 배치된 하향 회선 제어 채널을 특정한다. 예를 들면, 자국에 대한 RB 할당 정보가 상기 도 1에 나타내는 RB#1~RB#3인 경우, 배치 특정부(209)는, 도 3에 나타내는 바와 같이, 응답 신호가 배치된 자국용 하향 회선 제어 채널이 CH#1~CH#3이라고 특정한다. 그리고, 배치 특정부(209)는 특정 결과를 분리부(205)에 출력한다. 배치 특정부(209)에 있어서의 특정 처리의 상세한 것에 대해서는 후술한다.
P/S부(210)는 분리부(205)로부터 병렬로 입력되는 응답 신호를 직렬로 변환하여 역확산부(211)에 출력한다.
역확산부(211)는 응답 신호를 역확산하고, 역확산 후의 응답 신호를 합성부(212)에 출력한다.
합성부(212)는, 역확산 후의 응답 신호에 대해, 리피티션원(元) 응답 신호와, 그 리피티션원 응답 신호로부터 리피티션에 의해 생성된 응답 신호를 합성하고, 합성 후의 응답 신호를 복조부(213)에 출력한다.
복조부(213)는 합성 후의 응답 신호에 대해서 복조 처리를 행하고, 복조 후의 응답 신호를 재송 제어부(216)에 출력한다.
송신 제어부(214)는, 복호부(208)로부터 입력된 RB 할당 정보가 상향 회선 RB를 자국에 할당함을 나타내는 RB 할당 정보일 경우에, RB 할당 정보로 나타난 RB에 송신 데이터를 배치하여 부호화부(215)에 출력한다.
부호화부(215)는 송신 데이터를 부호화하여 재송 제어부(216)에 출력한다.
재송 제어부(216)는, 첫회 송신시에는, 부호화 후의 송신 데이터를 보관함과 함께 변조부(217)에 출력한다. 재송 제어부(216)는 복조부(213)로부터 ACK 신호가 입력될 때까지 송신 데이터를 보관한다. 또, 재송 제어부(216)는, 복조부(213)로부터 NACK 신호가 입력된 경우, 즉, 재송시에는, 보관하고 있는 송신 데이터를 변조부(217)에 출력한다.
변조부(217)는 재송 제어부(216)로부터 입력되는 부호화 후의 송신 데이터를 변조하여 무선 송신부(218)에 출력한다.
무선 송신부(218)는, 변조 후의 송신 데이터에 대해 D/A 변환, 증폭 및 업컨버트 등의 송신 처리를 행하여 안테나(201)로부터 기지국(100)에 송신한다. 이와 같이 하여 송신되는 데이터가 상향 회선 데이터가 된다.
다음에, 기지국(100)의 배치부(109)에 있어서의 배치 처리, 및 이동국(200)의 배치 특정부(209)에 있어서의 특정 처리의 상세한 것에 대해서 설명한다.
본 실시형태에서는, 도 1에 나타내는 RB#1~RB#8 중 어느 하나를 이용하여 이동국(200)으로부터 송신된 상향 회선 데이터를 기지국(100)이 수신하고, 기지국(100)은, 도 6에 나타내는 서브캐리어 f1~f4, 서브캐리어 f9~f12, 서브캐리어 f17~f20 및 서브캐리어 f25~f28의 4개의 주파수대에 배치되어 있는 하향 회선 제어 채널 CH#1~CH#8에 상향 회선 데이터에 대한 응답 신호(ACK 신호 또는 NACK 신호)를 배치하여 이동국(200)에 송신한다. 또, 도 2와 마찬가지로, 기지국(100)의 확산부(106)가 응답 신호를 SF=4의 확산 부호로 확산하고, 다시 리피티션부(107)가 확산 후의 응답 신호에 대해서 RF=2의 리피티션을 행한다. 또, 도 3에 나타내는 바와 같이, 도 1에 나타낸 상향 회선 RB와 도 6에 나타낸 하향 회선 제어 채널은 1대1로 대응화되어 있다.
배치부(109)는, 복수의 RB에 각각 대응화되어 주파수축 상에 분산 배치(Distributed 배치)된 복수의 하향 회선 제어 채널에 이동국(200)으로의 응답 신호를 배치한다. 배치부(109)는, 도 3에 나타내는 상향 회선 RB와 하향 회선 제어 채널과의 대응 정보 및 도 6에 나타내는 하향 회선 제어 채널 배치 정보를 보관하고, 그에 기초하여 하향 회선 제어 채널이 배치되어 있는 서브캐리어에 응답 신호를 배치한다.
구체적으로는, 배치부(109)는, 이동국(200)에 대한 RB 할당 정보가 RB#1~RB#3인 경우, 도 3에 있어서 RB#1에 대응화된 CH#1, 즉 도 6에 나타내는 서브캐리어 f1~f4 및 서브캐리어 f17~f20에 응답 신호를 배치한다. 동일하게 하여, 배치부(109)는, RB#2에 대응화된 CH#2 즉 서브캐리어 f9~f12 및 서브캐리어 f25~f28에 응답 신호를 배치하고, RB#3에 대응화된 CH#3 즉 서브캐리어 f1~f4 및 서브캐리어 f17~f20에 응답 신호를 배치한다.
여기서, 도 6에 나타내는 하향 회선 제어 채널의 배치에 있어서, 도 1에 있어서 연속된 2개의 상향 회선 RB(예를 들면 RB#1과 RB#2)에 각각 대응하는 하향 회선 제어 채널(예를 들면 CH#1과 CH#2)은, 서로 다른 주파수대에 디스트리뷰티드(Distributed) 배치되어 있다. 환언하면, 도 6에 있어서 동일 주파수대에 로컬라이즈드(Localized) 배치되어 있는 하향 회선 제어 채널은, 도 1에 있어서 2RB마다의 불연속적인 복수의 상향 회선 RB에 각각 대응하는 하향 회선 제어 채널이다. 구체적으로는, 예를 들면, 도 6에 나타내는 서브캐리어 f1~f4에 로컬라이즈드 배치되어 있는 하향 회선 제어 채널은, 하향 회선 제어 채널 CH#1, CH#3, CH#5 및 CH#7이고, 그들 하향 회선 제어 채널에 각각 대응화되어 있는 상향 회선 RB는, 도 3에 나타내는 바와 같이, RB#1, RB#3, RB#5 및 RB#7인 2RB마다의 불연속한 RB가 된다.
따라서, 연속된 복수의 상향 회선 RB를 이용해 이동국(200)으로부터 송신된 상향 회선 데이터에 대한 응답 신호를 기지국(100)이 송신하는 경우, 응답 신호가 동일 주파수대에 집중하여 배치되는 것을 방지할 수 있다. 즉, 기지국(100)은, 응답 신호를 복수의 주파수대에 분산 배치해서 송신할 수 있다. 예를 들면, 상기와 같이 이동국(200)에 대한 RB 할당 정보가 RB#1~RB#3인 경우, 배치부(109)는, 도 6에 나타내는 서브캐리어 f1~f4 및 서브캐리어 f17~f20에 응답 신호를 배치하고, 서브캐리어 f9~f12 및 서브캐리어 f25~f28에 응답 신호를 배치하고, 서브캐리어 f1~f4 및 서브캐리어 f17~f20에 응답 신호를 배치한다. 이 때문에, 하향 회선 제어 채널이 배치된 모든 서브캐리어 f1~f4, f9~f12, f17~f20, f25~f28에 응답 신호가 골고루 분산되어 배치된다.
이와 같이, 배치부(109)가 도 3에 나타내는 상향 회선 RB와 하향 회선 제어 채널의 대응화 및 도 6에 나타내는 하향 회선 제어 채널의 배치에 기초하여, 하향 회선 제어 채널에 응답 신호를 배치함으로써, 기지국(100)의 무선 송신부(112)는, 상향 회선 RB에 각각 대응화되어 주파수축 상에 분산 배치된 하향 회선 제어 채널을 이용해 이동국(200)에 응답 신호를 송신할 수 있다.
마찬가지로, 이동국(200)(도 5)의 배치 특정부(209)는, 도 3에 나타내는 상향 회선 RB와 하향 회선 제어 채널의 대응 정보 및 도 6에 나타내는 하향 회선 제어 채널 배치의 정보를 보관하고, 수신한 RB 할당 정보로부터, 응답 신호가 배치된 자국용 하향 회선 제어 채널을 특정한다. 구체적으로는, 도 1에 나타내는 RB#1~RB#3을 자국에 할당되었음을 나타내는 RB 할당 정보가 복호부(208)로부터 입력되었을 경우, 배치 특정부(209)는, 도 3에 나타내는 대응화로부터, 도 6에 나타내는 바와 같이, 하향 회선 제어 채널 CH#1 및 CH#3이 배치되어 있는 서브캐리어 f1~f4 및 서브캐리어 f17~f20와, 하향 회선 제어 채널 CH#2가 배치되어 있는 서브캐리어 f9~f12 및 서브캐리어 f25~f28에, 자국에 대한 응답 신호가 배치되어 있다고 특정한다.
이와 같이 하여 본 실시형태에 의하면, 연속하는 복수의 상향 회선 RB를 이용하여 송신된 상향 회선 데이터에 대한 응답 신호가 동일 주파수대에 집중적으로 부호 다중되는 것을 저감하고, 응답 신호를 주파수축 상에 분산해서 배치할 수 있다. 따라서, 본 실시형태에 의하면, 하향 회선 제어 채널의 주파수 다이버시티 효과를 최대한으로 얻을 수 있다.
(실시형태 2)
실시형태 1과 같이, 응답 신호를 확산해서 생성되는 확산 블록을 연속된 서브캐리어(예를 들면, 도 6에 나타내는 서브캐리어 f1~f4)에 배치함으로써, 서로 이웃하는 서브캐리어 사이에서 발생하는 부호간 간섭(ISI:InterSymbol Interference)을 작게 하여 ISI를 충분히 무시할 수 있는 레벨로 할 수 있다.
그러나, 기지국(100)이 하향 회선 제어 채널마다 송신 전력 제어를 행할 경우에는, 동일 주파수대에 배치되어 있는 복수의 하향 회선 제어 채널 간에서 송신 전력이 서로 달라, 송신 전력이 큰 하향 회선 제어 채널로부터 송신 전력이 작은 하향 회선 제어 채널에 대한 ISI가 증가하여 ISI를 무시할 수 없게 된다. 예를 들면, 도 6에 나타내는 하향 회선 제어 채널 CH#1 및 CH#3에 착안하면, 하향 회선 제어 채널 CH#1의 송신 전력이 하향 회선 제어 채널 CH#3의 송신 전력보다 클 경우, 하향 회선 제어 채널 CH#1 및 CH#3은 모두 서브캐리어 f1~f4 및 서브캐리어 f17~f20의 동일 주파수대에 배치되어 있기 때문에, 양쪽 주파수대에 있어서 하향 회선 제어 채널 CH#1로부터 하향 회선 제어 채널 CH#3에 대한 ISI가 발생해 버린다.
그래서, 본 실시형태에 따른 배치부(109)는, 서로 다른 배치 패턴으로 주파수축 상에 분산 배치된 복수의 하향 회선 제어 채널에 응답 신호를 배치한다.
즉, 상기 도 6에 있어서, 하향 회선 제어 채널 CH#1 및 CH#3은 모두 동일한 배치 패턴으로 서브캐리어 f1~f4 및 서브캐리어 f17~f20에 배치되어 있다. 이에 대해, 본 실시형태에서는, 도 7에 나타내는 바와 같이, 하향 회선 제어 채널 CH#1의 배치 패턴과 하향 회선 제어 채널 CH#3의 배치 패턴이 서로 달라, 하향 회선 제어 채널 CH#1이 서브캐리어 f1~f4 및 서브캐리어 f17~f20에 배치되어 있음과 동시에, 하향 회선 제어 채널 CH#3이 서브캐리어 f1~f4 및 서브캐리어 f9~f12에 배치되어 있다. 즉, 본 실시형태에서는, 도 7에 나타내는 바와 같이, 한편으로는, 하향 회선 제어 채널 CH#1 및 하향 회선 제어 채널 CH#3의 양쪽이 동일 서브캐리어 f1~f4에 배치되어 있지만, 다른편으로는, 하향 회선 제어 채널 CH#1이 서브캐리어 f17~f20에 배치되고, 하향 회선 제어 채널 CH#3이 서브캐리어 f9~f12에 배치되어 있다. 즉, CH#1과 CH#3이 서로 다른 배치 패턴으로 주파수축 상에 분산 배치되어 있다.
이에 의해, 실시형태 1과 동일하게 하여 배치부(109)가 RB#1~RB#3을 이용해 송신된 상향 회선 데이터에 대한 응답 신호를 하향 회선 제어 채널 CH#1~CH#3에 배치할 경우에, 송신 전력이 큰 하향 회선 제어 채널 CH#1과 송신 전력이 작은 하향 회선 제어 채널 CH#3 사이에 있어서, 서브캐리어 f1~f4에서는 ISI가 발생할 수 있지만, 서브캐리어 f9~f12 및 f17~f20의 양쪽의 주파수대에서는 ISI가 발생하지 않는다.
이와 같이 하여 본 실시형태에 의하면, 실시형태 1과 동일한 효과를 얻을 수 있으며, 또 송신 전력 제어에 의해 발생하는 ISI를 랜덤화하여 ISI를 감소시킬 수 있다.
또한, 하향 회선 제어 채널 CH#1~CH#8을 주파수축 상에 랜덤하게 배치함으로써, 하향 회선 제어 채널 CH#1~CH#8을 서로 다른 배치 패턴으로 주파수축 상에 분산 배치할 수 있다.
