KR20180003350A - 반도체 소자 - Google Patents

반도체 소자 Download PDF

Info

Publication number
KR20180003350A
KR20180003350A KR1020160083059A KR20160083059A KR20180003350A KR 20180003350 A KR20180003350 A KR 20180003350A KR 1020160083059 A KR1020160083059 A KR 1020160083059A KR 20160083059 A KR20160083059 A KR 20160083059A KR 20180003350 A KR20180003350 A KR 20180003350A
Authority
KR
South Korea
Prior art keywords
layer
recess
disposed
type semiconductor
conductivity type
Prior art date
Application number
KR1020160083059A
Other languages
English (en)
Other versions
KR102521625B1 (ko
Inventor
김민성
성연준
박수익
이용경
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020160083059A priority Critical patent/KR102521625B1/ko
Priority to EP17810578.9A priority patent/EP3471154A4/en
Priority to JP2018564788A priority patent/JP7209339B2/ja
Priority to PCT/KR2017/006009 priority patent/WO2017213455A1/ko
Priority to CN201780036051.1A priority patent/CN109328399B/zh
Priority to US16/308,594 priority patent/US10636939B2/en
Publication of KR20180003350A publication Critical patent/KR20180003350A/ko
Application granted granted Critical
Publication of KR102521625B1 publication Critical patent/KR102521625B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

실시 예는, 제1도전형 반도체층, 제2도전형 반도체층, 상기 제1도전형 반도체층과 상기 제2도전형 반도체층 사이에 배치되는 활성층을 포함하고, 상기 제2도전형 반도체층 및 상기 활성층을 관통하여 상기 제1도전형 반도체층의 일부 영역까지 배치되는 복수 개의 제1리세스 및 상기 복수 개의 제1리세스 사이에 배치되는 제2리세스를 포함하는 발광구조물; 상기 복수 개의 제1리세스 내부에 배치되고, 상기 제1도전형 반도체층과 전기적으로 연결되는 제1전극; 및 상기 제2리세스의 내부에 배치되는 반사층을 포함하고, 상기 반사층은 상기 제1전극의 중심에서의 전류밀도를 기준으로 40% 이하인 영역에 배치되는 반도체 소자를 개시한다.

