RU2775862C1 - Электролитический способ получения кремния из расплавленных солей - Google Patents

Электролитический способ получения кремния из расплавленных солей Download PDF

Info

Publication number
RU2775862C1
RU2775862C1 RU2021127476A RU2021127476A RU2775862C1 RU 2775862 C1 RU2775862 C1 RU 2775862C1 RU 2021127476 A RU2021127476 A RU 2021127476A RU 2021127476 A RU2021127476 A RU 2021127476A RU 2775862 C1 RU2775862 C1 RU 2775862C1
Authority
RU
Russia
Prior art keywords
silicon
temperature
electrolysis
electrolyte
melt
Prior art date
Application number
RU2021127476A
Other languages
English (en)
Inventor
Юлия Александровна Устинова
Ольга Борисовна Павленко
Андрей Викторович Суздальцев
Юрий Павлович Зайков
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Application granted granted Critical
Publication of RU2775862C1 publication Critical patent/RU2775862C1/ru

Links

Images

Abstract

Использование: относится к способам получения кремния, который широко применяется в электронной и металлургической отраслях промышленности, а также может быть использован для создания безопасных литий-ионных химических источников тока. Сущность: электролитический способ получения кремния из расплавленных солей, включающий электролиз галогенидного расплава с добавкой K2SiF6 при температуре от 400 до 650°C, катодной плотности тока не выше 0.1 А/см2 и потенциале катода в диапазоне от -0.15 до -0.4 В относительно потенциала кремниевого электрода, при этом в качестве электролита используют смесь, содержащую, мас.%: 0-30 – хлорида лития (LiCl); 10-30 – хлорида калия (KCl); 55-85 – хлорида цезия (CsCl); не выше 3 – фторида цезия (CsF); 0.1-5 – гексафторсиликата калия (K2SiF6). Технический результат: получение кремния при повышении энергоэффективности за счет снижения температуры электроосаждения на 140-290°С и повышения катодной плотности тока до 0.07 А/см2. 2 ил., 1 табл.