(실시형태 3)
본 실시형태에서는, 인접 셀간에 있어서 서로 다른 배치 패턴을 취하는 복수의 하향 회선 제어 채널에 응답 신호를 배치한다.
여기에서는, 셀 1에 인접하는 셀이 셀 2의 1개인 경우에 대해 설명한다. 또, 셀 1과 셀 2는, 서로 동기하고 있는 것으로 한다. 또, 셀 1에 있어서의 하향 회선 제어 채널의 배치 패턴을 도 6에 나타낸 것으로 하는 경우에, 셀 2에 있어서의 배치 패턴을 도 8에 나타내는 것으로 한다. 또, 실시형태 1과 마찬가지로, 도 8에 나타낸 하향 회선 제어 채널은, 연속하는 복수의 상향 회선 RB에 각각 대응화되어 주파수축 상에 분산 배치되어 있다.
셀 1에 있어서의 배치 패턴(도 6)과 셀 2에 있어서의 배치 패턴(도 8) 사이에는, 동일 주파수대에 배치되어 있는 하향 회선 제어 채널이 서로 다르다. 즉, 셀 1과 셀 2 간에는, 동일한 하향 회선 제어 채널이 서로 다른 주파수대에 분산 배치되어 있다.
구체적으로는, 셀 1에서는, 도 6에 나타내는 바와 같이, 하향 회선 제어 채널 CH#1, CH#3, CH#5 및 CH#7이 서브캐리어 f1~f4 및 서브캐리어 f17~f20에 배치되고, 하향 회선 제어 채널 CH#2, CH#4, CH#6 및 CH#8이 서브캐리어 f9~f12 및 서브캐리어 f25~f28에 배치된다. 이에 대해, 셀 2에서는, 도 8에 나타내는 바와 같이, 하향 회선 제어 채널 CH#2, CH#4, CH#6 및 CH#8이 서브캐리어 f1~f4 및 서브캐리어 f17~f20에 배치되고, 하향 회선 제어 채널 CH#1, CH#3, CH#5 및 CH#7이 서브캐리어 f9~f12 및 서브캐리어 f25~f28에 배치된다.
이와 같이, 본 실시형태에서는, 하향 회선 제어 채널 CH#1~CH#8의 주파수축 상에 있어서의 배치 패턴을 인접 셀간에서 서로 다르게 한다. 따라서, 본 실시형태에 의하면, 동일 셀 내에서는 실시형태 1과 동일한 효과를 얻을 수 있고, 또 인접 셀간에 있어서 동일한 타이밍으로 응답 신호가 송신될 경우에, 인접 셀간에서의 하향 회선 제어 채널끼리의 셀간 간섭을 랜덤화하여 셀간 간섭을 감소시킬 수 있다.
또한, 본 실시형태에서는, 인접 셀 간에서 본 발명을 실시하는 경우에 대해서 설명했지만, 동일 셀 내의 인접 섹터간에 있어서도 상기와 마찬가지로 하여 본 발명을 실시할 수 있다. 즉, 상기 설명에 있어서, 셀 1을 섹터 1, 셀 2를 섹터 2로 간주함으로써, 인접 섹터간에 있어서 상기와 마찬가지로 하여 본 발명을 실시할 수 있다. 또, 인접 섹터간에서는 동기를 고려할 필요가 없기 때문에, 인접 섹터간에서는, 인접 셀간에 있어서 본 발명을 실시하는 것보다도, 용이하게 본 발명을 실시할 수 있다.
또, 상기 설명에서는 셀의 수가 2개인 경우를 일례로서 설명했지만, 셀의 수가 3개 이상인 경우도 상기와 마찬가지로 하여 본 발명을 실시할 수 있다.
(실시형태 4)
본 실시형태에서는, CCE(Control Channel Element)와, 하향 회선으로 응답 신호를 전송하기 위한 하향 회선 제어 채널을 대응시키는 경우에 대해서 설명한다.
상향 회선 데이터를 이동국으로부터 기지국에 송신하기 위해서 필요한 제어 정보, 예를 들면 상기 RB 할당 정보는, 응답 신호를 전송하기 위한 하향 회선 제어 채널과는 별개의 하향 회선 제어 채널, 예를 들면 SCCH(Shared Control Channel)를 이용해 기지국으로부터 이동국에 송신된다.
또, 기지국은 각 이동국에 대해서 복수의 SCCH 중 어느 하나의 SCCH를 할당하고, 어느 SCCH를 어느 이동국에 할당했는지를 나타내는 SCCH 할당 정보(즉, SCCH 할당 결과를 나타내는 할당 정보)를, RB 할당 정보의 송신 전에 각 이동국에 송신한다.
또, 각 SCCH는 1개 또는 복수의 CCE로 구성된다. 예를 들면, SCCH#1~SCCH#8은 각각 도 9에 나타내는 등의 구성을 취한다. 즉, SCCH#1은 CCE#1, CCE#2, SCCH#2는 CCE#3, CCE#4, SCCH#3은 CCE#5, CCE#6, SCCH#4는 CCE#7, CCE#8, SCCH#5는 CCE#1~CCE#4, SCCH#6은 CCE#5~CCE#8로 각각 구성된다. 이와 같이, 1개의 SCCH가 복수의 CCE로 구성되는 경우, 1개의 SCCH는 연속하는 복수의 CCE로 구성된다.
또한, CCE#1~CCE#8과 주파수축 상(주파수 영역)에 있어서의 물리 리소스와의 대응 관계는 예를 들면 도 10에 나타내는 것처럼 된다. 즉, 1개의 CCE는, 주파수축 상에 분산 배치된 복수의 물리 리소스에 대응한다.
여기서, 하향 회선의 통신 리소스를 효율적으로 사용하기 위해, CCE와, 하향 회선으로 응답 신호를 전송하기 위한 하향 회선 제어 채널과를 대응시킴으로써, 이동국이 기지국으로부터 통지되는 SCCH 할당 정보에 따라, 자국으로의 응답 신호가 전송되는 제어 채널을 판단하는 것이 생각된다. 예를 들면, 도 11에 나타내는 바와 같이, 도 9에 나타내는 CCE와 도 2에 나타내는 하향 회선 제어 채널을 1대1로 대응시킨다. 따라서, 도 9에 나타내는 SCCH#1가 할당된 이동국으로부터의 상향 회선 데이터에 대한 응답 신호는, 도 11에 나타내는 바와 같이 하향 회선 제어 채널 CH#1 및 CH#2, 즉, 도 2에 나타내는 서브캐리어 f1~f4 및 서브캐리어 f17~f20에 배치된다. 마찬가지로, 도 9에 나타내는 SCCH#2가 할당된 이동국으로부터의 상향 회선 데이터에 대한 응답 신호는, 도 11에 나타내는 바와 같이 하향 회선 제어 채널 CH#3 및 CH#4, 즉, 도 2에 나타내는 서브캐리어 f1~f4 및 서브캐리어 f17~f20에 배치된다. SCCH#3~SCCH#6에 대해서도 마찬가지이다.
이와 같이 하향 회선 제어 채널 CH#1~CH#8은 16개 서브캐리어 f1~f4, f9~f12, f17~f20, f25~f28에 걸쳐서 배치되어 있지만, 상기의 예에서는, 응답 신호는 서브캐리어 f1~f4 및 서브캐리어 f17~f20의 8개 서브캐리어 밖에 배치되지 않는다. 즉, 상기의 예에서는, 응답 신호는, 하향 회선 제어 채널이 배치되어 있는 전체 서브캐리어 중에서, 절반수의 서브캐리어에 밖에 배치되지 않게 된다.
따라서, 도 11에 나타내는 바와 같이 하향 회선 CCE#1~CCE#8과 하향 회선 제어 채널 CH#1~CH#8을 1대1로 대응시키는 경우에도, 도 3에 나타내는 바와 같이 상향 회선 RB#1~RB#8과 하향 회선 제어 채널 CH#1~CH#8을 1대1로 대응시키는 경우와 마찬가지로, 하향 회선 제어 채널의 배치 위치에 따라서는, 약간의 주파수 다이버시티 효과 밖에 얻지못하는 경우가 있다.
그래서, 본 실시형태에서는, 하향 회선 CCE#1~CCE#8과 하향 회선 제어 채널 CH#1~CH#8을 대응시키는 경우에, 하향 회선 제어 채널 CH#1~CH#8의 배치를 도 6(실시형태 1)에 나타낸 것으로 한다.
본 실시형태에 따른 기지국(300)의 구성을 도 12에 나타내고, 본 실시형태 에 따른 이동국(400)의 구성을 도 13에 나타낸다. 또한, 도 12에 있어서 도 4(실시형태 1)와 동일한 구성부에는 동일 부호를 붙이고, 설명을 생략한다. 또, 도 13에 있어서 도 5(실시형태 1)와 동일한 구성부에는 동일 부호를 붙이고, 설명을 생략한다.
도 12에 나타내는 기지국(300)에 있어서, SCCH 할당부(301)는, 각 이동국에 대해서 SCCH#1~SCCH#8 중 어느 하나를 할당하고, SCCH 할당 정보를 생성해서 부호화부(302) 및 배치부(305)에 출력한다.
부호화부(302)는 SCCH 할당 정보를 부호화하여 변조부(303)에 출력한다.
변조부(303)는 부호화 후의 SCCH 할당 정보를 변조해 SCCH 할당 정보 심볼을 생성하여, S/P부(304)에 출력한다.
S/P부(304)는 변조부(303)로부터 직렬로 입력되는 SCCH 할당 정보 심볼을 병렬로 변환하여 배치부(305)에 출력한다.
배치부(305)는, SCCH 할당 정보 심볼, RB 할당 정보 심볼 및 응답 신호를, OFDM 심볼을 구성하는 복수의 서브캐리어 중 어느 하나에 배치해서 IFFT부(306)에 출력한다.
여기서, 배치부(305)는, SCCH 할당부(301)로부터 입력되는 SCCH 할당 정보에 기초하여, CCE에 대응화되어 주파수축 상에 배치된 하향 회선 제어 채널에 응답 신호를 배치한다. 예를 들면, SCCH 할당부(301)로부터 도 9에 나타내는 SCCH#1이 이동국(400)으로의 SCCH 할당 정보로서 입력되었을 경우, SCCH#1은 도 9에 나타내는 바와 같이 CCE#1 및 CCE#2로 구성된다. 이 때문에, 배치부(305)는, 도 11에 나타내는 바와 같이, 이동국(400)으로부터 송신된 상향 회선 데이터에 대한 응답 신호를 CCE#1 및 CCE#2에 각각 대응하는 하향 회선 제어 채널 CH#1 및 CH#2에 배치한다. 이 배치 처리의 상세한 것에 대해서는 후술한다.
또, 배치부(305)는, SCCH 할당부(301)로부터 입력되는 SCCH 할당 정보에 기초하여, 주파수축 상에 배치된 SCCH#1~SCCH#8 중 어느 하나에 RB 할당 정보 심볼을 배치한다. 예를 들면, SCCH 할당부(301)로부터 SCCH#1이 이동국(400)으로의 SCCH 할당 정보로서 입력되었을 경우, 배치부(305)는 SCCH#1에 RB 할당 정보 심볼을 배치한다.
IFFT부(306)는, 복수의 서브캐리어 중 어느 하나에 배치된 SCCH 할당 정보 심볼, RB 할당 정보 심볼 및 응답 신호에 대해서 IFFT를 행해 OFDM 심볼을 생성하여, CP 부가부(111)에 출력한다.
한편, 도 13에 나타내는 이동국(400)에 있어서, FFT부(401)는, CP 제거 후의 OFDM 심볼에 대해서 FFT를 행하여 SCCH 할당 정보 심볼, RB 할당 정보 심볼 및 응답 신호를 얻어, 그것들을 분리부(402)에 출력한다.
분리부(402)는, 입력되는 신호를 SCCH 할당 정보 심볼과, RB 할당 정보 심볼과, 응답 신호로 분리하여, SCCH 할당 정보 심볼을 P/S부(403)에 출력하고, RB 할당 정보 심볼을 P/S부(206)에 출력하고, 응답 신호를 P/S부(210)에 출력한다. 여기서, 분리부(402)는, 배치 특정부(406)로부터 입력되는 특정 결과에 기초하여, 입력 신호로부터 RB 할당 정보 심볼 및 응답 신호를 분리한다.
P/S부(403)는 분리부(402)로부터 병렬로 입력되는 SCCH 할당 정보 심볼을 직렬로 변환하여 복조부(404)에 출력한다.
복조부(404)는 SCCH 할당 정보 심볼을 복조하고, 복조 후의 SCCH 할당 정보를 복호부(405)에 출력한다.
복호부(405)는 복조 후의 SCCH 할당 정보를 복호하고, 복호 후의 SCCH 할당 정보를 배치 특정부(406)에 출력한다.
배치 특정부(406)는 복호부(405)로부터 입력되는 SCCH 할당 정보에 기초하여, 자국으로부터 송신한 상향 회선 데이터에 대한 응답 신호가 배치된 하향 회선 제어 채널을 특정한다. 예를 들면, 자국에 대한 SCCH 할당 정보가 도 9에 나타내는 SCCH#1인 경우, SCCH#1은 도 9에 나타내는 바와 같이 CCE#1 및 CCE#2로 구성되기 때문에, 배치 특정부(406)는, 도 11에 나타내는 바와 같이, 응답 신호가 배치된 자국용 하향 회선 제어 채널이 CH#1 및 CH#2라고 특정한다. 그리고, 배치 특정부(406)는 특정 결과를 분리부(402)에 출력한다. 이 특정 처리의 상세한 것에 대해서는 후술한다.
