KR20170058838A - 화면간 예측 향상을 위한 부호화/복호화 방법 및 장치 - Google Patents

화면간 예측 향상을 위한 부호화/복호화 방법 및 장치 Download PDF

Info

Publication number
KR20170058838A
KR20170058838A KR1020160089728A KR20160089728A KR20170058838A KR 20170058838 A KR20170058838 A KR 20170058838A KR 1020160089728 A KR1020160089728 A KR 1020160089728A KR 20160089728 A KR20160089728 A KR 20160089728A KR 20170058838 A KR20170058838 A KR 20170058838A
Authority
KR
South Korea
Prior art keywords
block
prediction
unit
picture
information
Prior art date
Application number
KR1020160089728A
Other languages
English (en)
Inventor
전동산
강정원
임성창
고현석
이진호
김휘용
최진수
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to KR1020160153461A priority Critical patent/KR20170058866A/ko
Priority to PCT/KR2016/013345 priority patent/WO2017086738A1/ko
Priority to CN201680067272.0A priority patent/CN108353166A/zh
Priority to US15/775,420 priority patent/US10687053B2/en
Publication of KR20170058838A publication Critical patent/KR20170058838A/ko
Priority to US16/868,075 priority patent/US11039128B2/en
Priority to US17/315,637 priority patent/US11683475B2/en
Priority to US18/311,990 priority patent/US20230276046A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/107Selection of coding mode or of prediction mode between spatial and temporal predictive coding, e.g. picture refresh
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/147Data rate or code amount at the encoder output according to rate distortion criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/573Motion compensation with multiple frame prediction using two or more reference frames in a given prediction direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 발명은 화면간 예측 향상을 위한 부호화/복호화 방법 및 장치를 제공한다.