Description

반도체 소자{SEMICONDUCTOR DEVICE}
실시 예는 반도체 소자에 관한 것이다.
GaN, AlGaN 등의 화합물을 포함하는 반도체 소자는 넓고 조정이 용이한 밴드 갭 에너지를 가지는 등의 많은 장점을 가져서 발광 소자, 수광 소자 및 각종 다이오드 등으로 다양하게 사용될 수 있다.
특히, 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용한 발광 다이오드(Light Emitting Diode)나 레이저 다이오드(Laser Diode)와 같은 발광소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 색을 구현할 수 있으며, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광선도 구현이 가능하며, 형광등, 백열등 등 기존의 광원에 비해 저소비전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경 친화성의 장점을 가진다.
뿐만 아니라, 광검출기나 태양 전지와 같은 수광 소자도 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용하여 제작하는 경우 소자 재료의 개발로 다양한 파장 영역의 빛을 흡수하여 광 전류를 생성함으로써 감마선부터 라디오 파장 영역까지 다양한 파장 영역의 빛을 이용할 수 있다. 또한 빠른 응답속도, 안전성, 환경 친화성 및 소자 재료의 용이한 조절의 장점을 가져 전력 제어 또는 초고주파 회로나 통신용 모듈에도 용이하게 이용할 수 있다.
따라서, 반도체 소자는 광 통신 수단의 송신 모듈, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 라이트 및 신호등 및 Gas나 화재를 감지하는 센서 등에까지 응용이 확대되고 있다. 또한, 반도체 소자는 고주파 응용 회로나 기타 전력 제어 장치, 통신용 모듈에까지 응용이 확대될 수 있다.
특히, 자외선 파장 영역의 광을 방출하는 발광소자는 경화작용이나 살균 작용을 하여 경화용, 의료용, 및 살균용으로 사용될 수 있다.
종래 반도체 소자는 활성층에서 생성된 광이 활성층의 상부 방향 이외에 측면이나 하부 방향으로도 진행될 수 있다. 특히, Al의 농도가 높아질수록 측면으로 방출되는 광량이 높아질 수 있다. 따라서, 반도체 소자에서 방출된 광의 광 진행 경로가 길어지거나 발광구조물 내부에서 흡수되는 문제가 있다.
실시 예는 광 추출 효율이 향상된 반도체 소자를 제공한다.
본 발명의 일 실시 예에 따른 반도체 소자는, 제1도전형 반도체층, 제2도전형 반도체층, 상기 제1도전형 반도체층과 상기 제2도전형 반도체층 사이에 배치되는 활성층을 포함하고, 상기 제2도전형 반도체층 및 상기 활성층을 관통하여 상기 제1도전형 반도체층의 일부 영역까지 배치되는 복수 개의 제1리세스 및 상기 복수 개의 제1리세스 사이에 배치되는 제2리세스를 포함하는 발광구조물; 상기 복수 개의 제1리세스 내부에 배치되고, 상기 제1도전형 반도체층과 전기적으로 연결되는 제1전극; 및 상기 제2리세스의 내부에 배치되는 반사층을 포함하고, 상기 반사층은 상기 제1전극의 중심에서의 전류밀도를 기준으로 40% 이하인 영역에 배치될 수 있다.
상기 발광구조물은 상부면을 갖고, 상기 상부면은 상기 제2리세스에 의해 구획되는 복수 개의 고립영역을 포함하고, 상기 복수 개의 제1전극은 상기 고립영역에 각각 배치될 수 있다.
상기 복수 개의 고립영역의 면적은 상기 제1전극의 2.0배 내지 5.0배일 수 있다.
상기 복수 개의 고립영역의 면적은 상기 제1리세스의 2.0배 내지 5.0배일 수 있다.
상기 반사층은 상기 발광구조물의 테두리와 인접한 복수 개의 끝단부를 포함하고, 상기 끝단부와 상기 발광구조물의 테두리와의 간격은 1.0㎛ 내지 10㎛일 수 있다.
상기 제2리세스의 돌출높이는 이웃한 제1리세스의 돌출높이보다 높고, 상기 제1리세스 및 제2리세스의 돌출높이는 상기 활성층에서 상기 제1리세스 및 제2리세스의 상면까지의 거리일 수 있다.
상기 제2리세스의 돌출높이(H1)는 하기 관계식 1을 만족할 수 있다.
[관계식 1]
H1=W4×tan(θ1)
여기서, W4는 서로 이웃한 제1리세스와 제2리세스 사이의 중간 지점에서 제2리스의 상면까지의 거리이고, θ1은 0.5도이상이고 5.0도이하이다.
상기 제2도전형 반도체층상에 배치되는 복수 개의 제2전극을 포함할 수 있다.
상기 반사층은 상기 제2리세스에서 연장되어 상기 제2전극와 접촉할 수 있다.
상기 반사층과 제2전극을 덮는 캡핑층을 포함할 수 있다.
상기 발광구조물은 365nm 이하의 파장대의 광을 생성할 수 있다.
상기 제1도전형 반도체층은 상기 활성층과 인접 배치된 저농도층과 상기 저농도층 상에 배치되는 고농도층을 포함하고, 상기 고농도층은 상기 저농도층보다 Al 함량이 높고, 상기 제1전극은 상기 저농도층에 배치되는 반도체 소자.
본 발명의 다른 실시 예에 따른 반도체 소자는, 제1도전형 반도체층, 제2도전형 반도체층, 상기 제1도전형 반도체층과 상기 제2도전형 반도체층 사이에 배치되는 활성층을 포함하고, 상기 제2도전형 반도체층 및 상기 활성층을 관통하여 상기 제1도전형 반도체층의 일부 영역까지 배치되는 복수 개의 제1리세스 및 상기 복수 개의 제1리세스 사이에 배치되는 제2리세스를 포함하는 발광구조물; 상기 복수 개의 제1리세스 내부에 배치되고, 상기 제1도전형 반도체층과 전기적으로 연결되는 제1전극; 및 상기 제2리세스의 내부에 배치되는 반사층을 포함하고, 상기 반사층은 상기 제1전극을 포위하는 고립영역을 형성하고, 상기 고립영역의 면적은 상기 제1전극의 2.0 내지 5.0배이다.
실시 예에 따르면, 광 추출 효율이 향상될 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시 예에 따른 반도체 소자의 단면도이고,
도 2는 반사층에 의해 광이 상향 반사되는 과정을 보여주는 개념도이고,
도 3은 도 1의 A부분의 확대도이고,
도 4는 제1리세스와 제2리세스의 높이차를 설명하기 위한 도면이고,
도 5는 본 발명의 일 실시 예에 따른 반도체 소자의 평면도이고,
도 6은 반도체 소자의 전류밀도의 분포를 보여주는 도면이고,
도 7는 도 5의 B부분 확대도이고,
도 8은 제1리세스를 보여주는 도면이고,
도 9는 도 7의 변형예이다.
본 실시 예들은 다른 형태로 변형되거나 여러 실시 예가 서로 조합될 수 있으며, 본 발명의 범위가 이하 설명하는 각각의 실시 예로 한정되는 것은 아니다.
특정 실시 예에서 설명된 사항이 다른 실시 예에서 설명되어 있지 않더라도, 다른 실시 예에서 그 사항과 반대되거나 모순되는 설명이 없는 한, 다른 실시 예에 관련된 설명으로 이해될 수 있다.
예를 들어, 특정 실시 예에서 구성 A에 대한 특징을 설명하고 다른 실시 예에서 구성 B에 대한 특징을 설명하였다면, 구성 A와 구성 B가 결합된 실시 예가 명시적으로 기재되지 않더라도 반대되거나 모순되는 설명이 없는 한, 본 발명의 권리범위에 속하는 것으로 이해되어야 한다.