또, 배치 특정부(406)는, 복호부(405)로부터 입력되는 SCCH 할당 정보에 기초하여, 자국으로의 RB 할당 정보 심볼이 배치된 SCCH를 특정한다. 예를 들면, 자국에 대한 SCCH 할당 정보가 SCCH#1인 경우, 배치 특정부(406)는, 자국으로의 RB 할당 정보 심볼이 배치된 자국용 SCCH가 SCCH#1이라고 특정한다. 그리고, 배치 특정부(406)는 특정 결과를 분리부(402)에 출력한다.
복호부(208)는 복조 후의 RB 할당 정보를 복호하고, 복호 후의 RB 할당 정보를 송신 제어부(214)에 출력한다.
다음에, 기지국(300)의 배치부(305)에 있어서의 배치 처리 및 이동국(400)의 배치 특정부(406)에 있어서의 특정 처리의 상세한 것에 대해서 설명한다.
본 실시형태에서는, 도 9에 나타내는 SCCH#1~SCCH#8 중 어느 하나를 이용해서 기지국(300)으로부터 송신된 RB 할당 정보를 이동국(400)이 수신한다. 또, 기지국(300)은, 도 6에 나타내는 서브캐리어 f1~f4, 서브캐리어 f9~f12, 서브캐리어 f17~f20 및 서브캐리어 f25~f28의 4개의 주파수대에 배치되어 있는 하향 회선 제어 채널 CH#1~CH#8에 상향 회선 데이터에 대한 응답 신호(ACK 신호 또는 NACK 신호)를 배치하여 이동국(400)에 송신한다. 또, 도2와 마찬가지로, 기지국(300)의 확산부(106)가 응답 신호를 SF=4의 확산 부호로 확산하고, 다시 리피티션부(107)가 확산 후의 응답 신호에 대해서 RF=2의 리피티션을 행한다. 또, 도 11에 나타내는 바와 같이, 도 9에 나타내는 CCE와 도6에 나타내는 하향 회선 제어 채널과는 1대1로 대응화되어 있다.
배치부(305)는, 복수의 CCE에 각각 대응화되어 주파수축 상에 분산 배치(Distributed 배치)된 복수의 하향 회선 제어 채널에 이동국(400)으로의 응답 신호를 배치한다. 배치부(305)는, 도 9에 나타내는 SCCH와 CCE의 대응 정보, 도 11에 나타내는 CCE와 하향 회선 제어 채널의 대응 정보 및 도 6에 나타내는 하향 회선 제어 채널 배치 정보를 보관하여, 그것들에 기초하여 하향 회선 제어 채널이 배치되어 있는 서브캐리어에 응답 신호를 배치한다.
구체적으로는, 이동국(400)에 대한 SCCH 할당 정보가 SCCH#1인 경우, SCCH#1은 도 9에 나타내는 바와 같이 CCE#1 및 CCE#2로 구성된다. 이 때문에, 배치부(305)는, 도 11에 있어서 CCE#1에 대응화된 CH#1, 즉, 도 6에 나타내는 서브캐리어 f1~f4 및 서브캐리어 f17~f20에 응답 신호를 배치함과 동시에, CCE#2에 대응화된 CH#2, 즉, 서브캐리어 f9~f12 및 서브캐리어 f25~f28에 응답 신호를 배치한다.
여기서, 도 6에 나타내는 하향 회선 제어 채널의 배치에 있어서, 도 9에 있어서 연속된 2개의 하향 회선 CCE(예를 들면 CCE#1과 CCE#2)에 각각 대응하는 하향 회선 제어 채널(예를 들면 CH#1과 CH#2)은, 서로 다른 주파수대에 디스트리뷰티드 배치되어 있다. 환언하면, 도 6에 있어서 동일 주파수대에 로컬라이즈드 배치되어 있는 하향 회선 제어 채널은, 도 9에 있어서 2CCE마다의 불연속된 복수의 하향 회선 CCE에 각각 대응하는 하향 회선 제어 채널이다. 구체적으로는, 예를 들면, 도 6에 나타내는 서브캐리어 f1~f4에 로컬라이즈드 배치되어 있는 하향 회선 제어 채널은, 하향 회선 제어 채널 CH#1, CH#3, CH#5 및 CH#7이며, 그 하향 회선 제어 채널에 각각 대응화되어 있는 하향 회선 CCE는, 도 11에 나타내는 바와 같이, CCE#1, CCE#3, CCE#5 및 CCE#7인 2CCE마다의 불연속적인 CCE가 된다.
따라서, 연속하는 복수의 CCE로 구성되는 SCCH를 이용해 RB 할당 정보가 송신된 이동국(400)으로부터 송신된 상향 회선 데이터에 대한 응답 신호를 기지국(300)이 송신하는 경우, 응답 신호가 동일 주파수대에 집중적으로 배치되는 것을 막을 수 있다. 즉, 기지국(300)은, 응답 신호를 복수의 주파수대에 분산 배치해서 송신할 수 있다. 예를 들면, 상기와 같이 이동국(400)에 대한 SCCH 할당 정보가 SCCH#1인 경우, 배치부(305)는, 도 6에 나타내는 서브캐리어 f1~f4 및 서브캐리어 f17~f20에 응답 신호를 배치함과 동시에, 서브캐리어 f9~f12 및 서브캐리어 f25~f28에 응답 신호를 배치한다. 이에 의해, 하향 회선 제어 채널이 배치된 모든 서브캐리어 f1~f4, f9~f12, f17~f20, f25~f28에 응답 신호가 골고루 분산되어 배치된다.
이와 같이, 배치부(305)가, 도 9에 나타내는 SCCH와 CCE의 대응화, 도 11에 나타내는 CCE와 하향 회선 제어 채널의 대응화 및 도 6에 나타내는 하향 회선 제어 채널 배치에 기초하여, 하향 회선 제어 채널에 응답 신호를 배치함으로써, 기지국(300)의 무선 송신부(112)는, 하향 회선 CCE에 각각 대응화되어 주파수축 상에 분산 배치된 하향 회선 제어 채널을 이용하여 이동국(400)에 응답 신호를 송신할 수 있다.
마찬가지로, 이동국(400)(도 13)의 배치 특정부(406)는, 도 9에 나타내는 SCCH와 CCE의 대응 정보, 도 11에 나타내는 CCE와 하향 회선 제어 채널의 대응 정보 및 도 6에 나타내는 하향 회선 제어 채널 배치의 정보를 보관하고, 수신한 SCCH 할당 정보로부터, 응답 신호가 배치된 자국용 하향 회선 제어 채널을 특정한다. 구체적으로는, 도 9에 나타내는 SCCH#1을 자국에 할당되었음을 나타내는 SCCH 할당 정보가 복호부(405)로부터 입력되었을 경우, 배치 특정부(406)는, 도 9 및 도 11에 나타내는 대응화로부터, 도 6에 나타내는 바와 같이, 하향 회선 제어 채널 CH#1이 배치되어 있는 서브캐리어 f1~f4 및 서브캐리어 f17~f20와, 하향 회선 제어 채널 CH#2가 배치되어 있는 서브캐리어 f9~f12 및 서브캐리어 f25~f28에, 자국에 대한 응답 신호가 배치되어 있다고 특정한다.
이와 같이 하여 본 실시형태에 의하면, 1개의 SCCH가 연속된 복수의 하향 회선 CCE로 구성되는 경우에, 응답 신호가 동일 주파수대에 집중적으로 부호 다중되는 것을 저감하고, 응답 신호를 주파수축 상에 분산해서 배치할 수 있다. 따라서, 본 실시형태에 의하면, 실시형태 1과 마찬가지로, 하향 회선 제어 채널의 주파수 다이버시티 효과를 최대한으로 얻을 수 있다.
또한, 본 실시형태에서는, 복수의 CCE로 구성되는 제어 채널의 일례로서 SCCH를 들었지만, 본 발명을 적용할 수 있는 제어 채널은 SCCH에 한정되지 않는다. 연속된 복수의 CCE로 구성되는 모든 제어 채널 대해서 본 발명을 적용할 수 있다.
또, 본 실시형태에 따른 배치부(305)는, 실시형태 2와 마찬가지로, 서로 다른 배치 패턴으로 주파수축 상에 분산 배치된 복수의 하향 회선 제어 채널에 응답 신호를 배치해도 괜찮다.
또, 본 실시형태에 따른 배치부(305)는, 실시형태 3과 마찬가지로, 인접 셀간 또는 인접 섹터간에 있어서 서로 다른 배치 패턴을 취하는 복수의 하향 회선 제어 채널에 응답 신호를 배치해도 괜찮다.
또, 본 실시형태에서는, SCCH로의 RB 할당 정보의 송신 전에 SCCH 할당 정보를 송신하는 경우에 대해서 설명했지만, 반드시 RB 할당 정보 송신 전에 SCCH 할당 정보의 송신을 행할 필요는 없다. 예를 들면, 기지국이, 이동국을 식별할 수 있는 이동국 ID를 SCCH에 포함시켜 송신하고, 이동국은 수신한 모든 SCCH를 복호하여 자국으로의 SCCH인지 여부를 블라인드(blind) 판정함으로써, RB 할당 정보 송신 전의 SCCH 할당 정보의 송신을 불필요하게 할 수 있다.
또, 새롭게 할당된 SCCH의 CCE와 대응하는 하향 회선 제어 채널로 이행하는 타이밍에 대해서는, 고정된 타이밍을 미리 설정해 두어도 좋고, 또, 적응적으로 변화하는 타이밍을 기지국으로부터 이동국에 SCCH 등을 이용해서 통지해도 좋다.
또, SCCH#1~SCCH#6이 각각 도 14에 나타내는 등의 구성을 취하는 경우, 즉, SCCH#1은 CCE#1, CCE#3, SCCH#2는 CCE#5, CCE#7, SCCH#3은 CCE#2, CCE#4, SCCH#4는 CCE#6, CCE#8, SCCH#5는 CCE#1, CCE#3, CCE#5, CCE#7, SCCH#6은 CCE#2, CCE#4, CCE#6, CCE#8로 각각 구성되는 경우에는, 하향 회선 제어 채널 CH#1~CH#8의 배치를 도 15에 나타내는 것으로 하면 좋다. 도 14에 있어서 각 SCCH를 구성하는 복수의 하향 회선 CCE(예를 들면 SCCH#1을 구성하는 CCE#1과 CCE#3)에 각각 대응하는 하향 회선 제어 채널(예를 들면 CH#1과 CH#3)은, 서로 다른 주파수대에 디스트리뷰티드 배치되어 있다. 따라서, 복수의 CCE로 구성되는 SCCH를 이용하여 RB 할당 정보가 송신된 이동국(400)으로부터 송신된 상향 회선 데이터에 대한 응답 신호를 기지국(300)이 송신하는 경우, 응답 신호가 동일 주파수대에 집중적으로 배치되는 것을 막을 수 있다. 즉, 기지국(300)은, 상기와 마찬가지로, 응답 신호를 복수의 주파수대에 분산 배치해서 송신할 수 있다.
(실시형태 5)
본 실시형태에서는, 서브 프레임마다 사용하는 CCE의 수가 다른 경우에 대해서 설명한다.
상향 할당 정보 또는 하향 할당 정보를 통지하기 위한 하향 회선 제어 채널(예를 들면, SCCH)을 구성하는 CCE가 다중되는 OFDM 심볼수(이하, 다중 OFDM수라고 함)를 서브 프레임마다 가변시키는 것이 검토되고 있다. 그때, 다중 OFDM수는, PCFICH(Physical Control Format Indicator Channel)를 이용하여 기지국으로부터 이동국에 통지된다. 다중 OFDM수가 커질수록, CCE를 다중하는 물리 리소스가 증가하기 때문에, 사용되는 CCE의 수가 보다 많아진다. 예를 들면, 도 16에 나타내는 CCE#1~CCE#16에 있어서, 다중 OFDM수가 1인 경우, CCE#1~CCE#4가 1OFDM 심볼에 다중되고, 다중 OFDM수가 2인 경우, CCE#1~CCE#16이 2OFDM 심볼에 다중된다. 즉, 1SCCH가 1개 또는 복수의 CCE로 구성될 때, 다중 OFDM수가 1일 때는 CCE#1~CCE#4 중 어느 하나가 사용되고, 다중 OFDM수가 2일 때는 CCE#1~CCE#16 중 어느 하나가 사용된다.
이때, 도 16에 나타내는 CCE#1~CCE#16 중, CCE#1~CCE#4는, 서로 다른 복수의 다중 OFDM수(1 또는 2)의 어느 것에 있어서도 사용되는데 비해, CCE#5~CCE#16은, 다중 OFDM수가 2인 경우밖에 사용되지 않는다. 즉, CCE#1~CCE#16은, 서로 다른 복수의 다중 OFDM수의 어느 것에 있어서도 공통적으로 사용되는 CCE와, 공통적으로 사용되지 않는 CCE로 구별된다. 또, CCE와 하향 회선으로 응답 신호를 전송하기 위한 하향 회선 제어 채널이 대응화되기 때문에, 다중 OFDM수에 따라, 사용되는 CCE수가 증감함으로써, 응답 신호를 전송하기 위해서 사용되는 하향 회선 제어 채널의 수도 증감한다. 즉, CCE와 마찬가지로, 서로 다른 복수의 다중 OFDM수의 어느 것에 있어서도 공통적으로 사용되는 하향 회선 제어 채널과, 공통적으로 사용되지 않는 하향 회선 제어 채널로 구별된다.