Description

Изобретение относится к способам получения кремния путем электролитического рафинирования материалов на основе кремния.
В настоящее время кремний широко применяется в электронной и металлургической отраслях промышленности. Кремниевые материалы и материалы на основе кремния способны обеспечить значительное повышение эффективности литий-ионных химических источников тока и фотоэлектрических элементов.
В промышленности реализован способ получения кремния, включающий многоступенчатое разложение силана и хлорсиланов при температуре 900-1050°C. Различные варианты исполнения способа позволяют получать материалы уникальной структуры: от макроструктурных осадков до наноразмерных пленок и трубок. Однако такой способ характеризуется высокими удельными затратами, сложным аппаратурным оформлением, необходимостью поддержания глубокого вакуума при высокой температуре. В сочетании с химически агрессивными газами-носителями кремния эти условия предъявляют высокие требования к конструкционным материалам, что сказывается на себестоимости конечного продукта.
Одним из наиболее дешевых и перспективных способов получения кремния и наноматериалов на его основе с управляемой морфологией является электроосаждение кремния из расплавленных солей. При электроосаждении из расплавленных солей в качестве источника кремния используют гексафторосиликат калия или оксид кремния либо растворимый кремниевый анод, а расплавленные соли обычно представлены смесью, содержащей фториды и хлориды щелочных и щелочноземельных металлов. Условия проведения электролиза (температура процесса, потенциал электроосаждения осаждения), а также морфология и чистота получаемого кремния во многом определяются составом выбранной в качестве электролита расплавленной смеси солей.
Известен электролитический способ получения кремния из расплавленных солей, включающий электролиз расплава KF-KCl-K2SiF6 при температуре 650°C и выше, при этом электроосаждение кремния производят на графитовый или стеклоуглеродный катод при плотностях тока от 0.005 до 0.1 А/см2 [Структура осадков кремния, полученных электролизом фторидно-хлоридного расплава / Д.Б. Фроленко, З.С. Мартемьянова, З.И. Валеев, А.Н. Барабошкин // Электрохимия. -1992. -Т.28, №12. - . 1737-1745]. Благодаря доступности компонентов расплава и их высокой растворимости в воде способ можно считать одним из самых привлекательных, поскольку важным фактором является возможность отделения электроосажденного кремния от солей. Недостатком способа является то, что в составе используемой соли в количестве до 90 мас.% присутствует гигроскопичный, относительно токсичный и химически агрессивный фторид калия (KF). Это приводит к необходимости тщательной предварительной очистки фторида калия или смеси KF-KCl от примесей (влага, электроположительные элементы) перед проведением электроосаждения кремния. Даже при соответствующей очистке расплава возможность получения из высокочистого кремния будет ограничена.
Известен также электролитический способ получения кремния из расплавленных солей, включающий электрохимическое восстановление силиката кальция CaSiO3 на графитовом катоде в расплаве CaCl2-MgCl2-NaCl при температуре 650°С [Low Temperature Molten Salt Production of Silicon Nanowires by Electrochemical Reduction of CaSiO3 / Y. Dong, T. Slade, M.J. Stolt, L. Li [et al.]. -DOI: 10.1002/anie.201707064 // Angewandte Chemie International Edition. -2017. -№56(46). - p. 14453-14457]. Благодаря высокой растворимости CaSiO3 и CaO в указанном расплаве способ характеризуется высокой скоростью переноса ионов O2- и, как следствие, высокой скоростью восстановления силиката кальция. Недостатками способа являются гигроскопичность компонентов расплава (CaCl2 и MgCl2), высокое напряжение разложения CaSiO3 и нестабильность анионного состава, которая может приводить к нестабильности параметров электроосаждения кремния. Следовательно, для осуществления способа потребуется предварительная тщательная очистка компонентов расплава и относительно высокие энергетические затраты для разложения CaSiO3.
Известен электролитический способ получения кремния из расплавленных солей, включающий электролиз расплава KF-KCl-CsCl-K2SiF6 при температурах от 550 до 750°C при плотностях тока до 150 мА/см2 [RU2399698, опубл. 20.09.2010 г]. Осаждение кремния ведут на твердых катодах (графит, стеклоуглерод, никель, серебро). Преимуществом использования данного состава является невысокая упругость паров кремнийсодержащей добавки, что приводит к снижению её потери через газовую фазу во время проведения электролиза. Также кремниевые осадки, полученные в вышеупомянутом расплаве, относительно легко будут очищаться от остатков электролита. К недостаткам, как уже было описано ранее, можно отнести необходимость предварительной очистки входящего в состав гигроскопичного фторида калия или готового расплава от влаги и электроположительных примесей, а также коррозионное воздействие электролита на материалы электролизера.
Наиболее близким к заявляемому является способ электролитического получения кремния из расплавленных солей, включающий электролиз расплавленного галогенидного электролита в составе хлорида калия KCl с добавкой от 1 до 5 мас.% K2SiF6 при температуре 790-800°C [Гевел Т.А., Жук С.И., Устинова Ю.А., Суздальцев А.В., Зайков Ю.П. Электровыделение кремния из расплава KCl-K2SiF6 // Расплавы, 2021, №2, с. 187-198]. Электролиз ведут при катодной плотности тока до 0.030 А/см2 и потенциале катода от -0.1 до -0.25 В относительно потенциала кремниевого квазиэлектрода сравнения. В отличие от ряда известных способов электролитического получения кремния, при осуществлении данного способа используют электролит без фторида калия (KF), что позволяет упростить процедуру подготовки солей перед электролизом, помимо этого, становится возможным получение кремния высокой чистоты, а также снижается агрессивность электролита по отношению к конструкционным материалам электролизера. Однако устойчивость добавки K2SiF6 при указанной температуре осуществления способа будет крайне низкой. Соответственно, равновесное содержание кремнийсодержащих ионов в электролите будет небольшим, и по этой причине данный способ будет характеризоваться низкими скоростями электроосаждения кремния.
