KR20170091379A - 전해용 양극, 이를 포함하는 전해조, 및 상기 전해조를 이용한 전해 방법 - Google Patents

전해용 양극, 이를 포함하는 전해조, 및 상기 전해조를 이용한 전해 방법 Download PDF

Info

Publication number
KR20170091379A
KR20170091379A KR1020160012298A KR20160012298A KR20170091379A KR 20170091379 A KR20170091379 A KR 20170091379A KR 1020160012298 A KR1020160012298 A KR 1020160012298A KR 20160012298 A KR20160012298 A KR 20160012298A KR 20170091379 A KR20170091379 A KR 20170091379A
Authority
KR
South Korea
Prior art keywords
aluminum
electrolytic
anode
scandium
electrolysis
Prior art date
Application number
KR1020160012298A
Other languages
English (en)
Other versions
KR102562722B1 (ko
Inventor
이고기
최미선
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020160012298A priority Critical patent/KR102562722B1/ko
Publication of KR20170091379A publication Critical patent/KR20170091379A/ko
Application granted granted Critical
Publication of KR102562722B1 publication Critical patent/KR102562722B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

본 발명은 알루미늄-스칸듐 모합금의 전해를 위한 전해조에 포함되는 양극에 있어서, 상기 양극의 말단에는 오목부가 형성되고, 상기 오목부에는 부생가스를 외부로 배출하는 배출구가 형성된 전해용 양극, 이를 포함하는 전해조, 및 상기 전해조를 제공하며, 이에 따르면, 알루미늄-스칸듐 모합금 전해 회수 공정에서 용융 알루미늄이 액적의 형태로 전해질 내에 존재함으로 인하여 알루미늄-스칸듐 모합금의 회수율이 저하되는 문제점을 방지하여 알루미늄-스칸듐 합금의 회수율 및 반응효율을 향상시키는 효과가 있다.