여기서, 예를 들면, 다중 OFDM수가 1일 경우, 즉, 도 16에 나타내는 CCE#1~CCE#4만이 사용될 경우, 예를 들면 도 2에 나타내는 하향 회선 제어 채널 배치에 따르면, 하향 회선 제어 채널 CH#1~CH#4가 서브캐리어 f1~f4 및 서브캐리어 f17~f20의 동일 주파수대에 집중적으로 배치되어 버린다. 이 때문에, 하향 회선 제어 채널이 배치되는 주파수대(도 2에 있어서의 서브캐리어 f1~f4, 서브캐리어 f9~f12, 서브캐리어 f17~f20 및 서브캐리어 f25~f28의 4개의 주파수대)에서는, 각 주파수대에서의 송신 전력이 서로 달라 버린다. 특히, 하향 회선 제어 채널 CH#1~CH#4가 배치된 주파수대에서는, 응답 신호가 집중적으로 부호 다중되면 다른 셀에 인가하는 간섭 전력이 증대해 버린다. 또, 응답 신호가 집중적으로 부호 다중된 주파수대에서는, ISI가 증가해 버린다.
그래서, 본 실시형태에서는, 서로 다른 복수의 다중 OFDM수의 어느 것에 있어서도 사용되는 CCE에 대응화되는 응답 신호를 전송하기 위한 하향 회선 제어 채널을 주파수축 상에 분산 배치한다.
본 실시형태에 따른 기지국(500)의 구성을 도 17에 나타내며, 본 실시형태에 따른 이동국(600)의 구성을 도 19에 나타낸다. 또한, 도 17에 있어서 도 12(실시형태 4)와 동일한 구성부에는 동일 부호를 붙이고, 설명을 생략한다. 또, 도 19에 있어서 도 13(실시형태 4)과 동일한 구성부에는 동일 부호를 붙이고, 설명을 생략한다.
도 17에 나타내는 기지국(500)에 있어서, 다중 OFDM수 결정부(501)는, 서브 프레임마다, 제어 정보를 통지하기 위해서 필요한 SCCH수에 따라, CCE를 다중하는 OFDM 심볼수를 결정한다. 구체적으로는, 다중 OFDM수 결정부(501)는, 제어 정보를 통지하기 위해서 필요한 SCCH수가 많을수록, 다중 OFDM수가 보다 커지도록 결정한다. 그리고, 다중 OFDM수 결정부(501)는, 결정한 다중 OFDM수를 나타내는 다중 OFDM수 결정 정보를 생성하여 부호화부(502) 및 SCCH 할당부(505)에 출력한다.
부호화부(502)는 다중 OFDM수 결정 정보를 부호화하여 변조부(503)에 출력한다.
변조부(503)는 부호화 후의 다중 OFDM수 결정 정보를 변조해서 다중 OFDM수 결정 정보 심볼을 생성하여, S/P부(504)에 출력한다.
S/P부(504)는 변조부(503)로부터 직렬로 입력되는 다중 OFDM수 결정 정보 심볼을 병렬로 변환해서 배치부(506)에 출력한다.
SCCH 할당부(505)는 다중 OFDM수 결정부(501)로부터 입력되는 다중 OFDM수 결정 정보에 기초하여, 각 이동국에 대해서 SCCH를 할당한다. 예를 들면, SCCH 할당부(505)는, 다중 OFDM수 결정부(501)로부터 입력되는 다중 OFDM수가 1인 경우, 상기 도 16에 나타내는 CCE#1~CCE#4 중 1개 또는 복수의 CCE로 구성되는 SCCH를 각 이동국에 대해서 할당한다. 한편, SCCH 할당부(505)는, 다중 OFDM수 결정부(501)로부터 입력되는 다중 OFDM수가 2인 경우, 상기 도 16에 나타내는 CCE#1~CCE#16 중 1개 또는 복수의 CCE로 구성되는 SCCH를 각 이동국에 대해서 할당한다.
배치부(506)는, 다중 OFDM수 결정 정보 심볼, RB 할당 정보 심볼 및 응답 신호를, OFDM 심볼을 구성하는 복수 서브캐리어 중 어느 하나에 배치하여 IFFT부(507)에 출력한다. 여기서, 배치부(506)는, 상기 도 16에 나타내는 CCE#1~CCE#16 중에서, 서로 다른 복수의 다중 OFDM수의 어느 것에 있어서도 사용되는 CCE#1~CCE#4에 각각 대응화되어 주파수축 상에 분산 배치된 하향 회선 제어 채널 CH#1~CH#4를 포함한 하향 회선 제어 채널 CH#1~CH#16에 응답 신호를 배치한다. 이 배치 처리의 상세한 것에 대하여는 후술한다.
또, 배치부(506)는 주파수축 상에 배치된 PCFICH에 다중 OFDM수 결정 정보 심볼을 배치한다.
IFFT부(507)는 복수의 서브캐리어 중 어느 하나에 배치된 다중 OFDM수 결정 정보 심볼, RB 할당 정보 심볼 및 응답 신호에 대해서 IFFT를 행해 OFDM 심볼을 생성하여, CP 부가부(111)에 출력한다.
또한, 응답 신호를 전송하기 위한 하향 회선 제어 채널(예를 들면, ACK/NACK 채널), PCFICH 및 CCE는, 예를 들면 도 18(a) 및 도 18(b)에 나타내는 바와 같은 주파수 영역 및 시간 영역으로 정의되는 물리 리소스에 다중된다. 다중 OFDM수가 1인 경우, 도 18(a)에 나타내는 바와 같이, 1OFDM 심볼에 ACK/NACK 채널, PCFICH 및 CCE#1~CCE#4가 다중되고, 다중 OFDM수가 2인 경우, 도 18(b)에 나타내는 바와 같이, 2OFDM 심볼에 ACK/NACK 채널, PCFICH 및 CCE#1~CCE#16이 다중된다.
한편, 도 19에 나타내는 이동국(600)에 있어서, FFT부(601)는, CP 제거 후의 OFDM 심볼에 대해서 FFT를 행하여 다중 OFDM수 결정 정보 심볼, RB 할당 정보 심볼 및 응답 신호를 얻어서, 그것을 분리부(602)에 출력한다.
분리부(602)는 입력되는 신호를 다중 OFDM수 결정 정보 심볼과, RB 할당 정보 심볼과, 응답 신호로 분리하여, 다중 OFDM수 결정 정보 심볼을 P/S부(603)에 출력하고, RB 할당 정보 심볼을 P/S부(206)에 출력하고, 응답 신호를 P/S부(210)에 출력한다.
P/S부(603)는 분리부(602)로부터 병렬로 입력되는 다중 OFDM수 결정 정보 심볼을 직렬로 변환하여 복조부(604)에 출력한다.
복조부(604)는 다중 OFDM수 결정 정보 심볼을 복조하고, 복조 후의 다중 OFDM수 결정 정보를 복호부(605)에 출력한다.
복호부(605)는 복조 후의 다중 OFDM수 결정 정보를 복호하고, 복호 후의 다중 OFDM수 결정 정보를 다중 OFDM수 추출부(606)에 출력한다.
다중 OFDM수 추출부(606)는, 복호부(605)로부터 입력되는 다중 OFDM수 결정 정보로부터 다중된 다중 OFDM수를 추출한다.
배치 특정부(607)는, 다중 OFDM수 추출부(606)로부터 입력되는 다중 OFDM수에 기초하여, 응답 신호가 배치된 하향 회선 제어 채널 및 SCCH 할당에 사용된 CCE를 특정한다. 그리고, 배치 특정부(607)는 특정 결과를 분리부(602)에 출력한다. 이 특정 처리의 상세한 것에 대해서는 후술한다.
다음에, 기지국(500)의 배치부(506)에 있어서의 배치 처리 및 이동국(600)의 배치 특정부(607)에 있어서의 특정 처리의 상세한 것에 대해서 설명한다.
본 실시형태에서는, 도 16에 나타내는 바와 같이, 다중 OFDM수는, 1 또는 2의 두 가지로 한다. 또, 도 16에 나타내는 CCE#1~CCE#16 중 1개 또는 복수의 CCE로 구성되는 SCCH를 이용해 기지국(500)으로부터 송신된 RB 할당 정보를 이동국(600)이 수신한다. 또, 실시형태 4와 마찬가지로 하여, 기지국(500)의 확산부(106)가 응답 신호를 SF=4의 확산 부호로 확산하고, 다시 리피티션부(107)가 확산 후의 응답 신호에 대해서 RF=2의 리피티션을 행한다. 다만, 여기서는, 설명을 간략하게 하기 위해, 도 20에 나타내는 바와 같이, 리피티션을 고려하지 않고, 응답 신호가 배치되는 서브캐리어 f1~f4, 서브캐리어 f9~f12, 서브캐리어 f17~f20 및 서브캐리어 f25~f28의 4개의 주파수대에 배치되어 있는 하향 회선 제어 채널 CH#1~CH#16에 대해서만 설명한다. 또, 도 16에 나타내는 CCE#1~CCE#16과 도 20에 나타내는 하향 회선 제어 채널 CH#1~CH#16은 1대1로 각각 대응화되어 있다.
배치부(506)는, 상기 도 16에 나타내는 CCE#1~CCE#16 중, 서로 다른 복수의 다중 OFDM수의 어느 것에 있어서도 사용되는 CCE#1~CCE#4에 각각 대응화되어 주파수축 상에 분산 배치(Distributed 배치)된 하향 회선 제어 채널 CH#1~CH#4를 포함한 하향 회선 제어 채널 CH#1~CH#16에 이동국(600)으로의 응답 신호를 배치한다.
즉, 도 20에 나타내는 바와 같이, 하향 회선 제어 채널 CH#1이 서브캐리어 f1~f4에 배치되고, 하향 회선 제어 채널 CH#2가 서브캐리어 f9~f12에 배치되고, 하향 회선 제어 채널 CH#3이 서브캐리어 f17~f20에 배치되고, 하향 회선 제어 채널 CH#4가 서브캐리어 f25~f28에 배치된다.
또, 도 20에 나타내는 바와 같이, 하향 회선 제어 채널 CH#1~CH#4 이외의 나머지 하향 회선 제어 채널 CH#5~CH#16이 서브캐리어 f1~f4, 서브캐리어 f9~f12, 서브캐리어 f17~f20 및 서브캐리어 f25~f28의 4개의 주파수대의 어느 하나에 배치된다.
여기서, 도 20에 나타내는 하향 회선 제어 채널의 배치에 있어서, 도 16에 있어서 서로 다른 복수의 다중 OFDM수(1 또는 2)의 어느 것에 있어서도 공통적으로 사용되는 CCE#1~CCE#4에 각각 대응하는 하향 회선 제어 채널 CH#1~CH#4는, 서로 다른 주파수대에 디스트리뷰티드 배치되어 있다. 환언하면, 도 20에 있어서 동일 주파수대에 로컬라이즈드(Localized) 배치되어 있는 하향 회선 제어 채널은, 도 16에 있어서 서로 다른 복수의 다중 OFDM수의 어느 것에 있어서도 공통적으로 사용되는 CCE#1~CCE#4에 각각 대응하는 하향 회선 제어 채널 CH#1~CH#4 중 어느 하나의 1채널과, 도 16에 있어서 다중 OFDM수가 2인 경우에만 사용되는 CCE#5~CCE#16에 각각 대응하는 하향 회선 제어 채널 CH#5~CH#16 중 어느 하나의 3채널이 된다. 구체적으로는, 예를 들면, 도 20에 나타내는 서브캐리어 f1~f4에 로컬라이즈드(Localized) 배치되어 있는 하향 회선 제어 채널은, 하향 회선 제어 채널 CH#1, CH#5, CH#9 및 CH#13이다. 이러한 하향 회선 제어 채널에 각각 대응화되어 있는 있는 하향 회선 CCE는, 도 16에 나타내는 바와 같이, 서로 다른 복수의 다중 OFDM수(1 또는 2)의 어느 것에 있어서도 공통적으로 사용되는 CCE#1과, 다중 OFDM수가 2인 경우에만 사용되는 CCE#5, CCE#9 및 CCE#13이 된다.
따라서, 서로 다른 복수의 다중 OFDM수의 어느 것에 있어서도 공통적으로 사용되는 CCE로 구성되는 SCCH를 이용해 RB 할당 정보가 송신된 이동국(600)으로부터 송신된 상향 회선 데이터에 대한 응답 신호를 기지국(500)이 송신하는 경우, 응답 신호가 동일 주파수대에 집중적으로 배치되는 것을 막을 수 있다. 즉, 기지국(500)은, 다중 OFDM수가 1일 경우에도, 응답 신호를 복수의 주파수대에 분산 배치해서 송신할 수 있다. 즉, 부호 다중되는 응답 신호의 수가 각 주파수대에서 동일한 정도가 된다.
이것에 의해, 응답 신호를 전송하기 위한 하향 회선 제어 채널이 배치되는 각 주파수대의 송신 전력의 변동이 작아져 평균화 효과가 향상한다. 따라서, 응답 신호를 전송하기 위한 하향 회선 제어 채널이 배치되는 주파수대의 일부 송신 전력이 집중적으로 증가하는 것을 억제할 수 있기 때문에, 인접 셀간에서의 셀간 간섭을 감소시킬 수 있다. 또, 응답 신호가 주파수축 상에서 분산 배치되기 때문에, 동일 주파수대에서 응답 신호가 집중적으로 부호 다중되는 것을 막음으로써, 동일 주파수대에 배치되는 하향 회선 제어 채널간에 있어서의 ISI도 저감시킬 수 있다.
