KR20170117440A - Rf 에너지 사용이 가능한 조직 변연절제 디바이스 - Google Patents

Rf 에너지 사용이 가능한 조직 변연절제 디바이스 Download PDF

Info

Publication number
KR20170117440A
KR20170117440A KR1020177023864A KR20177023864A KR20170117440A KR 20170117440 A KR20170117440 A KR 20170117440A KR 1020177023864 A KR1020177023864 A KR 1020177023864A KR 20177023864 A KR20177023864 A KR 20177023864A KR 20170117440 A KR20170117440 A KR 20170117440A
Authority
KR
South Korea
Prior art keywords
outer shaft
electrode
cutting
outlet port
cleaning
Prior art date
Application number
KR1020177023864A
Other languages
English (en)
Inventor
존 알. 프리스코
에릭 피. 데트메르스
웬정 리
데이비드 제이. 리틀
패트릭 리차르트
호세 발데즈
Original Assignee
메드트로닉 좀드 인코퍼레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 메드트로닉 좀드 인코퍼레이티드 filed Critical 메드트로닉 좀드 인코퍼레이티드
Publication of KR20170117440A publication Critical patent/KR20170117440A/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • A61B17/32002Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes with continuously rotating, oscillating or reciprocating cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/148Probes or electrodes therefor having a short, rigid shaft for accessing the inner body transcutaneously, e.g. for neurosurgery or arthroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1485Probes or electrodes therefor having a short rigid shaft for accessing the inner body through natural openings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320783Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions through side-hole, e.g. sliding or rotating cutter inside catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00071Electrical conductivity
    • A61B2018/00083Electrical conductivity low, i.e. electrically insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • A61B2018/00202Moving parts rotating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • A61B2018/00202Moving parts rotating
    • A61B2018/00208Moving parts rotating actively driven, e.g. by a motor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00321Head or parts thereof
    • A61B2018/00327Ear, nose or throat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00595Cauterization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/007Auxiliary appliance with irrigation system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/002Irrigation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/007Aspiration

Abstract

본 발명은 외부 샤프트, 내부 샤프트, 제1 및 제2 전극 표면들, 및 세척 채널을 포함한 양극성 전기 외과 디바이스에 관한 것이다. 외부 샤프트는 내강, 근위 단부 및 절단 윈도우를 형성하는 원위 단부를 한정한다. 내부 샤프트는 외부 샤프트 내에서 회전 가능하게 배치되며, 절단 팁을 형성하는 원위 부분을 한정한다. 절단 팁 및 절단 윈도우는 절단 기구를 한정하기 위해 결합한다. 제1 및 제2 전극 표면들은 전기적으로 분리되며, 절단 기구에서 형성된다. 세척 채널은 외부 샤프트에 평행하게 연장되며, 적어도 하나의 출구 포트에서 끝난다. 출구 포트는 절단 윈도우로부터 근위로 이격되며 외부 샤프트의 방사상 바깥쪽으로 위치된다. 유체(예로서, 식염수)는 절단 윈도우의 가까이에 있는 디바이스의 외부 표면에서 방출되며 전극 표면들과 상호 작용하기 위해 손쉽게 존재한다.