실시 예의 설명에 있어서, 어느 한 element가 다른 element의 "상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element 사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 "상(위) 또는 하(아래)(on or under)"으로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
이하에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.
도 1은 본 발명의 일 실시 예에 따른 반도체 소자의 단면도이고, 도 2는 반사층에 의해 광이 상향 반사되는 과정을 보여주는 개념도이고, 도 3은 도 1의 A부분의 확대도이고, 도 4는 제1리세스와 제2리세스의 높이차를 설명하기 위한 도면이다.
도 1을 참고하면, 실시 예에 따른 반도체 소자는 제1도전형 반도체층(122), 제2도전형 반도체층(126), 활성층(124)을 포함하는 발광구조물(120)과, 제1도전형 반도체층(122)과 전기적으로 연결되는 제1전극(142), 및 제2리세스(127)의 내부에 배치되는 반사층(135)을 포함한다.
실시 예에 따른 발광구조물(120)은 자외선 파장대의 광을 출력할 수 있다. 예시적으로 발광구조물(120)은 근자외선 파장대의 광(UV-A)을 출력할 수도 있고, 원자외선 파장대의 광(UV-B)을 출력할 수 도 있고, 심자외선 파장대의 광(UV-C)을 방출할 수 있다. 자외선 파장대는 발광구조물(120)의 Al 조성비에 의해 결정될 수 있다.
발광구조물(120)은 제2도전형 반도체층(126) 및 활성층(124)을 관통하여 제1도전형 반도체층(122)의 일부 영역까지 형성되는 복수 개의 제1리세스(128), 및 복수 개의 제1리세스(128) 사이에 배치되는 적어도 하나의 제2리세스(127)를 포함한다.
제1절연층(131)은 제1리세스(128) 및 제2리세스(127)상에 형성될 수 있다. 제1절연층(131)은 반사층(135)을 활성층(124) 및 제1도전형 반도체층(122)과 전기적으로 절연시킬 수 있다. 제1절연층(131)은 제1리세스(128) 및 제2리세스(127)에서 제2도전형 반도체층(126)상으로 연장될 수 있다.
제1전극(142)은 제1리세스(128)의 바닥면에 배치되어 제1도전형 반도체층(122)과 전기적으로 연결될 수 있다. 제1전극(142)은 오믹전극일 수 있다. 제1전극(142)은 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IZON(IZO Nitride), AGZO(Al-Ga ZnO), IGZO(In-Ga ZnO), ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, 또는 Ni/IrOx/Au/ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Sn, In, Ru, Mg, Zn, Pt, Au, Hf 중 적어도 하나를 포함하여 형성될 수 있으나, 이러한 재료에 한정되는 않는다.
반사층(135)은 제2리세스(127)의 내부에 배치될 수 있다. 구체적으로 반사층(135)은 제2리세스(127)내에서 제1절연층(131)상에 배치될 수 있다.
반사층(135)은 자외선 파장대에서 반사율이 높은 물질이 선택될 수 있다. 반사층(135)은 도전성 물질을 포함할 수 있다. 예시적으로 반사층(135)은 Al (알루미늄)을 포함할 수 있다. 알루미늄 반사층(135)의 두께가 약 30nm 내지 100nm인 경우, 자외선 파장대의 광을 80% 이상 반사할 수 있다. 따라서, 활성층(124)에서 출사된 광이 반도체층 내부에서 흡수되는 것을 방지할 수 있다.
도 2를 참고하면, 발광구조물(120)의 Al 조성이 높아지면 발광구조물(120) 내에서 전류 확산 특성이 저하될 수 있다. 또한, 활성층(124)은 GaN 기반의 청색 발광 소자에 비하여 측면으로 방출하는 광량이 증가하게 된다(TM 모드). 이러한 TM모드는 자외선 반도체 소자에서 발생할 수 있다.
실시 예에 따르면, 전류 밀도가 약한 영역의 부분을 식각하고 반사층(135)을 형성함으로써, 반사층(135)에 의해 광(L1)이 상향 반사될 수 있다. 따라서, 발광구조물(120) 내에서 광 흡수를 줄이고, 광 추출 효율을 향상시킬 수 있다. 또한, 반도체 소자의 지향각을 조절할 수도 있다.
제1도전형 반도체층(122)은 제1도전형 반도체층(122)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제1도전형 반도체층(122)에 제1도펀트가 도핑될 수 있다. 제1도전형 반도체층(122)은 Inx1Aly1Ga1-x1-y1N(0≤x1≤1, 0≤y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 GaN, AlGaN, InGaN, InAlGaN 등에서 선택될 수 있다. 그리고, 제1도펀트는 Si, Ge, Sn, Se, Te와 같은 n형 도펀트일 수 있다. 제1도펀트가 n형 도펀트인 경우, 제1도펀트가 도핑된 제1도전형 반도체층(122)은 n형 반도체층일 수 있다.
제1도전형 반도체층(122)은 Al의 농도가 상대적으로 낮은 저농도층(122a)과 Al의 농도가 상대적으로 높은 고농도층(122b)을 가질 수 있다. 고농도층(122b)은 Al의 농도가 60% 내지 70%일 수 있고, 저농도층(122a)은 Al의 농도가 40% 내지 50%일 수 있다. 저농도층(122a)이 활성층(124)과 인접 배치된다.
제1전극(142)은 저농도층상에 배치될 수 있다. 즉, 제1리세스(128)는 저농도층(122a)의 영역까지 형성되는 것이 바람직하다. 고농도층(122b)은 Al의 농도가 높아 전류 확산 특성이 상대적으로 낮기 때문이다.
활성층(124)은 제1도전형 반도체층(122)을 통해서 주입되는 전자(또는 정공)와 제2도전형 반도체층(126)을 통해서 주입되는 정공(또는 전자)이 만나는 층이다. 활성층(124)은 전자와 정공이 재결합함에 따라 낮은 에너지 준위로 천이하며, 그에 상응하는 파장을 가지는 빛을 생성할 수 있다.
활성층(124)은 단일 우물 구조, 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물(Multi Quantum Well; MQW) 구조, 양자점 구조 또는 양자선 구조 중 어느 하나의 구조를 가질 수 있으며, 활성층(124)의 구조는 이에 한정하지 않는다. 활성층은 Al을 포함할 수 있다.