이와 같이, 배치부(506)는, 도 16에 나타낸 다중 OFDM수의 정보 및 도 20에 나타낸 하향 회선 제어 채널 배치에 기초하여, 하향 회선 제어 채널에 응답 신호를 배치한다. 이것에 의해, 기지국(500)의 무선 송신부(112)는, 서로 다른 복수의 다중 OFDM수의 어느 것에 있어서도 공통적으로 사용되는 하향 회선 CCE에 각각 대응화되어 주파수축 상에 분산 배치된 하향 회선 제어 채널을 이용해 이동국(600)에 응답 신호를 송신할 수 있다.
마찬가지로, 이동국(600)(도 19)의 배치 특정부(607)는, 도 16에 나타낸 다중 OFDM수의 정보 및 도 20에 나타낸 하향 회선 제어 채널 배치의 정보를 보관하여, 수신한 다중 OFDM수 결정 정보에 의해, 응답 신호가 배치된 자국용의 하향 회선 제어 채널을 특정한다. 예를 들면, 다중 OFDM수 추출부(606)로부터 입력되는 다중 OFDM수가 1인 경우, 배치 특정부(607)는, 도 16에 나타낸 CCE#1~CCE#4에 각각 대응화된 도 20에 나타낸 하향 회선 제어 채널 CH#1~CH#4 중 어느 하나로부터 자국에 대한 응답 신호가 배치되어 있는 하향 회선 제어 채널을 특정한다.
이와 같이 하여 본 실시형태에 의하면, 서로 다른 다중 OFDM수의 어느 것에 있어서도 사용되는 CCE에 대응화된 하향 회선 제어 채널을 주파수축 상에서 분산 배치한다. 이에 의해, 응답 신호가 동일 주파수대에 집중적으로 부호 다중되는 것을 저감시킬 수 있다. 따라서, 본 실시형태에 의하면, 실시형태 4와 동일한 효과를 얻을 수 있다. 게다가 본 실시형태에 의하면, 다중 OFDM수가 서브 프레임마다 가변할 경우에도, 각 주파수대에 있어서의 하향 회선 제어 채널의 송신 전력이 평균화되므로, 인접 셀간에서의 하향 회선 제어 채널끼리의 셀간 간섭을 감소시킬 수 있다. 또, 본 실시형태에 의하면, 동일 주파수대에 있어서의 하향 회선 제어 채널끼리의 ISI를 저감시킬 수 있다.
또한, 본 실시형태에서는, 다중 OFDM수가 1 또는 2의 두 가지 경우에 대해서 설명했지만, 다중 OFDM수가 3가지 이상인 경우라 하더라도 본 발명을 적용할 수 있다.
또, 본 실시형태에서는, 복수의 CCE를, 서로 다른 복수의 다중 OFDM수의 어느 것에 있어서도 공통적으로 사용되는 CCE와, 공통적으로 사용되지 않는 CCE로 구별했지만, 복수의 CCE가 사용되는 빈도에 따라 구별해도 좋다. 예를 들면, 다중 OFDM수가 1~3인 경우, 다중 OFDM수가 1~3의 어느 경우에도 사용되는 CCE의 사용 빈도를 '고(高)'로 하고, 다중 OFDM수가 2 또는 3의 경우에 사용되는 CCE의 사용 빈도를 '중(中)'으로 하고, 다중 OFDM수가 3의 경우일 때 밖에 사용되지 않는 CCE의 사용 빈도를 '저(低)'로 한다. 그리고, 기지국은, 사용 빈도가 '고'인 CCE에 관련화되어 주파수축 상에 분산 배치된 하향 회선 제어 채널에 응답 신호를 배치해도 좋다.
또, 본 실시형태에서는, 서로 다른 복수의 다중 OFDM수의 어느 것에 있어서도 공통적으로 사용되는 CCE(도 16에 나타낸 CCE#1~CCE#4)의 CCE 번호가 연속된 경우에 대해 설명했다. 그러나, 서로 다른 복수의 다중 OFDM수의 어느 것에 있어서도 공통적으로 사용되는 CCE의 CCE 번호는 연속된 경우에 한정되지 않는다. 서로 다른 복수의 다중 OFDM수의 어느 것에 있어서도 공통적으로 사용되는 CCE의 CCE 번호가 불연속인 경우라 하더라도 본 발명을 적용할 수 있다.
또, 본 실시형태에서는, CCE 번호와 응답 신호를 전송하기 위한 하향 회선 제어 채널이 대응화되는 경우에 대해 설명했다. 그러나, 복수의 CCE에 의해 구성되는 하향 회선 제어 채널, 예를 들면 SCCH의 SCCH 번와호 응답 신호를 전송하기 위한 하향 회선 제어 채널이 대응화되는 경우에 있어서도 본 발명을 적용할 수 있다.
또, 본 실시형태에서는, 서로 다른 복수의 다중 OFDM수의 어느 것에 있어서도 공통적으로 사용되는 복수의 CCE에 각각 대응화되어 다른 주파수대에 배치된 복수의 하향 회선 제어 채널에 응답 신호를 다중한다고 설명했다. 그러나, 다른 주파수대에 배치된 복수의 하향 회선 제어 채널에 응답 신호를 다중하는 것과, 다른 확산 부호화 블록에 응답 신호를 다중하는 것과는 등가(等價)이다.
또, 본 실시형태에서는, 제어 정보를 통지하기 위해서 필요한 SCCH수에 따라, 다중 OFDM수를 결정하는 경우에 대해 설명했지만, 본 발명은, SCCH수에 한정되지 않고, 다른 제어 정보에 따라, 다중 OFDM수를 결정해도 좋다. 예를 들면, 응답 신호를 다중하는 ACK/NACK 채널의 다중수에 따라, 다중 OFDM수를 결정해도 좋다.
이상, 본 발명의 실시형태에 대해서 설명했다.
또한, 본 발명을 셀 에지 부근의 이동국에 대해서 적용해도 좋다. 일반적으로 셀 에지 부근에서는 셀 중심과 비교해 회선 품질이 열악하기 때문에, 셀 에지 부근의 이동국은 낮은 레벨의 MCS(Modulation and Coding Scheme)를 이용해 상향 회선 데이터를 송신한다. 즉, 셀 에지 부근의 이동국은, 셀 중심의 이동국과 비교해서 보다 낮은 부호화율, 또는, 보다 작은 변조 다치수의 변조 방식을 이용해 상향 회선 데이터를 송신하기 때문에, 보다 긴 상향 회선 데이터 길이, 즉 보다 많은 연속된 RB를 필요로 한다. 그래서, 본 발명을 셀 에지 부근의 이동국에 대해서 적용함으로써, 보다 큰 주파수 다이버시티 효과를 얻을 수 있다.
또, 상기 실시형태에서는, 완전하게 연속하는 RB를 일례로 들어 설명했지만, 일부 불연속적인 개소를 포함하더라도 연속성이 높은 RB이라면 본 발명을 적용할 수 있다.
또, 상기 실시형태에서는, 상향 회선 RB의 수 및 하향 회선 CCE의 수를 8개로 했을 경우에 대해 설명했지만, 상향 회선 RB의 수 및 하향 회선 CCE의 수는 8개로 한정되지 않는다.
또, 상기 실시형태에서는, 16개의 서브캐리어 f1~f4, f9~f12, f17~f20, f25~f28에 8개의 하향 회선 제어 채널 CH#1~CH#8이 배치되는 경우를 일례로 들어 설명했지만, 서브캐리어수 및 하향 회선 제어 채널수는 이러한 수로 한정되지 않는다. 예를 들면, 도 21에 나타내는 바와 같이 32개의 서브캐리어에 16개의 하향 회선 제어 채널 CH#1~CH#16이 배치되어도 좋다.
또, 상기 실시형태에서는, 하향 회선 제어 채널이 배치된 서브캐리어만을 도시하여 설명했지만, 하향 회선 제어 채널이 배치된 주파수 이외의 주파수에, 다른 제어 채널 또는 데이터 채널을 배치해도 좋다.
또, 상기 실시형태에서는, 응답 신호를 확산했을 경우에 대해서 설명했지만, 응답 신호를 확산하지 않고 각 주파수에 배치된 1개의 하향 회선 제어 채널에 응답 신호를 배치해서 송신해도 좋다. 예를 들면, 도 22에 나타내는 바와 같이, 응답 신호를 확산하지 않고, 즉, 동일 주파수에 부호 다중하지 않고, 주파수축 상에 분산 배치된 하향 회선 제어 채널 CH#1~CH#8에 응답 신호를 배치해도 좋다.
또, 상기 실시형태에서는, 확산부(106)에 있어서의 확산율을 SF=4로 하고, 리피티션부(107)에 있어서의 리피티션 팩터를 RF=2로 했을 경우를 일례로 들어서 설명했지만, SF 및 RF는 이러한 값으로 한정되지 않는다.
또, 상기 실시형태에서는 하향 회선 제어 채널의 배치 방법에 대해 설명했지만, 본 발명을 상향 회선 제어 채널에 적용할 수도 있다. 예를 들면, 이동국이 상기 기지국 (100) 또는 (300)과 동일한 처리를 행하고, 기지국이 상기 이동국 (200) 또는 (400)과 동일한 처리를 행함으로써, 본 발명을 상향 회선에 적용할 수 있다.
또, 상기 실시형태에서는, 상향 회선의 액세스 방식으로서 DFTs-FDMA를 이용했을 경우에 대해 설명했다. 그러나, 본 발명은 DFTs-FDMA에 한정되지 않으며, 연속된 복수의 RB를 1개의 이동국에 할당하는 전송 방식, 또는 연속된 복수의 CCE로 1개의 제어 채널이 구성되는 전송 방식에 있어서 상기와 동일한 효과를 얻을 수 있다.
또, 상기 실시형태에서는 하향 회선의 전송 방식으로서 OFDM 방식을 일례로 들었지만, 본 발명에 있어서 하향 회선의 전송 방식은 특히 한정되지 않으며, 다른 주파수를 이용해 송신을 행하는 전송 방식에 있어서 상기와 동일한 효과를 얻을 수 있다.
또, 상기 실시형태의 설명에서 이용한 응답 신호를 전송하기 위한 하향 회선 제어 채널은, 각 이동국 마다의 ACK 신호 또는 NACK 신호를 피드백하기 위한 채널이다. 그 때문에, 응답 신호를 전송하기 위한 하향 회선 제어 채널은, 일반적으로는 개별 제어 채널(Dedicated Control Channel;DCCH)이며, ACK/NACK 채널, 응답 채널, HICH(Hybrid ARQ Indicator Channel) 이라고 불리는 일도 있다.
또, 상기 실시형태에서는, 응답 신호를 배치하는 하향 회선 제어 채널에 대해 설명했지만, 하향 회선 제어 채널에 배치되는 신호는 응답 신호에 한정되지 않는다. 예를 들면, 재송시의 변조 방식 또는 부호화율을 통지하기 위한 제어 신호, 재송시의 송신 전력을 통지하기 위한 제어 신호, 재송시의 송신 타이밍을 통지하기 위한 제어 신호 또는 재송시의 RB 할당을 통지하기 위한 제어 신호 등이 하향 회선 제어 채널에 배치되는 경우도 있다.
또, 상기 실시형태의 설명에서 이용한 RB는, 예를 들면 서브캐리어 블록, 서브 밴드 등, 주파수축 상의 다른 전송 단위이어도 좋다.
또, 이동국은 UE, 기지국 장치는 Node B, 서브캐리어는 톤이라고 불리는 경우도 있다. 또, CP는 가드 인터벌(Guard Interval;GI) 이라고 불리는 경우도 있다.
또, 오류 검출의 방법은 CRC에 한정되지 않는다.
또, 주파수 영역과 시간 영역 사이의 변환을 행하는 방법은 IFFT, FFT에 한정되지 않는다.
또, 상기 실시형태에서는, 본 발명을 하드웨어로 구성하는 경우를 예로 들어 설명했지만, 본 발명은 소프트웨어로 실현하는 것도 가능하다.
또, 상기 실시형태의 설명에 이용한 각 기능 블록은, 전형적으로는 집적 회로인 LSI로서 실현된다. 이것들은 개별적으로 1칩화되어도 좋고, 일부 또는 모두를 포함하도록 1칩화되어도 좋다. 여기서는, LSI라고 했지만, 집적도의 차이에 의해, IC, 시스템 LSI, 슈퍼 LSI, 울트라 LSI라고 불리는 경우도 있다.
또, 집적 회로화의 수법은 LSI에 한정되는 것은 아니고, 전용 회로 또는 범용 프로세서로 실현해도 좋다. LSI 제조 후에, 프로그램하는 것이 가능한 FPGA(Field Programmable Gate Array)나, LSI 내부의 회로 셀의 접속이나 설정을 재구성 가능한 리컨피규러블 프로세서를 이용해도 좋다.
또, 반도체 기술의 진보 또는 파생하는 별개의 기술에 의해 LSI에 대체되는 집적 회로화의 기술이 등장하면, 당연히, 그 기술을 이용하여 기능 블록의 집적화를 행해도 좋다. 바이오 기술의 적용 등이 가능성으로서 있을 수 있다.
2007년 3월 23일에 출원한 특허출원 제2007-077502호, 2007년 5월 1일에 출원한 특허출원 제2007-120853호 및 2007년 8월 13일에 출원한 특허출원 제2007-211104호의 일본 출원에 포함되는 명세서, 도면 및 요약서의 개시 내용은, 모두 본 원에 원용된다.
[산업상 이용 가능성]
본 발명은 이동체 통신 시스템 등에 적용할 수 있다.