Description

화면간 예측 향상을 위한 부호화/복호화 방법 및 장치{METHOD AND APPARATUS FOR ENCODING/DECODING OF IMPROVED INTER PREDICTION}
본 발명은 영상 부호화 및 복호화에서 향상된 화면간 예측모드 영상 부호화 및 복호화 방법에 관한 것이다.
최근 HD(High Definition) 해상도를 가지는 방송 서비스가 국내뿐만 아니라 세계적으로 확대되면서, 많은 사용자들이 고해상도, 고화질의 영상에 익숙해지고 있으며 이에 따라 많은 기관들이 차세대 영상기기에 대한 개발에 박차를 가하고 있다. 또한 HDTV와 더불어 HDTV의 4배 이상의 해상도를 갖는 UHD(Ultra High Definition)에 대한 관심이 증대되면서 보다 높은 해상도, 고화질의 영상에 대한 압축기술이 요구되고 있다.
영상 압축 기술로 현재 픽처의 이전 또는 이후 픽처로부터 현재 픽처에 포함된 화소값을 예측하는 화면 간 예측 기술, 현재 픽처 내의 화소 정보를 이용하여 현재 픽처에 포함된 화소값을 예측하는 화면 내 예측 기술, 잔여 신호의 에너지를 압축하기 위한 변환 및 양자화 기술, 출현 빈도가 높은 값에 짧은 부호를 할당하고 출현 빈도가 낮은 값에 긴 부호를 할당하는 엔트로피 부호화 기술 등 다양한 기술이 존재하고 이러한 영상 압축 기술을 이용해 영상 데이터를 효과적으로 압축하여 전송 또는 저장할 수 있다.
기존 비디오 부호화에서는 현재 부호화 하려는 블록에 대해 List-0 (L0), List-1 (L1) 및 List-0 와 List-1에서 얻어진 예측블록의 평균값 (Bi-prediction) 중 단지 하나의 예측 블록만을 선택하여 현재 부호화 블록에 대한 예측 블록으로 사용함으로 인해 화면간 예측에 대한 부호화 효율이 떨어질 수 있다.
본 발명에서는 현재 부호화 되는 블록에 대한 화면간 예측 블록을 생성함에 있어, L0, L1 및 Bi-prediction으로부터 얻어진 예측 블록들 중 적어도 하나 이상의 예측 블록들을 이용하여 현재 블록의 예측 블록을 유도하는 방법을 제안한다.
본 발명은 화면간 예측 블록을 유도함에 있어 현재 부호화 블록 크기에 대해 또는 화면간 예측에 대한 부호화 파라미터 정보에 따라 현재의 부호화 블록을 M개의 서브 블록들로 분할 후, List-0, List-1, Avg(List-0, List-1)에 해당하는 예측 블록 중 적어도 하나 이상의 예측 블록을 이용하여 현재 블록의 예측 블록을 유도하는 방법을 제안한다.
제안 발명은 현재 부호화 블록에 대한 화면간 예측 시, 보다 정교한 화면내 예측 블록을 생성함으로써 화면간 예측에 대한 부호화 효율을 높일 수 있다.
도 1은 본 발명이 적용되는 부호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
도 2는 본 발명이 적용되는 복호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
도 3은 영상을 부호화 및 복호화할 때의 영상의 분할 구조를 개략적으로 나타내는 도면이다.
도 4는 부호화 유닛(CU)이 포함할 수 있는 예측 유닛(PU)의 형태를 도시한 도면이다.
도 5는 부호화 유닛(CU)이 포함할 수 있는 변환 유닛(TU)의 형태를 도시한 도면이다.
도 6은 화면 내 예측 과정의 실시예를 설명하기 위한 도면이다.
도 7은 화면 간 예측 과정의 실시예를 설명하기 위한 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다. 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다. 후술하는 예시적 실시예들에 대한 상세한 설명은, 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 실시예를 실시할 수 있기에 충분하도록 상세히 설명된다. 다양한 실시예들은 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 실시예의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 예시적 실시예들의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다.
본 발명에서 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
본 발명의 어떤 구성 요소가 다른 구성 요소에 “연결되어” 있다거나 “접속되어” 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있으나, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어"있다거나 "직접 접속되어"있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 발명의 실시예에 나타나는 구성부들은 서로 다른 특징적인 기능들을 나타내기 위해 독립적으로 도시되는 것으로, 각 구성부들이 분리된 하드웨어나 하나의 소프트웨어 구성단위로 이루어짐을 의미하지 않는다. 즉, 각 구성부는 설명의 편의상 각각의 구성부로 나열하여 포함한 것으로 각 구성부 중 적어도 두 개의 구성부가 합쳐져 하나의 구성부로 이루어지거나, 하나의 구성부가 복수 개의 구성부로 나뉘어져 기능을 수행할 수 있고 이러한 각 구성부의 통합된 실시예 및 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리범위에 포함된다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 즉, 본 발명에서 특정 구성을 “포함”한다고 기술하는 내용은 해당 구성 이외의 구성을 배제하는 것이 아니며, 추가적인 구성이 본 발명의 실시 또는 본 발명의 기술적 사상의 범위에 포함될 수 있음을 의미한다.
본 발명의 일부의 구성 요소는 본 발명에서 본질적인 기능을 수행하는 필수적인 구성 요소는 아니고 단지 성능을 향상시키기 위한 선택적 구성 요소일 수 있다. 본 발명은 단지 성능 향상을 위해 사용되는 구성 요소를 제외한 본 발명의 본질을 구현하는데 필수적인 구성부만을 포함하여 구현될 수 있고, 단지 성능 향상을 위해 사용되는 선택적 구성 요소를 제외한 필수 구성 요소만을 포함한 구조도 본 발명의 권리범위에 포함된다.
이하, 도면을 참조하여 본 발명의 실시 형태에 대하여 구체적으로 설명한다. 본 명세서의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략하고, 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
또한, 이하에서 영상은 동영상(video)을 구성하는 하나의 픽처를 의미할 수 있으며, 동영상 자체를 나타낼 수도 있다. 예를 들면, "영상의 부호화 및/또는 복호화"는 "비디오의 부호화 및/또는 복호화"를 의미할 수 있으며, "비디오를 구성하는 영상들 중 하나의 영상의 부호화 및/또는 복호화"를 의미할 수도 있다. 여기서, 픽처는 영상과 동일한 의미를 가질 수 있다.
부호화기(Encoder): 부호화를 수행하는 장치를 의미할 수 있다.
복호화기(Decoder): 복호화를 수행하는 장치를 의미할 수 있다.
파싱(Parsing): 엔트로피 복호화하여 구문 요소(Syntax Element)의 값을 결정하는 것을 의미하거나, 엔트로피 복호화 자체를 의미할 수 있다.
블록(Block): 샘플(Sample)의 MxN 배열이며, 여기서 M과 N은 양의 정수 값을 의미하며, 블록은 흔히 2차원 형태의 샘플 배열을 의미할 수 있다.
유닛(Unit): 영상 부호화 및 복호화의 단위를 의미할 수 있다. 영상의 부호화 및 복호화에 있어서, 유닛은 하나의 영상의 분할에 의해 생성된 영역일 수 있다. 또한, 유닛은 하나의 영상을 세분화 된 유닛으로 분할하여 부호화 혹은 복호화 할 때 그 분할된 단위를 의미할 수 있다. 영상의 부호화 및 복호화에 있어서, 유닛 별로 기정의된 처리가 수행될 수 있다. 하나의 유닛은 유닛에 비해 더 작은 크기를 갖는 하위 유닛으로 더 분할될 수 있다. 기능에 따라서, 유닛은 블록(Block), 매크로블록(Macroblock), 부호화 트리 유닛(Coding Tree Unit), 부호화 트리 블록(Coding Tree Block), 부호화 유닛(Coding Unit), 부호화 블록(Coding Block), 예측 유닛(Prediction Unit), 예측 블록(Prediction Block), 변환 유닛(Transform Unit), 변환 블록(Transform Block) 등을 의미할 수 있다. 또한, 유닛은 블록과 구분하여 지칭하기 위해 휘도(Luma) 성분 블록과 그에 대응하는 색차(Chroma) 성분 블록 그리고 각 블록에 대한 구문 요소를 포함한 것을 의미할 수 있다. 유닛은 다양한 크기와 형태를 가질 수 있으며, 특히 유닛의 형태는 직사각형뿐만 아니라 정사각형, 사다리꼴, 삼각형, 오각형 등 2차원으로 표현할 수 있는 기하학적 도형을 포함할 수 있다. 또한, 유닛 정보에는 부호화 유닛, 예측 유닛, 변환 유닛 등을 가리키는 유닛의 타입, 유닛의 크기, 유닛의 깊이, 유닛의 부호화 및 복호화 순서 등 중 적어도 하나 이상을 포함할 수 있다.
복원된 주변 유닛(Reconstructed Neighbor Unit): 부호화/복호화 대상 유닛 주변에 공간적(Spatial)/시간적(Temporal)으로 이미 부호화 혹은 복호화되어 복원된 유닛을 의미할 수 있다.
유닛 깊이(Depth): 유닛이 분할된 정도를 의미하며, 트리 구조(Tree Structure)에서 루트 노드(Root Node)는 깊이가 가장 얕고, 리프 노드(Leaf Node)는 깊이가 가장 깊다고 할 수 있다.
심볼(Symbol): 부호화/복호화 대상 유닛 구문 요소 및 부호화 파라미터(coding parameter), 변환 계수(Transform Coefficient)의 값 등을 의미할 수 있다.
파라미터 세트(Parameter Set): 비트스트림 내의 구조 중 헤더 정보에 해당할 수 있으며, 비디오 파라미터 세트(video parameter set), 시퀀스 파라미터 세트(sequence parameter set), 픽처 파라미터 세트(picture parameter set), 적응 파라미터 세트(adaptation parameter set) 중 적어도 하나 이상이 파라미터 세트에 포함될 수 있다. 또한, 파라미터 세트에는 슬라이스(slice) 헤더 및 타일(tile) 헤더 정보를 포함한 의미를 가질 수 있다.
비트스트림(Bitstream): 부호화된 영상 정보를 포함하는 비트의 열을 의미할 수 있다.
부호화 파라미터(Coding Parameter): 구문 요소와 같이 부호화기에서 부호화되어 복호화기로 전송되는 정보뿐만 아니라, 부호화 혹은 복호화 과정에서 유추될 수 있는 정보를 포함할 수 있으며, 영상을 부호화하거나 복호화할 때 필요한 정보를 의미할 수 있다. 예를 들어, 화면 내 예측 모드, 화면 간 예측 모드, 화면 내 예측 방향, 움직임 정보, 움직임 벡터, 참조 영상 색인, 화면 간 예측 방향, 화면 간 예측 지시자, 참조 영상 리스트, 움직임 벡터 예측기, 움직임 병합 후보, 변환 종류, 변환 크기, 추가 변환 사용 유무, 루프 내 필터 정보, 잔여 신호 유무, 양자화 매개변수, 문맥 모델, 변환 계수, 변환 계수 레벨, 부호화 블록 패턴(Coded Block Pattern), 부호화 블록 플래그(Coded Block Flag), 영상 디스플레이/출력 순서, 슬라이스 정보, 타일 정보, 픽처 타입, 움직임 병합 모드 사용 유무, 스킵 모드 사용 유무, 블록 크기, 블록 깊이, 블록 분할 정보, 유닛 크기, 유닛 깊이, 유닛 분할 정보 등의 값 및/또는 통계 중 적어도 하나 이상이 부호화 파라미터에 포함될 수 있다.
예측 유닛(Prediction Unit): 화면 간 예측 또는 화면 내 예측 및 그에 대한 보상을 수행할 때의 기본 유닛이며, 예측 유닛은 복수의 파티션(Partition)으로 분할 될 수도 있다. 복수의 파티션 각각이 상기 예측 및 보상 수행 시의 기본 유닛이 되며, 예측 유닛이 분할된 파티션도 예측 유닛이라고 할 수 있다. 또한, 하나의 예측 유닛은 분할되어 크기가 작은 복수의 예측 유닛으로 분할될 수 있다. 예측 유닛은 다양한 크기와 형태를 가질 수 있으며, 특히 예측 유닛의 형태는 직사각형뿐만 아니라 정사각형, 사다리꼴, 삼각형, 오각형 등 2차원으로 표현할 수 있는 기하학적 도형을 포함할 수 있다.
예측 유닛 파티션(Prediction Unit Partition): 예측 유닛이 분할된 형태를 의미할 수 있다.
참조 영상 리스트(Reference Picture List): 화면 간 예측 혹은 움직임 보상에 사용되는 하나 이상의 참조 영상이 포함된 리스트를 의미할 수 있다. 참조 영상 리스트의 종류는 LC (List Combined), L0 (List 0), L1 (List 1), L2 (List 2), L3 (List 3) 등이 있을 수 있으며, 화면 간 예측에는 1개 이상의 참조 영상 리스트가 사용될 수 있다.
화면 간 예측 지시자(Inter Prediction Indicator): 화면 간 예측 시에 부호화/복호화 대상 블록의 화면 간 예측 방향(단방향 예측, 쌍방향 예측 등)을 의미할 수 있으며, 부호화/복호화 대상 블록이 예측 블록을 생성할 때 사용하는 참조 영상 수를 의미할 수 있으며, 부호화/복호화 대상 블록이 화면 간 예측 혹은 움직임 보상을 수행할 때 사용하는 예측 블록의 수를 의미할 수 있다.
참조 영상 색인(Reference Picture Index): 참조 영상 리스트에서 특정 참조 영상에 대한 색인을 의미할 수 있다.
참조 영상(Reference Picture): 화면 간 예측 혹은 움직임 보상을 위해서 특정 유닛이 참조하는 영상을 의미할 수 있으며, 참조 영상을 참조 픽처라고도 지칭할 수 있다.
움직임 벡터(Motion Vector): 화면 간 예측 혹은 움직임 보상에 사용되는 2차원 벡터이며, 부호화/복호화 대상 영상과 참조 영상 사이의 오프셋을 의미할 수 있다. 예를 들어, (mvX, mvY)는 움직임 벡터를 나타낼 수 있으며, mvX는 가로(horizontal) 성분, mvY는 세로(vertical) 성분을 나타낼 수 있다.
움직임 벡터 후보(Motion Vector Candidate): 움직임 벡터를 예측할 때 예측 후보가 되는 유닛 혹은 그 유닛의 움직임 벡터를 의미할 수 있다.
움직임 벡터 후보 리스트(Motion Vector Candidate List): 움직임 벡터 후보를 이용하여 구성된 리스트를 의미할 수 있다.
움직임 벡터 후보 색인(Motion Vector Candidate Index): 움직임 벡터 후보 리스트 내의 움직임 벡터 후보를 가리키는 지시자, 움직임 벡터 예측기(Motion Vector Predictor)의 색인(index)이라고도 할 수 있다.
움직임 정보(Motion Information): 움직임 벡터, 참조 영상 색인, 화면 간 예측 지시자(Inter Prediction Indicator) 뿐만 아니라 참조 영상 리스트 정보, 참조 영상, 움직임 벡터 후보, 움직임 벡터 후보 색인 등 중 적어도 하나 이상을 포함하는 정보를 의미할 수 있다.
변환 유닛(Transform Unit): 변환, 역변환, 양자화, 역양자화, 변환 계수 부호화/복호화와 같이 잔여 신호(residual signal) 부호화/복호화를 수행할 때의 기본 유닛을 의미할 수 있으며, 하나의 변환 유닛은 분할되어 크기가 작은 복수의 변환 유닛으로 분할될 수 있다. 변환 유닛은 다양한 크기와 형태를 가질 수 있으며, 특히 변환 유닛의 형태는 직사각형뿐만 아니라 정사각형, 사다리꼴, 삼각형, 오각형 등 2차원으로 표현할 수 있는 기하학적 도형을 포함할 수 있다.