제2도전형 반도체층(126)은 활성층(124) 상에 형성되며, Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제2도전형 반도체층(126)에 제2도펀트가 도핑될 수 있다. 제2도전형 반도체층(126)은 Inx5Aly2Ga1-x5-y2N (0≤x5≤1, 0≤y2≤1, 0≤x5+y2≤1)의 조성식을 갖는 반도체 물질 또는 AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중 선택된 물질로 형성될 수 있다. 제2도펀트가 Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트인 경우, 제2도펀트가 도핑된 제2도전형 반도체층(126)은 p형 반도체층일 수 있다.
제2도전형 반도체층(126)이 AlGaN인 경우, 낮은 전기 전도도에 의해 정공 주입이 원활하지 않을 수 있다. 따라서, 상대적으로 전기 전도도가 우수한 GaN을 제2도전형 반도체층(126)의 저면에 배치할 수도 있다.
제1전극(142)의 두께(d2)는 제1절연층(131)의 두께(d3)보다 얇을 수 있으며, 제1절연층(131)과 1㎛ 내지 4㎛의 이격 거리(d4)를 가질 수 있다.
제1전극(142)의 두께(d2)가 제1절연층(131)의 두께(d3)보다 얇은 경우, 하부 전극층(165)을 배치할 때 발생하는 스텝 커버리지 특성 저하에 의한 박리 및 크랙 등의 문제점을 해결할 수 있다. 또한, 제1절연층(131)과 이격 거리(d4)를 가짐으로써 제2절연층(132)의 갭필(Gap-fil)특성이 향상될 수 있다,
제1도전형 반도체층(122)의 표면에는 요철이 형성될 수 있다. 이러한 요철은 발광구조물(120)에서 출사되는 광의 추출 효율을 향상시킬 수 있다. 요철은 자외선 파장에 따라 평균 높이가 다를 수 있으며, UV-C의 경우 300 nm ~ 800 nm 정도의 높이를 갖고, 평균 500 nm ~ 600 nm 정도의 높이를 가질 때 광 추출 효율이 향상될 수 있다.
도 3을 참고하면, 반사층(135)은 제2전극(146)의 일측면과 상면의 일부를 덮을 수 있다. 이러한 구성에 의해 제1절연층(131)과 제2전극(146) 사이로 유입되는 광을 상부로 반사시킬 수 있다. 그러나, 알루미늄과 같은 반사층(135)은 스텝 커버리지가 상대적으로 좋지 않으므로 제2전극(146)을 완전히 덮는 것은 바람직하지 않을 수 있다.
제2전극(146)은 제2도전형 반도체층(126)의 상면에 배치될 수 있다. 제2전극(146)의 두께는 제1절연층(131)의 두께보다 얇게 배치될 수 있다. 이로 인해 반사층(135) 및 캡핑층(150)이 배치될 때 스텝 커버리지 저하에 따른 반사층(135) 혹은 캡핑층(150)의 크랙이나 박리 등의 문제를 해결할 수 있다.
제2전극(146)은 제1절연층(131)와 1㎛ ~ 4㎛의 제1 이격 거리를 가질 수 있다, 1㎛ 미만의 이격 거리를 가질 경우 공정 마진을 확보하기 어려워 동작 전압이 상승하는 문제를 야기할 수 있고, 4㎛ 보다 이격 거리가 길 경우 제2전극(146)이 배치되는 면적이 좁아지는 문제점이 발생하여 동작 전압이 상승하는 문제점이 발생될 수 있다.
반사층(135)은 제2리세스(127)에 의하여 서로 분리된 제2전극(146)을 서로 전기적으로 연결해주기 위해 제2전극(146)과 전기적으로 연결될 수 있다.
반사층(135)은 제2전극(146)과 제1절연층(131) 사이의 제1 이격 거리에 배치될 수 있으며, 제1 이격 거리 내에서 반사층(135)이 제1절연층(131)의 측면과 상면 및 제2전극(146)의 측면과 상면에 접할 수 있다. 또한, 제1 이격 거리 내에서 반사층(135)이 제2도전형 반도체층(126)과 쇼트키 접합이 형성되는 영역이 배치될 수 있으며, 쇼트키 접합을 형성함으로써 전류 분산이 용이해질 수 있다.
반사층(135)의 경사부와 제2도전형 반도체층(126)의 상면이 이루는 각(θ4)은 90도 내지 145도일 수 있다. 경사각(θ4)이 90도보다 작을 경우 제2도전형 반도체층(126)의 식각이 어렵고 145도보다 클 경우 식각되는 활성층의 면적이 커져서 발광 효율이 저하되는 문제가 있다.
캡핑층(150)은 반사층(135)과 제2전극(146)을 덮을 수 있다. 따라서, 제2전극패드(166)와, 캡핑층(150), 반사층(135), 및 제2전극(146)은 하나의 전기적 채널을 형성할 수 있다.
캡핑층(150)은 반사층(135)과 제2전극(146)을 완전히 감싸며 제1절연층(131)의 측면과 상면에 접할 수 있다. 캡핑층(150)은 제1절연층(131)과의 접착력이 좋은 물질로 이루어지며, Cr, Al, Ti, Ni, Au 등의 물질로 구성되는 군으로부터 선택되는 적어도 하나의 물질 및 이들의 합금으로 이루어질 수 있으며, 단일층 혹은 복수의 층으로 이루어질 수 있다.
캡핑층(150)이 제1절연층(131)의 측면과 상면과 접하는 경우, 반사층(135)과 제2전극(146)의 열적, 전기적 신뢰성을 향상할 수 있다. 또한, 제1절연층(131)과 제2전극(146) 사이로 방출되는 광을 상부로 반사하는 반사 기능을 가질 수 있다.
캡핑층(150)은 제1절연층(131)과 제2전극(146) 사이의 제2 이격 거리에 배치될 수 있다. 캡핑층(150)은 제2 이격 거리에서 제2전극(146)의 측면과 상면 및 제1절연층(131)의 측면과 상면에 접할 수 있다. 또한, 제2 이격 거리 내에서 캡핑층(150)과 제2 전도성 반도체층(126)이 접하여 쇼트키 접합이 형성되는 영역이 배치될 수 있으며, 쇼트키 접합을 형성함으로써 전류 분산이 용이해질 수 있다.
다시 도 1을 참고하면, 발광구조물(120)의 하부면과 제1리세스(128)와 제2리세스(127)의 형상을 따라 하부 전극층(165)과 정합층(160)이 배치될 수 있다. 하부 전극층(165)은 반사율이 우수한 물질로 이루어질 수 있다. 예시적으로 하부 전극층(165)은 알루미늄을 포함할 수 있다. 전극층(165)이 알루미늄을 포함하는 경우, 활성층(124)에서 기판(170) 방향으로 방출되는 광을 상부 반사하는 역할을 하여 광 추출 효율을 향상할 수 있다.
제2절연층(132)은 반사층(135), 제2전극(146), 캡핑층(150)을 하부 전극층(165)과 전기적으로 절연시킨다. 하부 전극층(165)은 제2절연층(132)을 관통하여 제1전극(142)과 전기적으로 연결될 수 있다.
제1절연층(131)의 두께는 제2절연층(132)의 두께보다 작을 수 있다. 제1절연층(131)의 두께가 얇아질수록 반사층(135)의 상면이 제1도전형 반도체층(122)에 가까워져 광 추출 효율이 향상될 수 있다.
예시적으로 제1절연층(131)의 두께는 3000옴스트롱 내지 7000옴스트롱일 수 있다. 3000 옴스트롱보다 얇은 경우 전기적 신뢰성이 악화될 수 있고, 7000 옴스트롱보다 두꺼우면 반사층(135) 및 캡핑층(150)이 제1절연층(131) 상부와 측면에 배치될 때, 반사층(135)이나 캡핑층(150)의 스텝 커버리지 특성이 좋지 않아 박리나 크랙을 유발할 수 있다. 박리나 크랙을 유발하는 경우, 전기적 신뢰성이 악화되거나 광 추출 효율이 저하되는 문제점을 야기할 수 있다.