Claims (12)

  1. 기지국 장치로서,
    프로세서; 및
    송신부
    를 포함하고,
    상기 프로세서는,
    이동국에 복수의 상향 회선(uplink) 리소스 블록을 할당하고 - 상기 복수의 상향 회선 리소스 블록은 주파수 영역에서 연속됨 -,
    상향 회선 데이터를 위한 응답 신호를 제1 셀 또는 제1 셀 섹터 내의 이동국에 제1 부호를 사용하여 제공하도록 구성되고 - 상기 제1 부호는 제2 부호와 상이하고, 상기 프로세서는 응답 신호를 인접 셀 또는 인접 셀 섹터에 상기 제2 부호를 사용하여 제공하도록 구성됨 -,
    상기 송신부는 상기 응답 신호를 상기 이동국에 송신하도록 구성되는, 기지국 장치.
  2. 제1항에 있어서,
    상기 제1 부호 및 상기 제2 부호는 간섭 감소 부호들(interference reduction codings)인, 기지국 장치.
  3. 제2항에 있어서,
    상기 제1 부호 및 상기 제2 부호는 확산 부호 블록들(spreading coding blocks)인, 기지국 장치.
  4. 제1항 또는 제2항에 있어서,
    상기 응답 신호는 ACK 또는 NACK 신호인, 기지국 장치.
  5. 이동국 장치로서,
    기지국으로부터 복수의 상향 회선 리소스 블록을 나타내는 할당 정보를 수신하도록 구성되는 수신부; 및
    상기 기지국으로부터 상기 상향 회선 리소스 블록들 상에 배치되는 데이터를 위한 응답 신호를 획득하도록 구성되는 프로세서 - 상기 응답 신호는 제1 셀 또는 제1 셀 섹터 내의 상기 이동국 장치를 위한 제1 부호를 사용하여 획득되고, 상기 제1 부호는 인접 셀 또는 인접 셀 섹터에서의 응답 신호를 위해 상기 기지국에 의해 사용되는 제2 부호와 상이함 -
    를 포함하는, 이동국 장치.
  6. 제5항에 있어서,
    상기 제1 부호 및 상기 제2 부호는 간섭 감소 부호들인, 이동국 장치.
  7. 제6항에 있어서,
    상기 제1 부호 및 상기 제2 부호는 확산 부호 블록들인, 이동국 장치.
  8. 이동국 장치에서의 방법으로서,
    기지국으로부터 하나 또는 복수의 상향 회선 리소스 블록을 나타내는 할당 정보를 수신하는 단계 - 상기 복수의 상향 회선 리소스 블록은 주파수 영역에서 연속됨 -; 및
    상기 기지국으로부터 상기 상향 회선 리소스 블록 상에 배치되는 데이터를 위한 응답 신호를 획득하는 단계 - 상기 응답 신호는 제1 셀 또는 제1 셀 섹터에서의 상기 이동국 장치를 위한 제1 부호를 사용하여 획득되고, 상기 제1 부호는 인접 셀 또는 인접 셀 섹터에서의 응답 신호를 위해 상기 기지국에 의해 사용되는 제2 부호와 상이함 -
    를 포함하는 방법.
  9. 기지국 장치에서의 방법으로서,
    이동국에 하나 또는 복수의 상향 회선 리소스 블록을 할당하는 단계 - 상기 복수의 상향 회선 리소스 블록은 주파수 영역에서 연속됨 -;
    상향 회선 데이터를 위한 응답 신호를 제1 셀 또는 제1 셀 섹터 내의 이동국에 제1 부호를 사용하여 제공하는 단계 - 상기 제1 부호는 제2 부호와 상이하고, 상기 기지국 장치는 응답 신호를 인접 셀 또는 인접 셀 섹터에 상기 제2 부호를 사용하여 제공하도록 구성됨 -; 및
    상기 응답 신호를 상기 이동국에 송신하는 단계
    를 포함하는 방법.
  10. 제9항에 있어서,
    상기 제1 부호 및 상기 제2 부호는 간섭 감소 부호들인, 방법.
  11. 제10항에 있어서,
    상기 제1 부호 및 상기 제2 부호는 확산 부호 블록들인, 방법.
  12. 제10항 또는 제11항에 있어서,
    상기 응답 신호는 ACK 또는 NACK 신호인, 방법.
KR1020187003212A 2007-03-23 2008-03-21 무선 통신 기지국 장치 및 제어 채널 배치 방법 KR102200354B1 (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JPJP-P-2007-077502 2007-03-23
JP2007077502 2007-03-23
JPJP-P-2007-120853 2007-05-01
JP2007120853 2007-05-01
JP2007211104 2007-08-13
JPJP-P-2007-211104 2007-08-13
PCT/JP2008/000675 WO2008129810A1 (ja) 2007-03-23 2008-03-21 無線通信基地局装置および制御チャネル配置方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020167029728A Division KR101827300B1 (ko) 2007-03-23 2008-03-21 무선 통신 기지국 장치 및 제어 채널 배치 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020197022254A Division KR102246898B1 (ko) 2007-03-23 2008-03-21 무선 통신 기지국 장치 및 제어 채널 배치 방법