Description

RF 에너지 사용이 가능한 조직 변연절제 디바이스
본 개시는 일반적으로 뼈 및 연 조직과 같은 조직을 절단하고 봉합하기 위한 디바이스들, 시스템들 및 방법들에 관한 것이다. 여기에서 제공된 개념들은 부비강 적용들 및 비인두/후두 시술들에 특히 적합할 수 있으며 미세 변연절제기 디바이스를 가진 Transcollation® 기술을 조합하거나 또는 이를 제공할 수 있다.
본 개시에 따른 디바이스들, 시스템들 및 방법들은 귀, 코 및 목(ENT) 시술들, 머리 및 목 시술들, 이신경학 시술들을 포함한, 이과학 시술들을 포함한 다양한 시술들에 적합할 수 있다. 본 개시는 유양돌기 절제술들 및 유돌 절개술들; 편도선 절제술들, 기관 시술들, 편도선 수술들, 후두 병변 제거, 및 폴립 절제술들과 같은 비인두 및 후두 시술들; 폴립 절제술들, 비중격 성형술들, 비중격 가시들의 제거들, 상악동 절개술들, 전두동 천공술 및 세척, 전두동 개방, 내시경 DCR, 비중격 만곡증들의 교정 및 경접형동 시술들과 같은 부비강 시술들; 융비술 및 얼굴의 상악골 및 하악골 영역들에서 지방 조직의 제거를 포함한 다른 외과적 수술들의 변형에 적합할 수 있다.
부비강 수술은 눈들 및 두뇌와 같은 감각 기관들에 대한 그것의 위치, 외과의가 관심을 갖는 구조(anatomy)의 비교적 작은 크기, 및 통상적인 시술들의 복잡도로 인해 도전적이다. 기계적 절단 구성요소들을 가진 변연절제기들의 예들은 미국 특허 번호 제5,685,838호; 제5,957,881호 및 6,293,957호에서 설명된다. 이들 디바이스들은 부비강 수술 동안 전동식 조직 절단 및 제거를 위해 특히 성공적이지만, 시술로부터 출혈의 양을 감소시키기 위해 조직을 봉합하기 위한 임의의 메커니즘을 포함하지 않는다. 봉합 조직은 복잡하며 정밀 지향 업무인 경향이 있는 부비강 수술 동안 특히 바람직하다.
봉합 조직을 위한 현재의 접근법들은 Transcollation® 기술을 이용하는 것을 포함하며, 여기에서 봉합 에너지는 수술 동안 및 그 후 출혈을 정지시키며 혈액 손실을 감소시키는, Aquamantys® 시스템(뉴햄프셔, 포츠머스의 Medtronic Advancd Energy로부터 이용 가능한)에 의해 공급된다. 기술은 연 조직 및 뼈의 지혈 봉합을 제공하기 위해 무선주파수(RF) 에너지 및 식염수의 조합을 사용하며, 이것은 수술 동안 또는 그 후 수혈 비율들을 낮추며 다른 혈액 관리 제품들에 대한 요구를 감소시킬 수 있다. Transcollation® 기술은 제어된 열 에너지를 조직으로 전달하기 위해 RF 에너지 및 식염수를 통합한다. 식염수 및 RF 에너지의 결합은 디바이스 온도가 다른 절제 방법들에서 발견된 연관된 탄화(charring) 없이 조직 효과를 생성하는 범위에 머무르도록 허용한다.
다른 절제 디바이스들은 소작술 또는 전기 소작술 에너지뿐만 아니라 기계적 절단을 포함한다. 예를 들면, PK diego® 전동식 해부 기구는 테네시, 바틀렛의 Gyrus ENT로부터 상업적으로 이용 가능하다. 이러한 디바이스는 서로에 대해 이동 가능한 두 개의 기계적 절단 블레이드 구성요소들을 이용하며, 그 중 하나는 양극성 소작술 시스템에서 전극으로서 동작한다. 소작술 및 절단을 제공하는 동안, 이러한 디바이스는 전기 에너지 전달 동안 유체의 전달 시 실효성을 제한한다.
외부 샤프트, 내부 샤프트, 제1 및 제2 전극 표면들, 및 세척 채널을 포함한 양극성 전기외과 디바이스. 상기 외부 샤프트는 중심축을 따라 연장된 내강, 근위 단부 및 상기 근위 단부의 맞은편에 있는 원위 단부를 한정한다. 상기 원위 단부는 내강으로 개방된 절단 윈도우를 형성한다. 상기 내부 샤프트는 중심축에 대해 상기 외부 샤프트의 내강 내에 회전 가능하게 배치된다. 상기 내부 샤프트는 절단 팁을 형성하는 원위 부분을 한정한다. 상기 절단 팁 및 상기 절단 윈도우는 절단 기구를 한정하기 위해 결합한다. 상기 제1 및 제2 전극 표면들은 서로로부터 전기적으로 분리되며, 절단 기구에서 형성된다. 상기 세척 채널은 외부 샤프트에 평행하게 연장되며, 적어도 하나의 출구 포트에서 끝난다. 상기 출구 포트는 절단 윈도우로부터 근위로 이격되며 상기 외부 샤프트의 방사상 바깥쪽에 위치된다. 이러한 구성을 갖고, 유체(예로서, 식염수)는 절단 윈도우 가까이에 있는 디바이스의 외부 표면에서 방출되며 상기 전극 표면들과 상호 작용하기 위해 손쉽게 존재하여, 예를 들면, 전극 표면들에서 양극성 통전을 촉진시킨다. 유체(예로서, 식염수)가 내부 및 외부 샤프트 사이에서 방출되는 종래의 전기 소작술 변연절제기 구성들과 대조적으로, 본 개시의 디바이스들을 갖고, 전달된 유체는 즉시 흡입되지 않는다.
도 1은 양극성 전기 디바이스를 포함한 시스템의 개략도이다.
도 2a는 하우징 부분이 제거된 도 1의 시스템의 양극성 전기 디바이스의 등각도이다.
도 2b는 도 1의 시스템의 양극성 전기 디바이스의 단면도이다.
도 3은 도 2a의 디바이스의 내부 샤프트 어셈블리 부분의 단면도이다.
도 4는 도 2a의 디바이스의 외부 샤프트 어셈블리 부분의 단면도이다.
도 5는 도 2a의 디바이스의 제1 및 제2 전극 어셈블리 부분들의 등각도이다.
도 6a는 도 2a의 디바이스의 제2 관형 부재의 일부분의 확대 투시도이다.
도 6b는 전기 절연체로 코팅된 도 6a의 제2 관형 부재의 확대 투시도이다.
도 7은 도 5의 제1 및 제2 전극 어셈블리들의 확대 투시도이다.
도 8은 세척 허브 및 연관된 세척 경로들을 포함한, 도 2a의 디바이스의 일부분의 단면도이다.
도 9는 도 2a의 디바이스의 부분들의 확대된, 단면도이다.
도 10은 도 2a의 라인(10-10)을 따라 취해진 양극성 전기 디바이스의 단면이다.
도 11a 및 도 11b는 각각, 제1 및 제2 특수 배향들에서 도 2a의 양극성 전기 디바이스의 원위 단부 영역의 등각도들이다.
도 12a 및 도 12b는 도 2a의 디바이스와 함께 유용한, 각각 제1 및 제2 회전식 전기 연결 어셈블리들의 평면도들이다.
도 13a는 본 개시의 원리들에 따른 또 다른 양극성 전기 외과 디바이스의 일부분의 투시도이다.
도 13b는 도 13a의 디바이스의 확대도이다.
도 14a는 도 13a의 디바이스의 일부분의 확대된, 세로 단면도이다.
도 14b는 도 13a의 디바이스의 확대된, 가로 단면도이다.
도 15는 도 13a의 디바이스의 확대된, 투시도이며, 유체의 전달을 예시한다.
도 16은 본 개시의 원리들에 따른 또 다른 양극성 전기 외과 디바이스의 일부분의 투시도이다.
도 17은 도 16의 디바이스의 일부분의 확대된, 세로 단면도이다.
도 18은 도 16의 디바이스의 일부분의 확대된, 투시도이며, 유체의 전달을 예시한다.
도 19a는 본 개시의 원리들에 따른 또 다른 양극성 전기 외과 디바이스의 일부분의 투시도이다.
도 19b는 도 19a의 디바이스의 일부분의 확대된, 투시도이다.
도 20a는 도 19a의 디바이스의 일부분의 확대된, 세로 단면도이다.
도 20b는 도 19a의 디바이스의 확대된, 가로 단면도이다.
도 21은 도 19a의 디바이스의 일부분의 확대된, 투시도이며, 유체의 전달을 예시한다.
도 22는 본 개시의 원리들에 따른 또 다른 양극성 전기 외과 디바이스의 일부분의 확대된, 투시도이다.
도 23a는 본 개시의 원리들에 따른 또 다른 양극성 전기 외과 디바이스의 일부분의 투시도이다.
도 23b는 도 23a의 디바이스의 일부분의 확대된, 투시도이다.
도 24a는 도 23a의 디바이스의 일부분의 확대된, 세로 단면도이다.
도 24b는 도 23a의 디바이스의 확대된, 가로 단면도이다.
도 25는 도 23a의 디바이스의 일부분의 확대된, 투시도이며, 유체의 전달을 예시한다.
도 26a는 본 개시의 원리들에 따른 또 다른 양극성 전기 외과 디바이스의 일부분의 투시도이다.
도 26b는 도 26a의 디바이스의 일부분의 확대된, 투시도이다.
도 26c는 도 26a의 디바이스의 확대된, 투시도이다.
도 27a는 도 26a의 디바이스의 일부분의 확대된, 세로 단면도이다.
도 27b는 도 26a의 디바이스의 확대된, 가로 단면도이다.
도 28은 도 26a의 디바이스의 전극 바디 구성요소의 확대된, 투시도이다.
도 29는 도 26a의 디바이스의 전기 아이솔레이터 구성요소에 조립된 도 28의 전극 바디의 확대된, 세로 단면도이다.
도 30은 도 26a의 디바이스의 일부분의 확대된, 투시도이며, 유체의 전달을 예시한다.
도 31a는 본 개시의 원리들에 따른 또 다른 양극성 전기 외과 디바이스의 일부분의 투시도이다.
도 31b는 도 31a의 디바이스의 일부분의 확대된, 투시도이다.
도 32a는 도 31a의 디바이스의 일부분의 확대된, 세로 단면도이다.
도 32b는 도 31a의 디바이스의 확대된, 가로 단면도이다.
도 33은 도 31a의 디바이스의 일부분의 확대된, 투시도이며, 유체의 전달을 예시한다.
도 34는 본 개시의 원리들에 따른 또 다른 양극성 전기 외과 디바이스의 일부분의 확대된, 투시도이다.
도 35는 본 개시의 원리들에 따른 또 다른 양극성 전기 외과 디바이스의 일부분의 확대된, 투시도이다.
도 36a는 도 35의 디바이스와 함께 유용한 전기 절연체 구성요소의 투시도이다.
도 36b는 도 36a의 전기 절연체의 확대된, 가로 단면도이다.
도 37a는 도 35의 디바이스의 일부분의 확대된, 세로 단면도이다.
도 37b는 도 35의 디바이스의 확대된, 가로 단면도이다.
도 38은 도 35의 디바이스의 일부분의 확대된, 투시도이며, 유체의 전달을 예시한다.
도 39a는 본 개시의 원리들에 따른 또 다른 양극성 전기 외과 디바이스의 일부분의 확대된, 투시도이다.
도 39b는 최종 조립 시 도 39a의 디바이스의 일부분의 확대된, 투시도이다.
도 40a는 도 39a의 디바이스의 일부분의 확대된, 세로 단면도이다.
도 40b는 도 39a의 디바이스의 확대된, 가로 단면도이다.
도 41은 도 39a의 디바이스의 일부분의 확대된, 투시도이며, 유체의 전달을 예시한다.
도 42a는 본 개시의 원리들에 따른 또 다른 양극성 전기 외과 디바이스의 일부분의 확대된, 투시도이다.
도 42b는 최종 조립 시 도 42a의 디바이스의 일부분의 확대된, 투시도이다.
도 43a는 도 42a의 디바이스의 일부분의 확대된, 세로 단면도이다.
도 43b는 도 42a의 디바이스의 확대된, 가로 단면도이다.
도 44는 도 42a의 디바이스의 일부분의 확대된, 투시도이며, 유체의 전달을 예시한다.
도 45a는 본 개시의 원리들에 따른 또 다른 양극성 전기 외과 디바이스의 일부분의 확대된, 상부 투시도이다.
도 45b는 도 45a의 디바이스의 하부 투시도이다.
도 45c는 도 45a의 디바이스의 일부분의 확대된 측면도이다.
도 45d는 도 45a의 디바이스의 확대된 정면도이다.
도 46a는 본 개시의 원리들에 따른 또 다른 양극성 전기 외과 디바이스의 일부분의 확대된, 상부 투시도이다.
도 46b는 도 46a의 디바이스의 하부 투시도이다.
도 46c는 도 46a의 디바이스의 일부분의 확대된 측면도이다.
도 46d는 도 46a의 디바이스의 확대된 정면도이다.
도 47a는 본 개시의 원리들에 따른 또 다른 양극성 전기 외과 디바이스의 일부분의 확대된, 상부 투시도이다.
도 47b는 도 47a의 디바이스의 하부 투시도이다.
도 47c는 도 47a의 디바이스의 일부분의 확대된 측면도이다.
도 47d는 도 47a의 디바이스의 확대된 정면도이다.
도 48a는 본 개시의 원리들에 따른 또 다른 양극성 전기 외과 디바이스의 일부분의 확대된, 상부 투시도이다.
도 48b는 도 48a의 디바이스의 일부분의 확대된 측면도이다.
도 48c는 도 48a의 디바이스의 확대된 정면도이다.
도 49a는 본 개시의 원리들에 따른 또 다른 양극성 전기 외과 디바이스의 일부분의 확대된, 상부 투시도이다.
도 49b는 도 49a의 디바이스의 일부분의 확대된 측면도이다.
도 49c는 도 49a의 디바이스의 확대된 정면도이다.
도 50a는 본 개시의 원리들에 따른 또 다른 양극성 전기 외과 디바이스의 일부분의 확대된, 상부 투시도이다.
도 50b는 도 50a의 디바이스의 하부 투시도이다.
도 50c는 도 50a의 디바이스의 일부분의 확대된 측면도이다.
도 50d는 도 50a의 디바이스의 확대된 정면도이다.
도 1은 일반적으로 112에서 표시된 근위 단부 영역 및 일반적으로 114에서 표시된 원위 단부 영역을 가진 양극성 전기 디바이스(110)를 포함하는 시스템(100)을 예시한다. 근위 단부 영역(112)은 버튼(122)을 유지하는 하우징(120)을 포함한다. 블레이드 어셈블리(124)는 하우징(120)으로부터 원위 단부 영역(114)으로 연장된다. 이하에서 보다 상세히 논의되는 바와 같이, 블레이드 어셈블리(124)는 각각, 조직을 기계적으로 절단하며 소작하거나 또는 전기 소작하기 위해 절단 기구 및 전극 어셈블리를 유지한다.
시스템(100)은 핸드피스(130), 전원(132), 유체원(134) 및 흡인원(136)을 추가로 포함한다. 전원(132), 유체원(134) 및 흡인원(136)은 원하는 대로 하나 이상의 별개의 소스들로 형성될 수 있으며 단일 소스에 제한되지 않는다는 것이 이해될 것이다. 디바이스(110)는 핸드피스(130)에 결합하도록 구성되며, 이것은 조직을 절단하며 소작하거나 또는 전기 소작하기 위해 시스템(100)의 동작 동안 사용자(예로서, 외과의)에 의해 조작될 수 있다. 일 실시예에서, 조직을 절단하기 위해, 핸드피스(130)는 전원(132)과 결합되는 핸드피스(130)의 내부에 있는 모터(도시되지 않음)를 포함한다. 모터는 기계적 절단을 제공하기 위해 블레이드 어셈블리(124)와 회전 결합된다. 핸드피스(130)는 하우징(120) 및 핸드피스(130)에 대하여 디바이스(110)의 하나 이상의 구성요소들의 수동 회전을 위해 사용될 수 있는 핸드피스(130)의 외부에 있는 작동기(138)를 추가로 포함한다.
전원(132)은 추가로 블레이드 어셈블리(124)를 통해 원위 영역(114)으로 전기 에너지를 전달하기 위해 디바이스(110)와 결합될 수 있다. 예를 들면, 전원(132)은 발생기를 포함할 수 있으며 선택적으로 양극성 에너지 또는 양극성 에너지 공급과 함께 사용하기 위해 설계될 수 있다. 예를 들면, Aquamantys® 시스템에 의해 공급된 Transcollation® 봉합 에너지(뉴햄프셔, 포츠머스의 Medtronic Advanced Energy로부터 이용 가능한)가 사용될 수 있다.
유체는 디바이스(110)로 직접 및/또는 핸드피스(130)를 통해 디바이스(110)로 연결된 유체원(134)을 통해 원위 영역(114)에 제공될 수 있다. 본 개시에 유용한 하나의 유체는 식염수지만, 다른 유체들이 고려된다. 흡인원(136)은 핸드피스(130)에 결합될 수 있다. 에너지 전달과 함께 유체의 사용은 최적의 조직 효과를 제공하도록 도우며, 따라서 본 개시의 실시예들은 유체와 에너지의 결합을 위해 디바이스(110)의 특정 배열을 포함한다. 사용 시, 유체(예로서, 식염수)는 디바이스(110)의 원위 단부 영역(114)에서 또는 그것에 인접한 하나 이상의 개구(들)로부터 방출될 수 있다. 조직 일부들 및 유체들은, 이하에서 추가로 설명될 바와 같이, 흡인원(136)을 경유하여 원위 단부 영역(114)에서의 개구를 통해 수술 부위로부터 제거될 수 있다. 유체원(134) 및 흡인원(136) 양쪽 모두는 시스템(100)의 선택적 구성요소들이다.
도 2a 및 도 2b를 추가로 참조하면, 하우징(120)이 제거된 디바이스(110)의 등각도(도 2a) 및 디바이스(110)의 단면(도 2b)이 제공된다. 디바이스(110)의 동작에 대한 세부사항들이 이하에서 제공된다. 일반적으로, 디바이스(110), 및 특히 블레이드 어셈블리(124)는 중심 회전 축(A)에 대해 외부 샤프트 어셈블리(152)(일반적으로 도 2b에서 참조된) 내에 회전 가능하게 배치된 내부 샤프트 어셈블리(150)를 포함한다. 최종 조립 시, 디바이스(110)는 내부 샤프트 어셈블리(150) 및 외부 샤프트 어셈블리(152) 사이에서의 회전으로 인한 기계적 절단을 제공하기 위해 핸드피스(130)(도 1)를 갖고 동작 가능하다. 내부 샤프트 어셈블리(150) 및 외부 샤프트 어셈블리(152)의 추가 세부사항들은 각각, 도 3 및 도 4에 관하여 이하에서 제공된다. 기계적 절단 외에, 디바이스(110)는 도 5에 관하여 이하에서 추가로 설명되는, 버튼(122)의 동작으로 인해, 또는 그것에 응답하여, 제1 전극 어셈블리(160) 및 제2 전극 어셈블리(162)를 통해 조직으로 에너지를 제공하도록 동작 가능하다. 또한 동작 동안, 디바이스(110)는, 도 6 및 도 7의 비-제한적 실시예들에 관하여 이하에서 논의되는 바와 같이, 예를 들면 외부 샤프트 어셈블리(152)의 내부에 있으며 및/또는 외부 샤프트 어셈블리(152)의 외부에 있는, 원위 단부 영역(114)에 세척을 제공할 수 있다. 게다가, 도 8a 및 도 8b에 관하여 추가로 논의되는 바와 같이, 사용자는, 작동기(138)(도 1)의 동작을 통해, 관심 조직에 관하여 외부 샤프트 어셈블리(152)의 배향을 변경하도록 하우징(120) 및/또는 내부 샤프트 어셈블리(150)에 관하여 외부 샤프트 어셈블리(152)를 회전시킬 수 있다.
도 3의 단면을 추가로 참조하면, 내부 샤프트 어셈블리(150)는 내강(172) 및 절단 팁(174)을 한정하는 제1 관형 부재(또한 내부 샤프트 또는 내부 블레이드로서 불리울 수 있는)(170)를 포함한다. 일 실시예에서, 절단 팁(174)은 내강(172)에 유체 연결되는 개구(178)(일반적으로 도 3에서 언급된)를 둘러싸는 치들(teeth)을 포함한 톱니형 에지(176)를 한정한다. 대안적으로, 절단 팁(174)은 다양한 다른 형태들을 띨 수 있다. 일 실시예에서, 제1 관형 부재(170)는 304 스테인리스 스틸과 같은, 단단한 재료로 형성되며, 종방향 신장에서 선형적이다. 대안적으로, 제1 관형 부재(170)는, 가요성 결합(도시되지 않음)에 의해서와 같은, 그것의 휨을 유발하도록 구성될 수 있다. 제1 관형 부재(170)에 결합된 허브(180)는 핸드피스(130)(도 1)의 모터로의 연결을 위해 적응된다. 모터는 내부 샤프트 어셈블리(150)에 회전력을 제공한다. 내부 샤프트 어셈블리(150)는 허브(180) 내에 배치된 바이어싱 부재(182)를 추가로 포함한다. 최종 조립 시, 바이어싱 부재(182)는 외부 샤프트 어셈블리(152)와 접촉하는 절단 팁(174)을 바이어싱한다. 캡(184)은 허브(180) 내에 바이어싱 부재(182)를 유지하며 또한 흡인원(136)(도 1)으로의 유체 봉합부를 생성한다. 일 실시예에서, 내강(172)은 절단 팁(174)에 의해 절단되는 조직의 흡입을 제공하기 위해 흡인원(136)과 유체 결합된다. 제1 관형 부재(170)는 일반적으로 도 3에서 186에서 표시된 바와 같이, 접착제에 의해 허브(180)에 선택적으로 고정된다.
도 4의 단면에 예시된 바와 같이, 외부 샤프트 어셈블리(152)는 내강(192) 및 절단 윈도우(194)를 한정하는 제2 관형 부재(또한 외부 샤프트 또는 외부 블레이드로서 불리울 수 있는)를 포함한다. 절단 윈도우(194)는, 일 실시예에서, 톱니형 에지(196)에 의해 한정된다. 일 실시예에서, 제2 관형 부재(190)는 단단하며 세로 방향으로 직선 또는 선형이며 304 스테인리스 스틸에 의해 형성된다. 대안적인 실시예들에서, 제2 관형 부재(190)는 하나 이상의 만곡부들을 통합하거나, 또는 이를 띠도록 강요될 수 있다. 여하튼, 제2 관형 부재(190), 및 특히 내강(192)은 회전 축(A)(도 2b)에 대해 제2 관형 부재(220)에 관하여 제1 관형 부재(170)의 회전 및/또는 진동을 허용하는 방식으로 제1 관형 부재(170)를 동축으로 수용하도록, 및 선택적으로 내부 세척을 위한 경로를 제공하도록 사이징된다. 이를 위해, 제2 관형 부재(190)의 내강(192)은 제1 관형 부재(170)의 대응하는 부분의 외부 직경보다 약간 더 큰 직경을 가지며, 몇몇 실시예들에서 내강(192)에 유체 연결된 세척 입구(198)를 한정한다.
허브 어셈블리(200)는 외부 샤프트 어셈블리(152)를 제공받으며 제1, 근위 허브 부재(202) 및 제2, 원위 허브 부재(204)를 포함한다. 제1 허브 부재(202) 및 제2 허브 부재(204)를 포함한, 허브 어셈블리(200)는 함께 회전하도록 고정된 방식으로 제2 관형 부재(190)에 연결된다. 이와 같이, 허브 어셈블리(200)의 회전은 절단 윈도우(194)의 회전을 야기한다. 허브 어셈블리(200)는, 하우징(120)(도 1) 및 내부 샤프트 어셈블리(150)에 대해, 외부 샤프트 어셈블리(152), 및 그에 따라 절단 윈도우(194)를 회전시키기 위해 작동기(138)(도 1)로의 연결을 위해 적응된다. 특히, 제1 허브 부재(202)는 제1 허브 부재(202) 및, 허브 어셈블리(200) 및 제2 관형 부재(190) 사이에서의 그것과의 고정된 결합으로 인해, 절단 윈도우(194)의 회전을 유발하기 위해 작동기(138)의 보완 구동 부재(예로서, 기어)와 직접 결합하는 맞물림 부재(206)(예로서, 기어 치들)를 포함할 수 있다. 복수의 o-링들(208)은 이하에서 논의되는 바와 같이, 제1 허브 부재(202)를 위한 봉합부들을 제공하기 위해 제1 허브 부재(202)에 결합된다. 또한, 캡(210)은 외부 샤프트 어셈블리(152)의 근위 단부에서 제공된다.
도 2a 및 도 2b로 가면, 디바이스(110)는 전원(132)(도 1)과 전기적으로 연결된 배선(220)을 추가로 포함한다. 배선(220)은 버튼(122)의 동작 시 배선(220) 및 인쇄 회로 보드(PCB)(224) 사이에서의 전기 에너지의 흐름을 제어하는 버튼 활성화 어셈블리(222)로 연장된다. PCB(224)는 제1 및 제2 전극 어셈블리들(160 및 162)과 결합된다. 전극 어셈블리들(160 및 162)은 원위 영역(114)에 근접하여 위치된 조직으로의 양극성 전기 에너지 전달을 제공하기 위해 서로로부터 전기적으로 분리된다.
도 5에 예시된 바와 같이, 제1 전극 어셈블리(160)는 제2 허브 부재(204)에 의해 유지된 제1 회전식 전기 연결 어셈블리(230), 제2 관형 부재(190)(제1 가늘고 긴 전극 바디를 형성하거나 또는 그것으로서 작용하는) 및 원위 단부 영역(114)에 위치된 제1 전극(232)을 포함한다. 몇몇 실시예들에서, 제1 전극(232)은 제2 관형 부재(190)의 노출 영역 또는 표면적으로서 한정된다. 예를 들면, 제2 관형 부재(190)는 스테인리스 스틸(또는 다른 전기적으로 전도성 금속 또는 재료)로 형성될 수 있다는 것이 상기될 것이다. 제2 관형 부재(190)의 외부 표면의 부분들은 전기 절연체 재료(234)로 코팅되거나 또는 커버될 수 있고; 일반적으로 도 5에 의해 반영된 바와 같이, 제2 관형 부재(190)의 근위 영역은 전기 절연체(234)에 의해 커버되지 않으며 따라서 제1 회전식 전기 연결 어셈블리(230)와 전기적으로 결합된다. 도 6a는 전기 절연체(234)의 도포 이전에 제2 관형 부재(190)의 원위 영역을 예시한다. 이러한 동일한 영역은 전기 절연체(234)의 도포를 따르는 도 6b의 도면에 도시된다. 도 6b에서 가장 잘 보여지는 바와 같이, 제2 관형 부재(190)의 외부 표면의 일부분은 노출되거나 또는 그 외 전기 절연체에 의해 커버되지 않으며, 따라서, 제1 전극 또는 전극 표면(232)으로서 작용한다.
도 5로 가면, 유사한 방식으로, 제2 전극 어셈블리(162)는 제2 허브 부재(204)에 의해 유지된 제2 회전식 전기 연결 어셈블리(240), 제2 가늘고 긴 전극 바디(또는 캡)(242) 및 원위 단부 영역(114)에 위치된 제2 전극(244)을 포함한다. 기준 포인트로서, 도 7은 제2 관형 부재(190)(상기 설명된 바와 같이 그 외 전기 절연체(234)로 코팅되는)를 제외한 제2 전극 바디(242)를 예시한다. 제2 전극 바디(242)는 전기적 전도성 금속으로 형성되며, 일반적으로 코팅된 제2 관형 부재(190)를 수용하도록 사이징되고 성형된 골(trough)(246)을 형성한다. 컵 섹션(248)은 제2 전극 바디(242)의 원위 단부에서 골(246)에 의해 형성된다. 최종 조립 시, 제2 전극 바디(242)는 제2 회전식 전기 연결 어셈블리(240)에 전기적으로 연결되며(제2 관형 부재(190)가 제1 전극 바디로서 작용하며 제1 회전식 전기 연결 어셈블리(230)에 전기적으로 연결된다는 것이 상기된다), 전기 절연체(234)에 의해 제2 관형 부재/제1 전극 바디(190)로부터 전기적으로 분리된다. 도 5로 가면, 절연층(250)은 제2 전극 바디(242)의 외부 표면의 부분들 주위에 도포되며 그것을 커버한다(예로서, 절연층(250)은 코팅된 제2 관형 부재(190)에 제2 전극 바디(242)를 결합하는 열 수축형 재료일 수 있다). 제2 전극 바디(242)의 외부 표면의 일부분은 노출되거나 또는 그 외 절연층(250)에 의해 커버되지 않으며, 따라서 제2 전극 또는 전극 표면(244)으로서 작용한다.
제1 및 제2 전극들 또는 전극 표면들(232, 244)은 서로 전기적으로 분리되며(예로서, 전기 절연체(234)에 의해) 양극성 전극들을 포함할 수 있다. 전극들(232, 244)은 습식 또는 건식 전극들을 포함하거나 또는 그것으로서 동작할 수 있다. 전극들(232, 244)은 조직의 응고, 지혈 또는 봉합의 목적들로 임의의 적절한 에너지를 전달하기 위해 사용될 수 있다. 상기 설명된 바와 같이, 전극들(232, 244)은 조직으로의 에너지 전달을 제공하기 위해 이격될 수 있다. 전기 절연체(234)는 제2 전극 바디(242)로부터 제2 관형 부재(190)를 전기적으로 분리시키기 위해 제2 관형 부재(190)에 도포된다. 또한, 절연층(250)(예로서, 열 수축 프로세스로부터 또는 그것을 통해 형성된)은 제2 전극 바디(242) 주위에 도포될 수 있다.
도 2a, 도 2b 및 도 8을 참조하면, 전극들(232, 244)은 원위 단부 영역(114)에서 또는 그것에 인접하여 방출될 수 있는 유체원(134)(도 1)에 의해 제공된 식염수와 같은 유체를 갖고 특히 유용하다. 원위 단부 영역(114)으로의 유체 전달을 제공하기 위해, 몇몇 선택적 실시예들에서, 디바이스(110)는 세척 허브 또는 칼라(260)를 포함한다. 도 2a에서 가장 잘 보여지는 바와 같이, 세척 칼라(260)는 제1 유체 커넥터(262) 및 제2 유체 커넥터(264)를 포함한다.
제1 유체 커넥터(262)는 도 8에서 가장 명확하게 보여지는 바와 같이 제1 허브 부재(202)에 형성된 제1 환상형 채널(266)과 유체 결합된다. 제1 환상형 채널(266)은 제2 관형 부재(190)의 세척 입구(198)와 유체 결합되며, 따라서 제2 관형 부재(190)의 내강(192) 및 절단 윈도우(194)로 유체 개방된다. 세척 입구(198)에 들어가는 유체는 제1 관형 부재(170) 및 제2 관형 부재(190) 사이에서의 내강(192) 내에 운반된다(몇몇 실시예들에서, 제1 관형 부재(170)의 외부 직경은 제2 관형 부재(190)의 내강(192)의 직경보다 약간 더 작아서, 그것을 따라 세척 입구(198)에 들어가는 유체가 흐를 수 있는 제1 및 제2 관형 부재들(170, 190) 사이에 갭 또는 간격을 생성한다는 것이 상기된다). 내강(192) 내에 운반된 유체는 절단 윈도우(194)에서 토출된다.
제2 유체 커넥터(264)는 제1 허브 부재(202)에 형성된 제2 환상형 채널(268)과 유체 결합된다. 제2 환상형 채널(268)은 세척 채널(272)과 유체 결합되는 경로(270)를 포함하거나 또는 이를 형성한다. 세척 채널(272)은 제2 허브 부재(204) 내에서 제1 허브 부재(202)로부터 및 그 후 중심축(A)에 대체로 평행한 배향에서 원위로 연장된다. 세척 채널(272)은, 제1 허브 부재(202)에서 세척 채널(272) 및 제2 환상형 채널(268) 사이에서의 유체 결합일 수 있는 바와 같이, 다양한 방식들로 생성될 수 있다. 예를 들면, 도 9는 제1 허브 부재(202)에 장착된 제2 관형 부재(190)(전기 절연체(234)로 코팅된)를 포함한, 디바이스(110)의 일부분을 예시한다(즉, 이해의 용이함을 위해, 제2 허브 부재(204)(도 2b), 제1 관형 부재(170)(도 2b) 및 제2 전극 바디(242)(도 8)가 도 9의 도면으로부터 생략된다). 세척 채널(272)은, 몇몇 실시예들에서, 관형 피팅(276)에 의해 통로(270)에 유체 결합되는 세척 튜브(274)를 포함하거나 또는 그것에 의해 한정될 수 있다. 관형 피팅(276)은 통로(270)로 프레스 피팅되거나 또는 그 외 그것에 결합될 수 있다. 세척 튜브(274)는 피팅(276)으로 조립되며 제2 관형 부재(190)의 외부에서 원위로 연장된다(예로서, 세척 튜브(274)는 이하에서 설명되는 바와 같이 제2 관형 부재(190) 및 제2 전극 바디(242) 사이에 위치될 수 있다). 세척 튜브(274)는 다양한 금속들 및/또는 고분자들을 포함한 다양한 재료들로 형성될 수 있다. 예들로서, 튜브(274)는 스테인리스 스틸, 폴리이미드, 폴리에테르 블록 아미드 또는 폴리아미드로 형성될 수 있다. 세척 채널(272)은 이하에서 설명되는 바와 같이 세척 튜브(274)를 포함하거나 또는 포함하지 않을 수 있는 다수의 다른 방식들로 형성될 수 있다. 도 8로 가면, 세척 채널(272)은 제1 허브 부재(202)로부터 전극들(232, 244)의 근위의 출구 단부(278)로 연장된다. 세척 채널(272)은 제2 관형 부재(190) 및 제2 전극 바디(242) 사이에 위치되며, 제2 관형 부재(190) 및 제2 전극 바디(242)로부터 유체 분리된 출구 단부(278)로 연장된다. 세척 채널(272)(예로서, 세척 튜브(274)(도 9))은 중심축(A)에 대해 제2 허브 부재(204)의 회전이 중심축(A)에 대해 세척 채널(272)의 회전을 야기하도록 제2 허브 부재(204)에 결합된다.
O-링들(206)은 제1 유체 커넥터(262)(도 2a)로부터 제1 환상형 채널(266)에 들어가는 유체가 제1 환상형 채널(266)의 어느 한 측면 상에서 밀봉되도록 제1 허브 부재(202) 내에 유체 밀봉부들을 제공한다. 마찬가지로, 제2 유체 커넥터(264)(도 2a)로부터 제2 환상형 채널(268)에 들어가는 유체는 제2 환상형 채널(268)의 어느 한 측면 상에서 밀봉된다.
도 10은 도 2a에서 라인(10-10)을 따르는 디바이스(110)의 단면을 예시한다. 예시된 바와 같이, 선택적 세척 튜브(274)는 세척 채널(272)을 한정할 때 단면이 타원형이지만, 또한 다른 단면 형태들(예로서, 원)로 형성될 수 있다. 제2 전극 바디(242)는 세척 튜브(274)의 어느 한 측면 상에서의 전기 절연체(234)와 인접한, 중심축(A)에 수직인 평면에 대하여 단면이 U-형이다. 특히, 제2 전극 바디(242)는 골(246)을 한정하는 아치형 형태를 갖는다. 골(246)은 제2 전극 바디(242)가 제2 관형 부재(190)의 바깥 원주를 부분적으로 둘러싸도록 그 안에서 제2 관형 부재(190)(전기 절연체(234)로 코팅되거나 또는 그것에 의해 커버된)를 동축으로 수용하도록 사이징된다. 이를 위해, 골(246)의 제1 반경(R1)은 그것 상에 전기 절연체(234)를 갖는 제2 관형 부재(190)의 바깥 원주를 수용하도록 사이징된다. 골(246)은 세척 튜브(274)가 제2 관형 부재(190) 및 제2 전극 바디(242) 사이에 위치되도록 허용하기 위해, 제1 반경(R1)보다 큰, 제2 반경(R2)을 한정할 수 있다. 제1 관형 부재(170)는 제1 관형 부재(170)의 외부 직경이 제2 관형 부재(190)의 내부 직경보다 약간 더 작을 수 있음을 반영한 도 10을 갖고, 제2 관형 부재(190) 내에 동축으로 배치된다. 마지막으로, 절연층(250)은 제2 전극 바디(242)를 전기적으로 절연하며 열 수축 애플리케이션에 의해서와 같은, 제2 관형 부재(190)(전기 절연체(234)에 의해 커버된 바와 같이)에 대해 제2 전극 바디(242)를 유지하도록 작용한다.
도 11a 및 도 11b에 예시된 바와 같이, 제2 관형 부재(190)의 배향은, 골(246)(도 10)에서 유지될 때, 제2 관형 부재(190)의 절단 윈도우(194)가 제2 전극 바디(242)의 맞은편(또는 그것으로부터 떨어진) 방향으로 향하도록 한다. 이러한 방식으로, 절단 윈도우(194)의 톱니형 에지(196)는, 골(246) 내에서의 제2 관형 부재(190)의 최종 조립 시, 도시된 바와 같이, 완전히 노출된다.
몇몇 실시예들에서, 및 마찬가지로 도시된 바와 같이, 제2 전극 바디(242)의 원위 컵(248)(일반적으로, 도 8에서 가장 잘 도시되어 언급된)은 그 외 제2 관형 부재(190) 및 제2 전극 바디(242) 사이에 위치되는 세척 채널(272)(도 11a 및 도 11b에서 숨겨지지만, 예를 들면 도 10에 도시된)과 유체 결합된다. 원위 컵(248)은 세척 채널(272)의 출구 단부(278)(일반적으로 도 11a에서 식별되며, 도 8에서 보다 상세히 도시된)로부터 도 11a에 묘사된 바와 같은 제2 관형 부재(190)의 원위 단부 및 원위 컵(248) 사이에 위치된 유체 출구(280) 밖으로 유체(F)를 향하게 하도록 구성된다. 이러한 구성에서, 유체 출구(280)는 유리하게는 조직(T)으로 전달된 전기 에너지 및 유체(F)의 결합을 제공하기 위해 양극성 전극 표면들(232, 244) 사이에 및 그것에 바로 인접하여 위치된다. 뿐만 아니라, 세척 채널(272)의 출구 단부(278)는 전극 표면들(232, 244)로부터 근위로 이격되며 제2 관형 부재(190)의 방사상 바깥쪽에 있다.