제2절연층(132)의 두께는 4000옴스트롱 내지 10000옴스트롱일 수 있다. 4000 옴스트롱보다 얇을 경우 소자의 동작 시 전기적 신뢰성이 악화될 수 있고, 10000 옴스트롱보다 두꺼울 경우 공정시 소자에 가해지는 압력이나 열적 스트레스에 의하여 신뢰성이 저하될 수 있으며, 공정 시간이 길어져 소자의 단가가 높아지는 문제를 야기할 수 있다. 제1절연층(131)과 제2절연층(132)의 두께는 이에 한정하지 않는다.
정합층(160)은 도전성 재료를 포함할 수 있다. 예시적으로 정합층(160)은 금, 주석, 인듐, 알루미늄, 실리콘, 은, 니켈, 및 구리로 구성되는 군으로부터 선택되는 물질 또는 이들의 합금을 포함할 수 있다.
기판(170)은 도전성 물질로 이루어질 수 있다. 예시적으로 기판(170)은 금속 또는 반도체 물질을 포함할 수 있다. 기판(170)은 전기 전도도 및/또는 열 전도도가 우수한 금속일 수 있다. 이 경우 반도체 소자 동작시 발생하는 열을 신속이 외부로 방출할 수 있다.
기판(170)은 실리콘, 몰리브덴, 실리콘, 텅스텐, 구리 및 알루미늄으로 구성되는 군으로부터 선택되는 물질 또는 이들의 합금을 포함할 수 있다.
제2전극패드(166)는 도전성 물질로 이루어질 수 있다. 제2전극패드(166)는 단층 또는 다층구조를 가질 수 있으며, 티타늄(Ti), 니켈(Ni), 은(Ag) 및 금(Au)를 포함할 수 있다. 예시적으로 제2전극패드(166)는 Ti/Ni/Ti/Ni/Ti/Au의 구조를 가질 수 있다.
발광구조물(12)의 상면과 측면에는 패시베이션층(180)이 배치될 수 있다. 패시베이션층(180)의 두께는 2000 옴스트롱 내지 5000 옴스트롱일 수 있다. 2000옴스트롱보다 작을 경우, 소자를 외부의 수분이나 이물질로부터 보호하는 데에 충분하지 않아 소자의 전기적, 광학적 신뢰성을 악화시킬 수 있고, 5000 옴스트롱보다 두꺼울 경우 소자에 가하는 스트레스가 커져 광학적 신뢰성을 저하시키거나 공정 시간이 길어짐에 따라 소자의 단가가 높아지는 문제점을 야기할 수 있다.
도 4를 참고하면, 제2리세스(127)의 돌출높이(H1)는 제1리세스(128)의 돌출높이(H2)보다 작을 수 있다. 여기서 돌출높이는 활성층(124)에서 제1리세스(128) 및 제2리세스(127)의 상면까지의 수직거리로 정의할 수 있다.
구체적으로, 제2리세스(127)의 돌출높이(H1)는 하기 관계식 1을 만족할 수 있다.
[관계식 1]
H1=W4×tan(θ1)
여기서, W4는 서로 이웃한 제1리세스(128)와 제2리세스(127) 사이의 중간 지점(C1)에서 제2리세스의 상면(C2)까지의 거리이고, θ1은 0.5도이상이고 5.0도 이하이다.
θ1이 0.5도 미만인 경우에는 반사층의 높이가 상대적으로 낮아져 효과적인 반사 기능을 수행하기 어려울 수 있다. 또한, 5.0도를 초과하는 경우에는 반사층의 높이가 너무 높아지므로 그에 비례하여 활성층의 면적이 과도하게 감소하는 문제가 있다. 또한, 리세스 공정과 절연층 공정이 더 정밀한 관리되어야 하는 문제가 있다.
예시적으로 중간 지점(C1)에서 제2리세스의 상면(C2)까지의 거리 20㎛ 내지 40㎛이고, θ1은 2.3도일 수 있다. 제2리세스(127)의 돌출높이는 약 300 내지 800nm일 수 있다. 이 경우 활성층(124)에서 TM 모드로 방출되는 광을 효과적으로 상향 반사시킬 수 있다.
제2리세스(127)는 제1리세스(128)보다 높게 형성될 수 있다. 그러나, 반드시 이에 한정되는 것은 아니고 제1리세스(128)의 높이와 제2리세스(127)의 높이는 동일할 수도 있다.
제1리세스(128)의 경사각도(θ2)는 40도 내지 70도, 또는 60도 내지 70도이고, 제2리세스(127)의 경사 각도(θ3)는 40도 내지 70도, 또는 60도 내지 70도 일 수 있다.
도 5는 본 발명의 일 실시 예에 따른 반도체 소자의 평면도이고, 도 6은 반도체 소자의 전류밀도의 분포를 보여주는 도면이고, 도 7는 도 5의 B부분 확대도이고, 도 8은 제1리세스(128)를 보여주는 도면이고, 도 9는 도 7의 변형예이다.
도 5를 참고하면, 반도체 소자(100)는 평면상 반사층(135)에 의해 구획되는 복수 개의 고립영역(136)을 포함할 수 있다. 고립영역(136)은 반사층(135)에 의해 구획된 독립 공간일 수 있다. 고립영역(136)은 다양한 형상을 가질 수 있다. 예시적으로 고립영역(136)은 다각 형상일 수도 있고, 원형 형상일 수도 있다.
복수 개의 제1전극(142)과 제1리세스(128)는 고립영역(136)에 각각 배치될 수 있다. 이러한 구조에 의하면 전류가 분산되는 제1전극(142)을 반사층(135)이 포위하게 된다. 따라서, 제1전극(142)의 주변에서 발광하는 광은 고립영역(136)을 둘러싼 반사층(135)에 의해 상향 반사될 수 있다.
반사층(135)은 제1전극(142)의 전위밀도 100%를 기준으로 전위밀도가 40%이하인 영역을 연결한 영역에 배치될 수 있다. 예를 들어, 제1리세스의 중심과 수평선상에 배치되는 제2리세스의 중심의 거리는 30㎛ 내지 40㎛일 수 있다.
거리가 30㎛보다 좁을 경우 전류 확산이 좋은 영역의 활성층을 식각하게 되어 발광 효율이 떨어지는 문제가 있을 수 있고, 40㎛보다 넓을 경우 전류 확산 특성이 좋지 않은 영역이 남아있게 되어 광 추출 효율이 저하될 수 있다. 전위밀도가 30% 미만인 영역에 반사층을 형성하는 경우, 고립영역의 면적이 너무 넓어져 효율이 떨어질 수 있다. 또한, 측면으로 출사된 광의 상당 부분이 발광구조물 내에서 흡수될 가능성이 높다.
반사층(135)은 제1도전형 반도체층(122)의 테두리와 인접한 복수 개의 끝단부(135a)를 포함하고, 끝단부(135a)와 제1도전형 반도체층(122)의 테두리와의 간격(d1)은 1.0㎛ 내지 10㎛일 수 있다. 1.0㎛보다 작을 경우, 공정 마진의 확보가 어렵고 10㎛보다 클 경우 전류 확산 특성이 좋지 않은 영역이 활용되지 않아 광 추출 효율이 저하될 수 있다. 그러나 반드시 이에 한정되는 것은 아니고 반사층(135)의 끝단부(135a)도 밀폐되어 고립영역을 형성할 수도 있다.
도 6을 참고하면, Al의 조성이 높아지면 전류 분산 효과가 약해질 수 있다. 따라서, 각각의 제1전극(142)에 인근지점에만 전류가 분산되며 거리가 먼 지점에서는 전류밀도가 급격히 낮아질 수 있다. 따라서, 유효 발광 영역(P2)이 좁다. 유효 발광 영역(P2)은 전류 밀도가 가장 높은 제1전극의 인근 지점(P1)을 기준으로 전류 밀도가 40%이하인 경계지점으로 정의할 수 있다.
예를 들어, 제1리세스의 중심과 수평선상에 배치되는 제2리세스의 중심의 거리는 30㎛ 내지 40㎛일 수 있다. 30㎛보다 좁을 경우 전류 확산이 좋은 영역의 활성층을 식각하게 되어 발광 효율이 떨어지는 문제가 있을 수 있고, 40㎛보다 넓을 경우 전류 확산 특성이 좋지 않은 영역이 남아있게 되어 광 추출 효율이 저하될 수 있다.
특히, 이웃한 제1전극(142) 사이의 중간지점은 전류밀도가 낮아서 발광에 기여하는 효율이 매우 낮을 수 있다. 따라서, 실시 예는 전류밀도가 낮은 영역에 반사층을 형성하여 광 추출 효율을 향상시킬 수 있다.