스케일링(Scaling): 변환 계수 레벨에 인수를 곱하는 과정을 의미할 수 있으며, 결과로 변환 계수를 생성할 수 있다. 스케일링을 역양자화(dequantization)라고도 부를 수 있다.
양자화 매개변수(Quantization Parameter): 양자화 및 역양자화에서 변환 계수 레벨(transform coefficient level)을 스케일링(scaling)할 때 사용하는 값을 의미할 수 있다. 이때, 양자화 매개변수는 양자화 스텝 크기(step size)에 매핑된 값일 수 있다.
잔여 양자화 매개변수(Delta Quantization Parameter): 예측된 양자화 매개변수와 부호화/복호화 대상 유닛의 양자화 매개변수의 차분된 값을 의미할 수 있다.
스캔(Scan): 블록 혹은 행렬 내 계수의 순서를 정렬하는 방법을 의미할 수 있으며, 예를 들어 2차원 배열을 1차원 배열 형태로 정렬하는 것을 스캔이라고 하며, 1차원 배열을 2차원 배열 형태로 정렬하는 것도 스캔 혹은 역 스캔(Inverse Scan)이라고 부를 수 있다.
변환 계수(Transform Coefficient): 변환을 수행하고 나서 생성된 계수 값, 본 발명에서는 변환 계수에 양자화를 적용한 양자화된 변환 계수 레벨(transform coefficient level)도 변환 계수의 의미에 포함될 수 있다.
넌제로 변환 계수(Non-zero Transform Coefficient): 변환 계수 값의 크기가 0이 아닌 변환 계수 혹은 값의 크기가 0이 아닌 변환 계수 레벨을 의미할 수 있다.
양자화 행렬(Quantization Matrix): 영상의 주관적 화질 혹은 객관적 화질을 향상시키기 위해서 양자화 혹은 역양자화 과정에서 이용하는 행렬을 의미할 수 있다. 양자화 행렬을 스케일링 리스트(scaling list)라고도 부를 수 있다.
양자화 행렬 계수(Quantization Matrix Coefficient): 양자화 행렬 내의 각 원소(element)를 의미할 수 있다. 양자화 행렬 계수를 행렬 계수(matrix coefficient)라고도 할 수 있다.
기본 행렬(Default Matrix): 부호화기와 복호화기에서 미리 정의되어 있는 소정의 양자화 행렬을 의미할 수 있다.
비 기본 행렬(Non-default Matrix): 부호화기와 복호화기에서 미리 정의되지 않고, 사용자에 의해서 전송/수신되는 양자화 행렬을 의미할 수 있다.
도 1은 본 발명이 적용되는 부호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
부호화 장치(100)는 비디오 부호화 장치 또는 영상 부호화 장치일 수 있다. 비디오는 하나 이상의 영상들을 포함할 수 있다. 부호화 장치(100)는 비디오의 하나 이상의 영상들을 시간에 따라 순차적으로 부호화할 수 있다.
도 1을 참조하면, 부호화 장치(100)는 움직임 예측부(111), 움직임 보상부(112), 인트라 예측부(120), 스위치(115), 감산기(125), 변환부(130), 양자화부(140), 엔트로피 부호화부(150), 역양자화부(160), 역변환부(170), 가산기(175), 필터부(180) 및 참조 픽처 버퍼(190)를 포함할 수 있다.
부호화 장치(100)는 입력 영상에 대해 인트라 모드 및/또는 인터 모드로 부호화를 수행할 수 있다. 또한, 부호화 장치(100)는 입력 영상에 대한 부호화를 통해 비트스트림을 생성할 수 있고, 생성된 비트스트림을 출력할 수 있다. 예측 모드로 인트라 모드가 사용되는 경우 스위치(115)는 인트라로 전환될 수 있고, 예측 모드로 인터 모드가 사용되는 경우 스위치(115)는 인터로 전환될 수 있다. 여기서 인트라 모드는 화면 내 예측 모드를 의미할 수 있으며, 인터 모드는 화면 간 예측 모드를 의미할 수 있다. 부호화 장치(100)는 입력 영상의 입력 블록에 대한 예측 블록을 생성할 수 있다. 또한, 부호화 장치(100)는 예측 블록이 생성된 후, 입력 블록 및 예측 블록의 차분(residual)을 부호화할 수 있다. 입력 영상은 현재 부호화의 대상인 현재 영상으로 칭해질 수 있다. 입력 블록은 현재 부호화의 대상인 현재 블록 혹은 부호화 대상 블록으로 칭해질 수 있다.
예측 모드가 인트라 모드인 경우, 인트라 예측부(120)는 현재 블록의 주변에 이미 부호화된 블록의 픽셀 값을 참조 화소로서 이용할 수 있다. 인트라 예측부(120)는 참조 화소를 이용하여 공간적 예측을 수행할 수 있고, 공간적 예측을 통해 입력 블록에 대한 예측 샘플들을 생성할 수 있다. 여기서 인트라 예측은 화면 내 예측을 의미할 수 있다.
예측 모드가 인터 모드인 경우, 움직임 예측부(111)는, 움직임 예측 과정에서 참조 영상으로부터 입력 블록과 가장 매치가 잘 되는 영역을 검색할 수 있고, 검색된 영역을 이용하여 움직임 벡터를 도출할 수 있다. 참조 영상은 참조 픽처 버퍼(190)에 저장될 수 있다.
움직임 보상부(112)는 움직임 벡터를 이용하는 움직임 보상을 수행함으로써 예측 블록을 생성할 수 있다. 여기서, 움직임 벡터는 인터 예측에 사용되는 2차원 벡터일 수 있다. 또한 움직임 벡터는 현재 영상 및 참조 영상 간의 오프셋(offset)을 나타낼 수 있다. 여기서 인터 예측은 화면 간 예측을 의미할 수 있다.
상기 움직임 예측부(111)과 움직임 보상부(112)는 움직임 벡터의 값이 정수 값을 가지지 않을 경우에 참조 영상 내의 일부 영역에 대해 보간 필터(Interpolation Filter)를 적용하여 예측 블록을 생성할 수 있다. 화면 간 예측 혹은 움직임 보상을 수행하기 위해 부호화 유닛을 기준으로 해당 부호화 유닛에 포함된 예측 유닛의 움직임 예측 및 움직임 보상 방법이 스킵 모드(Skip Mode), 머지 모드(Merge 모드), AMVP 모드(AMVP Mode) 중 어떠한 방법인지 여부를 판단할 수 있고, 각 모드에 따라 화면 간 예측 혹은 움직임 보상을 수행할 수 있다.
감산기(125)는 입력 블록 및 예측 블록의 차분을 사용하여 잔여 블록(residual block)을 생성할 수 있다. 잔여 블록은 잔여 신호로 칭해질 수도 있다.
변환부(130)는 잔여 블록에 대해 변환(transform)을 수행하여 변환 계수(transform coefficient)를 생성할 수 있고, 변환 계수를 출력할 수 있다. 여기서, 변환 계수는 잔여 블록에 대한 변환을 수행함으로써 생성된 계수 값일 수 있다. 변환 생략(transform skip) 모드가 적용되는 경우, 변환부(130)는 잔여 블록에 대한 변환을 생략할 수도 있다.
변환 계수에 양자화를 적용함으로써 양자화된 변환 계수 레벨(transform coefficient level)이 생성될 수 있다. 이하, 실시예들에서는 양자화된 변환 계수 레벨도 변환 계수로 칭해질 수 있다.
양자화부(140)는 변환 계수를 양자화 매개변수에 따라 양자화함으로써 양자화된 변환 계수 레벨(transform coefficient level)을 생성할 수 있고, 양자화된 변환 계수 레벨을 출력할 수 있다. 이때, 양자화부(140)에서는 양자화 행렬을 사용하여 변환 계수를 양자화할 수 있다.
엔트로피 부호화부(150)는, 양자화부(140)에서 산출된 값들 또는 부호화 과정에서 산출된 부호화 파라미터(Coding Parameter) 값들 등에 대하여 확률 분포에 따른 엔트로피 부호화를 수행함으로써 비트스트림(bitstream)을 생성할 수 있고, 비트스트림을 출력할 수 있다. 엔트로피 부호화부(150)는 영상의 픽셀의 정보 외에 영상의 복호화를 위한 정보에 대한 엔트로피 부호화를 수행할 수 있다. 예를 들면, 영상의 복호화를 위한 정보는 구문 요소(syntax element) 등을 포함할 수 있다.
엔트로피 부호화가 적용되는 경우, 높은 발생 확률을 갖는 심볼(symbol)에 적은 수의 비트가 할당되고 낮은 발생 확률을 갖는 심볼에 많은 수의 비트가 할당되어 심볼이 표현됨으로써, 부호화 대상 심볼들에 대한 비트열의 크기가 감소될 수 있다. 따라서 엔트로피 부호화를 통해서 영상 부호화의 압축 성능이 높아질 수 있다. 엔트로피 부호화부(150)는 엔트로피 부호화를 위해 지수 골롬(exponential golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)과 같은 부호화 방법을 사용할 수 있다. 예를 들면, 엔트로피 부호화부(150)는 가변 길이 부호화(Variable Lenghth Coding/Code; VLC) 테이블을 이용하여 엔트로피 부호화를 수행할 수 있다. 또한 엔트로피 부호화부(150)는 대상 심볼의 이진화(binarization) 방법 및 대상 심볼/빈(bin)의 확률 모델(probability model)을 도출한 후, 도출된 이진화 방법 또는 확률 모델을 사용하여 산술 부호화를 수행할 수도 있다.
엔트로피 부호화부(150)는 변환 계수 레벨을 부호화하기 위해 변환 계수 스캐닝(Transform Coefficient Scanning) 방법을 통해 2차원의 블록 형태 계수를 1차원의 벡터 형태로 변경할 수 있다. 예를 들어, 업라이트(up right) 스캐닝을 이용하여 블록의 계수를 스캔함으로써 1차원 벡터 형태로 변경시킬 수 있다. 변환 유닛의 크기 및 화면 내 예측 모드에 따라 업라이트 스캔 대신 2차원의 블록 형태 계수를 열 방향으로 스캔하는 수직 스캔, 2차원의 블록 형태 계수를 행 방향으로 스캔하는 수평 스캔이 사용될 수도 있다. 즉, 변환 유닛의 크기 및 화면 내 예측 모드에 따라 업라이트 스캔, 수직 방향 스캔 및 수평 방향 스캔 중 어떠한 스캔 방법이 사용될지 여부를 결정할 수 있다.
부호화 파라미터(Coding Parameter)는 구문 요소와 같이 부호화기에서 부호화되어 복호화기로 전송되는 정보뿐만 아니라, 부호화 혹은 복호화 과정에서 유추될 수 있는 정보를 포함할 수 있으며, 영상을 부호화하거나 복호화할 때 필요한 정보를 의미할 수 있다. 예를 들어, 화면 내 예측 모드, 화면 간 예측 모드, 화면 내 예측 방향, 움직임 정보, 움직임 벡터, 참조 영상 색인, 화면 간 예측 방향, 화면 간 예측 지시자, 참조 영상 리스트, 움직임 벡터 예측기, 움직임 병합 후보, 변환 종류, 변환 크기, 추가 변환 사용 유무, 루프 내 필터 정보, 잔여 신호 유무, 양자화 매개변수, 문맥 모델, 변환 계수, 변환 계수 레벨, 부호화 블록 패턴(Coded Block Pattern), 부호화 블록 플래그(Coded Block Flag), 영상 디스플레이/출력 순서, 슬라이스 정보, 타일 정보, 픽처 타입, 움직임 병합 모드 사용 유무, 스킵 모드 사용 유무, 블록 크기, 블록 깊이, 블록 분할 정보, 유닛 크기, 유닛 깊이, 유닛 분할 정보 등의 값 및/또는 통계 중 적어도 하나 이상이 부호화 파라미터에 포함될 수 있다.
잔여 신호는 원 신호 및 예측 신호 간의 차이(difference)를 의미할 수 있다. 또는, 잔여 신호는 원신호 및 예측 신호 간의 차이를 변환(transform) 함으로써 생성된 신호일 수 있다. 또는, 잔여 신호는 원 신호 및 예측 신호 간의 차이를 변환 및 양자화함으로써 생성된 신호일 수 있다. 잔여 블록은 블록 단위의 잔여 신호일 수 있다.
부호화 장치(100)가 인터 예측을 통한 부호화를 수행할 경우, 부호화된 현재 영상은 이후에 처리되는 다른 영상(들)에 대하여 참조 영상으로서 사용될 수 있다. 따라서, 부호화 장치(100)는 부호화된 현재 영상을 다시 복호화할 수 있고, 복호화된 영상을 참조 영상으로 저장할 수 있다. 복호화를 위해 부호화된 현재 영상에 대한 역양자화 및 역변환이 처리될 수 있다.
양자화된 계수는 역양자화부(160)에서 역양자화(dequantization)될 수 있고. 역변환부(170)에서 역변환(inverse transform)될 수 있다. 역양자화 및 역변환된 계수는 가산기(175)를 통해 예측 블록과 합해질 수 있다, 역양자화 및 역변환된 계수 및 예측 블록을 합함으로써 복원 블록(reconstructed block) 이 생성될 수 있다.
복원 블록은 필터부(180)를 거칠 수 있다. 필터부(180)는 디블록킹 필터(deblocking filter), 샘플 적응적 오프셋(Sample Adaptive Offset; SAO), 적응적 루프 필터(Adaptive Loop Filter; ALF) 중 적어도 하나 이상을 복원 블록 또는 복원 영상에 적용할 수 있다. 필터부(180)는 인루프 필터(in-loop filter)로 칭해질 수도 있다.
디블록킹 필터는 블록들 간의 경계에 생긴 블록 왜곡을 제거할 수 있다. 디블록킹 필터를 수행할지 여부를 판단하기 위해 블록에 포함된 몇 개의 열 또는 행에 포함된 픽셀을 기초로 현재 블록에 디블록킹 필터 적용할지 여부를 판단할 수 있다. 블록에 디블록킹 필터를 적용하는 경우 필요한 디블록킹 필터링 강도에 따라 강한 필터(Strong Filter) 또는 약한 필터(Weak Filter)를 적용할 수 있다. 또한 디블록킹 필터를 적용함에 있어 수직 필터링 및 수평 필터링 수행시 수평 방향 필터링 및 수직 방향 필터링이 병행 처리되도록 할 수 있다.
샘플 적응적 오프셋은 부호화 에러를 보상하기 위해 픽셀 값에 적정 오프셋(offset) 값을 더할 수 있다. 샘플 적응적 오프셋은 디블록킹을 수행한 영상에 대해 픽셀 단위로 원본 영상과의 오프셋을 보정할 수 있다. 특정 픽처에 대한 오프셋 보정을 수행하기 위해 영상에 포함된 픽셀을 일정한 수의 영역으로 구분한 후 오프셋을 수행할 영역을 결정하고 해당 영역에 오프셋을 적용하는 방법 또는 각 픽셀의 에지 정보를 고려하여 오프셋을 적용하는 방법을 사용할 수 있다.
적응적 루프 필터는 복원 영상 및 원래의 영상을 비교한 값에 기반하여 필터링을 수행할 수 있다. 영상에 포함된 픽셀을 소정의 그룹으로 나눈 후 해당 그룹에 적용될 하나의 필터를 결정하여 그룹마다 차별적으로 필터링을 수행할 수 있다. 적응적 루프 필터를 적용할지 여부에 관련된 정보는 휘도 신호는 부호화 유닛(Coding Unit, CU) 별로 전송될 수 있고, 각각의 블록에 따라 적용될 적응적 루프 필터의 모양 및 필터 계수는 달라질 수 있다. 또한, 적용 대상 블록의 특성에 상관없이 동일한 형태(고정된 형태)의 적응적 루프 필터가 적용될 수도 있다.
필터부(180)를 거친 복원 블록은 참조 픽처 버퍼(190)에 저장될 수 있다.
도 2는 본 발명이 적용되는 복호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
복호화 장치(200)는 비디오 복호화 장치 또는 영상 복호화 장치일 수 있다.
도 2를 참조하면, 복호화 장치(200)는 엔트로피 복호화부(210), 역양자화부(220), 역변환부(230), 인트라 예측부(240), 움직임 보상부(250), 가산기(255), 필터부(260) 및 참조 픽처 버퍼(270)를 포함할 수 있다.
복호화 장치(200)는 부호화 장치(100)에서 출력된 비트스트림을 수신할 수 있다. 복호화 장치(200)는 비트스트림에 대하여 인트라 모드 또는 인터 모드로 복호화를 수행할 수 있다. 또한, 복호화 장치(200)는 복호화를 통해 복원 영상을 생성할 수 있고, 복원 영상을 출력할 수 있다.
복호화에 사용되는 예측 모드가 인트라 모드인 경우 스위치가 인트라로 전환될 수 있다. 복호화에 사용되는 예측 모드가 인터 모드인 경우 스위치가 인터로 전환될 수 있다.
복호화 장치(200)는 입력된 비트스트림으로부터 복원된 잔여 블록(reconstructed residual block)을 획득할 수 있고, 예측 블록을 생성할 수 있다. 복원된 잔여 블록 및 예측 블록이 획득되면, 복호화 장치(200)는 복원된 잔여 블록과 및 예측 블록을 더함으로써 복호화 대상 블록인 복원 블록을 생성할 수 있다. 복호화 대상 블록은 현재 블록으로 칭해질 수 있다.