Description

전해용 양극, 이를 포함하는 전해조, 및 상기 전해조를 이용한 전해 방법{ANODE FOR ELECTROLYSIS, ELECTROLYTIC CELL COMPRISING THE SAME, AND ELECTROLYSIS PROCESS USING THE ELECTROLYTIC CELL}
본 발명은 알루미늄-스칸듐 모합금의 전해를 위한 전해용 양극, 이를 포함하는 전해조, 및 상기 전해조를 이용한 전해 방법에 관한 것이다.
희토류는 자석, 형광체, 촉매 및 연마재 등 다양한 분야에 사용되고 있는 필수적인 자원으로서 중국이 세계 희토류 수출량의 대부분을 차지하고 있으며, 2010년 중국과 일본의 센카쿠 충돌로 중국이 환경 및 자연보호라는 이유로 희토류 수출을 제한하자, 2011년 일부 희토류의 가격은 다섯배 이상으로 급등하였다. 한편, 유사 희토류 원소로 분류되는 원자번호 21번 스칸듐(Sc, Scandium)은 알루미늄(Al, Aluminum) 합금에 소량 첨가되는 합금원소로, 상기 스칸듐이 알루미늄 합금에 소량 첨가하게 되면 알루미늄 합금의 기계적 특성, 용접성, 내식성 및 연신율을 크게 향상시키는 것으로 보고되고 있다.
이러한 스칸듐 금속 환원 기술로 최근 일본 동경대 Okabe 교수 연구팀에서 전기분해(전해)를 통한 스칸듐 함유 알루미늄 합금 제조공정을 제시(http://www.okabe.iis.u-tokyo.ac.jp/core-to-core/rmw/RMW3/slide/RMW3_20_Harata_T.pdf)하기도 하였다. 전기분해법의 경우 용융염 상태에서 음극 및 양극의 전기화학적 반응에 의하여 음극에서 환원하고자 하는 목적금속이 얻어지고 양극에서는 이산화탄소 또는 염소기체 등이 발생하는 원리로 운영된다. Okabe 교수가 제시한 전기분해 공정의 주요 특징은 원료로 산화 스칸듐(Sc2O3)을 사용하고, 전해질로 염화칼슘(CaCl2) 및 산화 스칸듐의 공융염을 사용하며, 음극으로는 용융 알루미늄을 사용하며, 900℃의 공정온도로 전기분해 공정이 진행된다.
도 1은 통상적인 전기분해 공정에 사용되는 전해조의 단면을 나타낸 도면이다. 음극으로 사용되는 용융 알루미늄 음극(40)의 밀도는 2.375g/cm3이며 전해질(70)로 사용되는 염화물 등의 밀도는 통상적으로 2.0~2.1g/cm3이다. 상기 용융 알루미늄의 밀도가 전해질보다 높지만 밀도차이가 크지 않다. 따라서, 전해 반응 중에 양극(10)에서 발생되는 부생가스(60)인 이산화탄소 등에 의해 용융 알루미늄의 유동이 발생한다. 이로 인해, 상기 용융 알루미늄의 일부는 전해질 내에 혼입되며, 혼입된 용융 알루미늄은 표면장력에 기인하여 액적(Droplet) 형태로 존재하여 알루미늄 액적(50)이 생성된다. 상기 알루미늄 액적이 생성됨으로 인해, 음극으로 사용되는 알루미늄의 함량이 감소하여, 최종적으로 음극에서 회수되는 알루미늄-스칸듐 합금의 회수율이 매우 낮은 문제점이 있다.
본 발명은 회수율 및 반응효율이 향상된 전해용 양극, 이를 포함하는 전해조, 및 상기 전해조를 이용한 전해 방법을 제공하고자 한다.
본 발명의 일 실시예에 따르면, 알루미늄-스칸듐 모합금의 전해를 위한 전해조에 포함되는 양극에 있어서, 상기 양극의 말단에는 오목부가 형성되고, 상기 오목부에는 부생가스를 외부로 배출하는 배출구가 형성된 전해용 양극을 제공한다.
상기 오목부는, 원뿔형, 타원뿔형, 다각뿔형, 원뿔대형, 타원뿔대형, 다각뿔대형, 원기둥형, 타원기둥형, 다각기둥형, 반구형 또는 반타원체형일 수 있다.
상기 오목부는 2개 이상의 배출구가 형성될 수 있다.
상기 배출구는 오목부 중앙에 형성될 수 있다.
상기 배출구는 최대 직경이 1mm 이하일 수 있다.
본 발명의 다른 실시예에 따르면, 상기 전해용 양극을 포함하는 전해조를 제공한다.
상기 전해조는, 전해질로 채워진 전해조 본체, 및 상기 전해조의 바닥에 배치된 알루미늄 음극을 더 포함할 수 있다.
상기 전해질은 불화물, 염화물 또는 이들의 혼합물일 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 전해조에 산화 스칸듐 및 전해질을 공급하는 단계, 상기 전해조를 가열하는 단계, 및 상기 전해조에 전류를 인가하여 전해 공정을 실시하는 단계를 포함하는 전해 방법을 제공한다.