도 7을 참고하면, 반사층(135)은 경사부(135b)와 상면부(135c)를 포함할 수 있다. 활성층(124)에서 출사된 광은 대부분 경사부(135b)에 의해 상향 반사될 수 있다.
반사층(135)에 의해 정의되는 고립영역(136)은 제1전극(142)의 2.0 내지 5.0배의 면적을 가질 수 있다. 이 경우 제1전극(142)을 기준으로 전류밀도가 40%이하인 영역에 반사층(135)을 형성할 수 있다. 또한, 반사층(135)에 의해 정의되는 고립영역(136)은 제1리세스(128)의 2.0 내지 5.0배의 면적을 가질 수도 있다. 고립영역(136)의 면적은 발광구조물(120)의 Al 농도에 따라 조절될 수도 있다.
반사층(135)은 전류 밀도가 40% 이하로 낮아지는 영역, 예를 들어 제1리세스(128)의 중심으로부터 30㎛ 내지 40㎛ 이격된 거리에 반사층(135)의 중심이 배치될 수 있으며 반사층(135)의 폭은 2㎛ 내지 5㎛일 수 있다.
반사층(135)의 폭이 2㎛ 보다 작으면 반사층(135)을 이루는 물질이 스텝 커버리지 특성이 저하되면서 크랙이나 박리를 유발할 수 있고, 5㎛ 보다 넓을 경우 유효한 활성층이 식각되어 발광 효율이 떨어지는 문제점을 야기할 수 있다.
반사층(135)은 전류 밀도가 40% 이하로 낮아지는 경계 영역에 접하는 직선들로 이루어지는 형상을 가질 수 있다. 예를 들어, 고립 영역이 원형이라면 원형에 접하는 직선들로 이루어지는 다각형 형태를 가질 수 있다.
도 8을 참고하면, 제1리세스(128)가 형성된 영역은 활성층(124)이 제거되어 발광에 참여하지 않는다. 실제로 발광에 참여하지 않는 면적은 활성층(124)이 제거된 제1면적(W2)이다. 제1리세스(128)의 폭은 경사면의 폭(W1)에 따라 가변될 수 있다. 따라서, 경사면의 경사 각도를 크게 제작하는 것이 바람직할 수 있다. 예시적으로, 경사면의 각도는 40도 내지 70도, 또는 60도 내지 70도일 수 있다.
도 9를 참고하면, 반사층(135)의 형상은 사각 형상의 매트릭스가 연속 배치될 수도 있다. 이와 같이, 반사층(135)에 의해 형성된 고립영역(136)의 형상은 다양하게 변형될 수 있다. 예시적으로 고립영역(136)의 형상은 육각형, 팔각형 삼각형, 또는 원형 형상일 수 있다.
반도체 소자는 패키지로 구성되어, 수지(resin)나 레지스트(resist)나 SOD 또는 SOG의 경화용으로 사용될 수 있다. 또는, 반도체 소자는 치료용 의료용으로 사용되거나 공기 청정기나 정수기 등의 살균에 사용될 수도 있다.
또한, 반도체 소자는 조명 시스템의 광원으로 사용되거나, 영상표시장치의 광원이나 조명장치의 광원으로 사용될 수 있다. 즉, 반도체 소자는 케이스에 배치되어 광을 제공하는 다양한 전자 디바이스에 적용될 수 있다. 예시적으로, 반도체 소자와 RGB 형광체를 혼합하여 사용하는 경우 연색성(CRI)이 우수한 백색광을 구현할 수 있다.
상술한 반도체 소자는 발광소자 패키지로 구성되어, 조명 시스템의 광원으로 사용될 수 있는데, 예를 들어 영상표시장치의 광원이나 조명 장치 등의 광원으로 사용될 수 있다.
영상표시장치의 백라이트 유닛으로 사용될 때 에지 타입의 백라이트 유닛으로 사용되거나 직하 타입의 백라이트 유닛으로 사용될 수 있고, 조명 장치의 광원으로 사용될 때 등기구나 벌브 타입으로 사용될 수도 있으며, 또한 이동 단말기의 광원으로 사용될 수도 있다.
발광 소자는 상술한 발광 다이오드 외에 레이저 다이오드가 있다.
레이저 다이오드는, 발광소자와 동일하게, 상술한 구조의 제1도전형 반도체층과 활성층 및 제2도전형 반도체층을 포함할 수 있다. 그리고, p-형의 제1 도전형 반도체와 n-형의 제2 도전형 반도체를 접합시킨 뒤 전류를 흘러주었을 때 빛이 방출되는 electro-luminescence(전계발광) 현상을 이용하나, 방출되는 광의 방향성과 위상에서 차이점이 있다. 즉, 레이저 다이오드는 여기 방출(stimulated emission)이라는 현상과 보강간섭 현상 등을 이용하여 하나의 특정한 파장(단색광, monochromatic beam)을 가지는 빛이 동일한 위상을 가지고 동일한 방향으로 방출될 수 있으며, 이러한 특성으로 인하여 광통신이나 의료용 장비 및 반도체 공정 장비 등에 사용될 수 있다.
수광 소자로는 빛을 검출하여 그 강도를 전기 신호로 변환하는 일종의 트랜스듀서인 광 검출기(photodetector)를 예로 들 수 있다. 이러한 광 검출기로서, 광전지(실리콘, 셀렌), 광도전 소자(황화 카드뮴, 셀렌화 카드뮴), 포토 다이오드(예를 들어, visible blind spectral region이나 true blind spectral region에서 피크 파장을 갖는 PD), 포토 트랜지스터, 광전자 증배관, 광전관(진공, 가스 봉입), IR(Infra-Red) 검출기 등이 있으나, 실시 예는 이에 국한되지 않는다.
또한, 광검출기와 같은 반도체 소자는 일반적으로 광변환 효율이 우수한 직접 천이 반도체(direct bandgap semiconductor)를 이용하여 제작될 수 있다. 또는, 광검출기는 구조가 다양하여 가장 일반적인 구조로는 p-n 접합을 이용하는 pin형 광검출기와, 쇼트키접합(Schottky junction)을 이용하는 쇼트키형 광검출기와, MSM(Metal Semiconductor Metal)형 광검출기 등이 있다.
포토 다이오드(Photodiode)는 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2도전형 반도체층을 포함할 수 있고, pn접합 또는 pin 구조로 이루어진다. 포토 다이오드는 역바이어스 혹은 제로바이어스를 가하여 동작하게 되며, 광이 포토 다이오드에 입사되면 전자와 정공이 생성되어 전류가 흐른다. 이때 전류의 크기는 포토 다이오드에 입사되는 광의 강도에 거의 비례할 수 있다.
광전지 또는 태양 전지(solar cell)는 포토 다이오드의 일종으로, 광을 전류로 변환할 수 있다. 태양 전지는, 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2도전형 반도체층을 포함할 수 있다.
또한, p-n 접합을 이용한 일반적인 다이오드의 정류 특성을 통하여 전자 회로의 정류기로 이용될 수도 있으며, 초고주파 회로에 적용되어 발진 회로 등에 적용될 수 있다.
또한, 상술한 반도체 소자는 반드시 반도체로만 구현되지 않으며 경우에 따라 금속 물질을 더 포함할 수도 있다. 예를 들어, 수광 소자와 같은 반도체 소자는 Ag, Al, Au, In, Ga, N, Zn, Se, P, 또는 As 중 적어도 하나를 이용하여 구현될 수 있으며, p형이나 n형 도펀트에 의해 도핑된 반도체 물질이나 진성 반도체 물질을 이용하여 구현될 수도 있다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (15)