Publications (2)

Publication Number Publication Date
KR20180015761A true KR20180015761A (ko) 2018-02-13
KR102200354B1 KR102200354B1 (ko) 2021-01-07

Family

ID=39875343

Family Applications (9)

Application Number Title Priority Date Filing Date
KR1020097019814A KR101493108B1 (ko) 2007-03-23 2008-03-21 무선 통신 기지국 장치 및 제어 채널 배치 방법
KR1020147020901A KR101500919B1 (ko) 2007-03-23 2008-03-21 무선 통신 기지국 장치 및 제어 채널 배치 방법
KR1020187003212A KR102200354B1 (ko) 2007-03-23 2008-03-21 무선 통신 기지국 장치 및 제어 채널 배치 방법
KR1020217012492A KR102354217B1 (ko) 2007-03-23 2008-03-21 무선 통신 기지국 장치 및 제어 채널 배치 방법
KR1020197022254A KR102246898B1 (ko) 2007-03-23 2008-03-21 무선 통신 기지국 장치 및 제어 채널 배치 방법
KR1020167018677A KR101670756B1 (ko) 2007-03-23 2008-03-21 무선 통신 기지국 장치 및 제어 채널 배치 방법
KR1020147028823A KR101640248B1 (ko) 2007-03-23 2008-03-21 무선 통신 기지국 장치 및 제어 채널 배치 방법
KR1020167029728A KR101827300B1 (ko) 2007-03-23 2008-03-21 무선 통신 기지국 장치 및 제어 채널 배치 방법
KR1020227001515A KR20220011225A (ko) 2007-03-23 2008-03-21 무선 통신 기지국 장치 및 제어 채널 배치 방법

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020097019814A KR101493108B1 (ko) 2007-03-23 2008-03-21 무선 통신 기지국 장치 및 제어 채널 배치 방법
KR1020147020901A KR101500919B1 (ko) 2007-03-23 2008-03-21 무선 통신 기지국 장치 및 제어 채널 배치 방법

Family Applications After (6)

Application Number Title Priority Date Filing Date
KR1020217012492A KR102354217B1 (ko) 2007-03-23 2008-03-21 무선 통신 기지국 장치 및 제어 채널 배치 방법
KR1020197022254A KR102246898B1 (ko) 2007-03-23 2008-03-21 무선 통신 기지국 장치 및 제어 채널 배치 방법
KR1020167018677A KR101670756B1 (ko) 2007-03-23 2008-03-21 무선 통신 기지국 장치 및 제어 채널 배치 방법
KR1020147028823A KR101640248B1 (ko) 2007-03-23 2008-03-21 무선 통신 기지국 장치 및 제어 채널 배치 방법
KR1020167029728A KR101827300B1 (ko) 2007-03-23 2008-03-21 무선 통신 기지국 장치 및 제어 채널 배치 방법
KR1020227001515A KR20220011225A (ko) 2007-03-23 2008-03-21 무선 통신 기지국 장치 및 제어 채널 배치 방법

Country Status (13)

Country Link
US (8) US7941153B2 (ko)
EP (6) EP2693822B1 (ko)
JP (4) JP4621291B2 (ko)
KR (9) KR101493108B1 (ko)
CN (2) CN101663916B (ko)
BR (1) BRPI0809254B1 (ko)
CA (3) CA3108485C (ko)
ES (5) ES2451655T3 (ko)
HK (1) HK1218598A1 (ko)
HU (1) HUE057001T2 (ko)
PL (2) PL2955969T3 (ko)
RU (1) RU2500083C2 (ko)
WO (1) WO2008129810A1 (ko)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4739354B2 (ja) * 2006-01-23 2011-08-03 シャープ株式会社 基地局装置、移動局装置、移動局識別情報割り当て方法、プログラム及び記録媒体
KR101493108B1 (ko) * 2007-03-23 2015-02-13 옵티스 와이어리스 테크놀로지, 엘엘씨 무선 통신 기지국 장치 및 제어 채널 배치 방법
ES2397112T3 (es) 2007-06-15 2013-03-04 Panasonic Corporation Aparato de comunicación inalámbrica y procedimiento de difusión de señal de respuesta
KR101629298B1 (ko) * 2008-10-30 2016-06-10 엘지전자 주식회사 무선 통신 시스템에서 제어 신호를 전송하는 방법 및 이를 위한 장치
JP5162416B2 (ja) 2008-11-07 2013-03-13 株式会社エヌ・ティ・ティ・ドコモ 無線基地局
EP2701418B1 (en) * 2011-05-10 2017-07-05 Huawei Technologies Co., Ltd. Method, device and base station for coordinated multi-point (comp) reception processing
EP2523357B1 (en) * 2011-05-12 2013-09-18 Siemens Aktiengesellschaft Subsea data communication system and method
US10039116B1 (en) 2012-04-02 2018-07-31 Sprint Communications Company L.P. Long term evolution scheduler to mitigate interference
US9553680B1 (en) 2012-04-02 2017-01-24 Sprint Communications Company L.P. Uplink interference mitigation
WO2014017016A1 (ja) * 2012-07-25 2014-01-30 パナソニック株式会社 基地局装置、端末装置、送信方法、及び受信方法
US20160080115A1 (en) * 2014-09-12 2016-03-17 Samsung Electronics Co., Ltd. Methods for efficient acknowledgement in wireless systems
KR101495696B1 (ko) * 2014-09-25 2015-02-25 (주)바이컴 유동적 채널관리 기반의 무선 인터컴 시스템의 운용 방법 및 이를 위한 컴퓨터로 판독가능한 기록매체
US10009160B2 (en) * 2015-03-13 2018-06-26 Qualcomm Incorporated System and method for low latency acknowledgements
PT3324693T (pt) 2015-08-12 2021-01-06 Huawei Tech Co Ltd Método de transmissão de dados, aparelho e meio de armazenamento legível por computador
WO2019167407A1 (ja) 2018-03-02 2019-09-06 国立大学法人東北大学 触媒、液状組成物、電極、電気化学反応用触媒電極、燃料電池及び空気電池
US10715273B2 (en) * 2018-09-26 2020-07-14 At&T Intellectual Property I, L.P. Joint channel estimation and data detection technique to decode 5G uplink control channel
US20220366332A1 (en) * 2021-04-13 2022-11-17 Riskbeam GmbH Systems and methods for risk-adaptive security investment optimization
US20240147434A1 (en) * 2022-10-26 2024-05-02 Dish Wireless L.L.C. Dynamic frequency resource allocation strategy deployment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020071376A (ko) * 2001-03-06 2002-09-12 엘지전자 주식회사 이동통신 시스템에서의 채널 인식 코드 발생 장치 및 방법
KR20060067048A (ko) * 2004-12-14 2006-06-19 삼성전자주식회사 무선 통신 시스템에서 접속 신호 수신 방법 및 시스템
EP1746855A2 (en) * 2005-07-20 2007-01-24 Samsung Electronics Co., Ltd. System and method for transmitting resource allocation information in a communication system