엔트로피 복호화부(210)는 비트스트림에 대한 확률 분포에 따른 엔트로피 복호화를 수행함으로써 심볼들을 생성할 수 있다. 생성된 심볼들은 양자화된 변환 계수 레벨(transform coefficient level) 형태의 심볼을 포함할 수 있다. 여기에서, 엔트로피 복호화 방법은 상술된 엔트로피 부호화 방법과 유사할 수 있다. 예를 들면, 엔트로피 복호화 방법은 상술된 엔트로피 부호화 방법의 역과정일 수 있다.
엔트로피 복호화부(210)는 변환 계수 레벨을 복호화하기 위해 변환 계수 스캐닝(Transform Coefficient Scanning) 방법을 통해 1차원의 벡터 형태 계수를 2차원의 블록 형태로 변경할 수 있다. 예를 들어, 업라이트(up right) 스캐닝을 이용하여 블록의 계수를 스캔함으로써 2차원 블록 형태로 변경시킬 수 있다. 변환 유닛의 크기 및 화면 내 예측 모드에 따라 업라이트 스캔 대신 수직 스캔, 수평 스캔이 사용될 수도 있다. 즉, 변환 유닛의 크기 및 화면 내 예측 모드에 따라 업라이트 스캔, 수직 방향 스캔 및 수평 방향 스캔 중 어떠한 스캔 방법이 사용될지 여부를 결정할 수 있다.
양자화된 변환 계수 레벨은 역양자화부(220)에서 역양자화될 수 있고, 역변환부(230)에서 역변환될 수 있다. 양자화된 변환 계수 레벨이 역양자화 및 역변환 된 결과로서, 복원된 잔여 블록이 생성될 수 있다. 이때, 역양자화부(220)는 양자화된 변환 계수 레벨에 양자화 행렬을 적용할 수 있다.
인트라 모드가 사용되는 경우, 인트라 예측부(240)는 복호화 대상 블록 주변의 이미 복호화된 블록의 픽셀 값을 이용하는 공간적 예측을 수행함으로써 예측 블록을 생성할 수 있다.
인터 모드가 사용되는 경우, 움직임 보상부(250)는 움직임 벡터 및 참조 픽처 버퍼(270)에 저장되어 있는 참조 영상을 이용하는 움직임 보상을 수행함으로써 예측 블록을 생성할 수 있다. 상기 움직임 보상부(250)는 움직임 벡터의 값이 정수 값을 가지지 않을 경우에 참조 영상 내의 일부 영역에 대해 보간 필터(Interpolation Filter)를 적용하여 예측 블록을 생성할 수 있다. 움직임 보상을 수행하기 위해 부호화 유닛을 기준으로 해당 부호화 유닛에 포함된 예측 유닛의 움직임 보상 방법이 스킵 모드(Skip Mode), 머지 모드(Merge 모드), AMVP 모드(AMVP Mode), 현재 픽쳐 참조 모드 중 어떠한 방법인지 여부를 판단할 수 있고, 각 모드에 따라 움직임 보상을 수행할 수 있다. 여기서, 현재 픽쳐 참조 모드는 복호화 대상 블록이 속한 현재 픽쳐 내의 기-복원된 영역을 이용한 예측 모드를 의미할 수 있다. 상기 기-복원된 영역은 복호화 대상 블록에 인접하지 않은 영역일 수 있다. 상기 기-복원된 영역을 특정하기 위해 현재 픽쳐 참조 모드를 위한 소정의 벡터가 이용될 수도 있다. 복호화 대상 블록이 현재 픽쳐 참조 모드로 부호화된 블록인지 여부를 나타내는 플래그 혹은 인덱스가 시그날링될 수도 있고, 복호화 대상 블록의 참조 영상 색인을 통해 유추될 수도 있다. 현재 픽쳐 참조 모드를 위한 현재 픽쳐는 복호화 대상 블록을 위한 참조 영상 리스트 내에서 고정된 위치(예를 들어, refIdx=0인 위치 또는 가장 마지막 위치)에 존재할 수 있다. 또는, 참조 영상 리스트 내에 가변적으로 위치할 수도 있으며, 이를 위해 현재 픽쳐의 위치를 나타내는 별도의 참조 영상 색인이 시그날링될 수도 있다.
복원된 잔여 블록 및 예측 블록은 가산기(255)를 통해 더해질 수 있다. 복원된 잔여 블록 및 예측 블록이 더해짐에 따라 생성된 블록은 필터부(260)를 거칠 수 있다. 필터부(260)는 디블록킹 필터, 샘플 적응적 오프셋 및 적응적 루프 필터 중 적어도 하나 이상을 복원 블록 또는 복원 영상에 적용할 수 있다. 필터부(260)는 복원 영상을 출력할 수 있다. 복원 영상은 참조 픽처 버퍼(270)에 저장되어 인터 예측에 사용될 수 있다.
도 3은 영상을 부호화 및 복호화할 때의 영상의 분할 구조를 개략적으로 나타내는 도면이다. 도 3은 하나의 유닛이 복수의 하위 유닛으로 분할되는 실시예를 개략적으로 나타낸다.
영상을 효율적으로 분할하기 위해, 부호화 및 복호화에 있어서, 부호화 유닛(Coding Unit; CU)이 사용될 수 있다. 여기서 부호화 유닛은 코딩 유닛을 의미할 수 있다. 유닛은 1) 구문 요소(syntax element) 및 2) 영상 샘플들을 포함하는 블록을 합쳐서 지칭하는 용어일 수 있다. 예를 들면, "유닛의 분할"은 "유닛에 해당하는 블록의 분할"을 의미할 수 있다. 블록 분할 정보에는 유닛의 깊이(depth)에 관한 정보가 포함될 수 있다. 깊이 정보는 유닛이 분할되는 회수 및/또는 정도를 나타낼 수 있다.
도 3을 참조하면, 영상(300)은 최대 부호화 유닛(Largest Coding Unit; LCU) 단위로 순차적으로 분할되고, LCU 단위로 분할 구조가 결정된다. 여기서, LCU는 부호화 트리 유닛(Coding Tree Unit; CTU)과 동일한 의미로 사용될 수 있다. 하나의 유닛은 트리 구조(tree structure)를 기초로 깊이 정보(depth)를 가지고 계층적으로 분할될 수 있다. 각각의 분할된 하위 유닛은 깊이 정보를 가질 수 있다. 상기 깊이 정보는 유닛이 분할된 회수 및/또는 정도를 나타내므로, 상기 하위 유닛의 크기에 관한 정보를 포함할 수도 있다.
분할 구조는 LCU(310) 내에서의 부호화 유닛(Coding Unit; CU)의 분포를 의미할 수 있다. CU는 영상을 효율적으로 부호화하기 위한 유닛일 수 있다. 이러한 분포는 하나의 CU를 복수(2, 4, 8, 16 등을 포함하는 2 이상의 양의 정수)의 CU들로 분할할지 여부에 따라 결정할 수 있다. 분할에 의해 생성된 CU의 가로 크기 및 세로 크기는 각각 분할 전의 CU의 가로 크기의 절반 및 세로 크기의 절반이거나, 분할된 개수에 따라 분할 전의 CU의 가로 크기보다 작은 크기 및 세로 크기보다 작은 크기를 가질 수 있다. 분할된 CU는 동일한 방식으로 가로 크기 및 세로 크기가 감소된 복수의 CU로 재귀적으로 분할될 수 있다.
이때, CU의 분할은 기 정의된 깊이까지 재귀적으로 이루어질 수 있다. 깊이 정보는 CU의 크기를 나타내는 정보일 수 있다. 깊이 정보는 각 CU마다 저장될 수 있다. 예컨대, LCU의 깊이는 0일 수 있고, 최소 부호화 유닛(Smallest Coding Unit; SCU)의 깊이는 기정의된 최대 깊이일 수 있다. 여기서, LCU는 상술된 것과 같이 최대의 부호화 유닛 크기를 가지는 부호화 유닛일 수 있고, SCU는 최소의 부호화 유닛 크기를 가지는 부호화 유닛일 수 있다.
LCU(310)로부터 분할이 시작되고, 분할에 의해 CU의 가로 크기 및 세로 크기가 줄어들 때마다 CU의 깊이는 1씩 증가한다. 각각의 깊이 별로, 분할되지 않는 CU는 2Nx2N 크기를 가질 수 있다. 분할되는 CU의 경우, 2Nx2N 크기의 CU가 NxN 크기를 가지는 복수의 CU들로 분할될 수 있다. N의 크기는 깊이가 1씩 증가할 때마다 절반으로 감소한다.
도 3을 참조하면, 깊이가 0인 LCU는 64x64 화소들일 수 있다. 0은 최소 깊이일 수 있다. 깊이가 3인 SCU는 8x8 화소들일 수 있다. 3은 최대 깊이일 수 있다. 이때, LCU인 64x64 화소들의 CU는 깊이 0으로 표현될 수 있다. 32x32 화소들의 CU는 깊이 1로 표현될 수 있다. 16x16 화소들의 CU는 깊이 2로 표현될 수 있다. SCU인 8x8 화소들의 CU는 깊이 3으로 표현될 수 있다.
또한, CU가 분할되는지 여부에 대한 정보는 CU의 분할 정보를 통해 표현될 수 있다. 분할 정보는 1비트의 정보일 수 있다. SCU를 제외한 모든 CU는 분할 정보를 포함할 수 있다. 예를 들면, 분할 정보의 값이 0이면, CU가 분할되지 않을 수 있고, 분할 정보의 값이 1이면, CU가 분할될 수 있다.
도 4는 부호화 유닛(CU)이 포함할 수 있는 예측 유닛(PU)의 형태를 도시한 도면이다.
LCU로부터 분할된 CU 중 더 이상 분할되지 않는 CU는 하나 이상의 예측 유닛(Prediction Unit; PU)들로 나뉘어질 수 있다. 이러한 처리 또한, 분할로 칭해질 수 있다.
PU는 예측에 대한 기본 단위일 수 있다. PU는 스킵(skip) 모드, 화면 간 모드 및 화면 내 모드 중 어느 하나로 부호화 및 복호화될 수 있다. PU는 모드에 따라서 다양한 형태로 분할될 수 있다.
도 4에서 도시된 것과 같이, 스킵 모드에서는, CU 내에 분할이 존재하지 않을 수 있다. 스킵 모드에서는 분할 없이 CU와 동일한 크기를 갖는 2Nx2N 모드(410)가 지원될 수 있다.
화면 간 모드에서는, CU 내에서 8가지로 분할된 형태들이 지원될 수 있다. 예를 들면, 화면 간 모드에서는 2Nx2N 모드(410), 2NxN 모드(415), Nx2N 모드(420), NxN 모드(425), 2NxnU 모드(430), 2NxnD 모드(435), nLx2N 모드(440) 및 nRx2N 모드(445)가 지원될 수 있다. 화면 내 모드에서는, 2Nx2N 모드(410) 및 NxN 모드(425)가 지원될 수 있다.
도 5는 부호화 유닛(CU)이 포함할 수 있는 변환 유닛(TU)의 형태를 도시한 도면이다.
변환 유닛(Transform Unit; TU)은 CU 내에서 변환, 양자화, 역변환 및 역양자화의 과정을 위해 사용되는 기본 단위일 수 있다. TU는 정사각형 형태 또는 직사각형 등의 형태를 가질 수 있다. TU는 CU의 크기 및/또는 형태에 의존적으로(dependnent) 결정될 수도 있다.
LCU로부터 분할된 CU 중, 더 이상 CU들로 분할되지 않는 CU는 하나 이상의 TU들로 분할될 수 있다. 이때, TU의 분할 구조는 쿼드트리(quad-tree) 구조일 수 있다. 예컨대, 도 5에서 도시된 것과 같이, 하나의 CU(510)가 쿼드트리 구조에 따라서 한 번 혹은 그 이상 분할될 수 있다. 분할을 통해, 하나의 CU(510)는 다양한 크기의 TU들로 구성될 수 있다. 또는, CU를 분할하는 Vertical line 및/또는 Horizontal line의 개수에 기초하여 하나 이상의 TU로 분할될 수도 있다. CU는 대칭형의 TU로 분할될 수도 있고, 비대칭형의 TU로 분할될 수도 있다. 비대칭형의 TU로의 분할을 위해 TU의 크기/형태에 관한 정보가 시그날링될 수도 있고, CU의 크기/형태에 관한 정보로부터 유도될 수도 있다.
변환 수행 시 잔여 블록을 기-정의된 복수의 변환 방법 중 적어도 하나를 사용하여 변환 시킬 수 있다. 일예로, 기-정의된 복수의 변환 방법으로 DCT(Discrete Cosine Transform) 또는 DST(Discrete Sine Transform) 또는 KLT 등이 이용될 수 있다. 잔여 블록을 변환하기 위해 사용되는 변환 방법은 예측 유닛의 화면 간 예측 모드 정보, 화면 내 예측 모드 정보, 변환 블록의 크기/형태 중 적어도 하나 이상을 이용하여 결정될 수도 있고, 일정한 경우 변환 방법을 지시하는 정보가 시그날링될 수도 있다.
도 6은 화면 내 예측 과정의 실시예를 설명하기 위한 도면이다.
화면 내 예측 모드의 개수는 예측 유닛(PU)의 크기에 따라 가변적이거나, 또는 예측 유닛의 크기에 관계없이 N개로 고정될 수 있다. 이때, N개는 35, 67을 포함할 수 있으며, 1 이상의 양의 정수를 가질 수 있다. 일예로 부호화기/복호화기에 기-정의된 화면 내 예측 모드는 도 6에서 도시된 것과 같이 2개의 비방향성 모드들 및 65개의 방향성 모드들을 포함할 수 있다. 2개의 비방향성 모드들은 DC 모드 및 플래너(Planar) 모드를 포함할 수 있다.
화면 내 예측 모드의 개수는 색 성분(color component)의 타입에 따라 상이할 수 있다. 예를 들면, 색 성분이 휘도(luma) 신호인지 아니면 색차(chroma) 신호인지에 따라 화면 내 예측 모드의 개수가 다를 수 있다.
PU는 NxN의 크기 또는 2Nx2N의 크기를 갖는, 정사각형 형태를 가질 수 있다. NxN의 크기는 4x4, 8x8, 16x16, 32x32, 64x64, 128x128 등을 포함할 수 있다. 또한, PU는 MxN의 크기를 가질 수 있으며, 이때 M과 N은 2 이상의 양의 정수를 가질 수 있고, M과 N은 상이할 수 있다. PU의 단위는 CU, PU 및 TU 중 적어도 하나의 크기일 수 있다.
화면 내 부호화 및/또는 복호화는 주변의 복원된 유닛에 포함되는 샘플 값 또는 부호화 파라미터를 이용하여 수행될 수 있다.
화면 내 예측 시 화면 내 예측 모드 및 부호화/복호화 대상 블록의 크기 중 적어도 하나 이상을 이용하여 참조 화소에 참조 샘플 필터를 적용한 후 예측 블록을 생성할 수 있다. 참조 화소에 적용되는 참조 샘플 필터의 종류는 상이할 수 있다. 일예로, 부호화/복호화 대상 블록의 화면 내 예측 모드, 부호화/복호화 대상 블록의 크기/형태 또는 참조 화소의 위치 등에 따라 참조 샘플 필터의 종류는 상이할 수 있다. 참조 샘플 필터의 종류가 상이하다라 함은, 참조 샘플 필터의 필터 계수, 필터 탭(tap)의 수, 필터 강도 또는 필터링의 횟수 중 적어도 하나가 상이한 경우를 의미할 수 있다.
화면 내 예측 방법을 수행하기 위해 현재 예측 유닛의 화면 내 예측 모드는 현재 예측 유닛의 주변에 존재하는 예측 유닛의 화면 내 예측 모드로부터 예측할 수 있다. 주변 화면 내 예측 모드로부터 예측된 모드 정보를 이용하여 현재 예측 유닛의 화면 내 예측 모드를 예측하는 경우, 현재 예측 유닛과 주변 예측 유닛의 화면 내 예측 모드가 동일하면 소정의 플래그 정보를 이용하여 현재 예측 유닛과 주변 예측 유닛의 화면 내 예측 모드가 동일하다는 정보를 전송할 수 있고, 만약 현재 예측 유닛과 주변 예측 유닛의 화면 내 예측 모드가 상이하면 엔트로피 부호화를 수행하여 부호화/복호화 대상 블록의 화면 내 예측 모드 정보를 부호화할 수 있다.
도 7은 화면 간 예측 과정의 실시예를 설명하기 위한 도면이다.
도 7에 도시된 사각형은 영상(또는, 픽처)를 나타낼 수 있다. 또한, 도 7에서 화살표는 예측 방향을 나타낼 수 있다. 즉, 영상은 예측 방향에 따라 부호화 및/또는 복호화될 수 있다. 각 영상은 부호화 타입에 따라 I 픽처(Intra Picture), P 픽처(Uni-predictive Picture), B 픽처(Bi-predictive Picture) 등으로 분류될 수 있다. 각 픽처는 각 픽처의 부호화 타입에 따라 부호화되고 복호화될 수 있다.
부호화의 대상인 영상이 I 픽처인 경우, 영상은 화면 간 예측 없이 영상 자체에 대해 화면 내 부호화될 수 있다. 부호화의 대상인 영상이 P 픽처인 경우, 영상은 순방향으로만 참조 영상을 이용하는 화면 간 예측 혹은 움직임 보상을 통해 부호화될 수 있다. 부호화의 대상인 영상이 B 픽처인 경우, 순방향 및 역방향의 양측으로 참조 픽처들을 이용하는 화면 간 예측 혹은 움직임 보상을 통해 부호화될 수 있으며, 순방향 및 역방향 중 하나의 방향으로 참조 픽처를 이용하는 화면 간 예측 혹은 움직임 보상을 통해 부호화될 수 있다. 여기서, 화면 간 예측 모드가 사용되는 경우, 부호화기에서는 화면 간 예측 혹은 움직임 보상을 수행할 수 있고, 복호화기에서는 그에 대응하는 움직임 보상을 수행할 수 있다. 참조 영상을 이용하여 부호화 및/또는 복호화되는 P 픽처 및 B 픽처의 영상은 화면 간 예측이 사용되는 영상으로 간주될 수 있다.
아래에서, 실시예에 따른 화면 간 예측에 대해 구체적으로 설명된다.
화면 간 예측 혹은 움직임 보상은 참조 픽처 및 움직임 정보를 이용하여 수행될 수 있다. 또한, 화면 간 예측은 상술된 스킵 모드를 이용할 수도 있다.
참조 픽처(reference picture)는 현재 픽처의 이전 픽처 또는 현재 픽처의 이후 픽처 중 적어도 하나일 수 있다. 이때, 화면 간 예측은 참조 픽처에 기반하여 현재 픽처의 블록에 대한 예측을 수행할 수 있다. 여기에서, 참조 픽처는 블록의 예측에 이용되는 영상을 의미할 수 있다. 이때, 참조 픽처 내의 영역은 참조 픽처를 지시하는 참조 영상 색인(reference picture index; refIdx) 및 후술될 움직임 벡터(motion vector) 등을 이용함으로써 특정될 수 있다.
화면 간 예측은 참조 픽처 및 참조 픽처 내에서 현재 블록에 대응하는 참조 블록을 선택할 수 있고, 선택된 참조 블록을 사용하여 현재 블록에 대한 예측 블록을 생성할 수 있다. 현재 블록은 현재 픽처의 블록들 중 현재 부호화 또는 복호화의 대상인 블록일 수 있다.
움직임 정보는 부호화 장치(100) 및 복호화 장치(200) 각각에 의해 화면 간 예측 과정에서 도출될 수 있다. 또한, 도출된 움직임 정보는 화면 간 예측을 수행하는데 사용될 수 있다. 이때, 부호화 장치(100) 및 복호화 장치(200)는 복원된 주변 블록(reconstructed neighboring block)의 움직임 정보 및/또는 콜 블록(collocated block; col block)의 움직임 정보를 이용함으로써 부호화 및/또는 복호화 효율을 향상시킬 수 있다. 콜 블록은 이미 복원된 콜 픽처(collocated picture; col picture) 내에서 부호화/복호화 대상 블록의 공간적 위치에 대응하는 블록일 수 있다. 복원된 주변 블록은 현재 픽처 내의 블록이면서, 이미 부호화 및/또는 복호화를 통해 복원된 블록일 수 있다. 또한, 복원 블록은 부호화/복호화 대상 블록에 인접한 이웃 블록 및/또는 부호화/복호화 대상 블록의 외부 코너에 위치한 블록일 수 있다. 여기에서, 부호화/복호화 대상 블록의 외부 코너에 위치한 블록이란, 부호화/복호화 대상 블록에 가로로 인접한 이웃 블록에 세로로 인접한 블록 또는 부호화/복호화 대상 블록에 세로로 인접한 이웃 블록에 가로로 인접한 블록일 수 있다.
부호화 장치(100) 및 복호화 장치(200)의 각각은 콜 픽처 내에서 공간적으로 부호화/복호화 대상 블록에 대응하는 위치에 존재하는 블록을 결정할 수 있고, 결정된 블록을 기준으로 기정의된 상대적인 위치를 결정할 수 있다. 기정의된 상대적인 위치는 공간적으로 부호화/복호화 대상 블록에 대응하는 위치에 존재하는 블록의 내부 및/또는 외부의 위치일 수 있다. 또한, 부호화 장치(100) 및 복호화 장치(200)의 각각은 결정된 기정의된 상대적인 위치에 기반하여 콜 블록을 도출할 수 있다. 여기서, 콜 픽처는 참조 픽처 리스트에 포함된 적어도 하나의 참조 픽처 중에서 하나의 픽처일 수 있다.
움직임 정보의 도출 방식은 부호화/복호화 대상 블록의 예측 모드에 따라 변할 수 있다. 예를 들면, 화면 간 예측을 위해 적용되는 예측 모드로서, 향상된 움직임 벡터 예측(Advanced Motion Vector Prediction; AMVP) 및 머지 모드(merge mode) 등이 있을 수 있다. 여기서 머지 모드를 움직임 병합 모드(motion merge mode)라고 지칭할 수 있다.
예를 들면, 예측 모드로서, AMVP가 적용되는 경우, 부호화 장치(100) 및 복호화 장치(200)의 각각은 복원된 주변 블록의 움직임 벡터 및/또는 콜 블록의 움직임 벡터를 이용하여 움직임 벡터 후보 리스트(motion vector candidate list)를 생성할 수 있다. 복원된 주변 블록의 움직임 벡터 및/또는 콜 블록의 움직임 벡터는 움직임 벡터 후보로 사용될 수 있다. 여기서, 콜 블록의 움직임 벡터를 시간적 움직임 벡터 후보(temporal motion vector candidate)라 지칭할 수 있고, 복원된 주변 블록의 움직임 벡터를 공간적 움직임 벡터 후보(spatial motion vector candidate)라 지칭할 수 있다.
부호화 장치(100)에 의해 생성된 비트스트림은 움직임 벡터 후보 색인(motion vector candidate index)를 포함할 수 있다. 즉, 부호화 장치(100)은 움직임 벡터 후보 색인을 엔트로피 부호화하여 비트스트림을 생성할 수 있다. 움직임 벡터 후보 색인은 움직임 벡터 후보 리스트에 포함된 움직임 벡터 후보 중에서 선택된 최적의 움직임 벡터 후보를 지시할 수 있다. 움직임 벡터 후보 색인은 비트스트림을 통해 부호화 장치(100)로부터 복호화 장치(200)로 전송될 수 있다.
복호화 장치(200)는 움직임 벡터 후보 색인을 비트스트림으로부터 엔트로피 복호화하고, 엔트로피 복호화된 움직임 벡터 후보 색인을 이용하여 움직임 벡터 후보 리스트에 포함된 움직임 벡터 후보 중에서 복호화 대상 블록의 움직임 벡터 후보를 선택할 수 있다.
부호화 장치(100)는 부호화 대상 블록의 움직임 벡터 및 움직임 벡터 후보 간의 움직임 벡터 차분(MVD: Motion Vector Difference)을 계산할 수 있고, MVD를 엔트로피 부호화할 수 있다. 비트스트림은 엔트로피 부호화된 MVD를 포함할 수 있다. MVD는 비트스트림을 통해 부호화 장치(100)로부터 복호화 장치(200)로 전송될 수 있다. 이 때, 복호화 장치(200)는 수신된 MVD를 비트스트림으로부터 엔트로피 복호화할 수 있다. 복호화 장치(200)는 복호화된 MVD 및 움직임 벡터 후보의 합을 통해 복호화 대상 블록의 움직임 벡터를 도출할 수 있다.
비트스트림은 참조 픽처를 지시하는 참조 영상 색인 등을 포함할 수 있다. 참조 픽처 색인은 엔트로피 부호화되어 비트스트림을 통해 부호화 장치(100)로부터 복호화 장치(200)로 전송될 수 있다. 복호화 장치(200)는 주변 블록의 움직임 정보들을 이용하여 복호화 대상 블록의 움직임 벡터를 예측할 수 있고, 예측된 움직임 벡터 및 움직임 벡터 차분을 이용하여 복호화 대상 블록의 움직임 벡터를 유도할 수 있다. 복호화 장치(200)는 유도된 움직임 벡터와 참조 영상 색인 정보에 기반하여 복호화 대상 블록에 대한 예측 블록을 생성할 수 있다.
움직임 정보의 도출 방식의 다른 예로, 머지 모드(merge mode)가 있다. 머지 모드란 복수의 블록들에 대한 움직임의 병합을 의미할 수 있다. 머지 모드는 하나의 블록의 움직임 정보를 다른 블록에도 함께 적용시키는 것을 의미할 수 있다. 머지 모드가 적용되는 경우, 부호화 장치(100) 및 복호화 장치(200)의 각각은 복원된 주변 블록의 움직임 정보 및/또는 콜 블록의 움직임 정보를 이용하여 머지 후보 리스트(merge candidate list)를 생성할 수 있다. 움직임 정보는 1) 움직임 벡터, 2) 참조 영상 색인, 및 3) 화면 간 예측 지시자 중 적어도 하나를 포함할 수 있다. 예측 지시자는 단방향 (L0 예측, L1 예측) 또는 쌍방향일 수 있다.
이때, 머지 모드는 CU 단위 또는 PU 단위로 적용될 수 있다. CU 단위 또는 PU 단위로 머지 모드가 수행되는 경우, 부호화 장치(100)는 기정의된 정보를 엔트로피 부호화하여 비트스트림을 생성한 후 복호화 장치(200)로 전송할 수 있다. 비트스트림은 기정의된 정보를 포함할 수 있다. 기정의된 정보는, 1) 블록 파티션(partition)별로 머지 모드를 수행할지 여부를 나타내는 정보인 머지 플래그(merge flag), 2) 부호화 대상 블록에 인접한 주변 블록들 중 어떤 블록과 머지를 할 것인가에 대한 정보인 머지 인덱스(merge index)를 포함할 수 있다. 예를 들면, 부호화 대상 블록의 주변 블록들은 부호화 대상 블록의 좌측 인접 블록, 부호화 대상 블록의 상단 인접 블록 및 부호화 대상 블록의 시간적(temporal) 인접 블록 등을 포함할 수 있다.
머지 후보 리스트는 움직임 정보들이 저장된 리스트를 나타낼 수 있다. 또한, 머지 후보 리스트는 머지 모드가 수행되기 전에 생성될 수 있다. 머지 후보 리스트에 저장되는 움직임 정보는, 부호화/복호화 대상 블록에 인접한 주변 블록의 움직임 정보 및 참조 영상에서 부호화/복호화 대상 블록에 대응되는(collocated) 블록의 움직임 정보, 이미 머지 후보 리스트에 존재하는 움직임 정보들의 조합에 의해 생성된 새로운 움직임 정보 및 제로 머지 후보 중 적어도 하나 이상일 수 있다. 여기서, 부호화/복호화 대상 블록에 인접한 주변 블록의 움직임 정보는 공간적 머지 후보(spatial merge candidate) 및 참조 영상에서 부호화/복호화 대상 블록에 대응되는(collocated) 블록의 움직임 정보는 시간적 머지 후보(temporal merge candidate)라 지칭할 수 있다.
스킵 모드는 주변 블록의 움직임 정보를 그대로 부호화/복호화 대상 블록에 적용하는 모드일 수 있다. 스킵 모드는 화면 간 예측에 이용되는 모드 중 하나일 수 있다. 스킵 모드가 사용되는 경우, 부호화 장치(100)는 어떤 블록의 움직임 정보를 부호화 대상 블록의 움직임 정보로서 이용할 것인지에 대한 정보를 엔트로피 부호화하여 비트스트림을 통해 복호화 장치(200)에 전송할 수 있다. 부호화 장치(100)는 다른 정보는 복호화 장치(200)에 전송하지 않을 수 있다. 예를 들면, 다른 정보는 구문 요소(syntax element) 정보일 수 있다. 구문 요소 정보는 움직임 벡터 차분 정보, 부호화 블록 플래그 및 변환 계수 레벨 중 적어도 하나 이상을 포함할 수 있다.
화면간 예측 부호화는 아래 그림처럼 양방향 예측(Bi-prediction)을 지원할 수 있다.
현재 부호화 블록에 대한 양방향 예측을 위해서는 2개의 예측블록이 필요하며, 2개의 예측블록은 현재 블록에 대한 움직임 예측을 통해 List-0 참조영상 및 List-1 참조영상으로부터 각각 획득될 수 있다. 이하, List-0 참조 영상으로부터 획득되는 참조 블록을 LO 예측 블록, List-1 참조 영상으로부터 획득되는 참조 블록을 L1 예측 블록, LO 예측 블록과 L1 예측 블록의 평균값을 Bi 예측 블록이라 한다.
현재 부호화 블록의 예측 블록은, 율-왜곡 최적화에 따라 LO 예측 블록, L1 예측 블록 또는 Bi 예측 블록 중 어느 하나로 결정되며, 결정된 예측 블록에 따라 List 정보, 참조픽처 인덱스 정보, 움직임 벡터 정보 및 잔차 신호가 부호화될 수 있다.
Figure pat00001
복호화기는 전송된 List 정보, 참조픽처 인덱스 정보, 움직임 벡터 정보를 복호화하여 현재 복호화 블록에 대한 예측블록을 획득할 수 있다.
앞 단에서 획득된 예측블록에 잔차신호를 복호화 후 더해줌으로써 현재 블록을 최종 복호화할 수 있다.
화면간 예측에서는, 현재 부호화 하려는 블록 (2Nx2N)에 대해 최대 N개의(N은 1 이상의 양의 정수) 분할된 형태를 지원할 수 있다. 일 예로, 8개의 화면 간 모드에서는 2Nx2N 모드, 2NxN 모드, Nx2N 모드, NxN 모드, 2NxnU 모드, 2NxnD 모드, nLx2N 모드 및 nRx2N 모드가 지원될 수 있다. 단, NxN 예측 모드는 부호화기에서 설정된 최소 부호화 블록의 크기가 8x8보다 큰 경우에만 지원할 수 있다.
부호화기는 아래 8가지 분할 모드 각각에 대해 움직임 예측을 수행한 후, 율-왜곡 최적화에 따라 현재 부호화 블록에 대한 최적의 예측 분할모드를 결정할 수 있다.
Figure pat00002
일 예로, 현재 부호화 블록에 대해 2Nx2N 분할 모드에서 양방향 예측이 수행된 후 부호화기가 L0, L1, Bi 예측블록 중에서 하나의 예측블록을 현재 2Nx2N 블록에 대한 예측블록으로 최종 선택할 수 있다. 따라서 화면간 예측방법은 L0, L1 및 Bi의 예측블록 중 반드시 하나만 사용하여 현재 블록에 대한 화면간 예측블록을 형성하는 제약을 가지고 있다.
Figure pat00003
제안 발명은 L0 예측 블록, L1 예측 블록, 또는 Bi 예측 블록 중 적어도 하나 이상의 예측 블록을 이용하여 현재 블록의 예측블록을 유도하는 방법을 제안한다.
3개의 예측블록 (L0, L1, Bi) 중 어느 하나의 예측 블록에 가중치를 적용하여 현재 블록에 대한 예측 블록을 유도할 수 있다.
3개의 예측블록 (L0, L1, Bi)을 형성한 후, 임의의 2개의 예측블록에 대한 가중치합을 통해 현재 블록에 대한 예측 블록으로 사용할 수 있다.
일 예로, L0, Bi 블록(최초 Bi 블록은 L0 및 L1의 평균)에 대한 가중치합을 통해 적응적으로 Bi에 대한 예측블록으로 사용할 수 있다. 일 예로, L1, Bi 블록(최초 Bi 블록은 L0 및 L1의 평균)에 대한 가중치합을 통해 적응적으로 Bi에 대한 예측블록으로 사용할 수 있다. 일 예로, 각 L0, L1 블록에 대한 가중치합을 통해 적응적으로 Bi에 대한 예측블록으로 사용할 수 있다. 일 예로, L0, L1, Bi 블록(최초 Bi 블록은 L0 및 L1의 평균)에 대한 가중치합을 통해 적응적으로 Bi에 대한 예측블록으로 사용할 수 있다.
일 예로, 화면간 예측을 위한 3개의 예측블록 중 임의의 블록을 선택하거나 또는 가중치 값을 정함에 있어 부호화 파라미터의 정보 중 일부를 사용할 수 있다. 여기서 부호화 파라미터(Coding Parameter)라 함은 구문 요소와 같이 부호화기에서 부호화되어 복호화기로 전송되는 정보뿐만 아니라, 부호화 혹은 복호화 과정에서 유추될 수 있는 정보를 포함할 수 있으며, 영상을 부호화하거나 복호화할 때 필요한 정보를 의미할 수 있다. 예를 들어, 화면 내 예측 모드, 화면 간 예측 모드, 화면 내 예측 방향, 움직임 정보, 움직임 벡터, 참조 영상 색인, 화면 간 예측 방향, 화면 간 예측 지시자, 참조 영상 리스트, 움직임 벡터 예측기, 움직임 병합 후보, 변환 종류, 변환 크기, 추가 변환 사용 유무, 루프 내 필터 정보, 잔여 신호 유무, 양자화 매개변수, 문맥 모델, 변환 계수, 변환 계수 레벨, 부호화 블록 패턴(Coded Block Pattern), 부호화 블록 플래그(Coded Block Flag), 영상 디스플레이/출력 순서, 슬라이스 정보, 타일 정보, 픽처 타입, 움직임 병합 모드 사용 유무, 스킵 모드 사용 유무, 블록 크기, 블록 깊이, 블록 분할 정보, 유닛 크기, 유닛 깊이, 유닛 분할 정보 등의 값 및/또는 통계 중 적어도 하나 이상이 부호화 파라미터에 포함될 수 있다.
이때, L0 예측 블록, L1 예측 블록 및 Bi 예측 블록 중 적어도 하나 이상의 예측 블록이 후보 블록으로 이용될 수 있으며, 후보 블록 중에서 현재 블록에 대한 예측블록을 적응적으로 유도하는데 사용된 후보블록을 지시하는 정보(인덱스) 및/또는 후보 블록에 적용된 가중치 값(부호를 가지는 정수 또는 소수를 모두 포함)에 대한 정보 중 적어도 하나 이상을 엔트로피 부/복호화 할 때, 아래의 이진화 방법 중 적어도 하나 이상을 이용할 수 있다.
- 절삭된 라이스(Truncated Rice) 이진화 방법
- K차수 지수-골롬(K-th order Exp_Golomb) 이진화 방법
- 제한된 K차수 지수-골롬(K-th order Exp_Golomb) 이진화 방법
- 고정 길이(Fixed-length) 이진화 방법
- 단항(Unary) 이진화 방법
- 절삭된 단항(Truncated Unary) 이진화 방법
상기 가중치 값(w)에 대한 정보는 소정의 영역 단위로 시그날링될 수 있다. 여기서, 소정의 영역은 CU 또는 CU보다 상위 레벨 (예를 들어, Slice)을 의미할 수 있다. 현재 블록이 속한 소정의 영역 내에 복수의 예측 블록이 포함된 경우, 소정의 영역에 속한 화면 간 예측 블록의 전부 또는 일부는 시그날링되는 가중치 값에 대한 정보를 공유(share)할 수도 있다. 또는, 가중치 값에 대한 정보는 PU 단위로 개별적으로 시그날링될 수도 있다.
상술한 가중치 값에 대한 정보는 가중치 후보자 세트에 속한 복수의 가중치 후보자들 중 어느 하나를 특정하는 인덱스로 정의될 수도 있다. 상기 가중치 후보자 세트는 아래 예시와 같이 부호화기/복호화기에 기-정의된 것일 수도 있고, 현재 블록 이전에 부호화/복호화된 블록, 공간적 이웃 블록, 또는 시간적 이웃 블록 중 적어도 하나에서 이용된 가중치 값으로부터 유도될 수도 있다. 공간적 이웃 블록은 현재 블록에 공간적으로 인접한 블록으로서, 현재 블록 이전에 부호화/복호화된 것일 수 있다. 예를 들어, 공간적 이웃 블록은 현재 블록의 상단, 좌측 또는 현재 블록의 코너(corner)에 인접한 블록 중 적어도 하나를 포함할 수 있다. 시간적 이웃 블록은 현재 블록과 다른 시간대에 위치한 픽쳐에 속하는 블록을 의미할 수 있다. 예를 들어, 시간적 이웃 블록은 현재 블록의 center pixel을 포함한 블록 또는 현재 블록의 각 corner pixel 을 포함한 블록 중 적어도 하나를 의미할 수 있다. 가중치 후보자의 개수/종류는 부호화기/복호화기에 기-정의되어 고정된 것일 수도 있고, 상술한 부호화 파라미터에 기초하여 가변적으로 결정될 수도 있다. 일예로, 가중치 후보자의 개수/종류는 화면 간 예측 모드, 참조 픽쳐의 종류(short-term, long-term), 또는 현재 블록의 크기/형태(정사각형, 직사각형, 비대칭형 등) 중 적어도 하나에 기초하여 적응적으로 결정될 수 있다. 가중치 후보자들은 모두 동일한 부호(sign)를 가질 수도 있고, 또는 가중치 후보자 중 일부는 나머지와 다른 부호(sign)을 가질 수도 있다. 가중치 후보자들 중 적어도 하나의 크기(absolute)는 1보다 클 수 있다.
(예시) ->(0, 1/4, 1/3, 1/2, 2/3, 3/4, 1), (-1/4, 1/4, 3/8, 1/2, 5/8, 3/4, 5/4)
현재 블록의 예측 블록은 다음 수식 (1)과 같이 유도될 수 있다. 수식 (1)에서, P[x]는 현재 블록의 예측 블록을 의미하고, w는 가중치 값을 나타낸다. P0[x+v0]는 후보 블록 중 어느 하나를, P1[x+v1]는 후보 블록 중 다른 하나를 각각 나타내며, v0와 v1은 List-0와 List-1에 관한 움직임 벡터를 각각 나타낸다.
P[x] = (1 - w)*P0[x + v0] + w*P1[x + v1] (1)
제안 발명은 L0, L1으로부터 현재 블록과 유사한 블록을 적응적으로 예측블록으로 사용하는 방법을 제안한다.
상기 전술한 3개의 예측블록 (L0, Li, Bi) 중 적어도 하나 이상의 예측 블록에 대한 가중치 합을 통해 현재 부호화 블록의 예측블록을 생성하거나 또는 3개의 예측블록 (L0, L1, Bi)을 형성한 후, 현재 부호화 하려는 블록을 임의의 M개의 서브블록으로 분할하고 각 분할된 Sub-block에 최적의 예측블록을 생성하여 현재 화면간 예측블록으로 사용할 수 있다.
일 예로, 현재 블록을 M개(M은 1보다 큰 양의 정수)의 서브블록으로 분할하고, 각 서브블록에 대해 전술한 방법과 같이 3개의 예측블록 (L0, L1, Bi)에서 서브블록과 동일한 위치에 대응하는 3개의 서브 예측블록(Sub-L0, Sub-L1, Sub-bi)에 대한 적응적 가중치합을 통해 화면간 예측에 대한 서브블록을 생성할 수 있다.
일 예로, 현재블록을 M개의 서브블록으로 분할하고, 각 서브블록에 대해 3개의 예측블록 (L0, L1, Bi) 중 임의의 예측블록만 사용함으로써 화면간 예측에 대한 서브블록을 생성할 수 있다. 아래 그림은 현재 블록이 2Nx2N or 2NxN 화면간 예측모드에 대해 분할 개수 M이 4이고, 분할 타입이 가로로 결정된 것을 나타내는 예이며, 파란색 선과 같이 각 서브 블록당 현재 블록에 가장 유사한 블록을 서브블록 단위로 L0, L1, Bi에서 적응적으로 가져올 수 있음을 도시한 것이다.
Figure pat00004
제안 발명은 L0, L1으로부터 현재 블록과 유사한 블록을 적응적으로 예측블록으로 사용하는 방법을 제안한다.
현재 블록을 M개(M은 1보다 큰 양의 정수)의 서브 블록으로 분할하고 각 서브 블록에 대한 예측 블록을 생성하기 위해 필요한 정보 (분할 개수 M, 가로 또는 세로 방향 분할 여부에 대한 분할 타입 (subpart_type) 및 각 서브 블록별 예측블록으로 사용되는 정보 (L0, L1, Bi에 대한 index 및 각 서브 블록당 예측블록 생성 시 가중치합이 사용될 경우 가중치값)는 상기 전술한 부호화 파라미터 정보 중 일부를 통해 결정할 수 있으며, 비디오 파라미터 세트(video parameter set), 시퀀스 파라미터 세트(sequence parameter set), 픽처 파라미터 세트(picture parameter set), 적응 파라미터 세트(adaptation parameter set), 슬라이스 헤더(slice header) , Coding unit, Prediction unit, Transform unit 중 적어도 하나 이상에서 엔트로피 부/복호화 되거나 또는 묵시적으로 부/복호화기에서 동일한 방식에 따라 설정 할 수 있다. 또한 상기 정보 중 적어도 하나 이상을 엔트로피 부/복호화 할 때, 아래의 이진화 방법 중 적어도 하나 이상을 이용할 수 있다.
- 절삭된 라이스(Truncated Rice) 이진화 방법
- K차수 지수-골롬(K-th order Exp_Golomb) 이진화 방법
- 제한된 K차수 지수-골롬(K-th order Exp_Golomb) 이진화 방법
- 고정 길이(Fixed-length) 이진화 방법
- 단항(Unary) 이진화 방법
- 절삭된 단항(Truncated Unary) 이진화 방법
일 예로, 서브 블록으로 분할되는 개수(M)는 명시적 또는 묵시적으로 전송될 수 있으며, 또는 해당 예측블록이 2Nx2N의 경우에만 M개로 서브 분할되고 나머지 2Nx2N이 아닌 예측 모드의 경우 M보다 작게 분할 될 수 있다.
아래 예측 블록은 vertical line 또는 horizontal line 중 적어도 하나에 따라 소정의 개수만큼 분할될 수 있으며, 각 서브 블록이 균등하게 또는 비균등하게 분할될 수도 있다. 비균등 분할을 위해 서브 블록의 크기/형태에 관한 정보가 시그날링될 수 있으며, 일예로 시퀀스 레벨, 픽쳐 레벨, 슬라이스 레벨, 블록 레벨 중 적어도 하나를 통해 시그날링될 수 있다.
일 예로, 2NxN 및 Nx2N의 경우 각각의 Partition마다 분할 개수는 M/2과 같이 작은 개수로 분할 될 수 있으며, 2NxnU, 2NxnD, nLx2N, nRx2N의 경우 실제 2개의 Partition 중에서 큰 영역에 대해서만 M-1개로 서브 분할 될 수 있다. 예를 들어, M이 4일 때, 2Nx2N의 경우만 4개의 서브 블록으로 분할되고, 나머지 모드에 대해서는 상술한 바와 같이 아래처럼 분할될 수 있다.
Figure pat00005
서브블록 M의 개수는 현재 예측블록의 크기/형태 또는 부호화 파라미터를 통해 얻어진 정보에 따라 미리 정의된 개수로 분할될 수 있다. 예를 들어, 예측 블록의 가로/세로 크기를 각각 W/H라 할 때, 둘 중 큰 값을 S=Max(W, H)라 가정하면, S가 32 이상이면 M을 8로 둘 수 있으며, 반대로 32보다 작으면 M을 4로 둘 수 있다.
서브블록의 분할 타입 역시 부호화 파라미터를 통해 얻어진 정보 또는 현재 블록의 W, H를 통해 묵시적으로 유도될 수 있다. 예를 들어, W가 H보다 크면 가로 방향으로 분할되며, 반대의 경우는 세로 방향으로 분할된다.
본 발명에서는 M을 임의의 개수로 고정하거나 분할 타입을 가로 또는 세로로 분할하는 것에 국한하는 것이 아니다. 본 발명에서는 M의 개수를 임의적으로 부호화기에서 설정할 수 있으며, 이를 명시적으로 전송하거나 또는 묵시적으로 부/복호화기에서 유도될 수 있음을 나타낸다. 서브 블록의 분할 타입 역시 가로 또는 세로 방향에 따라 사각형 형태로 분할되지만 본 발명에 따라 분할 타입은 임의의 Shape으로도 분할 가능하며 명시적 전송 또는 묵시적 유도가 가능하다.
부호화기에서 현재 블록에 대한 최종 예측블록은 분할되는 각 서브 블록에 대해 현재블록의 서브블록을 기준으로 L0, L1, Bi에 동일 위치에 있는 서브 블록 중에서 SAD(Sum of absolute differences) or SATD(Sum of absolute transform differences가 가장 작은 블록을 선택할 수 있다. 이때, 각 서브 블록당 실제 예측되는 블록에 대한 인덱스 정보가 복호화기로 전송될 수 있으며, SAD 및 SATD는 현재 HEVC에 있는 Distortion 계산과 동일하다.
예를 들어, 현재 부호화되는 블록을 4개의 서브블록으로 분할 시, 각 서브 블록당 최적의 예측블록을 선택할 수 있고 이에 대한 정보가 부호화된다.
(1) 하나의 서브 블록에 대해 L0, L1, Bi 3가지 예측블록 중에서 가중치 합을 통해 최적의 예측 블록을 선택할 수 있다.
(2) 하나의 서브 블록에 대해 2가지 예측 블록 중에서 가중치 합을 통해 최적의 블록을 선택할 수 있다.
(a) 2가지 후보 예측블록 예: L0, Bi
(b) 2가지 후보 예측블록 예: L1, Bi
(c) 2가지 후보 예측블록 예: L0, L1
부호화기 실시예에서 전술한 바와 같이, 서브 분할 개수 M 및 분할 타입은 명시적으로 전송할 수 있거나 또는 묵시적으로 부/복호화기에서 동일한 규칙으로 유도될 수 있으며, 2Nx2N이 아닌 예측모드에 대해서는 M보다 작게 서브 분할 될 수 있다. 또한 제안 발명에서는 후보 예측블록의 개수를 3가지(L0, L1, Bi), 2가지, 또는 1가지 후보 예측모드의 가중치 합을 통해 가져올 수 있다.
현재의 예측블록이 M개의 서브블록으로 분할되지 않은 경우,
현재 화면간 예측블록을 적응적으로 생성하는데 사용한 후보블록에 대한 정보 및 각 후보 블록별로 적용된 가중치 값(부호를 가지는 정수 또는 소수를 모두 포함)에 대한 정보를 복호하여 현재 예측블록을 생성한다.
현재의 예측블록이 M개의 서브블록으로 아래와 같이 설정된 경우,
일 예로, 아래 그림과 같이 서브 분할 개수 M이 4라고 할 때, 2Nx2N은 4개, 2NxN, Nx2N은 M/2개, 2NxnU, 2NxnD, nLx2N, nRx2N의 경우 큰 Partition 블록에 대해서만 M-1개로 서브 분할될 수 있다.
분할 타입은 명시적으로 전송되거나 또는 묵시적으로 부/복호화기에서 동일한 방법으로 유도될 수 있다. 일예로, 묵시적으로 유도된다고 가정할 때, 아래 그림에서 가로 또는 세로로 분할 타입을 결정하며, 이때 2Nx2N 외에 나머지 모드는 가로/세로의 크기에 따라 분할 타입이 결정됨. 예를 들어 2NxN, 2NxnU, 2NxnD는 가로, Nx2N, nLx2N, nRx2N은 세로로 분할됨. (2Nx2N은 Default로 가로 또는 세로 분할될 수 있으며, NxN은 분할하지 않을 수 있다.)
각 서브 블록당 예측블록을 생성하기 위한 정보(각 서브 블록별 예측블록으로 사용되는 정보 (L0, L1, Bi에 대한 index 및 각 서브 블록당 예측블록 생성 시 가중치합이 사용될 경우 가중치값 )를 복호한 후, 서브 블록당 예측 블록을 생성할 수 있다.
Figure pat00006
전술된 부호화기 설정에 따라 현재 복호화 블록이 서브 블록으로 분할된 경우, 아래와 같은 일 예들로 복호화가 진행될 수 있다.
- 일 예로, 현재 복호화 블록이 2Nx2N 예측모드로 결정된 경우,
복호화기는 2Nx2N에 대한 분할 개수 및 분할 타입, 그리고 각 서브 블록당 최적 예측블록의 인덱스(“subpart_idx”)를 복호화 할 수 있다. 상기 서브 블록당 예측블록을 생성 시, 가중치합이 사용될 경우 가중치값을 복호한 후, 서브 블록당 예측 블록을 생성할 수 있다.
- 일 예로 현재 복호화 블록이 Nx2N 또는 2NxN 예측모드로 결정된 경우,
복호화기는 Nx2N 또는 2NxN에 대한 분할 타입이 각각 세로 및 가로 형태임을 알고 있으며, Nx2N의 첫 번째 Partition 및 2NxN 모드에서 두 번째 Partition에서만 분할 될 수 있으며, 또는 2개의 Partition 모드에서 임의의 M보다 작은 서브블록을 분할될 수 있다. 이때 각 partititon별 서브 블록에 대한 최적 예측블록의 인덱스(“subpart_idx”)를 복호화 할 수 있다. 2NxN인 경우 가로 형태 외에 세로 형태로 분할될 수 있으며 분할 타입에 대한 정보를 복호화기에 전송할 수 있다.
상기 서브 블록당 예측블록을 생성 시, 가중치합이 사용될 경우 가중치값을 복호한 후, 서브 블록당 예측 블록을 생성할 수 있다.
- 일 예로 현재 복호화 블록이 2NxnU, 2NxnD, nLx2N, nRx2N 예측모드로 결정된 경우,
복호화기는 2개의 Partition 중에서 큰 영역을 가지는 Partition 또는 2개의 Partition 모두에서 M보다 작은 서브 블록에 대한 최적 예측블록의 인덱스(“subpart_idx”)를 복호화 할 수 있으며, 큰 영역에 대해서만 분할하는 경우 일예로 아래 그림과 같이 분할 타입이 결정될 수 있다.
아래 일예와 더불어 세로 형태로 분할될 수 있으며, 분할 타입에 대한 정보를 복호화기에 전송할 수 있다.
상기 서브 블록당 예측블록을 생성 시, 가중치합이 사용될 경우 가중치값을 복호한 후, 서브 블록당 예측 블록을 생성할 수 있다.
Figure pat00007
상술한 실시예들에서, 방법들은 일련의 단계 또는 유닛으로서 순서도를 기초로 설명되고 있으나, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당해 기술 분야에서 통상의 지식을 가진 자라면 순서도에 나타난 단계들이 배타적이지 않고, 다른 단계가 포함되거나, 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 실시예는 다양한 양태의 예시들을 포함한다. 다양한 양태들을 나타내기 위한 모든 가능한 조합을 기술할 수는 없지만, 해당 기술 분야의 통상의 지식을 가진 자는 다른 조합이 가능함을 인식할 수 있을 것이다. 따라서, 본 발명은 이하의 특허청구범위 내에 속하는 모든 다른 교체, 수정 및 변경을 포함한다고 할 것이다.
이상 설명된 본 발명에 따른 실시예들은 다양한 컴퓨터 구성요소를 통하여 수행될 수 있는 프로그램 명령어의 형태로 구현되어 컴퓨터 판독 가능한 기록 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능한 기록 매체는 프로그램 명령어, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 컴퓨터 판독 가능한 기록 매체에 기록되는 프로그램 명령어는 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능한 기록 매체의 예에는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM, DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 ROM, RAM, 플래시 메모리 등과 같은 프로그램 명령어를 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령어의 예에는, 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함된다. 상기 하드웨어 장치는 본 발명에 따른 처리를 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 상기 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.

Claims (1)

  1. 쌍예측을 통한 화면간 예측 방법.
KR1020160089728A 2015-11-19 2016-07-15 화면간 예측 향상을 위한 부호화/복호화 방법 및 장치 KR20170058838A (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020160153461A KR20170058866A (ko) 2015-11-19 2016-11-17 영상 부호화/복호화 방법 및 장치
PCT/KR2016/013345 WO2017086738A1 (ko) 2015-11-19 2016-11-18 영상 부호화/복호화 방법 및 장치
CN201680067272.0A CN108353166A (zh) 2015-11-19 2016-11-18 用于图像编码/解码的方法和装置
US15/775,420 US10687053B2 (en) 2015-11-19 2016-11-18 Method and apparatus for image encoding/decoding
US16/868,075 US11039128B2 (en) 2015-11-19 2020-05-06 Method and apparatus for image encoding/decoding
US17/315,637 US11683475B2 (en) 2015-11-19 2021-05-10 Method and apparatus for image encoding/decoding
US18/311,990 US20230276046A1 (en) 2015-11-19 2023-05-04 Method and apparatus for image encoding/decoding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150162670 2015-11-19
KR20150162670 2015-11-19

Publications (1)

Publication Number Publication Date
KR20170058838A true KR20170058838A (ko) 2017-05-29

Family

ID=59053773

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020160089728A KR20170058838A (ko) 2015-11-19 2016-07-15 화면간 예측 향상을 위한 부호화/복호화 방법 및 장치
KR1020160153461A KR20170058866A (ko) 2015-11-19 2016-11-17 영상 부호화/복호화 방법 및 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020160153461A KR20170058866A (ko) 2015-11-19 2016-11-17 영상 부호화/복호화 방법 및 장치

Country Status (3)

Country Link
US (3) US10687053B2 (ko)
KR (2) KR20170058838A (ko)
CN (1) CN108353166A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11388418B2 (en) 2017-09-21 2022-07-12 Kt Corporation Video signal processing method and device

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2677193B1 (es) * 2015-08-28 2019-06-19 Kt Corp Procedimiento y dispositivo para procesar señales de vídeo
US10939099B2 (en) * 2016-04-22 2021-03-02 Lg Electronics Inc. Inter prediction mode-based image processing method and device therefor
US11381829B2 (en) * 2016-08-19 2022-07-05 Lg Electronics Inc. Image processing method and apparatus therefor
CN116170585A (zh) * 2017-01-16 2023-05-26 世宗大学校产学协力团 影像编码/解码方法
US10477237B2 (en) * 2017-06-28 2019-11-12 Futurewei Technologies, Inc. Decoder side motion vector refinement in video coding
CN115442598A (zh) * 2017-10-20 2022-12-06 韩国电子通信研究院 图像编码、解码方法以及存储比特流的记录介质
CN107801024B (zh) * 2017-11-09 2019-07-12 北京大学深圳研究生院 一种用于帧内预测的边界滤波方法
US11451791B2 (en) * 2018-01-25 2022-09-20 Wilus Institute Of Standards And Technology Inc. Video signal processing method and device
CN110337811A (zh) * 2018-02-14 2019-10-15 北京大学 运动补偿的方法、装置和计算机系统
CN117640962A (zh) * 2018-03-19 2024-03-01 英迪股份有限公司 图像解码方法、图像编码方法和存储比特流的记录介质
CN112166612A (zh) * 2018-05-23 2021-01-01 株式会社Kt 用于处理视频信号的方法和设备
US11153599B2 (en) 2018-06-11 2021-10-19 Mediatek Inc. Method and apparatus of bi-directional optical flow for video coding
KR20210016634A (ko) * 2018-06-27 2021-02-16 디지털인사이트 주식회사 영상 부호화/복호화 방법 및 장치
CN112335248B (zh) * 2018-06-29 2023-12-05 英迪股份有限公司 使用解码器侧的运动补偿的视频编码方法和装置
CN112204982A (zh) * 2018-06-29 2021-01-08 株式会社Kt 用于处理视频信号的方法和设备
EP3834416A4 (en) * 2018-08-17 2022-08-17 HFI Innovation Inc. METHODS AND APPARATUS FOR VIDEO PROCESSING WITH BIDIRECTIONAL PREDICTION IN VIDEO CODING SYSTEMS
WO2020038357A1 (zh) * 2018-08-20 2020-02-27 华为技术有限公司 融合候选者列表构建方法、装置及的编/解方法及装置
CN110855998B (zh) * 2018-08-20 2023-04-11 华为技术有限公司 融合候选者列表构建方法、装置及的编/解方法及装置
KR20230169474A (ko) * 2018-08-29 2023-12-15 베이징 다지아 인터넷 인포메이션 테크놀로지 컴퍼니 리미티드 서브블록 기반 시간적 모션 벡터 예측을 사용한 비디오 코딩의 방법 및 장치
CN111083491A (zh) 2018-10-22 2020-04-28 北京字节跳动网络技术有限公司 细化运动矢量的利用
EP3788779A4 (en) * 2018-10-23 2022-03-02 Tencent America LLC VIDEO CODING METHOD AND APPARATUS
PT3876539T (pt) 2018-11-08 2024-02-06 Guangdong Oppo Mobile Telecommunications Corp Ltd Método para codificação/descodificação de sinais de imagem e respetivo aparelho
BR112021008654A2 (pt) 2018-11-08 2021-08-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. método de decodificação vídeo, método de codificação de vídeo, e aparelho de decodificação de vídeo
WO2020096389A1 (ko) 2018-11-08 2020-05-14 주식회사 엑스리스 영상 신호 부호화/복호화 방법 및 이를 위한 장치
EP3857879A4 (en) 2018-11-12 2022-03-16 Beijing Bytedance Network Technology Co., Ltd. SIMPLIFICATION OF COMBINED INTER-INTRA PREDICTION
KR20210029819A (ko) * 2018-11-16 2021-03-16 삼성전자주식회사 양방향 예측을 이용한 영상의 부호화 및 복호화 방법, 및 영상의 부호화 및 복호화 장치
CN111200735B (zh) * 2018-11-19 2023-03-17 华为技术有限公司 一种帧间预测的方法及装置
EP3861742A4 (en) 2018-11-20 2022-04-13 Beijing Bytedance Network Technology Co., Ltd. DIFFERENCE CALCULATION BASED ON SPATIAL POSITION
CN113056916A (zh) * 2018-11-22 2021-06-29 北京字节跳动网络技术有限公司 基于子块的运动候选的选择和信令
WO2020141886A1 (ko) * 2019-01-02 2020-07-09 엘지전자 주식회사 Sbtmvp 기반 인터 예측 방법 및 장치
CN116800962A (zh) * 2019-01-09 2023-09-22 北京达佳互联信息技术有限公司 视频编解码方法、设备和非暂时性计算机可读存储介质
WO2020156454A1 (en) 2019-01-31 2020-08-06 Mediatek Inc. Method and apparatus of transform type assignment for intra sub-partition in video coding
EP3900333A4 (en) * 2019-02-15 2022-05-25 Huawei Technologies Co., Ltd. ENCODERS, DECODERS AND RELATIVE METHODS FOR LIMITING THE SIZE OF SUBDIVISIONS FROM A TOOL WITH INTRADIVISION CODING MODE
US20230103665A1 (en) * 2019-02-28 2023-04-06 Samsung Electronics Co., Ltd Apparatuses for encoding and decoding image, and methods for encoding and decoding image thereby
WO2020177756A1 (en) 2019-03-06 2020-09-10 Beijing Bytedance Network Technology Co., Ltd. Size dependent inter coding
WO2020180151A1 (ko) * 2019-03-07 2020-09-10 엘지전자 주식회사 비디오 신호를 처리하기 위한 방법 및 장치
CN111901593B (zh) * 2019-05-04 2024-01-02 华为技术有限公司 一种图像划分方法、装置及设备
US20220272321A1 (en) * 2019-06-19 2022-08-25 Electronics And Telecommunications Research Institute Method, device, and recording medium for encoding/decoding image using reference picture
CN112135144B (zh) * 2019-06-24 2022-11-01 杭州海康威视数字技术股份有限公司 一种编解码方法、装置及其设备
CN117221540A (zh) * 2019-07-08 2023-12-12 Lg电子株式会社 图像编解码方法、数据发送方法及计算机可读存储介质
US11375243B2 (en) * 2019-07-17 2022-06-28 Tencent America LLC Method and apparatus for video coding
CN110740317B (zh) * 2019-09-18 2021-10-15 浙江大华技术股份有限公司 子块运动预测、编码方法、编码器及存储装置
CN113473141A (zh) * 2020-03-31 2021-10-01 Oppo广东移动通信有限公司 帧间预测方法、编码器、解码器及计算机可读存储介质
CN111263151B (zh) * 2020-04-26 2020-08-25 腾讯科技(深圳)有限公司 视频编码方法、装置、电子设备和计算机可读存储介质
CN111586416A (zh) * 2020-06-02 2020-08-25 浙江大华技术股份有限公司 视频编码方法、装置、编码器及存储装置
WO2022262689A1 (en) * 2021-06-15 2022-12-22 Beijing Bytedance Network Technology Co., Ltd. Method, device, and medium for video processing
WO2024010362A1 (ko) * 2022-07-06 2024-01-11 주식회사 케이티 영상 부호화/복호화 방법 및 비트스트림을 저장하는 기록 매체

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1830577A1 (en) * 2002-01-18 2007-09-05 Kabushiki Kaisha Toshiba Video decoding method and apparatus
BRPI0611672A2 (pt) * 2005-07-22 2009-01-13 Mitsubishi Electric Corp codificador e decodificador de imagem, mÉtodo de codificaÇço de imagem, programa de codificaÇço de imagem, meio de gravaÇço legÍvel por computador, mÉtodo de decodificaÇço de imagem, programa de decodificaÇço de imagem, e, corrente de bits codificada por imagem
US20100118943A1 (en) * 2007-01-09 2010-05-13 Kabushiki Kaisha Toshiba Method and apparatus for encoding and decoding image
KR101408698B1 (ko) 2007-07-31 2014-06-18 삼성전자주식회사 가중치 예측을 이용한 영상 부호화, 복호화 방법 및 장치
US8831087B2 (en) * 2008-10-06 2014-09-09 Qualcomm Incorporated Efficient prediction mode selection
CN101931803B (zh) * 2009-06-26 2013-01-09 华为技术有限公司 视频图像运动信息获取方法、装置及设备、模板构造方法
KR20110069740A (ko) 2009-12-17 2011-06-23 에스케이 텔레콤주식회사 영상 부호화/복호화 방법 및 장치
US8792773B2 (en) 2009-12-18 2014-07-29 Electronics And Telecommunications Research Institute Digital video managing and searching system
CN101742321B (zh) * 2010-01-12 2011-07-27 浙江大学 基于图层分解的视频编、解码方法及装置
KR100978465B1 (ko) 2010-03-19 2010-08-26 성균관대학교산학협력단 양-예측 부호화 방법 및 장치, 양-예측 복호화 방법 및 장치 및 기록매체
KR101791078B1 (ko) 2010-04-16 2017-10-30 에스케이텔레콤 주식회사 영상 부호화/복호화 장치 및 방법
US9602813B2 (en) 2010-08-18 2017-03-21 Sk Telecom Co., Ltd. Image encoding/decoding device and method, and reference picture indexing device and method
KR20120088488A (ko) 2011-01-31 2012-08-08 한국전자통신연구원 시간적 움직임 벡터 저장 방법 및 그 장치
CN107888929B (zh) * 2011-04-12 2022-02-01 韩国电子通信研究院 视频编码解码方法、设备以及计算机可读介质
CN107071415B (zh) * 2011-10-17 2020-07-07 株式会社东芝 编码设备、解码设备、编码方法和解码方法
BR112014033041A2 (pt) 2012-07-02 2018-05-08 Samsung Electronics Co Ltd método de predição de movimento, método de compensação de movimento, aparelho de predição de movimento, aparelho de compensação de movimento, e meio de gravação legível em computador.
US9769475B2 (en) * 2012-09-28 2017-09-19 Intel Corporation Enhanced reference region utilization for scalable video coding
KR102274322B1 (ko) 2014-03-06 2021-07-07 삼성전자주식회사 서브 블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브 블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11388418B2 (en) 2017-09-21 2022-07-12 Kt Corporation Video signal processing method and device
US11785228B2 (en) 2017-09-21 2023-10-10 Kt Corporation Video signal processing method and device

Also Published As

Publication number Publication date
US20200267383A1 (en) 2020-08-20
CN108353166A (zh) 2018-07-31
US20210266528A1 (en) 2021-08-26
US11039128B2 (en) 2021-06-15
US11683475B2 (en) 2023-06-20
US10687053B2 (en) 2020-06-16
US20180376137A1 (en) 2018-12-27
KR20170058866A (ko) 2017-05-29

Similar Documents

Publication Publication Date Title
KR102625959B1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR102531738B1 (ko) 영상 부호화/복호화 방법 및 장치
KR102549022B1 (ko) 영상 부호화/복호화 방법
JP7177229B2 (ja) 画像復号方法、画像符号化方法及び記録媒体
KR102379174B1 (ko) 영상 부호화/복호화 방법 및 이를 위한 기록 매체
KR102472399B1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR102328179B1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR20170058838A (ko) 화면간 예측 향상을 위한 부호화/복호화 방법 및 장치
KR20230074452A (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR20190046704A (ko) 비대칭 서브 블록 기반 영상 부호화/복호화 방법 및 장치
KR20170058837A (ko) 화면내 예측모드 부호화/복호화 방법 및 장치
KR20230115281A (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체
KR20170058871A (ko) 화면내 예측 모드 부호화/복호화 방법 및 장치
KR102619133B1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR20190067732A (ko) 채널들 간의 선택적인 정보 공유를 사용하는 부호화 및 복호화를 위한 방법 및 장치
KR20210065051A (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR20190054942A (ko) 양자화 방법 및 장치
KR102634795B1 (ko) 영상 부호화/복호화 방법 및 장치
KR20170043461A (ko) 영상 복잡도에 기반한 적응적 부호화 및 복호화를 위한 방법 및 장치