  1. 제1도전형 반도체층, 제2도전형 반도체층, 상기 제1도전형 반도체층과 상기 제2도전형 반도체층 사이에 배치되는 활성층을 포함하고,
    상기 제2도전형 반도체층 및 상기 활성층을 관통하여 상기 제1도전형 반도체층의 일부 영역까지 배치되는 복수 개의 제1리세스 및 상기 복수 개의 제1리세스 사이에 배치되는 제2리세스를 포함하는 발광구조물;
    상기 복수 개의 제1리세스 내부에 배치되고, 상기 제1도전형 반도체층과 전기적으로 연결되는 제1전극; 및
    상기 제2리세스의 내부에 배치되는 반사층을 포함하고,
    상기 반사층은 상기 제1전극의 중심에서의 전류밀도를 기준으로 40% 이하인 영역에 배치되는 반도체 소자.
  2. 제1항에 있어서,
    상기 발광구조물은 상부면을 갖고,
    상기 상부면은 상기 제2리세스에 의해 구획되는 복수 개의 고립영역을 포함하고,
    상기 복수 개의 제1전극은 상기 고립영역에 각각 배치되는 반도체 소자.
  3. 제2항에 있어서,
    상기 복수 개의 고립영역의 면적은 상기 제1전극의 2.0배 내지 5.0배인 반도체 소자.
  4. 제2항에 있어서,
    상기 복수 개의 고립영역의 면적은 상기 제1리세스의 2.0배 내지 5.0배인 반도체 소자.
  5. 제2항에 있어서,
    상기 반사층은 상기 발광구조물의 테두리와 인접한 복수 개의 끝단부를 포함하고, 상기 끝단부와 상기 발광구조물의 테두리와의 간격은 1.0㎛ 내지 10㎛인 반도체 소자.
  6. 제1항에 있어서,
    상기 제2리세스의 돌출높이는 이웃한 제1리세스의 돌출높이보다 높고,
    상기 제1리세스 및 제2리세스의 돌출높이는 상기 활성층에서 상기 제1리세스 및 제2리세스의 상면까지의 거리인 반도체 소자.
  7. 제6항에 있어서,
    상기 제2리세스의 돌출높이(H1)는 하기 관계식 1을 만족하는 반도체 소자.
    [관계식 1]
    H1=W4×tan(θ1)
    여기서, W4는 서로 이웃한 제1리세스와 제2리세스 사이의 중간 지점에서 제2리스의 상면까지의 거리이고, θ1은 0.5도이상이고 5.0도이하이다.
  8. 제1항에 있어서,
    상기 제2도전형 반도체층상에 배치되는 복수 개의 제2전극을 포함하는 반도체 소자.
  9. 제8항에 있어서,
    상기 반사층은 상기 제2리세스에서 연장되어 상기 제2전극와 접촉하는 반도체 소자.
  10. 제9항에 있어서,
    상기 반사층과 제2전극을 덮는 캡핑층을 포함하는 반도체 소자.
  11. 제10항에 있어서,
    상기 반사층과 상기 캡핑층은 재질이 상이한 반도체 소자.
  12. 제1항에 있어서,
    상기 발광구조물은 365nm 이하의 파장대의 광을 생성하는 반도체 소자.
  13. 제1항에 있어서,
    상기 제1도전형 반도체층은 상기 활성층과 인접 배치된 저농도층과 상기 저농도층 상에 배치되는 고농도층을 포함하고,
    상기 고농도층은 상기 저농도층보다 Al 함량이 높고,
    상기 제1전극은 상기 저농도층에 배치되는 반도체 소자.
  14. 제1도전형 반도체층, 제2도전형 반도체층, 상기 제1도전형 반도체층과 상기 제2도전형 반도체층 사이에 배치되는 활성층을 포함하고,
    상기 제2도전형 반도체층 및 상기 활성층을 관통하여 상기 제1도전형 반도체층의 일부 영역까지 배치되는 복수 개의 제1리세스 및 상기 복수 개의 제1리세스 사이에 배치되는 제2리세스를 포함하는 발광구조물;
    상기 복수 개의 제1리세스 내부에 배치되고, 상기 제1도전형 반도체층과 전기적으로 연결되는 제1전극; 및
    상기 제2리세스의 내부에 배치되는 반사층을 포함하고,
    상기 반사층은 상기 제1전극을 포위하는 고립영역을 형성하고,
    상기 고립영역의 면적은 상기 제1전극의 2.0 내지 5.0배인 반도체 소자.
  15. 제1항 내지 제14항 중 어느 한 항에 따른 반도체 소자; 및
    상기 반도체 소자를 수용하는 케이스를 포함하는 전자 디바이스.
KR1020160083059A 2016-06-10 2016-06-30 반도체 소자 KR102521625B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020160083059A KR102521625B1 (ko) 2016-06-30 2016-06-30 반도체 소자
EP17810578.9A EP3471154A4 (en) 2016-06-10 2017-06-09 SEMICONDUCTOR DEVICE
JP2018564788A JP7209339B2 (ja) 2016-06-10 2017-06-09 半導体素子
PCT/KR2017/006009 WO2017213455A1 (ko) 2016-06-10 2017-06-09 반도체 소자
CN201780036051.1A CN109328399B (zh) 2016-06-10 2017-06-09 半导体器件
US16/308,594 US10636939B2 (en) 2016-06-10 2017-06-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160083059A KR102521625B1 (ko) 2016-06-30 2016-06-30 반도체 소자