상기 가열은 온도가 1000 내지 1100℃일 수 있다.
본 발명에 따르면, 알루미늄-스칸듐 모합금 전해 회수 공정에서 용융 알루미늄이 액적의 형태로 전해질 내에 존재함으로 인하여 알루미늄-스칸듐 모합금의 회수율이 저하되는 문제점을 방지하여 알루미늄-스칸듐 합금의 회수율 및 반응효율을 향상시키는 효과가 있다.
도 1은 종래의 알루미늄 합금을 전해 석출하는 전해조의 단면을 모식적으로 나타낸 도면이다.
도 2 내지 4는 본 발명의 일 실시예에 따른 전해용 양극을 나타낸 사시도이다.
도 5는 본 발명의 일 실시예에 따른 전해조의 단면을 모식적으로 나타낸 도면이다.
도 6은 실시예에서 전해조의 음극의 표면에 생성된 금속의 X-선 회절법(XRD)를 이용하여 분석한 결과를 나타낸 그래프이다.
도 7은 비교예에서 용융 알루미늄 액적을 응고하여 생성된 응고된 알루미늄 액적을 촬영한 사진이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태를 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.
본 발명은 알루미늄-스칸듐 모합금의 전해를 위한 전해용 양극, 이를 포함하는 전해조 및 상기 전해조를 이용한 전해방법에 관한 것이다.
도 2 내지 4는 본 발명의 일 실시예에 따른 전해용 양극을 나타낸 사시도이다.
본 발명의 일 실시예에 따른 전해용 양극(10)은, 알루미늄-스칸듐 모합금의 전해를 위한 전해조에 포함되는 양극에 있어서, 상기 양극의 말단에는 오목부가 형성되고, 상기 오목부에는 부생가스(60)를 외부로 배출하는 배출구(20)가 형성될 수 있다.
통상적으로 알루미늄-스칸듐 합금을 회수하는 전해조는 700℃ 이상의 고온에서 전해 공정이 진행되므로 전해조에 포함된 전해질(70) 및 알루미늄 음극(40)은 용융 상태이다. 용융된 전해질 및 용융 알루미늄은 밀도차이가 크지 않으며, 전해 반응 중에 양극(10)에서 발생되는 부생가스(60)인 이산화탄소 등에 의해 상기 용융 알루미늄 음극의 유동이 발생한다. 이로 인해, 용융 알루미늄의 일부가 전해질 내에 혼입되어 알루미늄 액적(50)이 생성되며, 상기 알루미늄 액적은 음극으로서의 역할을 할 수 없기 때문에 전해 반응에 참여하지 못해 전해 공정의 반응효율이 낮아지는 문제점이 있다.
또한, 상기 알루미늄 액적(50)이 부상하여 전해질(70) 표면에 위치하는 경우 대기 중의 산소와 반응하여 알루미늄 산화물(Al2O3)이 생성되므로 더 이상 반응에 참여할 수 없게 된다. 따라서, 알루미늄 음극(40)의 함량이 감소하여 알루미늄-스칸듐 합금의 회수율 및 반응효율이 매우 낮아지는 문제점이 있다.
그러나, 본 발명의 일 실시예에 따른 전해용 양극(10)은 알루미늄 액적(50)을 효과적으로 분리하여 음극으로 재사용할 수 있도록 함으로써 알루미늄-스칸듐 합금의 회수율 및 반응효율을 높일 수 있는 효과가 있다.
먼저, 상기 전해용 양극(10)의 말단에는 오목부가 형성됨으로써, 기존의 평평한 형상의 양극의 말단에 비해 반응 면적이 현저히 증가하여 결과적으로 반응효율을 증가시킬 수 있는 효과가 있다.
또한, 상기 전해용 양극(10)의 말단에 오목부가 형성됨으로써, 양극의 말단 주변으로 부상하는 다수의 알루미늄 액적(50)을 모을 수 있다. 상기 말단에서 다수의 알루미늄 액적이 모이게 되면 상호 병합하여 일정크기 이상으로 크기가 커질 수 있으며, 이로 인해, 크기가 커진 알루미늄 액적은 무게에 의해 아래 방향으로 침강할 수 있다. 따라서, 전해조 바닥에 존재하는 알루미늄 음극(40)으로 상기 알루미늄 액적이 혼입되어 음극으로 작동함으로써 알루미늄-스칸듐 합금의 회수율 및 반응효율을 향상시킬 수 있는 효과가 있다.
나아가, 상기 오목부는 양극의 말단 주변으로 용융 알루미늄 액적(50)을 모음으로써, 상기 알루미늄 액적이 부상하는 것을 방지하여 알루미늄 산화물이 생성되는 것을 방지할 수 있다.
본 발명의 일 실시예에 따른 전해용 양극(10)의 오목부에는 배출구(20)가 형성될 수 있으며, 양극의 오목부에 누적된 부생가스(60)가 상기 배출구를 통해서 외부로 배출될 수 있다. 이로 인해, 부생가스로 인하여 전해질(70)이 유동되는 정도를 감소시켜 결론적으로 알루미늄 음극(40)이 전해질 내로 혼입되어 알루미늄 액적(50)을 생성시키는 정도를 감소시킬 수 있는 효과가 있다.
상기 오목부는, 원뿔, 타원뿔, 다각뿔, 원뿔대, 타원뿔대, 다각뿔대, 원기둥, 타원기둥, 다각기둥, 반구 및 반타원체로 이루어진 군에서 선택된 어느 한 형상일 수 있다. 도 2는 양극의 오목부가 삼각뿔형이고, 도 3은 양극의 오목부가 원기둥형이고, 도 4는 양극의 오목부가 반타원체형이다.
상기 오목부가 원뿔대형, 타원뿔대형, 다각뿔대형, 원기둥형 또는 타원기둥형일 경우 각 형상의 모서리 부위에서 부생가스(60)가 누적되어 배출구(20)를 통해 외부로 배출되기 어려우므로, 상기 양극의 오목부는 원뿔형, 타원뿔형, 다각뿔형, 반구형 또는 반타원체형인 것이 바람직하다.
상기 오목부는 2개 이상의 배출구(20)가 형성될 수 있다. 상기 오목부에 복수개의 배출구가 형성됨으로 인해 전해조 내부에 발생된 부생가스(60)가 신속히 전해조 밖으로 배출될 수 있어 알루미늄 액적의 형성을 막을 수 있다. 한편, 상기 오목부의 개수가 지나치게 많으면 양극의 활성이 저하될 우려가 있으므로 상기 오목부에는 10개 이하의 배출구가 형성되는 것이 바람직하다.
상기 오목부에서 배출구(20)가 형성되는 위치는 특별히 제한하지 않으나, 상기 오목부 중앙에 형성되는 것이 바람직하다. 상기 배출구가 오목부 단부에 형성되는 경우 오목부에 모아지는 부생가스(60)의 일부만을 배출시켜 나머지 부생가스로 인해 알루미늄 액적이 형성될 우려가 있으므로, 상기 배출구는 오목부 중앙에 형성되는 것이 바람직하다.
한편, 상기 배출구(20)는 최대 직경이 1mm 이하인 것이 바람직하며, 최대 직경이 1mm 초과하면 알루미늄 액적(50)이 배출구를 막는 문제점이 발생할 수 있다. 한편, 상기 배출구 직경의 하한은 특별히 한정하지 않으나, 부생가스(60)가 용이하기 배출되기 위해서 10㎛ 이상인 것이 바람직하다.
본 발명은 다른 실시예에 따르면, 상기 전해용 양극(10)을 포함하는 전해조를 제공할 수 있다. 도 5는 본 발명의 일 실시예에 따른 전해조의 단면을 모식적으로 나타낸 도면이다.
상기 전해조는, 전해질(70)로 채워진 전해조 본체(30), 상기 전해조의 바닥에 배치된 알루미늄 음극(40) 및 상기 전해용 양극(10)을 포함할 수 있다. 상기 전해조에서 이루어지는 전해 공정은 700℃ 이상의 고온에서 이루어지므로 상기 전해조에 포함된 전해질 및 알루미늄 음극은 용융 상태일 수 있다.
전해 공정이 진행됨에 따라, 상기 전해용 양극(10)에서는 전해액 중에서 산화 반응이 진행되어 염소가스, 불소가스, 이산화탄소 또는 일산화탄소 등의 부생가스(60)가 생성될 수 있다. 한편, 상기 전해조 본체(30)에는 산화 스칸듐이 공급되며, 상기 산화 스칸듐은 음극인 용융 알루미늄과 전해질(70)의 경계면에서 환원 반응이 진행되어 알루미늄-스캄듐 합금이 생성될 수 있다.
상기 전해질(70)은 통상적으로 알루미늄-스칸듐 합금을 전해 석출하는 전해조에 사용되는 전해질이라면 특별히 제한하지 않으나, 예를 들어, 불화물, 염화물 또는 이들의 혼합물일 수 있다.
상기 불화물은 헥사플루오로알루민산나트륨(Na3AlF6), 헥사플루오로알루민산칼륨(K3AlF6), 플루오린화알루미늄(AlF3), 플루오린화칼슘(CaF2), 플루오린화나트륨(NaF), 플루오린화칼륨(KF), 플루오린화브로민칼륨(KBrF4), 플루오린화수소칼륨(KHF2), 헥사플루오로인산칼슘(KPF6), 헥사플루오로규산칼륨(K2SiF6), 헥사플루오로알루민산리튬(Li3AlF6), 헥사플루오로알루민산암모늄((NH4)3AlF6) 및 플루오로인산칼륨(KPO2F2)으로 이루어진 군에서 선택된 하나 이상일 수 있다. 한편, 상기 염화물은 염화리튬(LiCl), 염화칼륨(KCl), 염화크롬(CrCl2), 염화칼슘(CaCl2) 및 염화브롬(BrCl)으로 이루어진 군에서 선택된 하나 이상일 수 있다.
본 발명은 상기 전해조를 이용하여 알루미늄-스칸듐 합금을 전해하는 전해 방법을 제공할 수 있다.
본 발명의 일 실시예에 따른 전해 방법은, 상기 전해조에 산화 스칸듐 및 전해질(70)을 공급하는 단계, 상기 전해조를 가열하는 단계, 및 상기 전해조에 전류를 인가하여 전해 공정을 실시하는 단계를 포함할 수 있다.
구체적으로, 전해조에 산화 스칸듐 및 전해질(70)을 공급한 다음, 상기 산화 스칸듐 및 전해질을 가열하고, 상기 전해조에 포함된 음극 및 양극(10)에 전류를 인가하여 전해 공정을 실시할 수 있다. 이러한 전해 방법을 통해서, 상기 양극에서는 전해액 중에서 염소 이온 또는 불소 이온이 산화되어 염소가스, 불소가스, 이산화탄소 및 일산화탄소 등의 부생가스(60)가 생성될 수 있다. 한편, 상기 전해조에 공급된 상기 산화 스칸듐은 음극인 용융 알루미늄과 전해질의 경계면에서 환원되어 알루미늄-스칸듐 합금이 생성될 수 있다.
상기 가열하는 단계에서 가열은 900 내지 1300℃의 온도 범위에서 수행되는 것이 바람직하며, 가열 온도가 900℃ 미만이면 염이 녹지 않아 전해 공정을 수행하기 어려우며, 1300℃ 초과하면 고온의 전해 공정을 운행하기 위한 에너지 비용이 증가하여 비경제적이다.
한편, 상기 음극 및 양극(10)에 전류를 인가하여 전해 공정을 실시하는 단계에서 상기 음극 및 양극에 인가되는 전류는 -1.0 내지 -2.0A인 것이 바람직하다. 인가 전류가 -1.0A 미만이거나 -2.0A 초과하면 전해조에서 알루미늄-스칸듐 합금의 환원 반응이 일어나지 않아 합금의 회수율이 저하될 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.
실시예
전해질(70)인 플루오린화나트륨, 플루오린화알루미늄 및 플루오린화칼슘으로 채워진 전해조 본체(30), 상기 전해질에 함침된 탄소 양극(10), 상기 전해조 본체 바닥에 배치된 알루미늄 음극(40)을 포함하는 전해조를 준비하고, 상기 전해조 본체에 산화 스칸듐을 공급하였다. 상기 탄소 양극의 말단은 원뿔형인 오목부가 형성되며, 상기 오목부의 중앙에는 배출구(20)가 형성되어 있다. 상기 전해조 본체에 포함된 산화스칸듐 및 전해질을 1000℃로 가열한 후, 음극 및 양극에 -1.5A의 전류를 인가하여 전해 공정을 수행했다.
용융된 알루미늄의 밀도는 2.975g/m3이고, 무게는 80g이다. 한편, 상기 전해질(70)은 38중량%의 플루오린화나트륨, 26중량%의 플루오린화알루미늄 및 36중량%의 플루오린화칼슘하고, 밀도는 2.12g/m3이다. 전해 공정이 끝난 후 회수된 알루미늄-스칸듐 합금의 무게는 79.3g으로 회수율은 99%이고, 응고된 알루미늄 액적은 거의 발견되지 않았다. 도 6은 음극의 표면에 생성된 금속의 X-선 회절법(XRD)를 이용하여 분석한 결과를 나타낸 그래프로, 알루미늄-스칸듐 합금이 제조되었음을 확인했다.
비교예
전해질(70)인 플루오린화나트륨, 플루오린화알루미늄 및 플루오린화칼슘으로 채워진 전해조 본체(30), 상기 전해질에 함침된 원통형의 탄소 양극(10), 상기 전해조 본체 바닥에 배치된 알루미늄 음극(40)을 포함하는 전해조를 준비하고, 상기 전해조 본체에 산화 스칸듐을 공급하였다. 상기 전해조 본체에 포함된 산화스칸듐 및 전해질을 1000℃로 가열한 후, 음극 및 양극에 -1.5A의 전류를 인가하여 전해 공정을 수행했다.
용융 알루미늄의 밀도는 2.975g/m3이고, 무게는 80g이다. 한편, 상기 전해질(70)은 38중량%의 플루오린화나트륨, 26중량%의 플루오린화알루미늄 및 36중량%의 플루오린화칼슘이며, 밀도는 2.12g/m3이다. 전해 공정이 끝난 후 회수된 알루미늄-스칸듐 합금의 무게는 50g으로 회수율은 62%로 매우 낮다. 또한, 용융 알루미늄 액적(50)이 응고되어 생성된 응고된 알루미늄 액적을 발견했다. 도 7은 상기 응고된 알루미늄 액적을 촬영한 사진으로 직경이 대략 3~8mm임을 확인했다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.
10 : 양극
20 : 배출구
30 : 전해조 본체
40 : 알루미늄 음극
50 : 알루미늄 액적
60 : 부생가스
70 : 전해질

Claims (10)

  1. 알루미늄-스칸듐 모합금의 전해를 위한 전해조에 포함되는 양극에 있어서,
    상기 양극의 말단에는 오목부가 형성되고,
    상기 오목부에는 부생가스를 외부로 배출하는 배출구가 형성된 전해용 양극.
  2. 제1항에 있어서,
    상기 오목부는,
    원뿔형, 타원뿔형, 다각뿔형, 원뿔대형, 타원뿔대형, 다각뿔대형, 원기둥형, 타원기둥형, 다각기둥형, 반구형 또는 반타원체형인 전해용 양극.
  3. 제1항에 있어서,
    상기 오목부는 2개 이상의 배출구가 형성된 전해용 양극.
  4. 제1항에 있어서,
    상기 배출구는 오목부 중앙에 형성된 전해용 양극.
  5. 제1항에 있어서,
    상기 배출구는 최대 직경이 1mm 이하인 전해용 양극.
  6. 제1항 내지 제5항 중 어느 한 항의 전해용 양극을 포함하는 전해조.
  7. 제6항에 있어서,
    상기 전해조는,
    전해질로 채워진 전해조 본체; 및
    상기 전해조의 바닥에 배치된 알루미늄 음극을 더 포함하는 전해조.
  8. 제6항에 있어서,
    상기 전해질은 불화물, 염화물 또는 이들의 혼합물인 전해조.
  9. 제6항의 전해조에 산화 스칸듐 및 전해질을 공급하는 단계;
    상기 전해조를 가열하는 단계; 및
    상기 전해조에 전류를 인가하여 전해 공정을 실시하는 단계를 포함하는 전해 방법.
  10. 제9항에 있어서,
    상기 가열은 온도가 1000 내지 1100℃인 전해 방법.
KR1020160012298A 2016-02-01 2016-02-01 전해용 양극, 이를 포함하는 전해조, 및 상기 전해조를 이용한 전해 방법 KR102562722B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160012298A KR102562722B1 (ko) 2016-02-01 2016-02-01 전해용 양극, 이를 포함하는 전해조, 및 상기 전해조를 이용한 전해 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160012298A KR102562722B1 (ko) 2016-02-01 2016-02-01 전해용 양극, 이를 포함하는 전해조, 및 상기 전해조를 이용한 전해 방법

Publications (2)

Publication Number Publication Date
KR20170091379A true KR20170091379A (ko) 2017-08-09
KR102562722B1 KR102562722B1 (ko) 2023-08-03

Family

ID=59652617

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160012298A KR102562722B1 (ko) 2016-02-01 2016-02-01 전해용 양극, 이를 포함하는 전해조, 및 상기 전해조를 이용한 전해 방법

Country Status (1)

Country Link
KR (1) KR102562722B1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172887A (ja) * 1984-09-18 1986-04-14 Matsushita Refrig Co レシプロ型冷媒圧縮機
KR19980035064U (ko) * 1996-12-12 1998-09-15 김종진 가스발생량을 측정할 수 있는 전해장치
CN1410599A (zh) * 2002-12-03 2003-04-16 中国铝业股份有限公司 一种电解生产铝钪合金的方法
JP2003277986A (ja) * 2002-03-26 2003-10-02 Nippon Oil Corp ウェハーメッキ処理システム
US20110031129A1 (en) * 2002-10-18 2011-02-10 Vittorio De Nora Aluminium electrowinning cells with metal-based anodes
JP2012107267A (ja) * 2010-11-15 2012-06-07 Hitachi Metals Ltd メッキ装置
JP5445725B1 (ja) * 2013-06-26 2014-03-19 日本軽金属株式会社 Al−Sc合金の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172887A (ja) * 1984-09-18 1986-04-14 Matsushita Refrig Co レシプロ型冷媒圧縮機
KR19980035064U (ko) * 1996-12-12 1998-09-15 김종진 가스발생량을 측정할 수 있는 전해장치
JP2003277986A (ja) * 2002-03-26 2003-10-02 Nippon Oil Corp ウェハーメッキ処理システム
US20110031129A1 (en) * 2002-10-18 2011-02-10 Vittorio De Nora Aluminium electrowinning cells with metal-based anodes
CN1410599A (zh) * 2002-12-03 2003-04-16 中国铝业股份有限公司 一种电解生产铝钪合金的方法
JP2012107267A (ja) * 2010-11-15 2012-06-07 Hitachi Metals Ltd メッキ装置
JP5445725B1 (ja) * 2013-06-26 2014-03-19 日本軽金属株式会社 Al−Sc合金の製造方法

Also Published As

Publication number Publication date
KR102562722B1 (ko) 2023-08-03

Similar Documents

Publication Publication Date Title
US5024737A (en) Process for producing a reactive metal-magnesium alloy
US4988417A (en) Production of lithium by direct electrolysis of lithium carbonate
US11667990B2 (en) Process for recovering lead from a lead pastel and use thereof in a process for recovering lead-acid accumulator components
RU2145646C1 (ru) Способ производства металлического кремния, силумина и алюминия и технологическая установка для его осуществления
KR101724288B1 (ko) 고순도 알루미늄-스칸듐 합금 제조 방법
US4156635A (en) Electrolytic method for the production of lithium using a lithium-amalgam electrode
KR102438142B1 (ko) 알루미늄-스칸듐 합금을 전해 석출하는 전해조 및 상기 전해조를 이용한 전해 방법
CN105473766A (zh) 用于使用铝电解器获得熔体的电解质
KR20170091379A (ko) 전해용 양극, 이를 포함하는 전해조, 및 상기 전해조를 이용한 전해 방법
RU2274680C2 (ru) Способ получения металлов электролизом расплавленных солей
CN107541753A (zh) 一种脱除霍尔槽含锂电解质中锂的方法
US5853560A (en) Electrolytic magnesium production process using mixed chloride-fluoride electrolytes
KR20170097374A (ko) 전해용 양극, 이를 포함하는 전해조, 및 상기 전해조를 이용한 전해 방법
CN104388986A (zh) 一种熔盐电解法制备铜镁合金的生产工艺
RU2000114487A (ru) Электролитический элемент для получения щелочного металла
KR102523134B1 (ko) 원료 공급이 용이한 전해용 양극 및 이를 포함한 전해조
KR101978140B1 (ko) 알루미늄-스칸듐 합금의 제조장치 및 제조방법
NO344248B1 (no) Fremgangsmåte for å drive en elektrolytisk aluminiumproduksjonscelle med inert anode for å opprettholde en lav svovelforurensningskonsentrasjon.
KR101978141B1 (ko) 알루미늄-스칸듐 합금의 제조장치 및 제조방법
CA2517379C (en) Method for copper electrowinning in hydrochloric solution
RU2760027C1 (ru) Способ электролитического получения кремния из расплавленных солей
CN104962950A (zh) 降低铝电解中阳极效应发生的方法及相应的阳极结构
KR100522116B1 (ko) 비전도성 다공성 세라믹 용기를 이용한 리튬 전구체를포함하는 용융염에서의 리튬 회수장치 및 방법
RU2775862C1 (ru) Электролитический способ получения кремния из расплавленных солей
US6428675B1 (en) Low temperature aluminum production

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right