동작 동안, 및 도 1, 도 2a 및 도 2b를 추가로 참조하면, 디바이스(110)는 핸드피스(130)에서의 개구(도시되지 않음)로 근위 단부 영역(112)을 삽입함으로써 핸드피스(130)에 결합된다. 특히, 내부 샤프트 어셈블리(150)의 허브(180)는 개구로 삽입되며 핸드피스(130)의 모터(도시되지 않음)와의 결합을 위해 근위 맞물림 부재(290)(예로서, 도 2a에 예시된 탭들을 포함한)를 포함할 수 있다. 핸드피스(130)로의 디바이스(110)의 삽입 시, 작동기(138)는 제1 허브 부재(202)의 맞물림 부재(206)에 연결되거나 또는 그것과 맞물린다. 일 실시예에서, 세척 허브 또는 칼라(260)(또는 디바이스(110)의 다른 구성요소)는 핸드피스(130)에 대하여 하우징(120)을 지향하게 하는 하나 이상의 정렬 탭들(292)을 포함할 수 있다. 하나의 특정한 실시예에서, 탭들(282)은 디바이스(110) 및 핸드피스(130) 사이에서의 결합이 작동기(138)의 회전 축에 수직하여 버튼(122)을 지향시키도록 배열된다. 도 1에 예시된 실시예에서, 오른손잡이 사용자는 그들의 우측 집게 손가락을 통해 버튼(122) 및 작동기(138)로의 액세스를 가질 것이다. 유사한 방식으로, 디바이스(110)는 버튼(122)이 도 1에 예시된 것과 반대 반향을 향하도록 핸드피스(130)로의 삽입 이전에 180도 회전될 수 있다. 이러한 배향에서, 왼손잡이 사용자는 그들의 좌측 집게 손가락을 통해 버튼(122) 및 작동기(138)로의 액세스를 가질 것이다. 핸드피스(130)와의 최종 연결 시, 디바이스(110)는 두 개의 모드들을 포함할 수 있다: 절단 또는 변연절제 모드 및 봉합 또는 지혈 모드. 이들 두 개의 모드들은 추가로 상호 배타적일 수 있다. 대안적인 실시예에서, 두 개의 모드들은 동시에 수행될 수 있다.
도 11a 및 도 11b에 예시된 바와 같이, 제1 관형 부재(170)에 의해 제공된 절단 팁(174)은 조직 부위(T)에 대해 절단 윈도우(194)에서 선택적으로 노출된다. 최종 조립 시, 절단 팁(174)은 조직을 기계적으로 절단하기 위해(예로서, 도 1의 전원(132)과 결합된 핸드피스(130) 내에 포함된 모터에 의해 구동된 바와 같이) 진동 또는 회전(또는 양쪽 모두) 시 서로에 대해 회전 가능한 두 개의 구성요소들과 함께 절단 윈도우(194)에 위치된다. 절단 팁(174) 및 절단 윈도우(194)는 절단 기구(300)를 한정하기 위해 결합한다. 지혈은 전극들(232, 244)로 전달된 에너지를 통해 조직(T)으로의 에너지 전달을 통해 달성된다. 일 실시예에서, 지혈은 절단 기구(300)가 활성이 아니거나 또는 절단하지 않는 동안 전달된다. 일 실시예에서, 에너지는 유리하게는 조직으로 제어된 열 에너지를 전달함으로써 최적의 조직 효과를 달성하기 위해 식염수와 같은 유체와 동시에 전달될 수 있다.
설명으로서, 도 11a는 그에 의해 절단 팁(174)이 절단 윈도우(194)를 통해 및 조직 부위(T)로부터 멀리 노출되는 위치로 회전된 제1 관형 부재(170)를 예시한다. 도 11b에 예시된 바와 같이 제1 관형 부재(170)에 대해 제2 관형 부재(190)의 부분 회전 또는 그 반대로의 회전 시, 절단 팁(174) 이하가 절단 윈도우(194)에서 노출되며 절단 윈도우(194)의 배향은 조직 부위(T)에 근접한다. 몇몇 위치들에서, 제2 관형 부재(190) 및 제2 전극 바디(242)는 제1 관형 부재(170)의 중심 내강(172)(도 3에서 가장 잘 보여지는)이 절단 윈도우(194)에 대해 밀폐되도록 회전된다. 여하튼, 제2 관형 부재(190) 및 제2 전극 바디(242)는 작동기(138)(도 1)의 동작을 통해 완전한 360도에서 어느 하나의 방향으로 제1 관형 부재(170)에 대하여 동시에 회전 가능하다. 이와 같이, 작동기(138)의 동작은 관심 조직 부위(T)를 향하도록 원하는 대로 어느 하나의 방향으로 제2 관형 부재(190) 및 제2 전극 바디(242)를 도 11b로부터 도 11A의 위치로 회전시킬 수 있다.
여기에서 설명된 외과용 절단 기구들에 의해 가능해진 특정 외과 기술들은 상기 논의된 특징들과 관련되어 행해질 수 있다. 사용 동안, 사용자(도시되지 않음)의 손(도시되지 않음)은 핸드피스(130)(도 1)를 움켜잡기 위해 이용된다. 이것과 관련하여, 및 일 실시예에서, 핸드피스(130)는 핸드피스(130)를 움켜잡음으로써와 같은, 사용자의 손 내에 인체공학적으로 맞도록 적응된 외부 윤곽을 형성한다. 여하튼, 사용자는 그 후 절단 기구(300)를 배치하여, 타겟 부위(T)로 절단 기구(300)를 배치하기 위해 핸드피스(130)를 조작한다. 타겟 부위(T)로의 초기 배치에 이어서, 절단 윈도우(194)는 타겟 부위(T)에 대하여 절단 윈도우(194)의 배향에 의해 표시된 바와 같이 타겟 부위(T)에 대하여 제1 공간 배향을 갖는다. 보다 특히, 도 11a의 배향을 갖고, 절단 윈도우(194)는 절단 팁(174)을 노출시킨다. 뿐만 아니라, 핸드피스(130)는, 사용자의 손바닥 내에 위치된 핸드피스(130)를 갖고, 사용자의 손에 의해 자연스럽게 움켜쥘 때 도 1에 예시된 바와 같이 직립 배향을 한정하는 것으로 일반적으로 설명될 수 있으며, 따라서 작동기(138)는 사용자의 엄지 또는 집게 손가락(도시되지 않음)에 인접한다. 또한, 버튼(122)은 사용자가 절단 윈도우(194)의 공간 배향을 제어하며 버튼(122)의 동작을 통해 RF 에너지를 전달함으로써 앞뒤로 쉽게 스위칭할 수 있도록 작동기(138)에 매우 근접할 수 있다.
예시적인 외과적 수술은 그 후 절단 윈도우(194)에 바로 면하거나 또는 인접하지 않은 방향으로 조직(T)의 지혈 및/또는 조직의 제거를 요구할 수 있다. 도 11a의 배향에서, 절단 윈도우(194)는 조직 부위(T)로부터 떨어져 있어서, 절단 팁(174) 또는 전극들(232, 244)이 조직(T)과 상호 작용하도록 허용하기 위해 절단 윈도우(194)의 움직임을 요구한다. 절단 윈도우(224)의 공간 배향의 변경을 성취하기 위해, 및 도 1 및 도 2b를 추가로 참조하여, 사용자(도시되지 않음)는 원하는 방향으로 작동기(138)를 회전시킨다. 특히, 그 외 핸드피스(130)를 움켜잡고 있는 손의 사용자의 엄지(도시되지 않음) 및/또는 집게 손가락(도시되지 않음)이 작동기(138)를 회전시키기 위해 사용된다. 작동기(138)의 회전은 제1 허브 부재(202)로 이전된다. 제1 허브 부재(202)의 회전은, 결과적으로, 제2 관형 부재(190), 및 그에 따라 절단 윈도우(224)가 조직 부위(T), 하우징(120), 절단 팁(208) 및 핸드피스(130)에 대해 회전하게 한다. 작동기(138)의 회전은 절단 윈도우(194)가 도 11b에 도시된 제2 공간 배향을 취할 때까지 계속된다. 특히, 핸드피스(130)의 회전 배향은 도 11a의 공간 배향으로부터 도 11b의 공간 배향 또는 조직 부위(T)를 향하기 위해 중심축(A)에 대한 임의의 다른 배향으로 절단 윈도우(194)를 이전시킬 때 변할 필요가 없다. 즉, 절단 윈도우(194)는 축(A)에 대해 임의의 방향을 향하도록 회전될 수 있다.
도 11a의 공간 배향으로부터 도 11의 공간 배향(또는 중심축(A)에 대해 완전한 360도 회전 전체에 걸친 원하는 대로의 다른 배향)으로의 절단 윈도우(194)의 전이는, 일 실시예에서, 사용자의 단지 하나의 손만을 갖고 성취된다. 디바이스(110)는 절단 윈도우(194)가 그 외 두 개의 별개의 위치들에서 핸드피스(130)를 움켜잡으며 비틀림 또는 토크-발생 모션을 인가하도록 사용자의 양 손들 모두에 요구하지 않고 핸드피스(130)에 대해 공간적으로 회전될 수 있도록 구성된다. 일 실시예에서, 한 손을 사용한 절단 윈도우 회전은 작동기(138)의 움직임 축이 제1 허브 부재(202)의 주 축과 동축인, 중심축(A)으로부터 오프셋되도록 작동기(138)를 구성함으로써 성취된다. 즉, 작동기(138)는 제1 허브 부재(202)의 중심축(A)과 동축이 아닌 축 또는 평면에 대해 이동(예로서, 회전)하며; 대신에, 작동기(138)의 움직임은 중심축(A)에 대해 제1 허브 부재(202)의 회전으로 이전된다. 일 실시예에서, 작동기(138)의 중심축은 중심축(A)에 수직이다. 이러한 접근법에 의해, 그 후, 작동기(138)는 한 손 동작을 촉진시키기 위해 핸드피스(130)에 대해 임의의 원하는 위치에 위치될 수 있다.
지혈 모드에서 전기 에너지의 전달 동안, 몇몇 실시예들에서 유체는 절단 윈도우(194), 유체 출구(280), 또는 양쪽 모두를 통해 원위 단부 영역(114)에 제공될 수 있다. 원위 단부 영역(114)으로 전달된 유체는 전극들(232, 244)과 상호 작용한다. 이러한 방식으로, 전극들(232, 244)은 유리하게는 Medtronic, Inc의 Advanced Energy Dvision으로부터 이용 가능한, Aquamantys 시스템에 의해 공급된 Transcollation® 봉합 에너지와 함께 사용될 때 조직의 Transcollation® 봉합을 제공할 수 있다. "습식" RF 응고 기술에 대하여, 미국 특허 번호들, 제6,558,385호; 제6,702,810호, 제6,953,461호; 제7,115,139호, 제7,311,708호; 제7,537,595호; 제7,645,277호; 제7,811,282호; 제7,998,140호; 제8,048,070호; 제8,083,736호; 및 제8,361,068호(그 각각의 전체 내용은 참조로서 통합된다)에서 설명된 봉합 조직을 위한 기술은 디바이스(110)와 함께 사용하기에 적합한 것으로 믿어지는 양극성 응고 시스템들을 설명한다. 에너지의 소스를 제공하기 위한 다른 시스템들이 또한 고려된다.
도 12a 및 도 12b는 각각 예시적인 회전식 전기 연결 어셈블리들(310 및 312)을 예시하며, 이것은 디바이스(110)(도 1)가 원위 영역(114)(도 1)으로 전기 에너지를 여전히 제공하면서 하우징(130)(도 1)에 대하여 절단 윈도우(194)(도 11a)의 360도 회전을 제공하도록 허용한다. 어셈블리들(310, 312) 중 어느 하나가 도 5에 대하여 상기 논의된 회전식 전기 연결 어셈블리들(160, 162)로서 사용될 수 있다. 도 12a에 예시된 제1 어셈블리(310)를 참조하면, 어셈블리(310)는 외부, 고정 커넥터(320) 및 내부, 회전 커넥터(322)를 포함한다. 내부 커넥터(322)는 그것과 함께 회전하기 위해 제2 허브 부재(204)(도 4)에 연결되는 반면(예로서, 프레스-피트 부착), 외부 커넥터(320)는 중심축(A)에 대해 제2 허브 부재(204)의 회전 시 고정되어 유지된다. 외부 커넥터(320) 및 내부 커넥터(322)는 황동과 같은, 적절한 전기 전도성 속성들을 보여주는 재료로 형성될 수 있다. 외부 고정 커넥터(320)는, 일 실시예에서, 신장부(324), 신장부(324)와 결합된 브리지(326) 및 브리지(326)의 맞은편 측면들로부터 연장된 반대 아치형 암들(328)을 포함하는 단일 몸체이다. 신장부(324)는 PCB(224)(도 2b)에 연결하도록 구성된다. 신장부(324)에 제공된 전기 에너지는 브리지(326)에 의해 암들(328)의 각각으로 운반된다.
암들(328)은 내부 커넥터(322), 특히 내부 커넥터(322)의 외부, 제1 표면(332)과 접촉하는 내부 맞물림 표면(330)을 한정한다. 내부 커넥터(322)의 내부, 제2 표면(334)은 맞은편 제1 표면(332)이다. 내부 신장 부재(336)(일반적으로 언급된)는 디바이스(110)(도 1)의 별개의 구성요소와 연관되거나 또는 그것에 의해 제공된 아치형 연결 표면(338)(상상으로 그려진)과 연결하기 위해 축(A)을 향해 안쪽으로 연장된다. 일 예에서, 아치형 표면(338)은 제2 관형 부재(190)(도 2b) 또는 제2 전극 바디(242)(도 2b)에 의해 제공된다. 신장 부재(336)는 회복 탄성 속성들을 보이고 아치형 표면(338)에 맞물리며 이를 캡처하기 위해 자연 위치 및 편향된 위치를 한정한다. 예시된 실시예에서, 신장 부재(336)는 제2 표면(334)으로부터 연장된 반대 탭들(340)의 쌍을 포함한다. 탭들(340)의 각각은 제2 표면(334)과 연결된 제1 단부(340a) 및 제1 단부(340)a)의 맞은편에 있는 제2 단부(340b)를 포함한다. 아치형 표면(338)과 신장 부재(336)의 결합 시, 탭들(340)의 각각의 제2 단부들(340b)은 회전 축(A)으로부터 떨어져 방향을 바꾼다. 신장 부재(336)의 회복 탄성 속성들은 최종 조립 시 아치형 표면(338)과의 접촉을 유지한다.
도 12b에 예시된 어셈블리(312)는 유사하게 넘버링된 유사한 요소들을 갖는, 어셈블리(310)와 유사하다. 도 12a의 어셈블리(310)와 대조적으로, 어셈블리(312)는 내부 표면(334)에 연결된 제1 단부(350a)로부터 상이한 위치에서 내부 표면(334)에 연결되는 제2 단부(350b)로 연장되는 신장 부재(350)를 포함한다. 신장 부재(350)의 중간 부분(350c)은 아치형 표면(338)과 결합될 때 자연 위치에서 편향 위치로 전이한다. 신장 부재(350)의 회복 탄성 속성들로 인해, 중간 부분(250c)은 최종 조립 시 아치형 표면(338)과의 전기적 접촉을 유지한다.
본 개시의 양극성 전기 외과 디바이스들은 상기 실시예들과 상이한 다른 세척 전달 구성들을 통합할 수 있다. 예를 들면, 도 13a 및 도 13b는 본 개시의 원리들에 따른 또 다른 전기 외과 디바이스(400)의 부분들을 예시한다. 특히, 디바이스(400)의 블레이드 및 전극 어셈블리 구성요소들이 이하에서 도시되며 설명된다. 설명의 용이함을 위해, 디바이스(400)의 다양한 다른 구성요소들이 도면에서 생략되며; 예를 들면, 디바이스(400)는 디바이스(110)(도 2a)에 대하여 상기 설명된 다양한 하우징들, 허브들 및 전기 연결 구성요소들 중 하나 이상, 또는 동등한 구성요소들 또는 메커니즘들을 포함할 수 있다. 이를 염두에 두고, 디바이스(400)는 내부 샤프트 또는 관형 부재(402), 외부 샤프트 또는 관형 부재(404), 전기 절연체(406), 제2 전극 바디 또는 캡(408) 및 절연층(410)을 포함한다. 일반적인 표현으로, 및 상기 실시예들과 유사하게, 내부 샤프트(402)는 외부 샤프트(404) 내에 회전 가능하게 배치되며 절단 팁(412)을 형성한다. 절단 팁(412)은 외부 샤프트(404)의 절단 윈도우(414)에서 선택적으로 노출된다. 절단 팁(412) 및 절단 윈도우(414)는 절단 기구(416)를 한정하기 위해 결합한다. 전기 절연체(406)는 외부 샤프트(404)의 외부의 대다수를 커버한다. 외부 샤프트(404)는 전기적 전도성 재료로 형성되며 따라서 디바이스(400)의 제1 전극 바디로서 작용할 수 있다. 외부 샤프트(404)의 원위 부분은, 제1 전극 표면(418)을 한정하는 전기 절연체(406)가 없다. 제2 전극 바디(408)는 외부 샤프트(404)(전기 절연체(406)로 코팅된)를 수용한다. 절연층(410)은 제2 전극 바디(408)의 외부의 대다수를 커버하여, 외부 샤프트(404)에 제2 전극 바디(408)를 선택적으로 고정시킨다(예로서 열 수축 프로세스를 통해). 제2 전극 바디(408)의 원위 영역은 제2 전극 표면(420)을 한정하는, 절연층(410)이 없다.
디바이스(400)는 절단 기구(416)에서, 조직 절단, 절개 등을 수행하기 위해 외부 샤프트(404)에 대해 회전하거나 또는 진동하도록 동력을 공급받은 내부 샤프트(402)를 갖고, 상기 설명된 바와 같이 디바이스(110)(도 2a)와 매우 유사한 방식으로 동작한다. 뿐만 아니라, 전극 표면들(418, 420)은 상기 설명된 바와 같이 양극성 전극들로서 동작될 수 있다. 또한, 디바이스(400)는 이하에서 설명된 바와 같이 전극 표면들(418, 420)의 영역에서 세척을 제공하도록 구성된다.
특히, 및 도 14a 및 도 14b를 추가로 참조하면, 내부 샤프트(402)의 외부 직경은 내부 및 외부 샤프트들(402, 404)의 길이의 상당한 부분을 따라 외부 샤프트(404)의 내부 직경보다 작다. 직경에서의 차이는 도 14a 및 도 14b에서 식별된 바와 같이 내부 및 외부 샤프트들(402, 404) 사이에서 세척 채널(422)을 생성한다. 세척 채널(422)은 일반적으로 내부 샤프트(402)의 중심축(A)과 평행한 방향으로 연장되며, 내부 샤프트(402)의 외부를 둘러싸는, 링 형인 것으로 보여질 수 있다. 세척 채널(422)은 적어도 하나의 유체 출구 또는 세척 출구 포트(424)(일반적으로 도 14a 및 도 14b에서 언급된)에서 끝나거나 또는 그것으로 유동적으로 개방된다. 출구 포트(424)는 절단 팁(412) 및 제1 및 제2 전극 표면들(418, 420)에 근접하여 위치되거나 또는 이격되며 세척 출구 포트(424)의 적어도 일부분은 외부 샤프트(404)의 방사상 바깥쪽에 있거나 또는 그것을 지나 있다. 몇몇 실시예들에서, 세척 출구 포트(424)는 제2 전극 바디(408)의 맞은편에 위치된다.
적어도 하나의 세척 출구 포트(424)는 배수공(weep hole)으로서 고려되거나 또는 보여질 수 있으며, 다양한 방식들로 형성될 수 있다. 몇몇 실시예들에서, 세척 출구 포트(424)는 외부 샤프트(404), 전기 절연체(406) 및 절연층(410)에 형성된 정렬된 홀들에 의해 총괄하여 한정된다. 예를 들면, 도 13b는 일반적으로 외부 샤프트(404)의 벽 두께를 통해 홀(426)을, 전기 절연체(406)의 벽 두께를 통해 홀(428)을, 및 절연층(410)의 벽 두께를 통해 홀(430)을 식별한다. 최종 조립 시 및 도 14b에 도시된 바와 같이, 홀들(426 내지 430)이 정렬되어, 세척 채널(422) 및 디바이스(400)의 외부 사이에서(예로서, 세척 채널(422)로부터의 액체는 세척 출구 포트(424)를 통해 절연층(410)의 외부로 나아간다) 및 그에 따라 전극 표면들(418, 420)을 향해 유체 개방 연결을 수립한다. 도 14a는 몇몇 실시예들에서, 내부 샤프트(402)의 외부 직경이 세척 출구 포트(424)의 원위로 증가하며 외부 샤프트(404)의 내부 직경에 도달한다는 것을 추가로 반영하며; 이들 선택적 실시예들을 갖고, 내부 및 외부 샤프트들(402, 404) 사이에서의 유체 밀봉부가 수립되거나 또는 수립되지 않을 수 있지만, 세척 출구 포트(424)의 원위의(또는 그것의 아래쪽으로) 내부 및 외부 샤프트들(402, 404) 사이에서의 가까운 치수 관계는 세척 채널(422) 내에서의 액체의 적어도 대다수가 세척 출구 포트(424)를 통해 빠져나가거나 또는 방출할 것임을 구술한다. 도 15에 도시된 바와 같이, 그 후, 세척 채널(422)(도 14b)을 통해 전달된 유체(예로서, 식염수)(F)는 세척 출구 포트(424)를 통해 디바이스(400)의 외부로 토출되며 상기 설명된 바와 같이 양극성 모드에서 그것의 동작을 촉진시키기 위해 전극 표면들(418, 420)과 접촉하여 나아갈 수 있다. 디바이스(400)가 절단 팁(412)에서 흡인 또는 흡입을 제공하는 실시예들을 갖고(예로서, 상기 설명된 바와 같이, 내부 샤프트(402)의 내강은 흡인원에 연결될 수 있다), 세척 출구 포트(424)를 통해 전달된 식염수 또는 다른 유체(F)는 치료 부위로부터 즉시 또는 주로 흡입되지 않을 것이다.
디바이스(400)의 세척 전달 구성, 및 특히 세척 채널(422) 및 세척 출구 포트(들)(424)는 비교적 저 비용 방식으로 디바이스(400)로 구현될 수 있다. 몇몇 실시예들에서, 놀랍게도 절단 팁(412)(또는 흡인의 다른 위치)으로부터 근위로 이격된 위치에서 식염수(또는 다른 유체)를 방출함으로써, 전극 표면들(418, 420)의 전기적 성능(예로서, 소작 성능)이 식염수(또는 다른 유체)가 절단 팁(412)에서 또는 그것에 바로 인접하여 내부 및 외부 샤프트(402, 404) 사이로부터 방출되는 배열들에 비교하여 크게 개선된다는 것이 발견되어왔다. 디바이스(400)가 세척 출구 포트들(424) 중 하나를 제공하는 것으로 도시되었지만, 다른 실시예들에서, 세척 출구 포트들(424) 중 둘 이상이 형성될 수 있으며, 각각은 디바이스(400)의 외부에 세척 채널을 유동적으로 연결한다. 복수의 세척 출구 포트들(424)은 크기 및 형태에 관하여 동일하거나 또는 다를 수 있으며, 외부 샤프트(404)의 원주에 대해 정렬되거나 또는 정렬되지 않을 수 있다. 뿐만 아니라, 세척 출구 포트(424)가 외부 샤프트(404), 전기 절연체(406) 및 절연층(410)에 형성된 다양한 홀들에 의해 총괄하여 형성되는 것으로 설명되었지만, 다른 구성들이 또한 용인될 수 있다. 예를 들면, 절연층(410)은 별개의 홀(430)이 반드시 절연층을 통해 형성될 필요가 없도록 다공성 재료로 형성될 수 있다.
본 개시의 원리들에 따른 또 다른 전기 외과 디바이스(450)의 부분들이 도 16에 도시된다. 특히, 디바이스(450)의 블레이드 및 전극 어셈블리 구성요소들이 이하에서 도시되고 설명된다. 설명의 용이함을 위해, 디바이스(450)의 다양한 다른 구성요소들이 도면에서 생략되며; 예를 들면, 디바이스(450)는 디바이스(110)(도 2a)에 대하여 상기 설명된 다양한 하우징들, 허브들 및 전기적 연결 구성요소들 중 하나 이상, 또는 동등한 구성요소들 또는 메커니즘들을 포함할 수 있다. 이를 염두에 두고, 디바이스(450)는 상기 설명된 디바이스(400)(도 13a)와 매우 유사할 수 있으며 내부 샤프트 또는 관형 부재(452), 외부 샤프트 또는 관형 부재(454), 전기 절연체(456), 제2 전극 바디 또는 캡(458) 및 절연층(460)을 포함한다. 일반적인 표현으로, 내부 샤프트(452)는 외부 샤프트(454) 내에 회전 가능하게 배치되며 절단 팁(462)을 형성한다. 절단 팁(462)은 외부 샤프트(454)의 절단 윈도우(464)에서 선택적으로 노출된다. 절단 팁(462) 및 절단 윈도우(464)는 절단 기구(466)를 한정하기 위해 결합한다. 전기 절연체(456)는 외부 샤프트(454)의 외부의 대다수를 커버한다. 외부 샤프트(454)는 전기적 전도성 재료로 형성되며 따라서 디바이스(450)의 제1 전극 바디로서 작용할 수 있다. 외부 샤프트(454)의 원위 부분은, 제1 전극 표면(468)을 한정하는 전기 절연체(456)가 없다. 제2 전극 바디(458)는 외부 샤프트(454)(전기 절연체(456)로 코팅된)를 수용한다. 절연층(460)은 제2 전극 바디(458)의 외부의 대다수를 커버하여, 외부 샤프트(454)에 제2 전극 바디(458)를 선택적으로 고정시킨다(예로서 열 수축 프로세스를 통해). 제2 전극 바디(458)의 원위 영역은 제2 전극 표면(470)을 한정하는, 절연층(460)이 없다.
디바이스(450)는 절단 기구(466)에서, 조직 절단, 절개 등을 수행하기 위해 외부 샤프트(454)에 대해 회전하거나 또는 진동하도록 동력을 공급받은 내부 샤프트(452)를 갖고, 상기 설명된 바와 같이 디바이스(110)(도 2a)와 매우 유사한 방식으로 동작한다. 뿐만 아니라, 전극 표면들(468, 470)은 상기 설명된 바와 같이 양극성 전극들로서 동작될 수 있다. 또한, 디바이스(450)는 이하에서 설명된 바와 같이 전극 표면들(468, 470)의 영역에서 세척을 제공하도록 구성된다.
특히, 및 도 17을 추가로 참조하면, 내부 샤프트(452)의 외부 직경은 내부 및 외부 샤프트들(452, 454)의 길이의 상당한 부분을 따라 외부 샤프트(454)의 내부 직경보다 작다. 직경에서의 차이는 내부 및 외부 샤프트들(452, 454) 사이에서 세척 채널(472)을 생성한다. 세척 채널(472)은 일반적으로 내부 샤프트(452)의 중심축(A)과 평행한 방향으로 연장되며, 내부 샤프트(452)의 외부를 둘러싸는, 링 형인 것으로 보여질 수 있다. 세척 채널(472)은 적어도 하나의 유체 출구 또는 세척 출구 포트(474)(일반적으로 도 16 및 도 17에서 언급된)에서 끝나거나 또는 그것으로 유동적으로 개방된다. 세척 출구 포트(474)는 절단 팁(462) 및 제1 및 제2 전극 표면들(468, 470)에 근접하여 위치되거나 또는 이격되며, 세척 출구 포트(474)의 적어도 일부분은 외부 샤프트(454)의 방사상 바깥쪽에 있거나 또는 그것을 지나 있다. 몇몇 실시예들에서, 세척 출구 포트(474)는 제2 전극 바디(468)의 맞은편에 위치된다.
적어도 하나의 세척 출구 포트(474)는 배수공으로서 고려되거나 또는 보여질 수 있으며, 다양한 방식들로 형성될 수 있다. 몇몇 실시예들에서, 세척 출구 포트(474)는 외부 샤프트(454), 전기 절연체(456) 및 절연층(460)에 형성된 정렬된 홀들에 의해 총괄하여 한정된다. 예를 들면, 도 17은 일반적으로 외부 샤프트(454)의 벽 두께를 통해 홀(476)을, 전기 절연체(456)의 벽 두께를 통해 홀(478)을, 및 절연층(460)의 벽 두께를 통해 홀(480)을 식별한다. 최종 조립 시, 홀들(476 내지 480)이 정렬되어, 세척 채널(472) 및 디바이스(450)의 외부 사이에서(예로서, 세척 채널(472)로부터의 액체는 세척 출구 포트(474)를 통해 절연층(460)의 외부로 나아간다) 및 그에 따라 전극 표면들(468, 470)을 향해 유체 개방 연결을 수립한다. 도 16 및 도 17의 실시예를 갖고, 전체로서 홀들(476 내지 480) 및 그에 따라 세척 출구 포트(474)는 중심축(A)에 대해 비-수직 각도로 형성된다. 이러한 구성을 갖고, 세척 출구 포트(474)는 세척 채널(472)로부터의 유체에 대해 일반적으로 원위 흐름 방향을 수립한다. 달리 말하면, 세척 출구 포트(474)의 중심선(C)은, 외부 샤프트(454)에서의 홀(476)의 중심에 원위인 절연층(460)에서의 홀(480)의 중심을 갖고, 중심축(A)에 대하여 비-수직이다. 이러한 방향성 구성요소는 유체가 전극 표면들(468, 470)의 방향으로 흐르도록 세척 출구 포트(474)를 빠져나오는 것을 권장한다. 도 17은 몇몇 실시예들에서, 내부 샤프트(452)의 외부 직경이 세척 출구 포트(474)의 원위에서 증가하며 외부 샤프트(454)의 내부 직경에 도달한다는 것을 추가로 반영하며; 이들 선택적 실시예들을 갖고, 내부 및 외부 샤프트들(452, 454) 사이에서의 유체 밀봉부가 수립되거나 또는 수립되지 않을 수 있지만, 세척 출구 포트(474)의 원위인(또는 그것의 아래쪽으로) 내부 및 외부 샤프트들(452, 454) 사이에서의 가까운 치수 관계는 세척 채널(472) 내에서의 액체의 적어도 대다수가 세척 출구 포트(474)를 통해 빠져나가거나 또는 방출될 것임을 구술한다. 도 18에 도시된 바와 같이, 그 후, 세척 채널(472)(도 16)을 통해 전달된 유체(예로서, 식염수)(F)는 세척 출구 포트(474)를 통해 디바이스(450)의 외부로 토출되며 상기 설명된 바와 같이 양극성 모드에서 그것의 동작을 촉진시키기 위해 전극 표면들(468, 470)과 접촉하여 나아갈 수 있다. 디바이스(450)가 절단 팁(462)에서 흡인 또는 흡입을 제공하는 실시예들을 갖고(예로서, 상기 설명된 바와 같이, 내부 샤프트(452)의 내강은 흡인원에 연결될 수 있다), 세척 출구 포트(474)를 통해 전달된 식염수 또는 다른 유체(F)는 치료 부위로부터 즉시 또는 주로 흡입되지 않을 것이다.
디바이스(450)의 세척 전달 구성, 및 특히 세척 채널(472) 및 세척 출구 포트(들)(474)는 비교적 저 비용 방식으로 디바이스(450)로 구현될 수 있다. 몇몇 실시예들에서, 놀랍게도, 절단 팁(462)(또는 흡인의 다른 위치)으로부터 근위로 이격된 위치에서 식염수(또는 다른 유체)를 방출함으로써, 전극 표면들(468, 470)의 전기적 성능(예로서, 소작 성능)이 식염수(또는 다른 유체)가 절단 팁(462)에서 또는 그것에 바로 인접하여 내부 및 외부 샤프트(452, 454) 사이로부터 방출되는 배열들에 비교하여 크게 개선된다는 것이 발견되어왔다. 세척 출구 포트(474)를 빠져나간 유체(F)에 대한 방향성 또는 제어는 부가적인 채널 또는 튜브를 요구하지 않고 제공한다. 디바이스(450)가 세척 출구 포트들(474) 중 하나를 제공하는 것으로 도시되었지만, 다른 실시예들에서, 세척 출구 포트들(474) 중 둘 이상이 형성될 수 있으며, 각각은 디바이스(450)의 외부에 세척 채널을 유동적으로 연결한다. 세척 출구 포트(들)(474)는 디바이스(450)의 직립 배향에서 중력을 극복하기 위해 저압 흐름 또는 제트를 수립하도록 구성될 수 있다.
본 개시의 원리들에 따른 또 다른 전기 외과 디바이스(500)의 부분들이 도 19a 및 도 19b에 도시된다. 특히, 디바이스(500)의 블레이드 및 전극 어셈블리 구성요소들이 이하에서 도시되고 설명된다. 설명의 용이함을 위해, 디바이스(500)의 다양한 다른 구성요소들이 도면에서 생략되며; 예를 들면, 디바이스(500)는 디바이스(110)(도 2a)에 대하여 상기 설명된 다양한 하우징들, 허브들 및 전기적 연결 구성요소들 중 하나 이상, 또는 동등한 구성요소들 또는 메커니즘들을 포함할 수 있다. 이를 염두에 두고, 디바이스(500)는 상기 설명된 디바이스(400)(도 13a)와 매우 유사할 수 있으며 내부 샤프트 또는 관형 부재(402), 외부 샤프트 또는 관형 부재(404), 전기 절연체(406), 제2 전극 바디 또는 캡(408) 및 절연층(410)을 포함한다. 절단 팁(412) 및 절단 윈도우(414)는 절단 기구(416)를 한정하기 위해 결합한다. 제1 및 제2 전극 표면들(418, 420)은 상기 설명된 바와 같이 형성된다. 또한, 디바이스(500)는 이하에서 설명된 바와 같이 토출 도관(502)을 포함한다.
도관(502)은 외부 샤프트(404), 전기 절연체(406) 및/또는 절연층(410) 중 하나 이상에 조립되며, 세척 출구 포트(504)(일반적으로 도 19a 및 도 19b에서 식별된)의 부분을 형성한다. 특히, 및 도 20a 및 도 20b를 추가로 참조하면, 세척 채널(422)은 상기 설명된 바와 같이 내부 및 외부 샤프트들(402, 404) 사이에 한정된다. 도관(502)은 베이스 섹션(506) 및 헤드 섹션(508)을 포함하거나 또는 한정한다. 내강(510)은 도관(502)을 통해 연속적으로 연장된다. 베이스 섹션(506)은 각각, 외부 샤프트(404), 전기 절연체(406), 및 절연층(410)에 형성된 홀들(426 내지 430) 내에 배치되거나 또는 그것으로 유체 개방된다. 헤드 섹션(508)은 일반적으로 원위 방향으로 연장되도록 헤드 섹션(508)을 배열한 도관(502)에서의 만곡부를 갖고, 절연층(410)의 외부에서 유지된다. 따라서, 도관(502)은 원위 방향으로 세척 채널(422)로부터(내강(510)을 통해), 일반적으로 전극 표면들(418, 420)로 유체 흐름을 향하게 하도록 구성된다. 도 21에 도시된 바와 같이, 그렇게-향해진 유체(예로서, 식염수) 흐름(F)은 세척 출구 포트(504)를 빠져나가며 상기 설명된 바와 같이 양극성 모드에서 그것의 동작을 촉진시키기 위해 전극 표면들(418, 420)의 방향에서 흐르도록 야기된다. 다른 실시예들과 마찬가지로, 그 후, 세척 출구 포트(504)는 전극 표면들(418, 420) 및 절단 팁(412)으로부터 근위로 이격되며, 외부 샤프트(404)의 방사상 바깥쪽에 있다(도 20a). 디바이스(500)가 절단 팁(412)에서 흡인 또는 흡입을 제공하는 실시예들을 갖고, 세척 출구 포트(504)로부터 전달된 식염수 또는 다른 유체(F)는 치료 부위로부터 즉시 또는 주로 흡입되지 않을 것이다.
디바이스(500)의 세척 전달 구성, 및 특히 세척 채널(422)(도 20a) 및 세척 출구 포트(들)(504)는 비교적 저 비용 방식으로 디바이스(500)로 구현될 수 있다. 몇몇 실시예들에서, 놀랍게도, 절단 팁(412)(또는 흡인의 다른 위치)으로부터 근위로 이격된 위치에서 식염수(또는 다른 유체)를 방출함으로써, 전극 표면들(418, 420)의 전기적 성능(예로서, 소작 성능)이 식염수(또는 다른 유체)가 절단 팁(412)에서 또는 그것에 바로 인접하여 내부 및 외부 샤프트(402, 404) 사이로부터 방출되는 배열들에 비교하여 크게 개선된다는 것이 발견되어왔다. 세척 출구 포트(504)를 빠져나간 유체(F)에 대한 별개의 방향성 또는 제어가 제공된다. 디바이스(500)가 세척 출구 포트들(504) 중 하나를 제공하는 것으로 도시되었지만, 다른 실시예들에서, 세척 출구 포트들(504) 중 둘 이상이 형성될 수 있으며, 각각은 디바이스(500)의 외부에 세척 채널(422)을 유동적으로 연결한다. 세척 출구 포트(들)(504)는 디바이스(500)의 직립 배향에서 중력을 극복하기 위해 저압 흐름 또는 제트를 수립하도록 구성될 수 있다.
본 개시의 원리들에 따른 또 다른 전기 외과 디바이스(500')의 부분들이 도 22에서 도시된다. 디바이스(500')는 상기 설명된 디바이스(500)(도 19a)와 매우 유사할 수 있으며, 내부 샤프트 또는 관형 부재(402), 외부 샤프트 또는 관형 부재(404), 전기 절연체(406), 제2 전극 바디 또는 캡(408) 및 절연층(410)을 포함한다. 디바이스(500')는 이전에 설명된 바와 같이, 세척 채널(422)(도 22에서 은닉되지만, 예를 들면, 도 20a에서 도시된)에 유동적으로 연결된, 도관(502)을 추가로 포함한다. 도 22의 실시예를 갖고, 세척 출구 포트(512)가 제공되며, 도관(502) 및 노즐(514)을 포함한다. 노즐(514)은 도관(502)에 결합되며 내강(510)(도 22에서 은닉되지만, 예를 들면, 도 20a에서 도시된)으로 유동적으로 개방된다. 노즐(514)은 다양한 형태들을 띨 수 있으며, 몇몇 실시예들에서 전극 표면들(418, 420)의 방향에서 세척 출구 포트(512)로부터 방출된 유체(도시되지 않음)로 미스트-형 패턴을 생성하도록 구성된다.
본 개시의 원리들에 따른 또 다른 전기 외과 디바이스(520)의 부분들이 도 23a 및 도 23b에 도시된다. 특히, 디바이스(520)의 블레이드 및 전극 어셈블리 구성요소들이 이하에서 도시되고 설명된다. 설명의 용이함을 위해, 디바이스(520)의 다양한 다른 구성요소들이 도면에서 생략되며; 예를 들면, 디바이스(520)는 디바이스(110)(도 2a)에 대하여 상기 설명된 다양한 하우징들, 허브들 및 전기적 연결 구성요소들 중 하나 이상, 또는 동등한 구성요소들 또는 메커니즘들을 포함할 수 있다. 이를 염두에 두고, 디바이스(520)는 상기 설명된 디바이스(400)(도 13a)와 매우 유사할 수 있으며 내부 샤프트 또는 관형 부재(402), 외부 샤프트 또는 관형 부재(404), 전기 절연체(406), 제2 전극 바디 또는 캡(408) 및 절연층(410)을 포함한다. 절단 팁(412) 및 절단 윈도우(414)는 절단 기구(416)를 한정하기 위해 결합한다. 제1 및 제2 전극 표면들(418, 420)은 상기 설명된 바와 같이 형성된다. 또한, 디바이스(520)는 이하에서 설명된 바와 같이 변류기(522)를 포함한다.
변류기(522)는 절연층(410)에 의해 형성되거나 또는 그것에 조립되며, 세척 출구 포트(524)(일반적으로 도 23a 및 도 23b에서 식별된)의 부분을 형성한다. 특히, 및 도 24a 및 도 24b를 참조하면, 세척 채널(422)은 상기 설명된 바와 같이 내부 및 외부 샤프트들(402, 404) 사이에서 한정된다. 뿐만 아니라, 정렬된 홀들(426 내지 430)은, 상기 설명된 바와 같이, 각각 외부 샤프트(404), 전기 절연체(406), 및 절연층(410)에 형성되며 세척 출구 포트(504)의 부분을 형성한다. 도 23b에서 가장 잘 도시되는 바와 같이, 절연층(430)에서의 홀(430)은, 선택적으로 절연층의 원위 단부로 연장된, 가늘고 긴 또는 슬롯-형 형태를 가질 수 있다. 변류기(522)는 절연층(410)에서의 홀(430) 위에 및 그에 따라 전기 절연체(406)에서의 홀(428) 위에 위치되며, 원위 방향에서 절연층 홀(430)(또는 전기 절연체 홀(406))을 빠져나간 유체 흐름을, 일반적으로 전극 표면들(418, 420)로 방향을 바꾸거나 또는 향하게 하도록 구성된다. 예를 들면, 변류기(522)는 트레일링 벽(530) 및 상부 벽(532)을 포함하거나 또는 한정할 수 있다. 트레일링 벽(530)은 일반적으로 절연층 홀(430) 위에서 돌출된, 절연층 홀(430)(및 전기 절연체 홀(428)) 근위의 위치로부터의 절연층(410)으로부터 연장된다. 상부 벽(532)은 트레일링 벽(530)으로부터 연장되며 절연층(410) 및 전기 절연체(406)로부터 이격된다. 상부 벽(532)의 주 평면은 중심축(A)과 대체로 평행할 수 있으며, 하나 이상의 측 벽들(534)이 또한 포함될 수 있다. 여하튼, 변류기(522)는 개방 측면(536)을 한정한다. 전기 절연체 홀(428) 및/또는 분리층 홀(430)을 빠져나간 액체 흐름은 변류기 벽들(530 내지 534)에 충돌하며 개방 측면(536)으로 향해진다. 도 25에 도시된 바와 같이, 그렇게-향해진 유체(예로서, 식염수) 흐름(F)은 개방 측면(536)을 통해 세척 출구 포트(524)를 빠져나거며 상기 설명된 바와 같이 양극성 모드에서 그것의 동작을 촉진시키기 위해 전극 표면들(418, 420)의 방향으로 흐르도록 야기된다. 다른 실시예들과 마찬가지로, 그 후, 세척 출구 포트(524)는 전극 표면들(418, 420) 및 절단 팁(412)으로부터 근위로 이격되며, 외부 샤프트(404)(도 24a)의 방사상 바깥쪽에 있다. 디바이스(520)가 절단 팁(412)에서 흡인 또는 흡입을 제공하는 실시예들을 갖고, 세척 출구 포트(524)로부터 전달된 식염수 또는 다른 유체(F)는 치료 부위로부터 즉시 또는 주로 흡입되지 않을 것이다.
디바이스(520)의 세척 전달 구성, 및 특히 세척 채널(422) 및 세척 출구 포트(들)(524)는 비교적 저 비용 방식으로 디바이스(520)로 구현될 수 있다. 몇몇 실시예들에서, 놀랍게도, 절단 팁(412)(또는 흡인의 다른 위치)으로부터 근위로 이격된 위치에서 식염수(또는 다른 유체)를 방출함으로써, 전극 표면들(418, 420)의 전기적 성능(예로서, 소작 성능)은 식염수(또는 다른 유체)가 절단 팁(412)에서 또는 그것에 바로 인접하여 내부 및 외부 샤프트(402, 404) 사이로부터 방출되는 배열들에 비교하여 크게 개선된다는 것이 발견되어왔다. 세척 출구 포트(524)를 빠져나간 유체(F)에 대한 별개의 방향성 또는 제어가 제공된다. 디바이스(520)가 세척 출구 포트들(524) 중 하나를 제공하는 것으로 도시되었지만, 다른 실시예들에서, 세척 출구 포트들(524) 중 둘 이상이 형성될 수 있으며, 각각은 디바이스(520)의 외부에 세척 채널(422)을 유동적으로 연결한다. 세척 출구 포트(들)(524)는 디바이스(520)의 직립 배향에서 중력을 극복하기 위해 저압 흐름 또는 제트를 수립하도록 구성될 수 있다.
본 개시의 원리들에 따른 또 다른 전기 외과 디바이스(540)의 부분들이 도 26a 내지 도 26c에 도시된다. 특히, 디바이스(540)의 블레이드 및 전극 어셈블리 구성요소들이 이하에서 도시되고 설명된다. 설명의 용이함을 위해, 디바이스(540)의 다양한 다른 구성요소들이 도면에서 생략되며; 예를 들면, 디바이스(540)는 디바이스(110)(도 2a)에 대하여 상기 설명된 다양한 하우징들, 허브들 및 전기적 연결 구성요소들 중 하나 이상, 또는 동등한 구성요소들 또는 메커니즘들을 포함할 수 있다. 이를 염두에 두고, 디바이스(540)는 내부 샤프트 또는 관형 부재(542), 외부 샤프트 또는 관형 부재(544), 전기 절연체(546), 제2 전극 바디 또는 캡(548) 및 절연층(550)을 포함한다. 일반적인 표현으로, 및 상기 실시예들과 유사하게, 내부 샤프트(542)는 외부 샤프트(544) 내에 회전 가능하게 배치되며 절단 팁(552)을 형성한다. 절단 팁(552)은 외부 샤프트(544)의 절단 윈도우(554)에서 선택적으로 노출된다. 절단 팁(542) 및 절단 윈도우(544)는 절단 기구(556)를 한정하기 위해 결합한다. 전기 절연체(546)는 외부 샤프트(544)의 외부의 대다수를 커버한다. 외부 샤프트(544)는 전기적 전도성 재료로 형성되며 따라서 디바이스(540)의 제1 전극 바디로서 작용할 수 있다. 외부 샤프트(544)의 원위 부분은, 제1 전극 표면(558)을 한정하는, 전기 절연체(546)가 없다. 제2 전극 바디(548)는 외부 샤프트(544)(전기 절연체(546)로 코팅된)를 수용한다. 절연층(550)은 제2 전극 바디(548)의 외부의 대다수를 커버하여, 외부 샤프트(544)에 제2 전극 바디(548)를 선택적으로 고정시킨다(예로서 열 수축 프로세스를 통해). 제2 전극 바디(548)의 원위 영역은 제2 전극 표면(560)을 한정하는, 절연층(550)이 없다.
디바이스(540)는 절단 기구(556)에서 조직 절단, 절개 등을 수행하기 위해 외부 샤프트(544)에 대하여 회전하거나 또는 진동하도록 동력을 공급받은 내부 샤프트(542)를 갖고, 상기 설명된 바와 같이 디바이스(110)(도 2a)에 매우 유사한 방식으로 동작한다. 뿐만 아니라, 전극 표면들(558, 560)은 상기 설명된 바와 같이 양극성 전극들로서 동작될 수 있다. 또한, 디바이스(540)는 이하에서 설명된 바와 같이 전극 표면들(558, 560)의 영역에서 세척을 제공하도록 구성된다.
특히, 및 도 27a 및 도 27b를 추가로 참조하면, 내부 샤프트(542)의 외부 직경은 내부 및 외부 샤프트들(542, 544)의 길이의 상당한 부분을 따라 외부 샤프트(544)의 내부 직경보다 작다. 직경에서의 차이는 내부 및 외부 샤프트들(542, 544) 사이에서 세척 채널(562)을 생성한다. 세척 채널(562)은 내부 샤프트(542)의 중심축(A)과 일반적으로 평행한 방향으로 연장되며, 내부 샤프트(542)의 외부를 둘러싸는, 링 형인 것으로 보여질 수 있다. 세척 채널(562)은 적어도 하나의 유체 출구 또는 세척 출구 포트(564)(일반적으로 도 27a 및 도 27b에서 언급된)에서 끝나거나 또는 그것으로 유동적으로 개방된다. 세척 출구 포트(564)는 절단 팁(552) 및 제1 및 제2 전극 표면들(558, 560)에 근접하여 위치되거나 또는 이격되며 세척 출구 포트(564)의 적어도 일부분은 외부 샤프트(544)의 방사상 바깥쪽에 있거나 또는 그것을 지나 있다. 몇몇 실시예들에서, 세척 출구 포트(564)는 제2 전극 바디(548)(일반적으로 도 27a 및 도 27b에서 언급된)에 근접하여 위치되거나 또는 그것을 "향한다".
적어도 하나의 세척 출구 포트(564)는 배수공으로서 고려되거나 또는 보여질 수 있으며, 다양한 방식들로 형성될 수 있다. 몇몇 실시예들에서, 세척 출구 포트(564)는 외부 샤프트(544) 및 전기 절연체(546)에 형성된 정렬된 홀들에 의해 총괄하여 한정된다. 예를 들면, 도 26c는 일반적으로 외부 샤프트(544)의 벽 두께를 통해 홀(566)을, 및 전기 절연체(546)의 벽 두께를 통해 홀(568)을 식별한다. 최종 조립 시 및 도 27a 및 도 27b에 도시된 바와 같이, 홀들(566, 568)은 정렬되어, 세척 채널(562)로부터 유체 개방 연결을 수립한다.
세척 출구 포트(564)로부터 전극 표면들(558, 560)을 향한 유체 흐름은 전기 절연체(546) 및 제2 전극 바디(548) 사이에서의 갭(570)에 의해 촉진될 수 있다. 몇몇 실시예들에서, 제2 전극 바디(548)는 갭(570)을 형성하며 세척 출구 포트(564)를 빠져나간 액체로부터 원하는 전기적 분리를 제공하는 다-층 구성을 가질 수 있다. 예를 들면, 세척 채널(562)을 따르는 액체는 외부 샤프트(542)와 접촉할 것이며; 외부 샤프트(542)가 통전되며(제1 전극 표면(558)을 통전시키기 위해) 제2 전극 바디(548)가 통전될 때(제2 전극 표면(560)을 통전시키기 위해), 제2 전극 바디(548)에서의 전기적 분리는 액체가 외부 샤프트(542) 및 제2 전극 바디(548) 사이에서 전기 단락을 야기하는 것을 방지하기 위해 바람직하다. 이를 염두에 두고, 및 도 28을 참조하면, 제2 전극 바디(548)는 외부 층(572), 중간 층(574) 및 내부 층(576)을 포함할 수 있다. 외부 층(572)은 전기적 전도성 재료(예로서, 금속)로 형성되며, 제2 전극 표면(560)을 제공하도록 작용한다. 중간 및 내부 층들(574, 576)은 전기적 비-전도성 또는 절연 재료들로 형성된다. 중간 층(576)의 크기 및 형태는 외부 층(572)의 크기 및 형태와 부합한다. 내부 층(576)의 형태가 일반적으로 중간 층(574)의 것에 대응하는 동안, 내부 층(576)의 세로 길이는 중간 층(574)의 길이보다 작다. 보다 특히, 내부 층(576)은 원위 단부(578)에서 끝난다. 도 29에서 도시된 바와 같이(그 외 별개로 전기 절연체(546) 및 제2 전극 바디(548)를 예시하는), 내부 층(576)의 원위 단부(578)는 세척 출구 포트(562)의 위쪽으로 위치된다. 이러한 구성을 갖고, 갭(570)의 폭은 내부 층(576)의 두께와 부합한다. 다시 말해서, 내부 층(576)은 유체 채널(570)의 갭을 생성하기 위해 스페이서로서 및 유체가 뒤로 흐르는 것을 방지하기 위해 정지부로서 작용한다. 중간 층(574)은 외부 층(572)을 위해 전기적 분리를 제공한다. 제2 전극 바디(548)는 중간 층(574)을 형성하기 위해 비-전도성 재료를 갖고 외부 층(572)의 전체 내부 표면을 코팅함으로써와 같이, 다양한 방식들로 구성될 수 있고; 그렇게 형성된 부분의 원위 영역은 그 후 마스킹되며 비-전도성 재료의 제2 코팅은 내부 층(576)을 생성하기 위해 도포된다. 다른 구성들이 또한 용인될 수 있으며, 단일 또는 동종 구조로서 중간 및 내부 층들(574, 576)을 제공하는 것을 포함할 수 있다.
도 30에 도시된 바와 같이, 세척 채널(562)(도 27b)을 통해 전달된 유체(예로서, 식염수)(F)는 세척 출구 포트(564)(도 27b) 및 갭(570)(도 27b)을 통해 디바이스(540)의 외부로 토출되며 상기 설명된 바와 같이 양극성 모드에서 그것의 동작을 촉진시키기 위해 전극 표면들(558, 560)과 접촉하여 나아갈 수 있다. 디바이스(550)가 절단 팁(552)에서 흡인 또는 흡입을 제공하는 실시예들을 갖고(예로서, 상기 설명된 바와 같이, 내부 샤프트(542)의 내강은 흡인원에 연결될 수 있다), 세척 출구 포트(564)를 통해 전달된 식염수 또는 다른 유체(F)는 치료 부위로부터 즉시 또는 주로 흡입되지 않을 것이다.
디바이스(540)의 세척 전달 구성, 및 특히 세척 채널(562)(도 27b) 및 세척 출구 포트(들)(564)(도 27b)는, 유체 흐름을 최적의 위치로 향하게 하기 위해 제2 전극 바디(548)를 이용하는, 비교적 저 비용 방식으로 디바이스(540)로 구현될 수 있다. 디바이스(540)는 세척 출구 포트들(564) 중 하나를 제공하는 것으로 도시되었지만, 다른 실시예들에서, 세척 출구 포트들(564) 중 둘 이상이 형성될 수 있으며, 각각은 디바이스(540)의 외부에 세척 채널(562)을 유동적으로 연결한다. 복수의 세척 출구 포트들(564)은 크기 및 형태에 관하여 동일하거나 또는 다를 수 있으며, 외부 샤프트(544)의 원주에 대하여 정렬되거나 또는 정렬되지 않을 수 있다.
본 개시의 원리들에 따른 또 다른 전기 외과 디바이스(600)의 부분들이 도 31a 및 도 31b에 도시된다. 특히, 디바이스(600)의 블레이드 및 전극 어셈블리 구성요소들이 이하에서 도시되고 설명된다. 설명의 용이함을 위해, 디바이스(600)의 다양한 다른 구성요소들이 도면에서 생략되며; 예를 들면, 디바이스(600)는 디바이스(110)(도 2a)에 대하여 상기 설명된 다양한 하우징들, 허브들 및 전기적 연결 구성요소들 중 하나 이상, 또는 동등한 구성요소들 또는 메커니즘들을 포함할 수 있다. 이를 염두에 두고, 디바이스(600)는 상기 설명된 디바이스들과 매우 유사할 수 있으며 내부 샤프트 또는 관형 부재(602), 외부 샤프트 또는 관형 부재(604), 전기 절연체(606), 제2 전극 바디 또는 캡(608) 및 절연층(610)을 포함한다. 내부 샤프트(602)는 외부 샤프트(604) 내에서 회전 가능하게 배치되며 절단 팁(612)을 형성한다. 절단 팁(612)은 외부 샤프트(604)의 절단 윈도우(614)에서 선택적으로 노출된다. 절단 팁(612) 및 절단 윈도우(614)는 절단 기구(616)를 한정하기 위해 결합한다. 전기 절연체(606)는 외부 샤프트(604)의 외부의 대다수를 커버한다. 외부 샤프트(604)는 전기적 전도성 재료로 형성되며 따라서 디바이스(600)의 제1 전극 바디로서 작용할 수 있다. 외부 샤프트(604)의 원위 부분은 제1 전극 표면(618)을 한정하는, 전기 절연체(606)가 없다. 제2 전극 바디(608)는 외부 샤프트(604)(전기 절연체(606)로 코팅된)를 수용한다. 절연층(610)은 제2 전극 바디(608)의 외부의 대다수를 커버하여, 외부 샤프트(604)에 제2 전극 바디(608)를 선택적으로 고정시킨다(예로서 열 수축 프로세스를 통해). 제2 전극 바디(608)의 원위 영역은 제2 전극 표면(620)을 한정하는, 절연층(610)이 없다. 또한, 디바이스(600)는 이하에서 설명되는 바와 같이 세척 튜브(622)를 포함한다.
디바이스(600)는 절단 기구(616)에서 조직 절단, 절개 등을 수행하기 위해 외부 샤프트(604)에 대하여 회전하거나 또는 진동하도록 동력을 공급받은 내부 샤프트(602)를 갖고, 상기 설명된 바와 같이 디바이스(110)(도 2a)에 매우 유사한 방식으로 동작한다. 뿐만 아니라, 전극 표면들(618, 620)은 상기 설명된 바와 같이 양극성 전극들로서 동작될 수 있다. 또한, 디바이스(600)는 이하에서 설명된 바와 같이 전극 표면들(618, 620)의 영역에서 세척을 제공하도록 구성된다.
특히, 및 도 32a 및 도 32b를 추가로 참조하면, 세척 튜브(622)는 세척 채널(624)을 한정하며, 근위 단부(626)(도 31a)로부터 원위 단부(628)로 연장된다. 근위 단부(626)는 세척 채널(624)에 유체원을 연결하기 위해 통상의 기술자에게 명백할 바와 같이 디바이스(600)의 하나 이상의 다른 구성요소들(예로서, 상기 설명된 세척 허브들)로의 유체 연결을 위해 구성된다. 원위 단부(628)는 세척 채널(624)로 개방되며 세척 출구 포트(630)(일반적으로 언급된)로서, 또는 그것의 부분으로서 작용한다. 세척 튜브(622), 및 그에 따라 세척 채널(624)은 내부 샤프트(602)의 중심축(A)과 일반적으로 평행한 방향으로 연장된다. 몇몇 실시예들에서, 세척 튜브(622)는 절연층(610)(예로서, 열 수축 어셈블리)에 의해 외부 샤프트(604)에 대해 고정된다. 세척 출구 포트(630)는 절단 팁(612) 및 제1 및 제2 전극 표면들(618, 620)에 근접하여 위치되거나 또는 이격되며, 외부 샤프트(604)의 방사상 바깥쪽에 있거나 또는 그것을 지나 있다.
도 33에 도시된 바와 같이, 세척 채널(624)(도 32a)을 통해 전달된 유체(예로서, 식염수)(F)는 세척 출구 포트(630)를 통해 디바이스(600)의 외부로 토출되며 상기 설명된 바와 같이 양극성 모드에서 그것의 동작을 촉진시키기 위해 전극 표면들(618, 620)과 접촉하여 나아갈 수 있다. 디바이스(600)가 절단 팁(612)에서 흡인 또는 흡입을 제공하는 실시예들을 갖고(예로서, 상기 설명된 바와 같이, 내부 샤프트(602)의 내강은 흡인원에 연결될 수 있다), 세척 출구 포트(630)를 통해 전달된 식염수 또는 다른 유체(F)는 치료 부위로부터 즉시 또는 주로 흡입되지 않을 것이다.
디바이스(600)의 세척 전달 구성, 및 특히 세척 채널(624) 및 세척 출구 포트(630)는 비교적 저 비용 방식으로 디바이스(600)로 구현될 수 있다. 몇몇 실시예들에서, 놀랍게도, 절단 팁(612)(또는 흡인의 다른 위치)으로부터 근위로 이격된 위치에서 식염수(또는 다른 유체)를 방출함으로써, 전극 표면들(618, 620)의 전기적 성능(예로서, 소작 성능)은 식염수(또는 다른 유체)가 절단 팁(612)에서 또는 그것에 바로 인접하여 내부 및 외부 샤프트(602, 604) 사이로부터 방출되는 배열들에 비교하여 크게 개선된다는 것이 발견되어왔다. 세척 출구 포트(630)를 빠져나간 유체(F)에 대한 별개의 방향성 또는 제어가 제공된다. 세척 출구 포트(630)는 디바이스(600)의 직립 배향에서 중력을 극복하기 위해 저압 흐름 또는 제트를 수립하도록 구성될 수 있다.
본 개시의 원리들에 따른 또 다른 전기 외과 디바이스(600')의 부분들이 도 34에 도시된다. 디바이스(600')는 상기 설명된 디바이스(600)(도 31a)와 매우 유사하며, 내부 샤프트 또는 관형 부재(602), 외부 샤프트 또는 관형 부재(604), 전기 절연체(606), 제2 전극 바디 또는 캡(608) 및 절연층(610)을 포함한다. 디바이스(600')는 이전에 설명된 바와 같이 세척 채널(624)(도 34에서 은닉되지만, 예를 들면 도 32a에 도시된)을 형성하는 세척 튜브(622)를 추가로 포함한다. 도 30의 실시예를 갖고, 세척 출구 포트(640)는 세척 튜브(622)의 원위 단부(628)에 제공되며, 노즐(642)을 포함한다. 노즐(642)은 원위 단부(628)에 결합되며 세척 채널(624)로 유동적으로 개방된다. 노즐(642)은 다양한 형태들을 띨 수 있으며, 몇몇 실시예들에서 전극 표면들(618, 620)의 방향에서 세척 출구 포트(640)로부터 방출된 유체(도시되지 않음)로 미스트-형 패턴을 생성하도록 구성된다.
본 개시의 원리들에 따른 또 다른 전기 외과 디바이스(650)의 부분들이 도 35에 도시된다. 디바이스(650)는 상기 설명된 디바이스(600)(도 31a)와 유사할 수 있으며, 이전에 설명된 바와 같이(제2 전극 표면(620)의 공급을 포함한) 내부 샤프트 또는 관형 부재(602), 외부 샤프트 또는 관형 부재(604), 제2 전극 바디 또는 캡(608) 및 절연층(610)을 포함한다. 디바이스(650)는 제1 전극 표면(618)을 한정하는 방식으로 외부 샤프트(604)의 대다수를 커버하는, 전기 절연체(606)(도 31a)와 유사한 전기 절연체(652)를 추가로 포함한다. 또한, 전기 절연체(652)는 이하에서 설명된 바와 같이 세척 채널(주로 도 35에서 은닉된) 및 세척 출구 포트(654)를 제공하도록 구성된다. 디바이스(600)와 비교하여, 전기 절연체(652)는 세척 튜브(622)(도 31b)를 대체한다.
전기 절연체(652)는 도 36a 및 도 36b에서 보다 상세히 도시되며, 리딩 단부(654) 및 트레일링 단부(656) 사이에서 연장된다. 전기 절연체(652)는 절연 영역(658) 및 세척 영역(660)을 포함하거나 또는 이를 한정하기 위해 형성된다. 절연 영역(658)은 이전 실시예들에 상응하며, 외부 샤프트(604)(도 35)와 크기 및 형태가 부합한다. 예를 들면, 절연 영역(658)은 외부 샤프트(604)의 외부 표면으로 전기 절연체의 재료를 코팅함으로써 형성될 수 있다. 여하튼, 세척 영역(660)은 절연 영역(658)으로부터 방사상 오프셋되며, 세척 채널(662)을 한정하는 관형 형태를 가진다. 세척 채널(662)은 트레일링 단부(656)에서 개방되며, 세척 채널(662)에 유체원을 연결하기 위해 통상의 기술자에게 명백할 바와 같이 디바이스(650)(도 35)의 하나 이상의 다른 구성요소들(예로서, 상기 설명된 세척 허브들)로의 유체 연결을 위해 구성된다. 뿐만 아니라, 세척 채널(662)은 세척 영역(660)의 원위 단부(664)에서 개방된다(리딩 단부(654)로부터 근위로 이격되는 원위 단부(664)를 갖고).
상기 구성을 갖고, 및 도 37a 및 도 37b에 도시된 바와 같이, 전기 절연체(652)는 제1 전극 표면(618)의 영역을 제외하고 제2 전극 바디(608)로부터 외부 샤프트(604)를 전기적으로 분리시킨다. 원위 단부(664)는 세척 채널(662)로 개방되며 세척 출구 포트(654)(일반적으로 언급된)로서, 또는 그것의 부분으로서 작용한다. 세척 채널(662)은 내부 샤프트(602)의 중심축(A)과 일반적으로 평행한 방향으로 연장된다. 세척 출구 포트(654)는 절단 팁(612) 및 제1 및 제2 전극 표면들(618, 620)에 근위로 위치되거나 또는 이격되며, 외부 샤프트(604)의 방사상 바깥쪽에 있거나 또는 그것을 지나 있다.
도 38에 도시된 바와 같이, 세척 채널(662)(도 37a)을 통해 전달된 유체(예로서, 식염수)(F)는 세척 출구 포트(654)를 통해 디바이스(650)의 외부로 토출되며 상기 설명된 바와 같이 양극성 모드에서 그것의 동작을 촉진시키기 위해 전극 표면들(618, 620)과 접촉하여 나아갈 수 있다. 디바이스(650)가 절단 팁(612)에서 흡인 또는 흡입을 제공하는 실시예들을 갖고(예로서, 상기 설명된 바와 같이, 내부 샤프트(602)의 내강은 흡인원에 연결될 수 있다), 세척 출구 포트(654)를 통해 전달된 식염수 또는 다른 유체(F)는 치료 부위로부터 즉시 또는 주로 흡입되지 않을 것이다.
디바이스(650)의 세척 전달 구성, 및 특히 세척 채널(662)(도 37a) 및 세척 출구 포트(654)는 비교적 저 비용 방식으로 디바이스(650)로 구현될 수 있다. 몇몇 실시예들에서, 놀랍게도, 절단 팁(612)(또는 흡인의 다른 위치)으로부터 근위로 이격된 위치에서 식염수(또는 다른 유체)를 방출함으로써, 전극 표면들(618, 620)의 전기적 성능(예로서, 소작 성능)은 식염수(또는 다른 유체)가 절단 팁(612)에서 또는 그것에 바로 인접하여 내부 및 외부 샤프트(602, 604) 사이로부터 방출되는 배열들에 비교하여 크게 개선된다는 것이 발견되어왔다. 세척 출구 포트(654)를 빠져나간 유체(F)에 대한 별개의 방향성 또는 제어가 제공된다. 세척 출구 포트(654)는 디바이스(650)의 직립 배향에서 중력을 극복하기 위해 저압 흐름 또는 제트를 수립하도록 구성될 수 있다.
본 개시의 원리들에 따른 또 다른 전기 외과 디바이스(700)의 부분들이 도 39a 및 도 39b에 도시된다. 특히, 디바이스(700)의 블레이드 및 전극 어셈블리 구성요소들이 이하에서 도시되고 설명된다. 설명의 용이함을 위해, 디바이스(700)의 다양한 다른 구성요소들이 도면에서 생략되며; 예를 들면, 디바이스(700)는 디바이스(110)(도 2a)에 대하여 상기 설명된 다양한 하우징들, 허브들 및 전기적 연결 구성요소들 중 하나 이상, 또는 동등한 구성요소들 또는 메커니즘들을 포함할 수 있다. 이를 염두에 두고, 디바이스(700)는 내부 샤프트 또는 관형 부재(702), 외부 샤프트 또는 관형 부재(704), 전기 절연체(706), 제2 전극 바디 또는 캡(708) 및 절연층(710)을 포함한다. 구성요소들(702 내지 710)은 이전 실시예들과 유사할 수 있다. 뿐만 아니라, 디바이스(700)는 이하에서 보다 명백해질 이유들로 외부 층(711)을 포함한다.
일반적인 표현으로, 및 상기 실시예들과 유사하게, 내부 샤프트(702)는 외부 샤프트(704) 내에 회전 가능하게 배치되며 절단 팁(712)을 형성한다. 절단 팁(712)은 외부 샤프트(704)의 절단 윈도우(714)에서 선택적으로 노출된다. 절단 팁(712) 및 절단 윈도우(714)는 절단 기구(716)를 한정하기 위해 결합한다. 전기 절연체(706)는 외부 샤프트(704)의 외부의 대다수를 커버한다. 외부 샤프트(704)는 전기적 전도성 재료로 형성되며 따라서 디바이스(700)의 제1 전극 바디로서 작용할 수 있다. 외부 샤프트(704)의 원위 부분은 제1 전극 표면(718)을 한정하는, 전기 절연체(716)가 없다. 제2 전극 바디(708)는 외부 샤프트(704)(전기 절연체(706)로 코팅된)를 수용한다. 절연층(710)(도 39b에서 은닉된)은 제2 전극 바디(708)의 외부의 대다수를 커버하여, 선택적으로 외부 샤프트(704)에 제2 전극 바디(708)를 고정시킨다(예로서, 열 수축 프로세스를 통해). 제2 전극 바디(708)의 원위 영역은 제2 전극 표면(720)을 한정하는, 절연층(710)이 없다.
디바이스(700)는, 절단 기구(716)에서 조직 절단, 절개 등을 수행하기 위해 외부 샤프트(704)에 대해 회전하거나 또는 진동하도록 동력을 공급받은 내부 샤프트(702)를 갖고, 상기 설명된 바와 같이 디바이스(110)(도 2a)와 매우 유사한 방식으로 동작한다. 뿐만 아니라, 전극 표면들(718, 720)은 상기 설명된 바와 같이 양극성 전극들로서 동작될 수 있다. 또한, 디바이스(700)는 이하에서 설명된 바와 같이 전극 표면들(718, 720)의 영역에서 세척을 제공하도록 구성된다.
특히, 및 도 40a 및 도 40b를 추가로 참조하면, 외부 층(711)은 절연층(710) 주위에 배치된다. 내부 층(711)의 내부 직경 또는 형태는 절연층(710)의 외부 직경 또는 형태보다 크다. 직경 또는 형태에서의 차이는 절연 및 외부 층들(710, 711) 사이에 세척 채널(722)을 생성한다. 세척 채널(722)은 내부 샤프트(702)의 중심축(A)과 일반적으로 평행한 방향으로 연장된다. 몇몇 실시예들에서, 외부 층(711)은 예시된 형태를 유지하기 위해 형성되며, 세척 채널(722)이 제2 전극 바디(708)의 맞은편에 있는 디바이스(700)의 측면을 따른다는 것을 구술한다. 즉, 외부 층(711)은 제2 전극 바디(708)와 부합하는 영역에서 절연층(710)에 고정되며 그것에 밀착할 수 있고 세척 채널(722)을 생성하기 위해 제2 전극 바디(708)의 맞은편에 있는 영역에서 절연층(710)이 없다(및 그로부터 이격된다). 세척 채널(722)은 적어도 하나의 유체 출구 또는 세척 출구 포트(724)(도 39b 및 도 40a에서 식별된)에서 끝나거나 또는 그것으로 유동적으로 개방된다. 세척 출구 포트(724)는 절단 팁(712) 및 제1 및 제2 전극 표면들(718, 720)에 근위에 위치되거나 또는 이격되며, 외부 샤프트(704)의 방사상 바깥쪽에 있거나 또는 그것을 지나 있다. 몇몇 실시예들에서, 세척 출구 포트(724)는 제2 전극 바디(708)의 맞은편에 있다. 도면들에서 가시적이지 않지만, 절연 및 외부 층들(710, 711)은 세척 채널(722)에 유체원을 연결하기 위해 통상의 기술자에게 명백할 바와 같이 디바이스(700)의 하나 이상의 다른 구성요소들(예로서, 상기 설명된 세척 허브들)로의 유체 연결을 위해 구성되는 세척 채널(722)에 대한 개방된 근위 단부를 수립하도록 구성된다.
도 41에 도시된 바와 같이, 세척 채널(722)(도 40b)을 통해 전달된 유체(예로서, 식염수)(F)는 세척 출구 포트(724)를 통해 디바이스(700)의 외부로 토출되며 상기 설명된 바와 같이 양극성 모드에서 그것의 동작을 촉진시키기 위해 전극 표면들(718, 720)과 접촉하여 나아갈 수 있다. 디바이스(700)가 절단 팁(712)에서 흡인 또는 흡입을 제공하는 실시예들을 갖고(예로서, 상기 설명된 바와 같이, 내부 샤프트(702)의 내강은 흡인원에 연결될 수 있다), 세척 출구 포트(724)로부터 전달된 식염수 또는 다른 유체(F)는 치료 부위로부터 즉시 또는 주로 흡입되지 않을 것이다. 세척 출구 포트(724)를 빠져나간 유체(F)에 대한 방향성 또는 제어가 일반적으로 제공된다.
본 개시의 원리들에 따른 또 다른 전기 외과 디바이스(750)의 부분들이 도 42a 및 도 42b에 도시된다. 특히, 디바이스(750)의 블레이드 및 전극 어셈블리 구성요소들이 이하에서 도시되고 설명된다. 설명의 용이함을 위해, 디바이스(750)의 다양한 다른 구성요소들이 도면에서 생략되며; 예를 들면, 디바이스(750)는 디바이스(110)(도 2a)에 대하여 상기 설명된 다양한 하우징들, 허브들 및 전기적 연결 구성요소들 중 하나 이상, 또는 동등한 구성요소들 또는 메커니즘들을 포함할 수 있다. 이를 염두에 두고, 디바이스(750)는 내부 샤프트 또는 관형 부재(752), 외부 샤프트 또는 관형 부재(754), 전기 절연체(756), 제2 전극 바디 또는 캡(758) 및 절연층(760)을 포함한다. 내부 샤프트(752), 외부 샤프트(754), 전기 절연체(756) 및 절연층(760)은 상기 설명된 구성들 중 임의의 것을 가질 수 있다. 제2 전극 바디(758)는 이하에서 설명된 바와 같이 세척 채널을 수립하도록 구성된다.
일반적인 표현으로, 및 상기 실시예들과 유사하게, 내부 샤프트(752)는 외부 샤프트(754) 내에 회전 가능하게 배치되며 절단 팁(762)을 형성한다. 절단 팁(762)은 외부 샤프트(754)의 절단 윈도우(764)에서 선택적으로 노출된다. 절단 팁(762) 및 절단 윈도우(764)는 절단 기구(766)를 한정하기 위해 결합한다. 전기 절연체(756)는 외부 샤프트(754)의 외부의 대다수를 커버한다. 외부 샤프트(754)는 전기적 전도성 재료로 형성되며 따라서 디바이스(750)의 제1 전극 바디로서 작용할 수 있다. 외부 샤프트(754)의 원위 부분은 제1 전극 표면(768)을 한정하는, 전기 절연체(756)가 없다. 제2 전극 바디(758)는 외부 샤프트(754)(전기 절연체(756)로 코팅된)를 수용한다. 절연층(760)은 제2 전극 바디(758)의 외부의 대다수를 커버하여, 선택적으로 외부 샤프트(754)에 제2 전극 바디(758)를 고정시킨다(예로서, 열 수축 프로세스를 통해). 제2 전극 바디(758)의 원위 영역은 제2 전극 표면(770)을 한정하는, 절연층(760)이 없다.
디바이스(750)는, 절단 기구(766)에서 조직 절단, 절개 등을 수행하기 위해 외부 샤프트(754)에 대해 회전하거나 또는 진동하도록 동력을 공급받은 내부 샤프트(752)를 갖고, 상기 설명된 바와 같이 디바이스(110)(도 2a)와 매우 유사한 방식으로 동작한다. 뿐만 아니라, 전극 표면들(768, 770)은 상기 설명된 바와 같이 양극성 전극들로서 동작될 수 있다. 또한, 디바이스(750)는 이하에서 설명된 바와 같이 전극 표면들(768, 770)의 영역에서 세척을 제공하도록 구성된다.
특히, 및 도 43a 및 도 43b를 추가로 참조하면, 다른 실시예들과 달리, 제2 전극 바디(758)는 원통형 또는 링-형(도 42a에서 가장 잘 반영된 바와 같이)이다. 제2 전극 바디(758)는 전기 절연체(756) 주위에 배치되지만(및 절연층(760)은 제2 전극 바디(758) 주위에 배치된다), 내부 층 제2 전극 바디(758)의 내부 직경은 전기 절연체(756)의 외부 직경보다 크다. 직경에서의 차이는 전기 절연체(756) 및 제2 전극 바디(758) 사이에 세척 채널(772)을 생성한다. 세척 채널(772)은 내부 샤프트(752)의 중심축(A)과 일반적으로 평행한 방향으로 연장되며 전기 절연체(756)의 외부를 둘러싸는, 환상형 또는 링 형인 것으로 보여질 수 있다. 세척 채널(772)은 세척 출구 포트(774)(도 43a에서 식별된)에서 끝나거나 또는 그것으로 유동적으로 개방된다. 세척 출구 포트(774)의 적어도 일부는 절단 팁(762) 및 제1 및 제2 전극 표면들(768, 770)의 근위에 위치되거나 또는 이격되며, 외부 샤프트(754)의 방사상 바깥쪽에 있거나 또는 그것을 지나 있다. 도면들에서 가시적이지 않지만, 전기 절연체(756) 및 제2 전극 바디(758)는 세척 채널(772)에 유체원을 연결하기 위해 통상의 기술자에게 명백할 바와 같이 디바이스(750)의 하나 이상의 구성요소들(예로서, 상기 설명된 세척 허브들)로의 유체 연결을 위해 구성되는 세척 채널(772)을 위한 개방된 근위 단부를 수립하도록 구성된다.
도 44에 도시된 바와 같이, 세척 채널(772)(도 43b)을 통해 전달된 유체(예로서, 식염수)(F)는 세척 출구 포트(774)를 통해 디바이스(750)의 외부로 토출되며 상기 설명된 바와 같이 양극성 모드에서 그것의 동작을 촉진시키기 위해 전극 표면들(768, 770)과 접촉하여 나아갈 수 있다. 디바이스(750)가 절단 팁(762)에서 흡인 또는 흡입을 제공하는 실시예들을 갖고(예로서, 상기 설명된 바와 같이, 내부 샤프트(752)의 내강은 흡인원에 연결될 수 있다), 세척 출구 포트(774)의 적어도 일부분으로부터 전달된 식염수 또는 다른 유체(F)는 치료 부위로부터 즉시 또는 주로 흡입되지 않을 것이다.