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903723A (en) 1995-12-21 1999-05-11 Intel Corporation Method and apparatus for transmitting electronic mail attachments with attachment references
US5768513A (en) 1996-06-27 1998-06-16 At&T Corp. Multimedia messaging using the internet
JP3338315B2 (ja) 1996-11-27 2002-10-28 株式会社東芝 電子メールシステム
US5995597A (en) 1997-01-21 1999-11-30 Woltz; Robert Thomas E-mail processing system and method
FI108388B (fi) 1997-09-01 2002-01-15 Nokia Corp Sõhk÷postiliikenne matkaviestinjõrjestelmõssõ
US6253061B1 (en) 1997-09-19 2001-06-26 Richard J. Helferich Systems and methods for delivering information to a transmitting and receiving device
US6151507A (en) 1997-11-07 2000-11-21 Nokia Mobile Phones Ltd. Individual short message service (SMS) options
JPH11177612A (ja) 1997-12-08 1999-07-02 Nec Corp 無線通信システム
FI105743B (fi) 1998-05-27 2000-09-29 Nokia Mobile Phones Ltd Menetelmä multimediaviestien välittämiseksi ja multimediaviestien välitysjärjestelmä
US6470181B1 (en) 1998-11-20 2002-10-22 Nortel Networks Limited Method and apparatus for simultaneous text and audio for sponsored calls
US6618747B1 (en) 1998-11-25 2003-09-09 Francis H. Flynn Electronic communication delivery confirmation and verification system
SE521227C2 (sv) 1999-02-22 2003-10-14 Ericsson Telefon Ab L M Mobilradiosystem och ett förfarande för kanallokering i ett mobilradiosystem
US7177298B2 (en) 2000-01-07 2007-02-13 Gopal Chillariga Dynamic channel allocation in multiple-access communication systems
US20020071407A1 (en) 2000-07-08 2002-06-13 Samsung Electronics Co., Ltd. HARQ method in a CDMA mobile communication system
US20020080719A1 (en) 2000-12-22 2002-06-27 Stefan Parkvall Scheduling transmission of data over a transmission channel based on signal quality of a receive channel
KR100384899B1 (ko) 2001-01-10 2003-05-23 한국전자통신연구원 무선통신 시스템에서 끊김없는 주파수간 하드 핸드오버 방법
KR100413601B1 (ko) * 2001-03-08 2003-12-31 엘지전자 주식회사 폴더가 구비된 이동 단말기
SE523634C2 (sv) * 2001-05-04 2004-05-04 Ericsson Telefon Ab L M Resursallokering i cellulära system
EP1286491B1 (en) 2001-08-22 2004-06-30 Matsushita Electric Industrial Co., Ltd. Multichannel ARQ method and apparatus
US6901063B2 (en) 2002-05-13 2005-05-31 Qualcomm, Incorporated Data delivery in conjunction with a hybrid automatic retransmission mechanism in CDMA communication systems
US6671849B2 (en) 2002-05-14 2003-12-30 Motorola, Inc. Reliability-based type-II hybrid ARQ scheme
US7304971B2 (en) 2002-11-01 2007-12-04 Lucent Technologies Inc. Flexible transmission method for wireless communications
US6882857B2 (en) 2002-11-26 2005-04-19 Qualcomm, Incorporated Method and apparatus for efficient processing of data for transmission in a communication system
US20040109433A1 (en) 2002-12-06 2004-06-10 Khan Farooq Ullah Reverse link packet acknowledgement method
KR100606008B1 (ko) 2003-01-04 2006-07-26 삼성전자주식회사 부호 분할 다중 접속 통신 시스템에서 역방향 데이터재전송 요청 송수신 장치 및 방법
KR20040083617A (ko) 2003-03-24 2004-10-06 삼성전자주식회사 향상된 역방향 전용전송채널을 서비스하는 비동기 방식의부호분할다중접속 이동통신시스템에서 소프트 핸드오버영역에 위치하는 이동단말이 역방향 데이터를 재전송하는방법 및 시스템
RU2267863C2 (ru) * 2003-08-21 2006-01-10 Корпорация "Самсунг Электроникс" Способ адаптивного распределения частотно-временного ресурса, адаптивной модуляции, кодирования и регулировки мощности в системе связи
US7925953B2 (en) 2003-10-07 2011-04-12 Nokia Corporation Redundancy strategy selection scheme
KR100560386B1 (ko) * 2003-12-17 2006-03-13 한국전자통신연구원 무선 통신 시스템의 상향 링크에서 코히어런트 검출을위한 직교주파수 분할 다중 접속 방식의 송수신 장치 및그 방법
US20050135321A1 (en) * 2003-12-17 2005-06-23 Jacob Sharony Spatial wireless local area network
US7215655B2 (en) 2004-01-09 2007-05-08 Interdigital Technology Corporation Transport format combination selection in a wireless transmit/receive unit
US7388848B2 (en) 2004-03-26 2008-06-17 Spyder Navigations L.L.C. Method and apparatus for transport format signaling with HARQ
AU2005320417B2 (en) 2004-12-27 2009-12-10 Lg Electronics Inc. Supporting hybrid automatic retransmission request in orthogonal frequency division multiplexing access radio access system
KR101084127B1 (ko) * 2004-12-27 2011-11-17 엘지전자 주식회사 Ofdma 무선 접속 시스템에서의 자동 재전송 요구지원 방법
JP2006211252A (ja) 2005-01-27 2006-08-10 Matsushita Electric Ind Co Ltd 基地局装置、通信端末装置及びリソース割り当て方法
US7876806B2 (en) 2005-03-24 2011-01-25 Interdigital Technology Corporation Orthogonal frequency division multiplexing-code division multiple access system
US8693383B2 (en) * 2005-03-29 2014-04-08 Qualcomm Incorporated Method and apparatus for high rate data transmission in wireless communication
JP2007221178A (ja) * 2005-04-01 2007-08-30 Ntt Docomo Inc 送信装置及び送信方法
US7406322B2 (en) 2005-04-26 2008-07-29 International Business Machines Corporation Determining approximate locations of network devices that are inaccessible to GPS signals
US20060251015A1 (en) 2005-05-06 2006-11-09 Samsung Electronics Co., Ltd. System and method for dynamic allocation of ARQ feedback in a multi-carrier wireless network
SG162735A1 (en) * 2005-05-31 2010-07-29 Qualcomm Inc Assignment acknowledgement for a wireless communication system
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
CN101238663A (zh) * 2005-08-05 2008-08-06 松下电器产业株式会社 多载波通信中的无线通信基站装置和无线通信方法
US20070053320A1 (en) 2005-08-25 2007-03-08 Nokia Corporation Unified entry format for common control signalling
JP4614849B2 (ja) 2005-09-06 2011-01-19 ソフトバンクBb株式会社 基地局装置、移動体通信網及び移動局
US20070051388A1 (en) 2005-09-06 2007-03-08 Applied Materials, Inc. Apparatus and methods for using high frequency chokes in a substrate deposition apparatus
JP4822803B2 (ja) 2005-10-27 2011-11-24 三洋電機株式会社 自動製氷機を備えた貯蔵庫
US8072943B2 (en) * 2005-12-09 2011-12-06 Samsung Electronics Co., Ltd. Wireless communication system and methodology for communicating via multiple information streams
US20070171849A1 (en) * 2006-01-03 2007-07-26 Interdigital Technology Corporation Scheduling channel quality indicator and acknowledgement/negative acknowledgement feedback
WO2007078146A1 (en) 2006-01-06 2007-07-12 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving uplink signaling information in a single carrier fdma system
TW200733622A (en) * 2006-01-17 2007-09-01 Interdigital Tech Corp Method and apparatus for mapping an uplink control channel to a physical channel in a single carrier frequency division multiple access system
US8130857B2 (en) 2006-01-20 2012-03-06 Qualcomm Incorporated Method and apparatus for pilot multiplexing in a wireless communication system
US20070173260A1 (en) 2006-01-23 2007-07-26 Love Robert T Wireless communication network scheduling
EP1985023A4 (en) 2006-01-25 2014-08-13 Texas Instruments Inc METHOD AND APPARATUS FOR INCREASING THE NUMBER OF ORTHOGONAL SIGNALS USING BLOCK SHIFTING
KR100725777B1 (ko) 2006-02-06 2007-06-08 삼성전자주식회사 이동통신 단말기에서 셀 재선택을 위한 측정 회수 감소방법
US8078170B2 (en) * 2006-02-07 2011-12-13 Nokia Corporation Apparatus, method and computer program product providing fast and reliable uplink synchronization using dedicated resources for user equipment in need of synchronization
JP2007211104A (ja) 2006-02-08 2007-08-23 Fujifilm Corp 重合体の製造方法、重合体、膜形成用組成物、絶縁膜及び電子デバイス
CN1917447B (zh) * 2006-02-08 2011-01-19 华为技术有限公司 一种高速上行分组接入系统中服务授权的配置方法及设备
US8218517B2 (en) 2006-02-28 2012-07-10 Broadcom Corporation Method and apparatus for dual frequency timing acquisition for compressed WCDMA communication networks
WO2007119148A2 (en) * 2006-04-13 2007-10-25 Nokia Corporation Method providing efficient and flexible control signal for resource allocation
US7701919B2 (en) * 2006-05-01 2010-04-20 Alcatel-Lucent Usa Inc. Method of assigning uplink reference signals, and transmitter and receiver thereof
US8102802B2 (en) 2006-05-08 2012-01-24 Motorola Mobility, Inc. Method and apparatus for providing downlink acknowledgments and transmit indicators in an orthogonal frequency division multiplexing communication system
JPWO2008001728A1 (ja) 2006-06-26 2009-11-26 パナソニック株式会社 無線通信基地局装置およびリソースブロック割当方法
CN100512498C (zh) 2006-08-08 2009-07-08 华为技术有限公司 移动终端和基站的通信方法
US8509323B2 (en) * 2006-08-22 2013-08-13 Motorola Mobility Llc Resource allocation including a DC sub-carrier in a wireless communication system
WO2008041089A2 (en) * 2006-10-02 2008-04-10 Nokia Corporation Adaptive scheme for lowering uplink control overhead
US7953061B2 (en) 2006-10-02 2011-05-31 Lg Electronics Inc. Method for transmitting control signal using efficient multiplexing
GB0619530D0 (en) 2006-10-03 2006-11-15 Nokia Corp Signalling
WO2008078919A2 (en) * 2006-12-22 2008-07-03 Lg Electronics Inc. Methods for sequence generation and transmission based on time and frequency domain transmission unit in a mobile communication system
CN101611594A (zh) 2006-12-28 2009-12-23 诺基亚公司 长期演进中的资源受限分配
JP4671982B2 (ja) 2007-01-09 2011-04-20 株式会社エヌ・ティ・ティ・ドコモ 基地局、送信方法及び移動通信システム
US8068457B2 (en) * 2007-03-13 2011-11-29 Samsung Electronics Co., Ltd. Methods for transmitting multiple acknowledgments in single carrier FDMA systems
KR101049138B1 (ko) 2007-03-19 2011-07-15 엘지전자 주식회사 이동 통신 시스템에서, 수신확인신호 수신 방법
US8165228B2 (en) 2007-03-20 2012-04-24 Alcatel Lucent Non-coherent transmission method for uplink control signals using a constant amplitude zero-autocorrelation sequence
KR101493108B1 (ko) * 2007-03-23 2015-02-13 옵티스 와이어리스 테크놀로지, 엘엘씨 무선 통신 기지국 장치 및 제어 채널 배치 방법
WO2008120925A1 (en) 2007-03-29 2008-10-09 Lg Electronics Inc. Method of transmitting sounding reference signal in wireless communication system
KR101381095B1 (ko) * 2007-04-26 2014-04-02 삼성전자주식회사 무선통신 시스템에서 응답 신호 송수신 방법 및 장치
BRPI0810797B1 (pt) 2007-04-30 2020-10-13 Nokia Solutions And Networks Oy método para comunicação sem fio e aparelho para comunicação sem fio
KR100956494B1 (ko) 2007-06-14 2010-05-07 엘지전자 주식회사 제어신호 전송 방법
ES2397112T3 (es) 2007-06-15 2013-03-04 Panasonic Corporation Aparato de comunicación inalámbrica y procedimiento de difusión de señal de respuesta

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020071376A (ko) * 2001-03-06 2002-09-12 엘지전자 주식회사 이동통신 시스템에서의 채널 인식 코드 발생 장치 및 방법
KR20060067048A (ko) * 2004-12-14 2006-06-19 삼성전자주식회사 무선 통신 시스템에서 접속 신호 수신 방법 및 시스템
EP1746855A2 (en) * 2005-07-20 2007-01-24 Samsung Electronics Co., Ltd. System and method for transmitting resource allocation information in a communication system

Also Published As

Publication number Publication date
PL2955969T3 (pl) 2019-07-31
CN101663916A (zh) 2010-03-03
EP2129154B1 (en) 2014-02-26
US20160234821A1 (en) 2016-08-11
CN102970754B (zh) 2015-09-09
ES2899351T3 (es) 2022-03-11
RU2500083C2 (ru) 2013-11-27
KR20140107620A (ko) 2014-09-04
EP2498516A3 (en) 2012-09-19
PL3496325T3 (pl) 2022-01-24
ES2451655T3 (es) 2014-03-28
US8705476B2 (en) 2014-04-22
HK1218598A1 (zh) 2017-02-24
KR101670756B1 (ko) 2016-11-01
US20120218959A1 (en) 2012-08-30
KR102246898B1 (ko) 2021-04-30
BRPI0809254A2 (pt) 2014-09-23
RU2012117102A (ru) 2013-08-27
CA2680403C (en) 2021-03-30
KR20160128429A (ko) 2016-11-07
EP2693822A1 (en) 2014-02-05
EP2955969B1 (en) 2019-01-16
US9485781B2 (en) 2016-11-01
JP4621291B2 (ja) 2011-01-26
KR102200354B1 (ko) 2021-01-07
JPWO2008129810A1 (ja) 2010-07-22
KR101500919B1 (ko) 2015-03-10
EP3496325B1 (en) 2021-09-01
KR20100014534A (ko) 2010-02-10
US7941153B2 (en) 2011-05-10
BRPI0809254B1 (pt) 2020-03-03
CA3108485C (en) 2023-03-07
CA3108485A1 (en) 2008-10-30
JP2013017205A (ja) 2013-01-24
JP5413864B2 (ja) 2014-02-12
EP2129154A4 (en) 2012-09-19
CN102970754A (zh) 2013-03-13
EP2693822B1 (en) 2015-07-15
KR102354217B1 (ko) 2022-01-20
JP5079075B2 (ja) 2012-11-21
KR101493108B1 (ko) 2015-02-13
US20120026969A1 (en) 2012-02-02
WO2008129810A1 (ja) 2008-10-30
KR20210049198A (ko) 2021-05-04
US20210345379A1 (en) 2021-11-04
EP2498516A2 (en) 2012-09-12
CA3108727C (en) 2023-03-07
JP2011061832A (ja) 2011-03-24
JP4659922B2 (ja) 2011-03-30
US10652920B2 (en) 2020-05-12
US20100048219A1 (en) 2010-02-25
EP3934149B1 (en) 2023-08-30
CN101663916B (zh) 2013-01-02
US20200229221A1 (en) 2020-07-16
KR20160085925A (ko) 2016-07-18
KR20140136041A (ko) 2014-11-27
CA3108727A1 (en) 2008-10-30
US20140269568A1 (en) 2014-09-18
US8200237B2 (en) 2012-06-12
ES2965360T3 (es) 2024-04-15
ES2451865T3 (es) 2014-03-28
EP2498516B1 (en) 2014-02-26
HUE057001T2 (hu) 2022-04-28
KR101827300B1 (ko) 2018-02-09
EP2955969A1 (en) 2015-12-16
US20110110319A1 (en) 2011-05-12
EP2129154A1 (en) 2009-12-02
KR20220011225A (ko) 2022-01-27
CA2680403A1 (en) 2008-10-30
EP3934149A1 (en) 2022-01-05
KR101640248B1 (ko) 2016-07-18
US8064919B2 (en) 2011-11-22
US11096204B2 (en) 2021-08-17
JP2011101398A (ja) 2011-05-19
ES2718886T3 (es) 2019-07-05
KR20190093677A (ko) 2019-08-09
EP3496325A1 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
KR101670756B1 (ko) 무선 통신 기지국 장치 및 제어 채널 배치 방법
RU2510159C2 (ru) Устройство базовой станции беспроводной связи, устройство терминала беспроводной связи и способ распределения канала

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2019101002529; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20190729

Effective date: 20200819

E902 Notification of reason for refusal
GRNO Decision to grant (after opposition)
GRNT Written decision to grant