Задача настоящего изобретения заключается в снижении температуры электролитического получения кремния из расплавленных солей с целью повышения устойчивости кремнийсодержащих электроактивных ионов в расплаве.
Поставленная задача решена тем, что в заявляемом электролитическом способе получения кремния из расплавленных солей в качестве электролита, как и в прототипе, используют галогенидный расплав с добавкой K2SiF6, при этом электролиз осуществляют при температуре. Заявленный способ отличается тем, что электролиз расплава ведут при температуре от 400 до 650°C при катодной плотности тока не выше 0.1 А/см2 и потенциале катода от -0.15 до -0.4 В относительно потенциала кремниевого электрода, при этом в качестве электролита используют смесь, содержащую (мас. %):
0-30 - хлорида лития (LiCl);
10-30 - хлорида калия (KCl);
55-85 - хлорида цезия (CsCl);
не выше 3 - фторида цезия (CsF);
0.1-5 - гексафторсиликата калия (K2SiF6).
Сущность способа заключается в том, что электролит из указанного диапазона составов позволяет вести электролиз при температуре ниже температуры активного термического разложения гексафторсиликата калия (около 550°C), при этом в составе электролита не используется химически агрессивный и требующий очистки фторид калия (KF). При этом с целью повышения скорости электроосаждения кремния в электролит вводят добавку фторида цезия (CsF) в количестве не более 3 мас.%. Превышение содержания фторида цезия (CsF) в расплавленном электролите выше указанного предела представляется нецелесообразным, поскольку фторидные компоненты хуже подвергаются очистке от примесей, повышают химическую активность электролита и, как следствие, приводят к повышению коррозии конструкционных элементов реактора для осуществления способа и загрязнению получаемого кремния.
Во избежание электровосстановления щелочного металла экспериментальным путем был подобран режим осуществления способа: катодная плотность тока не должна превышать 0.1 А/см2, а потенциал катода должен находиться в диапазоне от -0.15 до -0.4 В относительно потенциала кремниевого электрода.
Технический результат заключается в электролитическом получении кремния при пониженной температуре в химически менее агрессивном электролите, что позволит снизить энергозатраты, повысить чистоту кремния, а также увеличить срок эксплуатации конструкционных материалов и реактора для осуществления способа.
Заявляемый способ иллюстрируется таблицей, в которой приведены результаты апробации способа в лабораторном электролизере, а также фигурами 1, 2, на которых приведены осадки кремния.
Для экспериментальной апробации была выполнена серия электролизных испытаний, в которых варьировали состав расплава, температуру, потенциал катода и катодную плотность тока. Все эксперименты осуществляли в герметичном перчаточном боксе с атмосферой аргона. Расплавленные электролиты готовили из предварительно очищенных индивидуальных солей KCl, CsCl, LiCl, CsF и K2SiF6 квалификации «х.ч.» (Реахим, Россия) в стеклоуглеродном тигле. Перед проведением экспериментов электроды (катод - стеклоуглерод, анод - поликристаллический кремний, квазиэлектрод сравнения - кремний КР-00) и платино-платинородиевую термопару погружали в расплав, фиксируя их во фторопластовой крышке при помощи резиновых пробок. После погружения электродов проводили электролиз при параметрах, указанных в таблице. Напряжение между электродами подавали при помощи потенциостата/гальваностата Autolab PGSTAT 302n (Metrohm, Нидерланды) с пределом по току 1 А.
После проведения электролиза осадки подвергали очистке от остатков электролита путем многократной промывки в дистиллированной воде, а также проводили ультразвуковое диспергирование с использованием диспергатора SONOPULS UW mini 20.
Полученные осадки кремния проверяли на содержание примесей с помощью метода атомно-эмиссионной спектроскопии на спектрометре iCAP 6300 Duo Spectrometer (Thermo Scientific, США). Структуру осадков кремния определяли на микрофотографиях, полученных сканирующими электронными микроскопами Phenom ProX (Phenom-World, Нидерланды) и Tescan Vega 4 (Tescan, s.r.o., Чехия).
В таблице приведены параметры и результаты экспериментальной апробации способа. В результате электролизных испытаний в зависимости от состава электролита и параметров электролиза были получены осадки кремния в виде дендритов с содержанием примесей не выше 0.01 мас.%. На фиг. 1, 2 представлена микрофотография СЭМ осадка кремния. Для сравнения в таблице приведены параметры электроосаждения кремния из расплава KCl с добавкой 5 мас.% K2SiF6 при катодной плотности тока 0.03 А/см2 и потенциале катода -0.25 В относительно потенциала кремниевого квазиэлектрода сравнения использованием известного способа. Как видно, заявленный способ позволяет получать кремний при более низкой температуре и повышенной катодной плотности тока.
Совокупность заявленных признаков способа позволяет получать электролитические чистые осадки кремния при повышении энергоэффективности за счет снижения температуры электроосаждения на 140-290°С и повышения катодной плотности тока на величину до 0.07 А/см2.
Электролитический способ получения кремния из расплавленных солей
Таблица - Параметры и результаты электролитического осаждения кремния на стеклоуглероде
№ п/п Электролит, мас.% Катодная плотность тока, не выше, А/см2 Потенциал катода, В Температура, °С Осадок
1 30LiCl-15KCl-55CsCl + 3K2SiF6 0.05 -0.15 560 дендриты
2 30LiCl-15KCl-55CsCl + 1K2SiF6 + 3CsF 0.02 -0.2 400 дендриты
3 17LiCl-28KCl-55CsCl + 5K2SiF6 0.05 -0.25 550 дендриты
4 8LiCl-10KCl-82CsCl + 5K2SiF6 0.1 -0.2 630 волокна
5 12LiCl-17KCl-71CsCl + 5K2SiF6 0.08 -0.22 630 дендриты
6 10LiCl-21KCl-69CsCl + 5K2SiF6 0.08 -0.2 650 волокна
7 15KCl-85CsCl + 5K2SiF6 0.1 -0.2 630 волокна
8
(прототип)
KCl + 5K2SiF6 0.03 -0.25 790 дендриты, волокна

Claims (6)

  1. Электролитический способ получения кремния из расплавленных солей, включающий электролиз галогенидного расплава с добавкой K2SiF6 при температуре, отличающийся тем, что электролиз расплава ведут при температуре от 400 до 650°C, катодной плотности тока не выше 0.1 А/см2 и потенциале катода в диапазоне от -0.15 до -0.4 В относительно потенциала кремниевого электрода, при этом в качестве электролита используют смесь, содержащую, мас.%:
  2. 0-30 – хлорида лития (LiCl);
  3. 10-30 – хлорида калия (KCl);
  4. 55-85 – хлорида цезия (CsCl);
  5. не выше 3 – фторида цезия (CsF);
  6. 0.1-5 – гексафторсиликата калия (K2SiF6).
RU2021127476A 2021-09-20 Электролитический способ получения кремния из расплавленных солей RU2775862C1 (ru)

Publications (1)

Publication Number Publication Date
RU2775862C1 true RU2775862C1 (ru) 2022-07-11

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2795477C1 (ru) * 2022-11-22 2023-05-03 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ электроосаждения сплошных осадков кремния из расплавленных солей

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20085073L (no) * 2006-05-26 2009-02-24 Aist Fremgangsmate for fremstilling av silisium
RU2751201C1 (ru) * 2020-12-11 2021-07-12 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Способ электролитического получения кремния из расплавленных солей

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20085073L (no) * 2006-05-26 2009-02-24 Aist Fremgangsmate for fremstilling av silisium
RU2751201C1 (ru) * 2020-12-11 2021-07-12 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Способ электролитического получения кремния из расплавленных солей

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2795477C1 (ru) * 2022-11-22 2023-05-03 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ электроосаждения сплошных осадков кремния из расплавленных солей

Similar Documents

Publication Publication Date Title
Rao et al. Electrowinning of Silicon from K 2SiF6‐Molten Fluoride Systems
DK166735B1 (da) Fremgangsmaade til elektrolytisk genvinding af bly fra blyaffald
US20140147330A1 (en) Method for preparing metallic lithium using electrolysis in non-aqueous electrolyte
Xu et al. Electrodeposition of solar cell grade silicon in high temperature molten salts
US11821099B2 (en) Electrode production method
Zhuk et al. Silicon electrodeposition from chloride–fluoride melts containing K2SiF6 and SiO2
Abdurakhimova et al. Electroreduction of silicon from the NaI–KI–K2SiF6 melt for lithium-ion power sources
RU2775862C1 (ru) Электролитический способ получения кремния из расплавленных солей
US8287715B2 (en) Synthesis of boron using molten salt electrolysis
RU2751201C1 (ru) Способ электролитического получения кремния из расплавленных солей
US4470888A (en) Method for preparing alkali metal chlorates by electrolysis
KR101570795B1 (ko) 불소 함유 니켈 슬라임으로부터 고순도 니켈의 제조방법
JP5522455B2 (ja) ナトリウムの製造方法およびナトリウム製造装置
Ma et al. Dissolution Behavior of SiO2 and Electrochemical Reduction of Dissolved SiO2 in Molten Chlorides
Ene et al. Role of free F− anions in the electrorefining of titanium in molten alkali halide mixtures
RU2760027C1 (ru) Способ электролитического получения кремния из расплавленных солей
JP5993097B2 (ja) 高純度塩化コバルトの製造方法
Smetanin et al. Electrochemical preparation of arsenic and its compounds
RU2797969C1 (ru) Способ электролитического получения микроразмерных пленок кремния из расплавленных солей
RU2795477C1 (ru) Способ электроосаждения сплошных осадков кремния из расплавленных солей
RU2770846C1 (ru) Электролитический способ получения наноразмерных осадков кремния в расплавленных солях
US4483752A (en) Valve metal electrodeposition onto graphite
US4802970A (en) Process for preparing fluorine by electrolysis of calcium fluoride
US3560353A (en) Electrolysis cell current efficiency with oxygen-containing gases
JPH0213031B2 (ru)