세척이 어떻게 제공되는지에 관계없이, 본 개시의 다른 양상들은 제1 및 제2 전극 표면들의 기하학적 구조들에 관련된다. 이전 실시예들은 전극 표면들의 및 그것 사이에서의 특정한 기하학적 구조들 및 관계들을 예시하였지만, 다른 구성들이 또한 상상된다. 기준 포인트로서, 변연절제기에 부가된 양극성 소작은 조직을 절제하는 동안 혈액 손실을 제어하기 위한 능력을 외과의에게 제공한다. 예를 들면, 부비강 수술에서 사용될 때, 소작 툴을 사용하는 동안 외과의가 갖는 여러 개의 관심사들이 있다. 첫 번째로, 외과의는 소작의 위치에 대한 정밀한 제어를 가져야 한다. 부비강들에서의 점막 조직은 정상적인 점액 흐름 및 건강한 부비강 기능을 위해 요구되는 섬모로 커버된다. 점막 조직이 열 손상될 때, 섬모는 영구적으로 손실되어 부가적인 부비강 문제들로 이어질 수 있다. 부가적으로, 많은 부비강 수술들은 눈들 및 두뇌에 매우 근접하여 일어나며; 이들 상황들에서, 소작술의 깊이 및 범위에 대한 정밀한 제어가 유익할 수 있다. 이하의 실시예들에서, 본 개시의 전기 외과 디바이스들 중 임의의 것에 유용한, 다양한 전극 표면 기하학적 구조들이 개시된다.
본 개시의 원리들에 따른 또 다른 전기 외과 디바이스(800)의 부분들이 도 45a 내지 도 45d에 도시된다. 특히, 디바이스(800)의 블레이드 및 전극 어셈블리 구성요소들이 이하에서 도시되고 설명된다. 설명의 용이함을 위해, 디바이스(800)의 다양한 다른 구성요소들이 도면에서 생략되며; 예를 들면, 디바이스(800)는 디바이스(110)(도 2a)에 대하여 상기 설명된 다양한 하우징들, 허브들 및 전기적 연결 구성요소들 중 하나 이상, 또는 동등한 구성요소들 또는 메커니즘들을 포함할 수 있다. 뿐만 아니라, 디바이스(800)는 본 개시의 세척 구성들 중 임의의 것을 통합할 수 있다. 이를 염두에 두고, 디바이스(800)는 내부 샤프트 또는 관형 부재(802), 외부 샤프트 또는 관형 부재(804), 전기 절연체(806), 제2 전극 바디 또는 캡(808) 및 절연층(810)을 포함한다. 상기 실시예들에 유사하게, 내부 샤프트(802)는 외부 샤프트(804) 내에 회전 가능하게 배치되며 절단 팁(812)을 형성한다. 절단 팁(812)은 외부 샤프트(804)의 절단 윈도우(814)에서 선택적으로 노출된다. 절단 팁(812) 및 절단 윈도우(814)는 절단 기구(816)를 한정하기 위해 결합한다. 전기 절연체(806)는 외부 샤프트(804)의 외부의 대다수를 커버한다. 외부 샤프트(804)는 전기적 전도성 재료로 형성되며 따라서 디바이스(800)의 제1 전극 바디로서 작용할 수 있다. 외부 샤프트(804)의 원위 부분은 제1 전극 표면(818)을 한정하는, 전기 절연체(806)가 없다. 제2 전극 바디(808)는 외부 샤프트(804)(전기 절연체(806)로 코팅된)를 수용한다. 절연층(810)은 제2 전극 바디(808)의 외부의 대다수를 커버하여, 선택적으로 외부 샤프트(804)에 제2 전극 바디(808)를 고정시킨다(예로서, 열 수축 프로세스를 통해). 제2 전극 바디(808)의 원위 영역은 제2 전극 표면(820)을 한정하는, 절연층(810)이 없다.
디바이스(800)는, 절단 기구(816)에서 조직 절단, 절개 등을 수행하기 위해 외부 샤프트(804)에 대해 회전하거나 또는 진동하도록 동력을 공급받은 내부 샤프트(802)를 갖고, 상기 설명된 바와 같이 디바이스(110)(도 2a)와 매우 유사한 방식으로 동작한다. 뿐만 아니라, 전극 표면들(818, 820)은 상기 설명된 바와 같이 양극성 전극들로서 동작될 수 있다.
제1 전극 표면(818)은 절단 윈도우(814)를 둘러싸는 외부 샤프트(804)의 노출된 둘레면(822)을 포함한다. 뿐만 아니라, 제1 전극 표면(818)의 리딩 면(824)은 절단 윈도우 둘레면(822)을 넘어 한정된다(즉, 외부 샤프트(804)는 리딩 면(824)에서 전기 절연체(806)가 없다).
제2 전극 표면(820)은 도시된 프레임- 또는 레일-형 구성을 가질 수 있으며, 절연층(810)으로부터 원위로 돌출된다. 제2 전극 표면(820)의 돌출부는 대향하는, 상부 및 하부 에지들(826, 828)을 한정한다. 상부 에지(826)의 형태 및 윤곽은 일반적으로 도시된 바와 같이 제1 전극 표면(818)의 형태 및 윤곽과 부합한다. 예를 들면, 갭(830)은 제2 전극 표면(820)의 상부 에지(826) 및 제1 전극 표면(818) 사이에서 한정되며, 갭(830)은 제1 전극 표면(818)의 둘레 에지의 형태를 흉내내는 형태를 갖는다. 전기 절연체(806)는 갭(830)에서 노출된다.
제2 전극 표면(820)의 프레임-형 구성은 대향하는, 제1 및 제2 측 세그먼트들(832, 834) 및 팁 세그먼트(836)를 생성하는 것으로 보여질 수 있다. 측 세그먼트들(832, 834)은 각각, 디바이스(800)의 대향 측면들을 따라 일반적으로 세로 방식으로 연장된다. 팁 세그먼트(836)는 외부 샤프트(804)의 원위 단부의 곡선 또는 아치형 형태를 따르며, 측 세그먼트들(832, 834) 사이에서 연장된다. 제2 전극 표면(820)의 폭 또는 높이는 측 세그먼트들(832, 834)의 폭 또는 높이에 비교하여 팁 세그먼트(836)를 따라 더 클 수 있다. 하부 에지(828)는 연속적이거나 또는 세그먼트들(832 내지 836)을 따라 인접한다. 도 45b에서 가장 잘 식별되는 바와 같이, 제2 전극 표면(820)은 디바이스(800)의 최하부 면에 대해 불완전하거나 또는 비연속적이다. 달리 서술하면, 개방 영역(838)은 전기 절연체(806)가 노출되는 제2 전극 표면(820)에서 생성된다. 제1 측 세그먼트(832)를 따르는 하부 에지(828)는 개방 영역(838)에 의해 제2 측 세그먼트(834)를 따라 하부 에지(828)로부터 이격된다.
이러한 구성을 갖고, 제1 및 제2 전극 표면들(818, 820)에서 양극성 통전은 일반적으로 제1 전극 표면(818)의 리딩 면(824) 및 제2 전극 표면(820)의 팁 세그먼트(836)의 영역에 집중된다. 통전(예로서, 소작술, 절제 등)은 개방 영역(838)(즉, 제2 전극 표면(820)이 존재하지 않는 영역)에서 발생하지 않을 것이다. 따라서, 블레이드 어셈블리의 "후방" 측 상에서 제2 전극 표면(820)의 재료를 제거함으로써, 디바이스(800)는 의도하지 않은 조직 통전이 후방 측에서 발생하는 것으로부터 방지됨에 따라 강화된 안전을 제공한다.
본 개시의 원리들에 따른 또 다른 전기 외과 디바이스(850)의 부분들이 도 46a 내지 도 46d에서 도시된다. 특히, 디바이스(850)의 블레이드 및 전극 어셈블리 구성요소들이 이하에서 도시되고 설명된다. 설명의 용이함을 위해, 디바이스(850)의 다양한 다른 구성요소들이 도면에서 생략되며; 예를 들면, 디바이스(850)는 디바이스(110)(도 2a)에 대하여 상기 설명된 다양한 하우징들, 허브들 및 전기적 연결 구성요소들 중 하나 이상, 또는 동등한 구성요소들 또는 메커니즘들을 포함할 수 있다. 뿐만 아니라, 디바이스(850)는 본 개시의 세척 구성들 중 임의의 것을 통합할 수 있다. 이를 염두에 두고, 디바이스(850)는 내부 샤프트 또는 관형 부재(852), 외부 샤프트 또는 관형 부재(854), 전기 절연체(856), 제2 전극 바디 또는 캡(858) 및 절연층(860)을 포함한다. 상기 실시예들에 유사하게, 내부 샤프트(852)는 외부 샤프트(854) 내에 회전 가능하게 배치되며 절단 팁(862)을 형성한다. 절단 팁(862)은 외부 샤프트(854)의 절단 윈도우(864)에서 선택적으로 노출된다. 절단 팁(862) 및 절단 윈도우(864)는 절단 기구(866)를 한정하기 위해 결합한다. 전기 절연체(856)는 외부 샤프트(854)의 외부의 대다수를 커버한다. 외부 샤프트(854)는 전기적 전도성 재료로 형성되며 따라서 디바이스(850)의 제1 전극 바디로서 작용할 수 있다. 외부 샤프트(854)의 원위 부분은 제1 전극 표면(868)을 한정하는, 전기 절연체(856)가 없다. 제2 전극 바디(858)는 외부 샤프트(854)(전기 절연체(856)로 코팅된)를 수용한다. 절연층(860)은 제2 전극 바디(858)의 외부의 대다수를 커버하여, 선택적으로 외부 샤프트(854)에 제2 전극 바디(858)를 고정시킨다(예로서, 열 수축 프로세스를 통해). 제2 전극 바디(858)의 원위 영역은 제2 전극 표면(870)을 한정하는, 절연층(860)이 없다.
디바이스(850)는, 절단 기구(866)에서 조직 절단, 절개 등을 수행하기 위해 외부 샤프트(854)에 대해 회전하거나 또는 진동하도록 동력을 공급받은 내부 샤프트(852)를 갖고, 상기 설명된 바와 같이 디바이스(110)(도 2a)와 매우 유사한 방식으로 동작한다. 뿐만 아니라, 전극 표면들(868, 870)은 상기 설명된 바와 같이 양극성 전극들로서 동작될 수 있다.
제1 전극 표면(868)은 절단 윈도우(864)를 둘러싸는 외부 샤프트(854)의 노출된 둘레면(872)을 포함한다. 뿐만 아니라, 제1 전극 표면(868)의 리딩 면(874)은 절단 윈도우 둘레면(872)을 넘어 한정된다(즉, 외부 샤프트(854)는 리딩 면(874)에서 전기 절연체(856)가 없다).
제2 전극 표면(870)은 도시된 리브-형 구성을 가질 수 있으며, 절연층(860)으로부터 원위로 돌출된다. 제2 전극 표면(870)의 돌출부는 대향하는 측면 에지들(876, 878) 및 팁 에지(880)를 한정한다. 제2 전극 표면(870)의 형태 및 윤곽은 대향하는 측면 에지들(876, 878)이 실질적으로 선형이거나 또는 직선일 수 있어서, 외부 샤프트(856)의 중심축과 대체로 평행하여 연장되도록 한다. 뿐만 아니라, 대향하는 측면 에지들(876, 878)은 제1 전극 표면(868)의 대응(즉, 가장 가까운) 에지로부터 개별적으로 이격된다. 제2 전극 표면(870)은 외부 샤프트(856)의 원위 단부의 곡률을 흉내내거나 또는 이를 따르며, 제1 전극 표면(868)의 리딩 면(874)에 비교적 매우 근접하여 팁 에지(880)를 위치시킨다. 달리 서술하면, 갭(882)이 제1 전극 표면(868)의 리딩 면(874) 및 제2 전극 표면(870)의 팁 에지(880)(전기 절연체(806)가 노출되는) 사이에 존재하는 동안, 리딩 면(874) 및 팁 에지(880) 사이에서의 거리는 측면 에지들(876, 878) 및 제1 전극 표면(868)의 대응(즉, 가장 가까운) 에지 사이에서의 거리보다 상당히 더 작다. 예를 들면, 몇몇 실시예들에서, 팁 에지(880) 및 제1 전극 표면(868) 사이에서의 거리는 제1 또는 제2 측면 에지들(876, 878)의 적어도 대다수 및 제1 전극 표면(868) 사이에서의 거리보다 적어도 25% 더 작으며, 대안적으로 적어도 30% 더 작거나, 또는 적어도 50% 더 작다.
이러한 구성을 갖고, 제1 및 제2 전극 표면들(868, 870)에서 양극성 통전은 일반적으로 제1 전극 표면(868)의 리딩 면(874) 및 제2 전극 표면(870)의 팁 에지(880)의 영역에 집중된다. 통전(예로서, 소작술, 절제 등)은 제2 전극 표면(870)의 측면들 또는 블레이드 어셈블리의 "후방"에서 발생할 가능성이 훨씬 더 적을 것이어서, 의도하지 않은 조직 통전이 후방 측에서 발생하는 것으로부터 방지됨에 따라 강화된 안전을 제공한다. 뿐만 아니라, 정밀 소작 효과가 블레이드 어셈블리의 팁에서 촉진된다.
본 개시의 원리들에 따른 또 다른 전기 외과 디바이스(900)의 부분들이 도 47a 내지 도 47d에서 도시된다. 특히, 디바이스(900)의 블레이드 및 전극 어셈블리 구성요소들이 이하에서 도시되고 설명된다. 설명의 용이함을 위해, 디바이스(900)의 다양한 다른 구성요소들이 도면에서 생략되며; 예를 들면, 디바이스(900)는 디바이스(110)(도 2a)에 대하여 상기 설명된 다양한 하우징들, 허브들 및 전기적 연결 구성요소들 중 하나 이상, 또는 동등한 구성요소들 또는 메커니즘들을 포함할 수 있다. 뿐만 아니라, 디바이스(900)는 본 개시의 세척 구성들 중 임의의 것을 통합할 수 있다. 이를 염두에 두고, 디바이스(900)는 내부 샤프트 또는 관형 부재(902), 외부 샤프트 또는 관형 부재(904), 전기 절연체(906), 제2 전극 바디 또는 캡(908) 및 절연층(910)을 포함한다. 상기 실시예들에 유사하게, 내부 샤프트(902)는 외부 샤프트(904) 내에 회전 가능하게 배치되며 절단 팁(912)을 형성한다. 절단 팁(912)은 외부 샤프트(904)의 절단 윈도우(914)에서 선택적으로 노출된다. 절단 팁(912) 및 절단 윈도우(914)는 절단 기구(916)를 한정하기 위해 결합한다. 전기 절연체(906)는 외부 샤프트(904)의 외부의 대다수를 커버한다. 외부 샤프트(904)는 전기적 전도성 재료로 형성되며 따라서 디바이스(900)의 제1 전극 바디로서 작용할 수 있다. 외부 샤프트(904)의 원위 부분은 제1 전극 표면(918)을 한정하는, 전기 절연체(906)가 없다. 제2 전극 바디(908)는 외부 샤프트(904)(전기 절연체(906)로 코팅된)를 수용한다. 절연층(910)은 제2 전극 바디(908)의 외부의 대다수를 커버하여, 선택적으로 외부 샤프트(904)에 제2 전극 바디(908)를 고정시킨다(예로서, 열 수축 프로세스를 통해). 제2 전극 바디(908)의 원위 영역은 제2 전극 표면(920)을 한정하는, 절연층(910)이 없다.
디바이스(900)는, 절단 기구(916)에서 조직 절단, 절개 등을 수행하기 위해 외부 샤프트(904)에 대해 회전하거나 또는 진동하도록 동력을 공급받은 내부 샤프트(902)를 갖고, 상기 설명된 바와 같이 디바이스(110)(도 2a)와 매우 유사한 방식으로 동작한다. 뿐만 아니라, 전극 표면들(918, 920)은 상기 설명된 바와 같이 양극성 전극들로서 동작될 수 있다.
제1 전극 표면(918)은 절단 윈도우(914)를 둘러싸는 외부 샤프트(904)의 노출된 둘레면(922)을 포함한다. 뿐만 아니라, 제1 전극 표면(918)의 리딩 면(924)은 절단 윈도우 둘레면(922)을 넘어 한정된다(즉, 외부 샤프트(904)는 리딩 면(924)에서 전기 절연체(906)가 없다).
제2 전극 표면(920)은 절연층(910)을 지나 원위로 돌출되며, 베이스 세그먼트(926) 및 대향하는, 제1 및 제2 탭 세그먼트들(928, 930)을 형성하거나 또는 한정한다. 베이스 세그먼트(926)는 일반적으로 절단 윈도우(924)의 맞은편에 배열되며 대향하는 측면 에지들(932, 934)을 한정한다. 베이스 세그먼트(926)의 신장부는 외부 샤프트(904)의 중심축(A)과 대체로 평행할 수 있다. 여하튼, 측면 에지들(932, 934)은 제1 전극 표면(918)의 대응(즉, 가장 가까운) 에지로부터 사실상 이격된다. 탭 세그먼트들(928, 930)은 대체로 동일할 수 있으며(예로서, 미러 이미지들), 외부 샤프트(904)의 원위 단부의 형태 및 윤곽을 따르는 동안 중심축(A)으로부터 오프셋된 방향으로 베이스 세그먼트(926)로부터 돌출된다. 탭 세그먼트들(928, 930) 각각은 제1 전극 표면(918)의 리딩 면(924)에 근접하여 위치되는, 각각 팁 에지(936, 938)에서 끝난다. 도 47d에 의해 가장 잘 반영된 바와 같이, 팁 에지들(936, 938)은, 중심축(A)의 일 측면에 위치된 제1 탭 세그먼트(928)의 팁 에지(936) 및 중심축의 반대 측면에 위치된 제2 탭 세그먼트(930)의 팁 에지(938)를 갖고, 중심축(A)으로부터 방사상 오프셋되거나 또는 축을 벗어난다. 갭(940)이 제1 전극 표면(918)의 리딩 면(924) 및 제2 전극 표면(920)의 팁 에지들(936, 938)(전기 절연체(906)가 노출되는) 사이에 존재하는 동안, 리딩 면(924) 및 팁 에지들(936, 938) 사이에서의 거리는 제2 전극 표면(920)의 임의의 다른 에지들 및 제1 전극 표면(918)의 대응(즉, 가장 가까운) 에지 사이에서의 거리보다 상당히 더 작다. 예를 들면, 몇몇 실시예들에서, 팁 에지들(936, 938) 및 제1 전극 표면(918) 사이에서의 거리는 제2 전극 표면(920)의 나머지 및 제1 전극 표면(918) 사이에서의 거리보다 적어도 25% 더 작으며, 대안적으로 적어도 30% 더 작거나, 또는 적어도 50% 더 작다.
이러한 구성을 갖고, 제1 및 제2 전극 표면들(918, 920)에서 양극성 통전은 일반적으로 제1 전극 표면(918)의 리딩 면(924) 및 제2 전극 표면(920)의 오프셋된 팁 에지들(936, 938)의 영역에 집중된다. 통전(예로서, 소작술, 절제 등)은 블레이드 어셈블리의 "후방"에서 발생할 가능성이 훨씬 더 적을 것이어서, 의도하지 않은 조직 통전이 후방 측에서 발생하는 것으로부터 방지됨에 따라 강화된 안전을 제공한다. 뿐만 아니라, 정밀 소작 제어가 블레이드 어셈블리의 축외 팁들에서 촉진되며; 이러한 효과는, 예를 들면, 축외 전극이 타겟 구조를 액세스하기 위해 요구되는 시술들에, 유익할 수 있다.
본 개시의 원리들에 따른 또 다른 전기 외과 디바이스(950)의 부분들이 도 48a 내지 도 48c에서 도시된다. 특히, 디바이스(950)의 블레이드 및 전극 어셈블리 구성요소들이 이하에서 도시되고 설명된다. 설명의 용이함을 위해, 디바이스(950)의 다양한 다른 구성요소들이 도면에서 생략되며; 예를 들면, 디바이스(950)는 디바이스(110)(도 2a)에 대하여 상기 설명된 다양한 하우징들, 허브들 및 전기적 연결 구성요소들 중 하나 이상, 또는 동등한 구성요소들 또는 메커니즘들을 포함할 수 있다. 뿐만 아니라, 디바이스(950)는 본 개시의 세척 구성들 중 임의의 것을 통합할 수 있다. 이를 염두에 두고, 디바이스(950)는 내부 샤프트 또는 관형 부재(952), 외부 샤프트 또는 관형 부재(954), 전기 절연체(956), 제2 전극 바디 또는 캡(958) 및 절연층(960)을 포함한다. 상기 실시예들에 유사하게, 내부 샤프트(952)는 외부 샤프트(954) 내에 회전 가능하게 배치되며 절단 팁(962)을 형성한다. 절단 팁(962)은 외부 샤프트(954)의 절단 윈도우(964)에서 선택적으로 노출된다. 절단 팁(962) 및 절단 윈도우(964)는 절단 기구(966)를 한정하기 위해 결합한다. 전기 절연체(966)는 외부 샤프트(954)의 외부의 대다수를 커버한다. 외부 샤프트(954)는 전기적 전도성 재료로 형성되며 따라서 디바이스(950)의 제1 전극 바디로서 작용할 수 있다. 외부 샤프트(954)의 원위 부분은 제1 전극 표면(968)을 한정하는, 전기 절연체(956)가 없다. 제2 전극 바디(958)는 외부 샤프트(954)(전기 절연체(956)로 코팅된)를 수용한다. 절연층(960)은 제2 전극 바디(958)의 외부의 대다수를 커버하여, 선택적으로 외부 샤프트(954)에 제2 전극 바디(958)를 고정시킨다(예로서, 열 수축 프로세스를 통해). 제2 전극 바디(958)의 원위 영역은 제2 전극 표면(970)을 한정하는, 절연층(960)이 없다.
디바이스(950)는, 절단 기구(966)에서 조직 절단, 절개 등을 수행하기 위해 외부 샤프트(954)에 대해 회전하거나 또는 진동하도록 동력을 공급받은 내부 샤프트(952)를 갖고, 상기 설명된 바와 같이 디바이스(110)(도 2a)와 매우 유사한 방식으로 동작한다. 뿐만 아니라, 전극 표면들(968, 970)은 상기 설명된 바와 같이 양극성 전극들로서 동작될 수 있다.
제1 전극 표면(968)은 절단 윈도우(964)를 둘러싸는 외부 샤프트(954)의 노출된 둘레면(972)을 포함한다. 뿐만 아니라, 제1 전극 표면(968)의 리딩 면(974)은 절단 윈도우 둘레면(972)을 넘어 한정된다(즉, 외부 샤프트(954)는 리딩 면(974)에서 전기 절연체(956)가 없다).
제2 전극 표면(970)은 절연층(960)을 넘어 원위로 돌출되며, 베이스 세그먼트(976) 및 팁 세그먼트(978)를 형성하거나 또는 한정한다. 베이스 세그먼트(976)는 일반적으로 절단 윈도우(964)의 맞은 편에 배열되며 대향하는 측면 에지들(980, 982)을 한정한다. 측면 에지들(980, 982)은 동일한 형태들을 가질 수 있다. 예를 들면, 제1 측면 에지(980)의 형태는 근위 영역(984) 및 원위 영역(986)을 한정하는 것으로서 도 48b에 도시된다. 근위 영역(984)의 형태는 제1 전극 표면(968)의 대응(즉, 가장 가까운) 에지의 형태를 흉내낼 수 있으며, 따라서 제1 측면 에지(980) 및 제1 전극 표면(968)(근위 영역(984)을 따라) 사이에서의 제1 간격(988)은 비교적 균일하다. 측면 에지(980)는 원위 영역(986)을 따라 제1 전극 표면(968)으로부터 떨어져 돌출되어, 원위 방향으로 제1 측면 에지(980) 및 제1 전극 표면(968) 사이에 확대된, 제2 간격(990)을 수립한다. 제2 간격(990)의 크기는 제1 간격(988)의 크기보다 크다. 달리 서술하면, 원위 영역(986)을 따라 제1 전극 표면(968)의 제1 측면 에지(980) 및 대응(즉, 가장 가까운) 에지 사이에서의 거리는 근위 영역(984)을 따르는 것보다 크다.
팁 세그먼트(978)는 외부 샤프트(954)의 원위 단부의 곡률을 따르며, 제1 전극 표면(968)을 향해 위쪽으로 돌출된다. 팁 세그먼트(978)는 제1 전극 표면(968)의 리딩 면(974)에 근접한 팁 에지(992)에서 끝난다. 갭(994)이 제1 전극 표면(968)의 리딩 면(974) 및 제2 전극 표면(970)의 팁 에지(992)(전기 절연체(956)가 노출되는) 사이에 존재하는 동안, 리딩 면(974) 및 팁 에지(992) 사이에서의 거리는 적어도 대응하는 원위 영역(986)을 따라, 제1 전극 표면(968)의 측면 에지들(980, 982) 및 대응(즉, 가장 가까운) 에지 사이에서의 거리보다 상당히 더 작다. 달리 서술하면, 팁 에지(992)에서의 갭(994)의 크기는 원위 영역(986)에서 제2 간격(990)의 크기보다 상당히 더 작다. 예를 들면, 몇몇 실시예들에서, 팁 에지(992) 및 제1 전극 표면(968) 사이에서의 거리는 원위 영역(986)을 따르는 측면 에지들(980, 982) 및 제1 전극 표면(968)의 대응(즉, 가장 가까운) 에지 사이에서의 거리보다 적어도 25% 더 작으며, 대안적으로 적어도 30% 더 작거나, 또는 적어도 50% 더 작다.
이러한 구성을 갖고, 제1 및 제2 전극 표면들(968, 970)에서 양극성 통전은 일반적으로 제1 전극 표면(968)의 리딩 면(974) 및 제2 전극 표면(970)의 팁 에지(992)의 영역에, 및 제2 전극 표면(970)의 근위 영역들(984)과 부합하는 대향 측면 영역들에서 집중된다. 통전(예로서, 소작술, 절제 등) 효과는 블레이드 어셈블리의 팁 및 측면들에서 집중된다. 보다 큰 소작 정밀도는 디바이스(950)가 동시 변연절제/소작 시술들에서 사용될 때 측면 및 팁 주도 절단들 동안 제공된다.
본 개시의 원리들에 따른 또 다른 전기 외과 디바이스(1000)의 부분들이 도 49a 내지 도 49c에서 도시된다. 특히, 디바이스(1000)의 블레이드 및 전극 어셈블리 구성요소들이 이하에서 도시되고 설명된다. 설명의 용이함을 위해, 디바이스(1000)의 다양한 다른 구성요소들이 도면에서 생략되며; 예를 들면, 디바이스(1000)는 디바이스(110)(도 2a)에 대하여 상기 설명된 다양한 하우징들, 허브들 및 전기적 연결 구성요소들 중 하나 이상, 또는 동등한 구성요소들 또는 메커니즘들을 포함할 수 있다. 뿐만 아니라, 디바이스(1000)는 본 개시의 세척 구성들 중 임의의 것을 통합할 수 있다. 이를 염두에 두고, 디바이스(1000)는 내부 샤프트 또는 관형 부재(1002), 외부 샤프트 또는 관형 부재(1004), 전기 절연체(1006), 제2 전극 바디 또는 캡(1008) 및 절연층(1010)을 포함한다. 상기 실시예들에 유사하게, 내부 샤프트(1002)는 외부 샤프트(1004) 내에 회전 가능하게 배치되며 절단 팁(1012)을 형성한다. 절단 팁(1012)은 외부 샤프트(1004)의 절단 윈도우(1014)에서 선택적으로 노출된다. 절단 팁(1012) 및 절단 윈도우(1014)는 절단 기구(1016)를 한정하기 위해 결합한다. 전기 절연체(1006)는 외부 샤프트(1004)의 외부의 대다수를 커버한다. 외부 샤프트(1004)는 전기적 전도성 재료로 형성되며 따라서 디바이스(1000)의 제1 전극 바디로서 작용할 수 있다. 외부 샤프트(1004)의 원위 부분은 제1 전극 표면(1018)을 한정하는, 전기 절연체(1006)가 없다. 제2 전극 바디(1008)는 외부 샤프트(1004)(전기 절연체(1006)로 코팅된)를 수용한다. 절연층(1010)은 제2 전극 바디(1008)의 외부의 대다수를 커버하여, 선택적으로 외부 샤프트(1004)에 제2 전극 바디(1008)를 고정시킨다(예로서, 열 수축 프로세스를 통해). 제2 전극 바디(1008)의 원위 영역은 제2 전극 표면(1020)을 한정하는, 절연층(1010)이 없다.
디바이스(1000)는, 절단 기구(1016)에서 조직 절단, 절개 등을 수행하기 위해 외부 샤프트(1004)에 대해 회전하거나 또는 진동하도록 동력을 공급받은 내부 샤프트(1002)를 갖고, 상기 설명된 바와 같이 디바이스(110)(도 2a)와 매우 유사한 방식으로 동작한다. 뿐만 아니라, 전극 표면들(1018, 1020)은 상기 설명된 바와 같이 양극성 전극들로서 동작될 수 있다.
제1 전극 표면(1018)은 절단 윈도우(1014)를 둘러싸는 외부 샤프트(1004)의 노출된 둘레면(1022)을 포함한다. 뿐만 아니라, 제1 전극 표면(1018)의 리딩 면(1024)은 절단 윈도우 둘레면(1022)을 넘어 한정된다(즉, 외부 샤프트(1004)는 리딩 면(1024)에서 전기 절연체(1006)가 없다).
제2 전극 표면(1020)은 절연층(1010)을 지나 원위로 돌출되며, 베이스(1026) 및 대향 탭들(1028, 1030)을 형성하거나 또는 한정한다. 베이스 세그먼트(1026)는 일반적으로 절단 윈도우(1014)의 맞은편에 배열되며 대향하는 측면 에지들(1032, 1034)을 한정한다. 측면 에지들(1032, 1034)은 동일한 형태들을 가질 수 있다. 예를 들면, 제1 측면 에지(1032)의 형태는 제1 전극 표면(1018)의 대응(즉, 가장 가까운) 에지의 형태를 흉내내거나 또는 따르는 것으로 도 49b에 도시되며, 따라서 비교적 균일한 간격이 측면 에지들(1032, 1034) 및 제1 전극 표면(1018) 사이에 수립된다.
대향 탭들(1028, 1030)은 일반적으로 외부 샤프트(1004)의 원위 단부의 곡률을 따르며, 각각은 각각 팁 에지(1036, 1038)에서 끝난다. 팁 에지들(1036, 1038)의 각각의 형태는 리딩 면(1024)의 형태와 같은, 제1 전극 표면(1018)의 대응(즉, 가장 가까운) 에지의 형태를 흉내내거나 또는 따른다. 노치(1040)는 대향 탭들(1028, 1030)(예로서, 탭들(1028, 1030)은 외부 샤프트(1006)의 중심축의 반대 측면들에서 한정된다) 사이에서의 제2 전극 표면(1020)에 형성된다. 노치(1040)는 제2 전극 표면(1020)의 오목형 리딩 에지(1042)를 한정한다. 확대된 간격 또는 갭(1044)(전기 절연체(1006)가 노출되는)은 제2 전극 표면(1020)의 오목형 리딩 에지(1042) 및 제1 전극 표면(1018)의 리딩 면(1024) 사이에 생성된다. 갭(1044)의 크기는 제1 전극 표면(1018) 및 제2 전극 표면(1020)의 다른 에지들 사이에서의 간격의 크기보다 크다. 달리 서술하면, 제2 전극 표면(1020)의 오목형 리딩 에지(1042) 및 제1 전극 표면(1018)의 리딩 면(1024) 사이에서의 거리는 제1 전극 표면(1018)의 팁 에지들(1036, 1038) 및 대응(즉, 가장 가까운) 에지(예로서, 리딩 면(1024)) 사이에서의 거리보다 크며, 제1 전극 표면(1018)의 측면 에지들(1032, 1034) 및 대응(즉, 가장 가까운) 에지 사이에서의 거리보다 크다.
이러한 구성을 갖고, 제1 및 제2 전극 표면들(1018, 1020)에서 양극성 통전은 일반적으로 제1 전극 표면(1018)의 리딩 면(1024) 및 제2 전극 표면(1020)의 오프셋된 팁 에지들(1036, 1038)의 영역에서 집중된다. 강화된 안전은 축외 소작(또는 다른 전기적 자극)을 집중시키며 팁이 가시화될 수 없는 시술들을 위해 팁에서 소작 효과를 감소시킴으로써 제공된다.
본 개시의 원리들에 따른 또 다른 전기 외과 디바이스(1050)의 부분들이 도 50a 내지 도 50d에서 도시된다. 특히, 디바이스(1050)의 블레이드 및 전극 어셈블리 구성요소들이 이하에서 도시되고 설명된다. 설명의 용이함을 위해, 디바이스(1050)의 다양한 다른 구성요소들이 도면에서 생략되며; 예를 들면, 디바이스(1050)는 디바이스(110)(도 2a)에 대하여 상기 설명된 다양한 하우징들, 허브들 및 전기적 연결 구성요소들 중 하나 이상, 또는 동등한 구성요소들 또는 메커니즘들을 포함할 수 있다. 뿐만 아니라, 디바이스(1050)는 본 개시의 세척 구성들 중 임의의 것을 통합할 수 있다. 이를 염두에 두고, 디바이스(1050)는 내부 샤프트 또는 관형 부재(1052), 외부 샤프트 또는 관형 부재(1054), 전기 절연체(1056), 제2 전극 바디 또는 캡(1058) 및 절연층(1060)을 포함한다. 상기 실시예들에 유사하게, 내부 샤프트(1052)는 외부 샤프트(1054) 내에 회전 가능하게 배치되며 절단 팁(1062)을 형성한다. 절단 팁(1062)은 외부 샤프트(1054)의 절단 윈도우(1064)에서 선택적으로 노출된다. 절단 팁(1062) 및 절단 윈도우(1064)는 절단 기구(1066)를 한정하기 위해 결합한다. 전기 절연체(1056)는 외부 샤프트(1054)의 외부의 대다수를 커버한다. 외부 샤프트(1054)는 전기적 전도성 재료로 형성되며 따라서 디바이스(1050)의 제1 전극 바디로서 작용할 수 있다. 외부 샤프트(1054)의 원위 부분은 제1 전극 표면(1068)을 한정하는, 전기 절연체(1056)가 없다. 제2 전극 바디(1058)는 외부 샤프트(1054)(전기 절연체(1056)로 코팅된)를 수용한다. 절연층(1060)은 제2 전극 바디(1058)의 외부의 대다수를 커버하여, 선택적으로 외부 샤프트(1054)에 제2 전극 바디(1058)를 고정시킨다(예로서, 열 수축 프로세스를 통해). 제2 전극 바디(1058)의 원위 영역은 제2 전극 표면(1070)을 한정하는, 절연층(1060)이 없다.
디바이스(1050)는, 절단 기구(1066)에서 조직 절단, 절개 등을 수행하기 위해 외부 샤프트(1054)에 대해 회전하거나 또는 진동하도록 동력을 공급받은 내부 샤프트(1052)를 갖고, 상기 설명된 바와 같이 디바이스(110)(도 2a)와 매우 유사한 방식으로 동작한다. 뿐만 아니라, 전극 표면들(1068, 1070)은 상기 설명된 바와 같이 양극성 전극들로서 동작될 수 있다.
제1 전극 표면(1068)은 절단 윈도우(1064)를 둘러싸는 외부 샤프트(1054)의 노출된 둘레면(1072)을 포함한다.
제2 전극 표면(1070)은 절연층(1060)을 지나 원위로 돌출되며, 베이스(1074) 및 대향 탭들(1076, 1078)을 형성하거나 또는 한정한다. 베이스(1074)는 일반적으로 절단 윈도우(1064)를 향해 배열되며 후방 에지(1080)를 한정한다. 후방 에지(1080)의 형태는 제1 전극 표면(1068)(예로서, 후방 에지(1080)에 바로 인접한 둘레면(1072)의 부분)의 대응(즉, 가장 가까운) 에지의 형태를 흉내내거나 또는 따르며, 따라서 비교적 균일한 간격이 후방 에지(1080) 및 제1 전극 표면(1068) 사이에 수립된다.
탭들(1076, 1078)은 형태가 동일할 수 있으며, 절단 윈도우(1064)의 반대 측면들에서 베이스(1074)로부터 돌출된다. 각각의 탭은 하부 에지(1084)의 맞은편에 있는 상부 에지(1082)를 한정하며, 팁 에지(1086)에서 끝난다. 1082의 형태는 제1 전극 표면(1068)(예로서, 각각의 상부 에지(1082)에 바로 인접한 둘레면(1072)의 부분)의 대응(즉, 가장 가까운) 에지의 형태를 흉내내거나 또는 따른다. 탭들(1076, 1078)은 외부 샤프트(1054)의 원위 단부로(또는 그 주위에서) 연장되지 않으며; 탭들(1076, 1078)의 각각의 팁 에지(1086)는 외부 샤프트(1054)의 원위 단부의 근위이다. 도 50a에서 가장 잘 도시된 바와 같이, 원위 절연 영역(1088)이 생성되며 그곳에서 제2 전극 표면(1070)은 존재하지 않으며 전기 절연체(1056)가 노출된다. 뿐만 아니라, 및 도 50b에서 가장 잘 반영된 바와 같이, 탭들(1076, 1078)의 대향하는 하부 에지들(1084)은 서로로부터 원주 방향으로 이격된다. 따라서, 사실상 개방 영역(1090)은 탭들(1076, 1078) 사이에서 한정되며 그곳에서 전기 절연체(1056)가 노출된다.
이러한 구성을 갖고, 제1 및 제2 전극 표면들(1068, 1070)에서의 양극성 통전이 일반적으로 제1 전극 표면(1068)의 근위 영역에 집중된다. 강화된 안전은 팁이 가시화될 수 없는 시술들을 위해 제공된다.
본 개시에 대한 다양한 수정들 및 변경들이 본 개시의 사상 및 범위로부터 벗어나지 않고 이 기술분야의 숙련자들에게 명백해질 것이다. 본 개시는 여기에서 제시된 예시적인 실시예들 및 예들에 의해 지나치게 제한되도록 의도되지 않으며 이러한 예들 및 실시예들은 단지 다음과 같이 여기에서 제시된 청구항들에 의해서만 제한되도록 의도된 본 개시의 범위만을 갖고 예로서 제공된다는 것이 이해되어야 한다.

Claims (22)

  1. 양극성 전기 디바이스에 있어서,
    중심축을 따라 연장된 내강, 근위 단부 및 상기 근위 단부의 맞은편에 있는 원위 단부를 한정하는 외부 샤프트로서, 상기 원위 단부는 상기 내강에 대해 개방된 절단 윈도우를 형성하는, 외부 샤프트;
    상기 중심축에 대해 상기 외부 샤프트의 상기 내강 내에 회전 가능하게 배치되고, 절단 팁을 형성하는 원위 부분을 한정하는, 내부 샤프트;
    상기 절단 팁 및 상기 절단 윈도우는 결합되어 절단 기구를 한정하며; 및
    상기 절단 기구에 형성된 제1 및 제2 전기적으로 분리된 전극 표면들;
    상기 외부 샤프트에 평행하여 연장된 세척 채널로서, 상기 절단 윈도우로부터 근위로 이격되며 상기 외부 샤프트의 방사상 바깥쪽에 위치된 적어도 하나의 출구 포트에서 끝나는, 세척 채널을 포함하는, 양극성 전기 디바이스.
  2. 청구항 1에 있어서,
    상기 외부 샤프트는 상기 제1 전극 표면을 형성하는, 양극성 전기 디바이스.
  3. 청구항 2에 있어서,
    상기 외부 샤프트에 연결되며 상기 제2 전극 표면을 한정하는 제2 전극 바디를 더 포함하는, 양극성 전기 디바이스.
  4. 청구항 3에 있어서,
    상기 외부 샤프트 및 상기 제2 전극 바디를 전기적으로 분리하기 위해 상기 외부 샤프트 위에 배치된 전기 절연체를 더 포함하는, 양극성 전기 디바이스.
  5. 청구항 4에 있어서,
    상기 절단 윈도우의 표면에서 상기 절단 윈도우의 적어도 일부분이 상기 제1 전극 표면의 적어도 일부를 한정하도록 상기 전기 절연체가 없는, 양극성 전기 디바이스.
  6. 청구항 5에 있어서,
    상기 제2 전극 바디 및 상기 외부 샤프트 주위에 배치된 절연층을 더 포함하는, 양극성 전기 디바이스.
  7. 청구항 6에 있어서,
    상기 제2 전극 바디의 적어도 일부분은 상기 제2 전극 표면을 형성하기 위해 상기 절연층이 없는, 양극성 전기 디바이스.
  8. 청구항 1에 있어서,
    상기 세척 채널은 상기 내부 샤프트 및 상기 외부 샤프트 사이의 간격에 의해 한정되는, 양극성 전기 디바이스.
  9. 청구항 8에 있어서,
    상기 적어도 하나의 출구 포트는 배수공을 포함하는, 양극성 전기 디바이스.
  10. 청구항 8에 있어서,
    상기 적어도 하나의 출구 포트는 다공성 재료에 의해 형성되는, 양극성 전기 디바이스.
  11. 청구항 8에 있어서,
    상기 적어도 하나의 출구 포트는 상기 외부 샤프트에 형성된 홀을 포함하는, 양극성 전기 디바이스.
  12. 청구항 11에 있어서,
    상기 외부 샤프트 위에 배치된 전기 절연체를 더 포함하되, 상기 외부 샤프트의 영역은 상기 제1 전극 표면을 한정하기 위해 상기 전기 절연체가 없으며, 또한 상기 적어도 하나의 출구 포트는 상기 전기 절연체의 두께를 통해 형성된 홀을 포함하는, 양극성 전기 디바이스.
  13. 청구항 12에 있어서,
    상기 외부 샤프트에서의 홀은 상기 전기 절연체에서의 홀과 정렬되는, 양극성 전기 디바이스.
  14. 청구항 12에 있어서,
    상기 외부 샤프트를 적어도 부분적으로 둘러싸는 제2 전극 바디, 및 상기 제2 전극 바디 및 상기 외부 샤프트 주위에 배치된 절연층을 더 포함하며, 또한 상기 적어도 하나의 출구 포트는 상기 절연층의 두께를 통해 형성된 홀을 포함하는, 양극성 전기 디바이스.
  15. 청구항 14에 있어서,
    상기 외부 샤프트에서의 홀, 상기 전기 절연체에서의 홀 및 상기 절연층에서의 홀은 정렬되는, 양극성 전기 디바이스.
  16. 청구항 15에 있어서,
    정렬된 상기 홀들에 의해 한정된, 상기 적어도 하나의 출구 포트의 중심선은 상기 중심축에 대하여 비스듬한, 양극성 전기 디바이스.
  17. 청구항 8에 있어서,
    상기 외부 샤프트에 도포된 전기 절연체 및 상기 외부 샤프트에 연결되며 상기 제2 전극 표면을 한정하는 제2 전극 바디를 더 포함하되, 상기 적어도 하나의 출구 포트는 상기 외부 샤프트의 두께를 통해 형성된 홀을 포함하며, 또한 상기 적어도 하나의 출구 포트는 상기 전기 절연체 및 상기 제2 전극 바디 사이에 한정된 채널에 대해 개방되는, 양극성 전기 디바이스.
  18. 청구항 17에 있어서,
    상기 제2 전극 바디는 전기적 비-전도성 재료로 형성된 내부 층 및 전기적 전도성 재료로 형성된 외부 층을 포함하는, 양극성 전기 디바이스.
  19. 청구항 15에 있어서,
    상기 적어도 하나의 출구 포트는 원위 방향으로 배출된 유체를 향하게 하기 위한 변류기를 더 포함하는, 양극성 전기 디바이스.
  20. 청구항 15에 있어서,
    상기 적어도 하나의 출구 포트는 원위 방향으로 배출된 유체를 향하게 하기 위한 도관을 더 포함하는, 양극성 전기 디바이스.
  21. 청구항 1에 있어서,
    상기 세척 채널은 상기 외부 샤프트에 연결된 세척 튜브에 의해 한정되는, 양극성 전기 디바이스.
  22. 청구항 1에 있어서,
    상기 외부 샤프트 위에 도포된 전기 절연체를 더 포함하며, 또한 상기 세척 채널은 상기 전기 절연체에서 한정되는, 양극성 전기 디바이스.
KR1020177023864A 2015-02-18 2016-02-18 Rf 에너지 사용이 가능한 조직 변연절제 디바이스 KR20170117440A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562117523P 2015-02-18 2015-02-18
US62/117,523 2015-02-18
PCT/US2016/018486 WO2016134156A1 (en) 2015-02-18 2016-02-18 Rf energy enabled tissue debridement device

Publications (1)

Publication Number Publication Date
KR20170117440A true KR20170117440A (ko) 2017-10-23

Family

ID=55453308

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177023864A KR20170117440A (ko) 2015-02-18 2016-02-18 Rf 에너지 사용이 가능한 조직 변연절제 디바이스

Country Status (8)

Country Link
US (2) US11207130B2 (ko)
EP (1) EP3258864B1 (ko)
JP (1) JP6661652B2 (ko)
KR (1) KR20170117440A (ko)
CN (1) CN107438411A (ko)
AU (1) AU2016219980B2 (ko)
CA (1) CA2975389A1 (ko)
WO (1) WO2016134156A1 (ko)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9226792B2 (en) 2012-06-12 2016-01-05 Medtronic Advanced Energy Llc Debridement device and method
US10314647B2 (en) 2013-12-23 2019-06-11 Medtronic Advanced Energy Llc Electrosurgical cutting instrument
US10813686B2 (en) 2014-02-26 2020-10-27 Medtronic Advanced Energy Llc Electrosurgical cutting instrument
US10188456B2 (en) 2015-02-18 2019-01-29 Medtronic Xomed, Inc. Electrode assembly for RF energy enabled tissue debridement device
US10376302B2 (en) 2015-02-18 2019-08-13 Medtronic Xomed, Inc. Rotating electrical connector for RF energy enabled tissue debridement device
US11382684B2 (en) * 2018-03-27 2022-07-12 Gyrus Acmi, Inc. Electrode blade for shavers
US11712290B2 (en) * 2018-06-08 2023-08-01 RELIGN Corporation Arthroscopic devices and methods
JP7196204B2 (ja) * 2018-08-24 2022-12-26 ボストン サイエンティフィック サイムド,インコーポレイテッド 医療機器と関連手法
EP3628255A1 (de) * 2018-09-26 2020-04-01 Erbe Elektromedizin GmbH Hf-chirurgisches präparationsinstrument mit fluidkanal
US11517342B2 (en) 2018-11-09 2022-12-06 Meditrina, Inc. Surgical cutting device with gear mechanism
CN109730801B (zh) * 2018-12-19 2021-06-29 先健科技(深圳)有限公司 滤器回收装置
US11497540B2 (en) * 2019-01-09 2022-11-15 Covidien Lp Electrosurgical fallopian tube sealing devices with suction and methods of use thereof
US11786296B2 (en) 2019-02-15 2023-10-17 Accularent, Inc. Instrument for endoscopic posterior nasal nerve ablation
US11766288B2 (en) 2019-02-22 2023-09-26 Gyrus Acmi, Inc. Flexible bipolar sheath
US11534235B2 (en) 2019-04-04 2022-12-27 Acclarent, Inc. Needle instrument for posterior nasal neurectomy ablation
US11717342B2 (en) * 2019-04-11 2023-08-08 Gyrus Acmi, Inc. Medical device
US11413056B2 (en) 2019-04-22 2022-08-16 Medos International Sarl Bone and tissue resection devices and methods
US11389178B2 (en) 2019-04-22 2022-07-19 Medos International Sarl Bone and tissue resection devices and methods
US11350948B2 (en) 2019-04-22 2022-06-07 Medos International Sarl Bone and tissue resection devices and methods
US11324530B2 (en) 2019-04-22 2022-05-10 Medos International Sarl Bone and tissue resection devices and methods
US20210007793A1 (en) * 2019-07-09 2021-01-14 RELIGN Corporation Arthroscopic devices and methods
CN110731815B (zh) * 2019-10-30 2020-10-09 杭州市第三人民医院 一种泌尿系统汽化电切镜
WO2021127125A1 (en) * 2019-12-19 2021-06-24 Smith & Nephew, Inc. Systems and methods for turbinate reduction
EP3861945A1 (en) * 2020-02-07 2021-08-11 Gyrus ACMI, Inc. d/b/a Olympus Surgical Technologies America Medical device including flexible shaft with multiple bearings
GB2622409A (en) * 2022-09-14 2024-03-20 Gyrus Medical Ltd Rotary shaver arrangement for a surgical instrument
CN116158840A (zh) * 2023-04-23 2023-05-26 北京万洁天元医疗器械股份有限公司 一种旋转电极及使用其的手术工具
CN116763421B (zh) * 2023-08-18 2023-11-24 西南石油大学 一种具有止血功能的医用刨削刀头

Family Cites Families (363)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB247060A (en) 1925-06-05 1926-02-11 Florence Jackson Device for protecting the corners of carpets, rugs and mats, and securing them to floors
US2888928A (en) 1957-04-15 1959-06-02 Seiger Harry Wright Coagulating surgical instrument
GB975299A (en) 1961-11-22 1964-11-11 Hitachi Ltd Commutator devices for micrometers
US3223088A (en) 1963-04-08 1965-12-14 S B Power Surgical Tools Compa Bone cutting apparatus
US3682130A (en) 1965-03-19 1972-08-08 Jeffers & Bailey Inc Fusible temperature responsive trigger device
US3750650A (en) 1970-12-15 1973-08-07 Hewlett Packard Gmbh Double spiral electrode for intra-cavity attachment
US3886944A (en) 1973-11-19 1975-06-03 Khosrow Jamshidi Microcautery device
US3955578A (en) 1974-12-23 1976-05-11 Cook Inc. Rotatable surgical snare
US3955284A (en) 1975-01-02 1976-05-11 Balson John E Disposable dental drill assembly
US4014342A (en) 1975-04-11 1977-03-29 Concept, Inc. Vitreous cutter
US4060088A (en) 1976-01-16 1977-11-29 Valleylab, Inc. Electrosurgical method and apparatus for establishing an electrical discharge in an inert gas flow
US4174713A (en) 1976-03-26 1979-11-20 Mehl Thomas L Device for permanent removal of hair
GB1534162A (en) 1976-07-21 1978-11-29 Lloyd J Cyosurgical probe
CH616337A5 (ko) 1977-10-21 1980-03-31 Schneider Medintag Ag
US4248224A (en) 1978-08-01 1981-02-03 Jones James W Double venous cannula
US4878493A (en) 1983-10-28 1989-11-07 Ninetronix Venture I Hand-held diathermy apparatus
US4651734A (en) 1985-02-08 1987-03-24 The United States Of America As Represented By The United States Department Of Energy Electrosurgical device for both mechanical cutting and coagulation of bleeding
US4823791A (en) 1987-05-08 1989-04-25 Circon Acmi Division Of Circon Corporation Electrosurgical probe apparatus
US4943290A (en) 1987-06-23 1990-07-24 Concept Inc. Electrolyte purging electrode tip
US4950232A (en) 1987-08-11 1990-08-21 Surelab Superior Research Laboratories Cerebrospinal fluid shunt system
US4931047A (en) 1987-09-30 1990-06-05 Cavitron, Inc. Method and apparatus for providing enhanced tissue fragmentation and/or hemostasis
US4998933A (en) 1988-06-10 1991-03-12 Advanced Angioplasty Products, Inc. Thermal angioplasty catheter and method
GB8822492D0 (en) 1988-09-24 1988-10-26 Considine J Apparatus for removing tumours from hollow organs of body
US4932952A (en) 1988-12-20 1990-06-12 Alto Development Corporation Antishock, anticlog suction coagulator
DE3917328A1 (de) 1989-05-27 1990-11-29 Wolf Gmbh Richard Bipolares koagulationsinstrument
US5112299A (en) 1989-10-25 1992-05-12 Hall Surgical Division Of Zimmer, Inc. Arthroscopic surgical apparatus and method
US5275609A (en) 1990-06-22 1994-01-04 Vance Products Incorporated Surgical cutting instrument
US5282799A (en) 1990-08-24 1994-02-01 Everest Medical Corporation Bipolar electrosurgical scalpel with paired loop electrodes
JPH05506174A (ja) 1990-09-14 1993-09-16 アメリカン・メディカル・システムズ・インコーポレーテッド 組み合わせた高熱療法及び拡張カテーテル
ZA917281B (en) 1990-09-26 1992-08-26 Cryomedical Sciences Inc Cryosurgical instrument and system and method of cryosurgery
US5190541A (en) 1990-10-17 1993-03-02 Boston Scientific Corporation Surgical instrument and method
EP0570520A1 (en) 1991-02-06 1993-11-24 Laparomed Corporation Electrosurgical device
US5195959A (en) 1991-05-31 1993-03-23 Paul C. Smith Electrosurgical device with suction and irrigation
US5234428A (en) 1991-06-11 1993-08-10 Kaufman David I Disposable electrocautery/cutting instrument with integral continuous smoke evacuation
US5490819A (en) 1991-08-05 1996-02-13 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5697281A (en) 1991-10-09 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
US5395312A (en) 1991-10-18 1995-03-07 Desai; Ashvin Surgical tool
US5383874A (en) 1991-11-08 1995-01-24 Ep Technologies, Inc. Systems for identifying catheters and monitoring their use
US6063079A (en) 1995-06-07 2000-05-16 Arthrocare Corporation Methods for electrosurgical treatment of turbinates
US5902272A (en) 1992-01-07 1999-05-11 Arthrocare Corporation Planar ablation probe and method for electrosurgical cutting and ablation
US5697882A (en) 1992-01-07 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
US6296638B1 (en) 1993-05-10 2001-10-02 Arthrocare Corporation Systems for tissue ablation and aspiration
US5683366A (en) 1992-01-07 1997-11-04 Arthrocare Corporation System and method for electrosurgical tissue canalization
US6024733A (en) 1995-06-07 2000-02-15 Arthrocare Corporation System and method for epidermal tissue ablation
CA2128730A1 (en) 1992-02-05 1993-08-19 William F. Whittingham Improved phacoemulsification handpiece
US5254117A (en) 1992-03-17 1993-10-19 Alton Dean Medical Multi-functional endoscopic probe apparatus
US5281215A (en) 1992-04-16 1994-01-25 Implemed, Inc. Cryogenic catheter
US5443463A (en) 1992-05-01 1995-08-22 Vesta Medical, Inc. Coagulating forceps
US5443470A (en) 1992-05-01 1995-08-22 Vesta Medical, Inc. Method and apparatus for endometrial ablation
US5230704A (en) 1992-06-26 1993-07-27 Biomedical Dynamics Corporation Suction/irrigation instrument having reusable handle with disposable fluid path
US5330521A (en) 1992-06-29 1994-07-19 Cohen Donald M Low resistance implantable electrical leads
EP0669840A4 (en) 1992-09-11 1995-11-15 Advanced Surgical Inc SELF-INTRODUCING INFUSION CATHETER.
US5401272A (en) 1992-09-25 1995-03-28 Envision Surgical Systems, Inc. Multimodality probe with extendable bipolar electrodes
US5336220A (en) 1992-10-09 1994-08-09 Symbiosis Corporation Tubing for endoscopic electrosurgical suction-irrigation instrument
WO1994010922A1 (en) 1992-11-13 1994-05-26 Ep Technologies, Inc. Cardial ablation systems using temperature monitoring
US5676693A (en) * 1992-11-13 1997-10-14 Scimed Life Systems, Inc. Electrophysiology device
US5376078B1 (en) 1992-12-10 1997-06-24 Linvatec Corp Rotatable surgical cutting instrument with positionally adjustable window
US5620447A (en) 1993-01-29 1997-04-15 Smith & Nephew Dyonics Inc. Surgical instrument
EP0613661B1 (en) 1993-01-29 1998-04-15 Smith & Nephew, Inc. Rotatable curved instrument
US5405348A (en) 1993-02-12 1995-04-11 Anspach, Jr.; William E. Surgical cutting instrument
US6161543A (en) 1993-02-22 2000-12-19 Epicor, Inc. Methods of epicardial ablation for creating a lesion around the pulmonary veins
US5336443A (en) 1993-02-22 1994-08-09 Shin-Etsu Polymer Co., Ltd. Anisotropically electroconductive adhesive composition
US5797960A (en) 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
US5445638B1 (en) 1993-03-08 1998-05-05 Everest Medical Corp Bipolar coagulation and cutting forceps
AU682338B2 (en) 1993-05-06 1997-10-02 Linvatec Corporation Rotatable endoscopic shaver with polymeric blades
US6832996B2 (en) * 1995-06-07 2004-12-21 Arthrocare Corporation Electrosurgical systems and methods for treating tissue
US5364395A (en) 1993-05-14 1994-11-15 West Jr Hugh S Arthroscopic surgical instrument with cauterizing capability
US5569243A (en) 1993-07-13 1996-10-29 Symbiosis Corporation Double acting endoscopic scissors with bipolar cautery capability
US5385148A (en) 1993-07-30 1995-01-31 The Regents Of The University Of California Cardiac imaging and ablation catheter
US5921982A (en) 1993-07-30 1999-07-13 Lesh; Michael D. Systems and methods for ablating body tissue
US5928191A (en) 1993-07-30 1999-07-27 E.P. Technologies, Inc. Variable curve electrophysiology catheter
US5431168A (en) 1993-08-23 1995-07-11 Cordis-Webster, Inc. Steerable open-lumen catheter
US5405376A (en) 1993-08-27 1995-04-11 Medtronic, Inc. Method and apparatus for ablation
US5431649A (en) 1993-08-27 1995-07-11 Medtronic, Inc. Method and apparatus for R-F ablation
US5980516A (en) 1993-08-27 1999-11-09 Medtronic, Inc. Method and apparatus for R-F ablation
DE4333983A1 (de) 1993-10-05 1995-04-06 Delma Elektro Med App Elektrochirurgisches Hochfrequenz-Instrument
US5599346A (en) 1993-11-08 1997-02-04 Zomed International, Inc. RF treatment system
US5536267A (en) 1993-11-08 1996-07-16 Zomed International Multiple electrode ablation apparatus
EP0651974B1 (en) 1993-11-10 2000-05-03 Xomed, Inc. Bipolar electrosurgical instrument and method for making the instrument
US5730127A (en) 1993-12-03 1998-03-24 Avitall; Boaz Mapping and ablation catheter system
CA2138076A1 (en) 1993-12-17 1995-06-18 Philip E. Eggers Monopolar electrosurgical instruments
US5840030A (en) 1993-12-22 1998-11-24 Sulzer Osypka Gmbh Ultrasonic marked cardiac ablation catheter
US5507773A (en) 1994-02-18 1996-04-16 Ethicon Endo-Surgery Cable-actuated jaw assembly for surgical instruments
EP0671221B1 (en) 1994-03-11 2000-04-26 Intravascular Research Limited Ultrasonic transducer array and method of manufacturing the same
US5352222A (en) 1994-03-15 1994-10-04 Everest Medical Corporation Surgical scissors with bipolar coagulation feature
US5560373A (en) 1994-04-11 1996-10-01 De Santis; Stephen A. Needle core biopsy instrument with durable or disposable cannula assembly
US5417709A (en) 1994-04-12 1995-05-23 Symbiosis Corporation Endoscopic instrument with end effectors forming suction and/or irrigation lumens
BR9507358A (pt) 1994-04-15 1997-09-16 Donna Karan Shoe Company Palmilha calçado e processo para aprimorar funções e desempenho de um pé humano por um usuário de um calçado
US5540562A (en) 1994-04-28 1996-07-30 Ashirus Technologies, Inc. Single-piston, multi-mode fluid displacement pump
US5843021A (en) 1994-05-09 1998-12-01 Somnus Medical Technologies, Inc. Cell necrosis apparatus
US5505700A (en) 1994-06-14 1996-04-09 Cordis Corporation Electro-osmotic infusion catheter
GB9413070D0 (en) 1994-06-29 1994-08-17 Gyrus Medical Ltd Electrosurgical apparatus
US5810802A (en) 1994-08-08 1998-09-22 E.P. Technologies, Inc. Systems and methods for controlling tissue ablation using multiple temperature sensing elements
US5797905A (en) 1994-08-08 1998-08-25 E. P. Technologies Inc. Flexible tissue ablation elements for making long lesions
US5492527A (en) 1994-09-09 1996-02-20 Linvatec Corporation Arthroscopic shaver with rotatable collet and slide aspiration control valve
US6142994A (en) 1994-10-07 2000-11-07 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body
US6152920A (en) 1997-10-10 2000-11-28 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body
US5836947A (en) 1994-10-07 1998-11-17 Ep Technologies, Inc. Flexible structures having movable splines for supporting electrode elements
US5556397A (en) 1994-10-26 1996-09-17 Laser Centers Of America Coaxial electrosurgical instrument
US5573424A (en) 1995-02-09 1996-11-12 Everest Medical Corporation Apparatus for interfacing a bipolar electrosurgical instrument to a monopolar generator
US5814044A (en) 1995-02-10 1998-09-29 Enable Medical Corporation Apparatus and method for morselating and removing tissue from a patient
US5595183A (en) 1995-02-17 1997-01-21 Ep Technologies, Inc. Systems and methods for examining heart tissue employing multiple electrode structures and roving electrodes
US6409722B1 (en) 1998-07-07 2002-06-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US6063081A (en) 1995-02-22 2000-05-16 Medtronic, Inc. Fluid-assisted electrocautery device
US5897553A (en) 1995-11-02 1999-04-27 Medtronic, Inc. Ball point fluid-assisted electrocautery device
US5873886A (en) 1995-04-04 1999-02-23 United States Surgical Corporation Surgical cutting apparatus
US5569254A (en) 1995-04-12 1996-10-29 Midas Rex Pneumatic Tools, Inc. Surgical resection tool having an irrigation, lighting, suction and vision attachment
US5685838A (en) 1995-04-17 1997-11-11 Xomed-Treace, Inc. Sinus debrider apparatus
US5688267A (en) 1995-05-01 1997-11-18 Ep Technologies, Inc. Systems and methods for sensing multiple temperature conditions during tissue ablation
WO1996034567A1 (en) 1995-05-02 1996-11-07 Heart Rhythm Technologies, Inc. System for controlling the energy delivered to a patient for ablation
EP0946124A4 (en) 1995-05-22 1999-11-24 Advanced Closure Systems Inc SET OF SIMULTANEOUS CUTTING AND COAGULATION RESECTOSCOPE ELECTRODES
US5895355A (en) 1995-05-23 1999-04-20 Cardima, Inc. Over-the-wire EP catheter
US7179255B2 (en) 1995-06-07 2007-02-20 Arthrocare Corporation Methods for targeted electrosurgery on contained herniated discs
US5827216A (en) 1995-06-07 1998-10-27 Cormedics Corp. Method and apparatus for accessing the pericardial space
US6022346A (en) 1995-06-07 2000-02-08 Ep Technologies, Inc. Tissue heating and ablation systems and methods using self-heated electrodes
US6293943B1 (en) 1995-06-07 2001-09-25 Ep Technologies, Inc. Tissue heating and ablation systems and methods which predict maximum tissue temperature
GB9526627D0 (en) 1995-12-29 1996-02-28 Gyrus Medical Ltd An electrosurgical instrument and an electrosurgical electrode assembly
US6780180B1 (en) 1995-06-23 2004-08-24 Gyrus Medical Limited Electrosurgical instrument
WO1997000647A1 (en) 1995-06-23 1997-01-09 Gyrus Medical Limited An electrosurgical instrument
US5836311A (en) 1995-09-20 1998-11-17 Medtronic, Inc. Method and apparatus for temporarily immobilizing a local area of tissue
US5712543A (en) 1995-10-31 1998-01-27 Smith & Nephew Endoscopy Inc. Magnetic switching element for controlling a surgical device
US5733280A (en) 1995-11-15 1998-03-31 Avitall; Boaz Cryogenic epicardial mapping and ablation
WO1997018745A2 (de) 1995-11-20 1997-05-29 Storz Endoskop Gmbh Schab- bzw. schneidinstrument
EP0873086A1 (en) 1995-12-22 1998-10-28 Advanced Closure Systems, Inc. Resectoscope electrode assembly with simultaneous cutting and coagulation
US6350276B1 (en) 1996-01-05 2002-02-26 Thermage, Inc. Tissue remodeling apparatus containing cooling fluid
US5609573A (en) 1996-02-28 1997-03-11 Conmed Corporation Electrosurgical suction/irrigation instrument
US5941876A (en) 1996-03-11 1999-08-24 Medical Scientific, Inc. Electrosurgical rotating cutting device
US6292689B1 (en) 1996-04-17 2001-09-18 Imagyn Medical Technologies California, Inc. Apparatus and methods of bioelectrical impedance analysis of blood flow
NL1003024C2 (nl) 1996-05-03 1997-11-06 Tjong Hauw Sie Prikkelgeleidingsblokkeringsinstrument.
CN1222065A (zh) 1996-06-20 1999-07-07 盖拉斯医疗有限公司 水下疗法
US6565561B1 (en) 1996-06-20 2003-05-20 Cyrus Medical Limited Electrosurgical instrument
GB2314274A (en) 1996-06-20 1997-12-24 Gyrus Medical Ltd Electrode construction for an electrosurgical instrument
US6461357B1 (en) 1997-02-12 2002-10-08 Oratec Interventions, Inc. Electrode for electrosurgical ablation of tissue
US6126682A (en) 1996-08-13 2000-10-03 Oratec Interventions, Inc. Method for treating annular fissures in intervertebral discs
US6017354A (en) 1996-08-15 2000-01-25 Stryker Corporation Integrated system for powered surgical tools
US5792167A (en) 1996-09-13 1998-08-11 Stryker Corporation Surgical irrigation pump and tool system
EP1256320A3 (en) 1996-09-24 2003-03-19 Xomed Surgical Products, Inc. Powered handpiece and surgical blades and methods thereof
US6237605B1 (en) 1996-10-22 2001-05-29 Epicor, Inc. Methods of epicardial ablation
US6311692B1 (en) 1996-10-22 2001-11-06 Epicor, Inc. Apparatus and method for diagnosis and therapy of electrophysiological disease
US5827268A (en) 1996-10-30 1998-10-27 Hearten Medical, Inc. Device for the treatment of patent ductus arteriosus and method of using the device
US5899915A (en) 1996-12-02 1999-05-04 Angiotrax, Inc. Apparatus and method for intraoperatively performing surgery
US6010476A (en) 1996-12-02 2000-01-04 Angiotrax, Inc. Apparatus for performing transmyocardial revascularization
US5891142A (en) 1996-12-06 1999-04-06 Eggers & Associates, Inc. Electrosurgical forceps
US6071279A (en) 1996-12-19 2000-06-06 Ep Technologies, Inc. Branched structures for supporting multiple electrode elements
US5849023A (en) 1996-12-27 1998-12-15 Mericle; Robert William Disposable remote flexible drive cutting apparatus
US5810809A (en) 1997-01-13 1998-09-22 Enhanced Orthopaedic Technologies, Inc. Arthroscopic shaver incorporating electrocautery
US5916213A (en) 1997-02-04 1999-06-29 Medtronic, Inc. Systems and methods for tissue mapping and ablation
US5913854A (en) 1997-02-04 1999-06-22 Medtronic, Inc. Fluid cooled ablation catheter and method for making
US5904681A (en) 1997-02-10 1999-05-18 Hugh S. West, Jr. Endoscopic surgical instrument with ability to selectively remove different tissue with mechanical and electrical energy
US5844349A (en) 1997-02-11 1998-12-01 Tetrad Corporation Composite autoclavable ultrasonic transducers and methods of making
US6699244B2 (en) 1997-02-12 2004-03-02 Oratec Interventions, Inc. Electrosurgical instrument having a chamber to volatize a liquid
CA2280812A1 (en) 1997-02-13 1998-08-20 Rodney Brenneman Percutaneous and hiatal devices and methods for use in minimally invasive pelvic surgery
WO1998038932A1 (en) 1997-03-07 1998-09-11 Advanced Closure Systems, Inc. Resectoscope electrode assembly with simultaneous cutting and coagulation
US5971983A (en) 1997-05-09 1999-10-26 The Regents Of The University Of California Tissue ablation device and method of use
US6012457A (en) 1997-07-08 2000-01-11 The Regents Of The University Of California Device and method for forming a circumferential conduction block in a pulmonary vein
US6024740A (en) 1997-07-08 2000-02-15 The Regents Of The University Of California Circumferential ablation device assembly
US6217576B1 (en) 1997-05-19 2001-04-17 Irvine Biomedical Inc. Catheter probe for treating focal atrial fibrillation in pulmonary veins
US5843152A (en) 1997-06-02 1998-12-01 Irvine Biomedical, Inc. Catheter system having a ball electrode
US5993412A (en) 1997-05-19 1999-11-30 Bioject, Inc. Injection apparatus
US5972015A (en) 1997-08-15 1999-10-26 Kyphon Inc. Expandable, asymetric structures for deployment in interior body regions
US5957919A (en) 1997-07-02 1999-09-28 Laufer; Michael D. Bleb reducer
US6117101A (en) 1997-07-08 2000-09-12 The Regents Of The University Of California Circumferential ablation device assembly
US6245064B1 (en) 1997-07-08 2001-06-12 Atrionix, Inc. Circumferential ablation device assembly
US6096037A (en) 1997-07-29 2000-08-01 Medtronic, Inc. Tissue sealing electrosurgery device and methods of sealing tissue
US7278994B2 (en) 1997-07-18 2007-10-09 Gyrus Medical Limited Electrosurgical instrument
US6923803B2 (en) 1999-01-15 2005-08-02 Gyrus Medical Limited Electrosurgical system and method
GB2327352A (en) 1997-07-18 1999-01-27 Gyrus Medical Ltd Electrosurgical instrument
US6010500A (en) 1997-07-21 2000-01-04 Cardiac Pathways Corporation Telescoping apparatus and method for linear lesion ablation
US5916150A (en) * 1997-08-29 1999-06-29 Sillman; Jonathon S. Speculum for simultaneously viewing and removing obstructions
US6610055B1 (en) 1997-10-10 2003-08-26 Scimed Life Systems, Inc. Surgical method for positioning a diagnostic or therapeutic element on the epicardium or other organ surface
CN2323742Y (zh) 1997-11-05 1999-06-16 姜宪委 一种软组织吸取器的插管
US6217598B1 (en) 1997-11-25 2001-04-17 Linvatec Corporation End-cutting shaver blade
US6270471B1 (en) 1997-12-23 2001-08-07 Misonix Incorporated Ultrasonic probe with isolated outer cannula
US6251092B1 (en) 1997-12-30 2001-06-26 Medtronic, Inc. Deflectable guiding catheter
US6824550B1 (en) 2000-04-06 2004-11-30 Norbon Medical, Inc. Guidewire for crossing occlusions or stenosis
US6142993A (en) 1998-02-27 2000-11-07 Ep Technologies, Inc. Collapsible spline structure using a balloon as an expanding actuator
US6053923A (en) * 1998-03-17 2000-04-25 Arthrotek, Inc. Method and apparatus for abrading tissue
US5989248A (en) 1998-04-07 1999-11-23 Tu; Hosheng Medical device and methods for treating tissues
US6152941A (en) 1998-04-10 2000-11-28 Stryker Corporation Endoscopic cannulated handpiece motor with integrated suction control
US6454782B1 (en) 1998-04-13 2002-09-24 Ethicon Endo-Surgery, Inc. Actuation mechanism for surgical instruments
US6059778A (en) 1998-05-05 2000-05-09 Cardiac Pacemakers, Inc. RF ablation apparatus and method using unipolar and bipolar techniques
US6527767B2 (en) 1998-05-20 2003-03-04 New England Medical Center Cardiac ablation system and method for treatment of cardiac arrhythmias and transmyocardial revascularization
US6231518B1 (en) 1998-05-26 2001-05-15 Comedicus Incorporated Intrapericardial electrophysiological procedures
US6537248B2 (en) 1998-07-07 2003-03-25 Medtronic, Inc. Helical needle apparatus for creating a virtual electrode used for the ablation of tissue
US6238393B1 (en) 1998-07-07 2001-05-29 Medtronic, Inc. Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US6706039B2 (en) 1998-07-07 2004-03-16 Medtronic, Inc. Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US6537272B2 (en) 1998-07-07 2003-03-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US6251128B1 (en) 1998-09-01 2001-06-26 Fidus Medical Technology Corporation Microwave ablation catheter with loop configuration
US6042556A (en) 1998-09-04 2000-03-28 University Of Washington Method for determining phase advancement of transducer elements in high intensity focused ultrasound
US6245065B1 (en) 1998-09-10 2001-06-12 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US6385472B1 (en) 1999-09-10 2002-05-07 Stereotaxis, Inc. Magnetically navigable telescoping catheter and method of navigating telescoping catheter
US6425867B1 (en) 1998-09-18 2002-07-30 University Of Washington Noise-free real time ultrasonic imaging of a treatment site undergoing high intensity focused ultrasound therapy
US6015391A (en) 1998-10-06 2000-01-18 Medsol, Corp. Biopsy needle structure
US6494892B1 (en) 1998-10-20 2002-12-17 Suros Surgical Systems, Inc. Disposable hub for a surgical cutting instrument
US6245062B1 (en) 1998-10-23 2001-06-12 Afx, Inc. Directional reflector shield assembly for a microwave ablation instrument
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US20010047183A1 (en) 2000-04-05 2001-11-29 Salvatore Privitera Surgical device for the collection of soft tissue
DE102004033595A1 (de) 2004-07-07 2006-02-16 Celon Ag Medical Instruments Bipolare Koagulationselektrode
US7189206B2 (en) 2003-02-24 2007-03-13 Senorx, Inc. Biopsy device with inner cutter
US6217528B1 (en) 1999-02-11 2001-04-17 Scimed Life Systems, Inc. Loop structure having improved tissue contact capability
US6193715B1 (en) 1999-03-19 2001-02-27 Medical Scientific, Inc. Device for converting a mechanical cutting device to an electrosurgical cutting device
US6246638B1 (en) 1999-03-30 2001-06-12 Honeywell International Inc. Fiber-optic vibration sensor based on frequency modulation of light-excited oscillators
US20050010095A1 (en) 1999-04-05 2005-01-13 Medtronic, Inc. Multi-purpose catheter apparatus and method of use
US20010007070A1 (en) 1999-04-05 2001-07-05 Medtronic, Inc. Ablation catheter assembly and method for isolating a pulmonary vein
US6325797B1 (en) 1999-04-05 2001-12-04 Medtronic, Inc. Ablation catheter and method for isolating a pulmonary vein
US6702811B2 (en) 1999-04-05 2004-03-09 Medtronic, Inc. Ablation catheter assembly with radially decreasing helix and method of use
US6214003B1 (en) 1999-05-11 2001-04-10 Stryker Corporation Electrosurgical tool
US6235024B1 (en) 1999-06-21 2001-05-22 Hosheng Tu Catheters system having dual ablation capability
US6398792B1 (en) 1999-06-21 2002-06-04 O'connor Lawrence Angioplasty catheter with transducer using balloon for focusing of ultrasonic energy and method for use
US6332881B1 (en) 1999-09-01 2001-12-25 Cardima, Inc. Surgical ablation tool
US6419675B1 (en) 1999-09-03 2002-07-16 Conmed Corporation Electrosurgical coagulating and cutting instrument
US6197024B1 (en) 1999-09-22 2001-03-06 Scott Keith Sullivan Adjustable electrocautery surgical apparatus
US6368275B1 (en) 1999-10-07 2002-04-09 Acuson Corporation Method and apparatus for diagnostic medical information gathering, hyperthermia treatment, or directed gene therapy
US6716215B1 (en) 1999-10-29 2004-04-06 Image-Guided Neurologics Cranial drill with sterile barrier
US6645199B1 (en) 1999-11-22 2003-11-11 Scimed Life Systems, Inc. Loop structures for supporting diagnostic and therapeutic elements contact with body tissue and expandable push devices for use with same
US6692450B1 (en) 2000-01-19 2004-02-17 Medtronic Xomed, Inc. Focused ultrasound ablation devices having selectively actuatable ultrasound emitting elements and methods of using the same
US6595934B1 (en) 2000-01-19 2003-07-22 Medtronic Xomed, Inc. Methods of skin rejuvenation using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US6413254B1 (en) 2000-01-19 2002-07-02 Medtronic Xomed, Inc. Method of tongue reduction by thermal ablation using high intensity focused ultrasound
US6361531B1 (en) 2000-01-21 2002-03-26 Medtronic Xomed, Inc. Focused ultrasound ablation devices having malleable handle shafts and methods of using the same
US6689131B2 (en) 2001-03-08 2004-02-10 Tissuelink Medical, Inc. Electrosurgical device having a tissue reduction sensor
US6558385B1 (en) 2000-09-22 2003-05-06 Tissuelink Medical, Inc. Fluid-assisted medical device
US6953461B2 (en) 2002-05-16 2005-10-11 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
US8048070B2 (en) 2000-03-06 2011-11-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
ATE397900T1 (de) 2000-03-06 2008-07-15 Salient Surgical Technologies Flüssigkeitsabgabesystem und steuerung für elektrochirurgische geräte
US7811282B2 (en) 2000-03-06 2010-10-12 Salient Surgical Technologies, Inc. Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
WO2001072373A2 (en) 2000-03-24 2001-10-04 Transurgical, Inc. Apparatus and method for intrabody thermal treatment
US6419648B1 (en) 2000-04-21 2002-07-16 Insightec-Txsonics Ltd. Systems and methods for reducing secondary hot spots in a phased array focused ultrasound system
US6558382B2 (en) 2000-04-27 2003-05-06 Medtronic, Inc. Suction stabilized epicardial ablation devices
DE60111517T2 (de) 2000-04-27 2006-05-11 Medtronic, Inc., Minneapolis Vibrationsempfindliche ablationsvorrichtung
US6514250B1 (en) 2000-04-27 2003-02-04 Medtronic, Inc. Suction stabilized epicardial ablation devices
US6488680B1 (en) 2000-04-27 2002-12-03 Medtronic, Inc. Variable length electrodes for delivery of irrigated ablation
WO2001082811A1 (en) 2000-04-27 2001-11-08 Medtronic, Inc. System and method for assessing transmurality of ablation lesions
DE20009426U1 (de) 2000-05-26 2001-10-31 Desinger Kai Chirurgisches Instrument
US6477396B1 (en) 2000-07-07 2002-11-05 Biosense Webster, Inc. Mapping and ablation catheter
JP3897962B2 (ja) 2000-07-19 2007-03-28 株式会社モリタ製作所 識別型のインスツルメント体、識別型のアダプタ、識別型のチューブ、これらを用いた診療装置
US6656195B2 (en) 2000-09-22 2003-12-02 Medtronic Xomed, Inc. Flexible inner tubular members and rotary tissue cutting instruments having flexible inner tubular members
US6503263B2 (en) 2000-09-24 2003-01-07 Medtronic, Inc. Surgical micro-shaving instrument with elevator tip
EP1322246B1 (en) 2000-09-24 2006-02-22 Medtronic, Inc. Surgical micro-resecting instrument with electrocautery feature
US6623500B1 (en) 2000-10-20 2003-09-23 Ethicon Endo-Surgery, Inc. Ring contact for rotatable connection of switch assembly for use in a surgical system
US6908472B2 (en) 2000-10-20 2005-06-21 Ethicon Endo-Surgery, Inc. Apparatus and method for altering generator functions in an ultrasonic surgical system
US6626931B2 (en) 2000-12-26 2003-09-30 Medtronic, Inc. Implantable medical electronics using high voltage flip chip components
US20040138621A1 (en) 2003-01-14 2004-07-15 Jahns Scott E. Devices and methods for interstitial injection of biologic agents into tissue
US7628780B2 (en) 2001-01-13 2009-12-08 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US20050222566A1 (en) 2001-03-30 2005-10-06 Japan Medical Dynamic Marketing, Inc. Electromagnetic field surgical device and method
US6648883B2 (en) 2001-04-26 2003-11-18 Medtronic, Inc. Ablation system and method of use
US6807968B2 (en) 2001-04-26 2004-10-26 Medtronic, Inc. Method and system for treatment of atrial tachyarrhythmias
US6699240B2 (en) 2001-04-26 2004-03-02 Medtronic, Inc. Method and apparatus for tissue ablation
US7250048B2 (en) 2001-04-26 2007-07-31 Medtronic, Inc. Ablation system and method of use
US6663627B2 (en) 2001-04-26 2003-12-16 Medtronic, Inc. Ablation system and method of use
US20020165549A1 (en) 2001-04-30 2002-11-07 Medtronic, Inc. Surgical instrument and attachment
EP1435867B1 (en) 2001-09-05 2010-11-17 Salient Surgical Technologies, Inc. Fluid-assisted medical devices and systems
US6652514B2 (en) 2001-09-13 2003-11-25 Alan G. Ellman Intelligent selection system for electrosurgical instrument
GB2379878B (en) * 2001-09-21 2004-11-10 Gyrus Medical Ltd Electrosurgical system and method
US7166103B2 (en) 2001-10-01 2007-01-23 Electrosurgery Associates, Llc High efficiency electrosurgical ablator with electrode subjected to oscillatory or other repetitive motion
AU2002332031A1 (en) 2001-10-02 2003-04-14 Arthrocare Corporation Apparatus and methods for electrosurgical removal and digestion of tissue
US6855145B2 (en) 2001-10-09 2005-02-15 Ethicon, Inc. Self-wetting, dry-field bipolar electrodes for endoscopic surgery
US8974446B2 (en) 2001-10-11 2015-03-10 St. Jude Medical, Inc. Ultrasound ablation apparatus with discrete staggered ablation zones
US6656175B2 (en) 2001-12-11 2003-12-02 Medtronic, Inc. Method and system for treatment of atrial tachyarrhythmias
WO2003049631A1 (en) 2001-12-12 2003-06-19 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
US7967816B2 (en) 2002-01-25 2011-06-28 Medtronic, Inc. Fluid-assisted electrosurgical instrument with shapeable electrode
US6827715B2 (en) 2002-01-25 2004-12-07 Medtronic, Inc. System and method of performing an electrosurgical procedure
AU2003218050A1 (en) * 2002-02-11 2003-09-04 Arthrocare Corporation Electrosurgical apparatus and methods for laparoscopy
US6610059B1 (en) * 2002-02-25 2003-08-26 Hs West Investments Llc Endoscopic instruments and methods for improved bubble aspiration at a surgical site
US7247161B2 (en) 2002-03-22 2007-07-24 Gyrus Ent L.L.C. Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus
US20030204185A1 (en) 2002-04-26 2003-10-30 Sherman Marshall L. System and method for monitoring use of disposable catheters
US8043286B2 (en) 2002-05-03 2011-10-25 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
US7294143B2 (en) 2002-05-16 2007-11-13 Medtronic, Inc. Device and method for ablation of cardiac tissue
US7118566B2 (en) 2002-05-16 2006-10-10 Medtronic, Inc. Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
US6734827B2 (en) 2002-06-27 2004-05-11 Harris Corporation High efficiency printed circuit LPDA
US7237990B2 (en) 2002-08-08 2007-07-03 Stryker Corporation Surgical tool system with quick release coupling assembly
SE524441C2 (sv) 2002-10-04 2004-08-10 Plasma Surgical Invest Ltd Plasmakirurgisk anordning för reducering av blödning i levande vävnad med hjälp av ett gasplasma
US7083620B2 (en) 2002-10-30 2006-08-01 Medtronic, Inc. Electrosurgical hemostat
US7150747B1 (en) 2003-01-22 2006-12-19 Smith & Nephew, Inc. Electrosurgical cutter
US7736361B2 (en) 2003-02-14 2010-06-15 The Board Of Trustees Of The Leland Stamford Junior University Electrosurgical system with uniformly enhanced electric field and minimal collateral damage
US7909820B2 (en) 2003-03-06 2011-03-22 Salient Surgical Technologies, Inc. Electrosurgical generator and bipolar electrosurgical device adaptors
US20040243163A1 (en) 2003-04-02 2004-12-02 Gyrus Ent L.L.C Surgical instrument
US7497857B2 (en) 2003-04-29 2009-03-03 Medtronic, Inc. Endocardial dispersive electrode for use with a monopolar RF ablation pen
US8012153B2 (en) 2003-07-16 2011-09-06 Arthrocare Corporation Rotary electrosurgical apparatus and methods thereof
US7785337B2 (en) 2003-09-09 2010-08-31 Medtronic Xomed, Inc. Surgical micro-burring instrument and method of performing sinus surgery
US7229437B2 (en) 2003-09-22 2007-06-12 St. Jude Medical, Atrial Fibrillation Division, Inc. Medical device having integral traces and formed electrodes
US9113880B2 (en) 2007-10-05 2015-08-25 Covidien Lp Internal backbone structural chassis for a surgical device
US6979332B2 (en) 2003-11-04 2005-12-27 Medtronic, Inc. Surgical micro-resecting instrument with electrocautery and continuous aspiration features
US7232440B2 (en) 2003-11-17 2007-06-19 Sherwood Services Ag Bipolar forceps having monopolar extension
US7608072B2 (en) 2003-12-02 2009-10-27 Boston Scientific Scimed, Inc. Surgical methods and apparatus for maintaining contact between tissue and electrophysiology elements and confirming whether a therapeutic lesion has been formed
US7276074B2 (en) 2004-01-21 2007-10-02 Medtronic Xomed, Inc. Angled tissue cutting instrument having variably positionable cutting window, indexing tool for use therewith and method of variably positioning a cutting window of an angled tissue cutting instrument
US7371231B2 (en) 2004-02-02 2008-05-13 Boston Scientific Scimed, Inc. System and method for performing ablation using a balloon
US7419497B2 (en) 2004-04-21 2008-09-02 Acclarent, Inc. Methods for treating ethmoid disease
US20060004323A1 (en) 2004-04-21 2006-01-05 Exploramed Nc1, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
ES2308505T3 (es) 2004-05-14 2008-12-01 Medtronic, Inc. Sistema de utilizacion de energia ultrasonica enfocada de alta intens idad para formar una zona de tejido recortado.
US8277474B2 (en) 2004-05-26 2012-10-02 Medtronic, Inc. Surgical cutting instrument
WO2005120375A2 (en) 2004-06-02 2005-12-22 Medtronic, Inc. Loop ablation apparatus and method
US7322974B2 (en) 2004-08-10 2008-01-29 Medtronic, Inc. TUNA device with integrated saline reservoir
DE102004041490A1 (de) 2004-08-27 2006-03-02 Robert Bosch Gmbh Schleifkörperhalter
US7540872B2 (en) 2004-09-21 2009-06-02 Covidien Ag Articulating bipolar electrosurgical instrument
US8617152B2 (en) 2004-11-15 2013-12-31 Medtronic Ablation Frontiers Llc Ablation system with feedback
US7674263B2 (en) * 2005-03-04 2010-03-09 Gyrus Ent, L.L.C. Surgical instrument and method
US7699846B2 (en) 2005-03-04 2010-04-20 Gyrus Ent L.L.C. Surgical instrument and method
US20060259055A1 (en) 2005-05-13 2006-11-16 Linvatec Corporation Attachments for arthroscopic shaver handpieces
US8664812B2 (en) 2006-03-17 2014-03-04 Inpro/Seal Llc Current diverter ring
US8016846B2 (en) 2005-10-27 2011-09-13 Medtronic Xomed, Inc. Micro-resecting and evoked potential monitoring system and method
US7997278B2 (en) 2005-11-23 2011-08-16 Barrx Medical, Inc. Precision ablating method
US8425506B2 (en) 2005-12-13 2013-04-23 Arthrex, Inc. Aspirating electrosurgical probe with aspiration through electrode face
US8876746B2 (en) 2006-01-06 2014-11-04 Arthrocare Corporation Electrosurgical system and method for treating chronic wound tissue
US9827437B2 (en) 2006-01-17 2017-11-28 Endymed Medical Ltd Skin treatment devices and methods
US20070179495A1 (en) 2006-01-27 2007-08-02 Mitchell Mathew E Combination electrosurgery
US7942872B2 (en) 2006-02-27 2011-05-17 Moshe Ein-Gal Blended monopolar and bipolar application of RF energy
AU2007258562B2 (en) 2006-06-06 2012-02-23 Doheny Eye Institute Molded polymer comprising silicone and at least one metal trace and a process of manufacturing the same
ES2498798T3 (es) 2006-09-13 2014-09-25 Vascular Insights Llc Dispositivo de tratamiento vascular
EP2954868A1 (en) 2006-10-18 2015-12-16 Vessix Vascular, Inc. Tuned rf energy and electrical tissue characterization for selective treatment of target tissues
JP2010508899A (ja) 2006-11-02 2010-03-25 ピーク サージカル, インコーポレイテッド 電気的プラズマによる組織の切断および凝固、ならびに外科手術用装置
US20100076437A1 (en) 2008-06-02 2010-03-25 Loma Vista Medical, Inc. Inflatable medical devices
DE102007000109A1 (de) 2007-02-22 2008-08-28 Invendo Medical Gmbh Elektrische Steckereinrichtung mit integrierten hydraulischen/pneumatischen Anschlüssen
EP2129313B1 (en) 2007-03-23 2012-08-15 Salient Surgical Technologies, Inc. Electrosurgical device with a distal disc with two electrodes and a fluid exit
US9095366B2 (en) 2007-04-06 2015-08-04 Hologic, Inc. Tissue cutter with differential hardness
US8496653B2 (en) 2007-04-23 2013-07-30 Boston Scientific Scimed, Inc. Thrombus removal
US9707003B2 (en) 2007-10-02 2017-07-18 Covidien Lp Articulating surgical instrument
EP2047876B1 (en) 2007-10-12 2012-08-29 Dentsply IH AB Self-contained portable apparatus for administration of a drug solution
US8187270B2 (en) 2007-11-07 2012-05-29 Mirabilis Medica Inc. Hemostatic spark erosion tissue tunnel generator with integral treatment providing variable volumetric necrotization of tissue
US8387903B2 (en) 2007-11-07 2013-03-05 Tomra Systems Asa Apparatus and a method for destructuring of articles
US8109956B2 (en) 2008-03-07 2012-02-07 Medtronic Xomed, Inc. Systems and methods for surgical removal of tissue
US8206385B2 (en) 2008-06-09 2012-06-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter assembly with front-loaded tip and multi-contact connector
US8628545B2 (en) 2008-06-13 2014-01-14 Covidien Lp Endoscopic stitching devices
US20100160906A1 (en) 2008-12-23 2010-06-24 Asthmatx, Inc. Expandable energy delivery devices having flexible conductive elements and associated systems and methods
AU2010218473B2 (en) 2009-02-26 2014-03-06 Stryker Corporation Surgical tool arrangement having a handpiece usable with multiple surgical tools
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
US8435259B2 (en) * 2009-05-19 2013-05-07 Stryker Corporation Surgical tool arrangement and surgical cutting accessory for use therewith with the tool arrangement including a toothed cutting edge and a generally straight cutting edge
US8206316B2 (en) 2009-06-12 2012-06-26 Devicor Medical Products, Inc. Tetherless biopsy device with reusable portion
US20110009856A1 (en) 2009-07-08 2011-01-13 Glen Jorgensen Combination Radio Frequency Device for Electrosurgery
EP2473120A1 (en) 2009-08-31 2012-07-11 Stryker Ireland, Ltd. Surgical cutting accessory with flexible tube
US20110071356A1 (en) 2009-09-24 2011-03-24 Gyrus Ent, L.L.C. Repeatably flexible surgical instrument
US8317786B2 (en) 2009-09-25 2012-11-27 AthroCare Corporation System, method and apparatus for electrosurgical instrument with movable suction sheath
US9078661B2 (en) 2010-02-11 2015-07-14 Arthrex, Inc. Ablator with improved cutting tip
EP2368530B1 (en) 2010-03-25 2013-05-29 HipSecure B.V. Navigation system for orthopaedic surgery
US20110295249A1 (en) 2010-05-28 2011-12-01 Salient Surgical Technologies, Inc. Fluid-Assisted Electrosurgical Devices, and Methods of Manufacture Thereof
US9138289B2 (en) 2010-06-28 2015-09-22 Medtronic Advanced Energy Llc Electrode sheath for electrosurgical device
US8906012B2 (en) 2010-06-30 2014-12-09 Medtronic Advanced Energy Llc Electrosurgical devices with wire electrode
US8453906B2 (en) 2010-07-14 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical instruments with electrodes
AU2011288972B2 (en) 2010-08-13 2015-08-13 Cathrx Ltd An irrigation catheter
US8956352B2 (en) 2010-10-25 2015-02-17 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having multi-electrode arrays for renal neuromodulation and associated systems and methods
US9308013B2 (en) 2010-11-03 2016-04-12 Gyrus Ent, L.L.C. Surgical tool with sheath
US20120116261A1 (en) 2010-11-05 2012-05-10 Mumaw Daniel J Surgical instrument with slip ring assembly to power ultrasonic transducer
US9060765B2 (en) 2010-11-08 2015-06-23 Bovie Medical Corporation Electrosurgical apparatus with retractable blade
US20120150165A1 (en) 2010-12-10 2012-06-14 Salient Surgical Technologies, Inc. Bipolar Electrosurgical Device
US8728549B2 (en) 2011-01-03 2014-05-20 Tasneem Bhatia Compositions and methods for treating skin conditions
US20120172877A1 (en) 2011-01-04 2012-07-05 Gyrus Ent, L.L.C. Surgical tool coupling
US8900227B2 (en) 2011-01-06 2014-12-02 Karen Stierman Sinus ablation devices, methods, and systems
US8585724B2 (en) 2011-01-25 2013-11-19 Gyrus Ent, L.L.C. Surgical cutting instrument with distal suction capability
US8377086B2 (en) 2011-01-25 2013-02-19 Gyrus Ent L.L.C. Surgical cutting instrument with distal suction passage forming member
US8475482B2 (en) 2011-02-17 2013-07-02 Gyrus Ent L.L.C. Surgical instrument with distal suction capability
US8512326B2 (en) 2011-06-24 2013-08-20 Arqos Surgical, Inc. Tissue extraction devices and methods
US9198685B2 (en) 2011-08-24 2015-12-01 Gyrus Ent, L.L.C. Surgical instrument with malleable tubing
US8568418B2 (en) 2011-10-03 2013-10-29 Gyrus Ent L.L.C. Apparatus for controlling position of rotary surgical instrument
US9226792B2 (en) 2012-06-12 2016-01-05 Medtronic Advanced Energy Llc Debridement device and method
US9078664B2 (en) * 2012-06-20 2015-07-14 Gyrus Acmi, Inc. Bipolar surgical instrument with two half tube electrodes
WO2014003848A1 (en) 2012-06-29 2014-01-03 Gyrus Acmi, Inc. Blade retention mechanism for surgical instrument
US8702702B1 (en) * 2012-10-05 2014-04-22 Gyrus Acmi, Inc. Surgical cutting instrument with electromechanical cutting
US8920419B2 (en) 2012-11-30 2014-12-30 Gyrus Acmi, Inc. Apparatus and method for tubeset with drive axle
WO2014084983A1 (en) 2012-11-30 2014-06-05 GYRUS ACMI, INC. (d/b/a OLYMPUS SURGICAL TECHNOLOGIES AMERICA) A microdebrider with interchangeable replaceable parts and a method of installing the parts
US9358036B2 (en) 2013-03-12 2016-06-07 Gyrus Acmi, Inc. Blade positioning device
WO2014158513A1 (en) 2013-03-13 2014-10-02 Cook Medical Technologies Llc Rotation mechanism for bipolar and monopolar devices
US10813686B2 (en) * 2014-02-26 2020-10-27 Medtronic Advanced Energy Llc Electrosurgical cutting instrument
US10188456B2 (en) 2015-02-18 2019-01-29 Medtronic Xomed, Inc. Electrode assembly for RF energy enabled tissue debridement device
US10376302B2 (en) 2015-02-18 2019-08-13 Medtronic Xomed, Inc. Rotating electrical connector for RF energy enabled tissue debridement device

Also Published As

Publication number Publication date
AU2016219980A1 (en) 2017-08-10
JP6661652B2 (ja) 2020-03-11
CN107438411A (zh) 2017-12-05
US11944371B2 (en) 2024-04-02
AU2016219980B2 (en) 2020-09-03
EP3258864A1 (en) 2017-12-27
CA2975389A1 (en) 2016-08-25
EP3258864B1 (en) 2023-01-11
WO2016134156A1 (en) 2016-08-25
JP2018504983A (ja) 2018-02-22
US20160235469A1 (en) 2016-08-18
US20220104871A1 (en) 2022-04-07
US11207130B2 (en) 2021-12-28

Similar Documents

Publication Publication Date Title
US11944371B2 (en) RF energy enabled tissue debridement device
US11197714B2 (en) Electrode assembly for RF energy enabled tissue debridement device
US11737812B2 (en) Debridement device and method
US10376302B2 (en) Rotating electrical connector for RF energy enabled tissue debridement device
EP2863822B1 (en) Bipolar surgical instrument with two half tube electrodes
US10314647B2 (en) Electrosurgical cutting instrument
US20150173825A1 (en) Debridement device having a split shaft with biopolar electrodes
EP4065022B1 (en) Devices for turbinate reduction
CN115969499A (zh) 电外科手术设备及其操作方法
JP2002000615A (ja) 鼻腔粘膜凝固焼灼装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application