Publications (2)

Publication Number Publication Date
KR20180003350A true KR20180003350A (ko) 2018-01-09
KR102521625B1 KR102521625B1 (ko) 2023-04-13

Family

ID=61000674

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160083059A KR102521625B1 (ko) 2016-06-10 2016-06-30 반도체 소자

Country Status (1)

Country Link
KR (1) KR102521625B1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508414A (ja) * 2007-12-19 2011-03-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光抽出構造体を有する半導体発光装置
KR20120006409A (ko) * 2010-07-12 2012-01-18 엘지이노텍 주식회사 발광 소자
KR20120031339A (ko) * 2010-09-24 2012-04-03 엘지이노텍 주식회사 발광 소자
CN103390713A (zh) * 2013-07-19 2013-11-13 李刚 带光反射层的半导体发光器件
US20160093769A1 (en) * 2013-06-06 2016-03-31 Osram Opto Semiconductors Gmbh Light-emitting diode with passivation layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508414A (ja) * 2007-12-19 2011-03-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光抽出構造体を有する半導体発光装置
KR20120006409A (ko) * 2010-07-12 2012-01-18 엘지이노텍 주식회사 발광 소자
KR20120031339A (ko) * 2010-09-24 2012-04-03 엘지이노텍 주식회사 발광 소자
US20160093769A1 (en) * 2013-06-06 2016-03-31 Osram Opto Semiconductors Gmbh Light-emitting diode with passivation layer
CN103390713A (zh) * 2013-07-19 2013-11-13 李刚 带光反射层的半导体发光器件

Also Published As

Publication number Publication date
KR102521625B1 (ko) 2023-04-13

Similar Documents

Publication Publication Date Title
KR102554702B1 (ko) 발광소자 및 이를 포함하는 발광소자 패키지
US10734552B2 (en) Semiconductor device having a light emitting structure
CN109997234B (zh) 半导体元件和包括该半导体元件的半导体元件封装
JP7118447B2 (ja) 半導体素子
KR102568298B1 (ko) 반도체 소자
US11990567B2 (en) Semiconductor device
KR102564198B1 (ko) 반도체 소자
KR102656815B1 (ko) 반도체 소자
KR102434368B1 (ko) 반도체 소자
KR102410809B1 (ko) 반도체 소자
KR20180028338A (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
KR102582184B1 (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
KR102521625B1 (ko) 반도체 소자
KR102551894B1 (ko) 반도체 소자
KR20190056133A (ko) 반도체 소자
KR102388795B1 (ko) 반도체 소자 및 이를 포함하는 반도체 소자 제조방법
KR20180029750A (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
KR102552889B1 (ko) 반도체 소자, 반도체 소자 패키지, 및 반도체 소자 제조방법
KR20180087682A (ko) 반도체 소자
KR20200025757A (ko) 반도체 소자 및 이의 제조 방법
KR20200021797A (ko) 반도체 소자
KR20180126834A (ko) 반도체 소자
KR20190085706A (ko) 반도체 소자
KR20190000033A (ko) 반도체 소자 패키지
KR20180054328A (ko) 반도체 소자 및 조명장치

Legal Events

Date Code Title Description
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant