KR20170049959A - 매립게이트구조를 구비한 반도체구조물 및 그 제조 방법, 그를 구비한 메모리셀 - Google Patents

매립게이트구조를 구비한 반도체구조물 및 그 제조 방법, 그를 구비한 메모리셀 Download PDF

Info

Publication number
KR20170049959A
KR20170049959A KR1020150150915A KR20150150915A KR20170049959A KR 20170049959 A KR20170049959 A KR 20170049959A KR 1020150150915 A KR1020150150915 A KR 1020150150915A KR 20150150915 A KR20150150915 A KR 20150150915A KR 20170049959 A KR20170049959 A KR 20170049959A
Authority
KR
South Korea
Prior art keywords
work function
layer
dipole
gate insulating
function layer
Prior art date
Application number
KR1020150150915A
Other languages
English (en)
Other versions
KR102410919B1 (ko
Inventor
장태수
Original Assignee
에스케이하이닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이하이닉스 주식회사 filed Critical 에스케이하이닉스 주식회사
Priority to KR1020150150915A priority Critical patent/KR102410919B1/ko
Priority to US15/090,759 priority patent/US9704961B2/en
Publication of KR20170049959A publication Critical patent/KR20170049959A/ko
Priority to US15/613,845 priority patent/US9917167B2/en
Application granted granted Critical
Publication of KR102410919B1 publication Critical patent/KR102410919B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28088Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28176Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/4234Gate electrodes for transistors with charge trapping gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7838Field effect transistors with field effect produced by an insulated gate without inversion channel, e.g. buried channel lateral MISFETs, normally-on lateral MISFETs, depletion-mode lateral MISFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • H10B12/053Making the transistor the transistor being at least partially in a trench in the substrate

Abstract

본 기술은 문턱전압을 조절할 수 있고, 게이트절연층의 손실을 방지할 수 있는 반도체구조물 및 그 제조 방법에 관한 것으로, 반도체구조물의 형성 방법은 반도체기판에 트렌치를 형성하는 단계; 상기 트렌치의 저면 및 측벽들 상에 게이트절연층을 형성하는 단계; 상기 게이트절연층 상에 일함수층을 형성하는 단계; 상기 트렌치 내에 위치하는 게이트전극을 형성하기 위해, 상기 일함수층을 리세싱하는 단계; 및 상기 게이트전극과 게이트절연층 사이에 다이폴유도층을 형성하기 위해, 상기 게이트전극을 열공정에 노출시키는 단계를 포함할 수 있다.

Description

매립게이트구조를 구비한 반도체구조물 및 그 제조 방법, 그를 구비한 메모리셀{SEMICONDUCTOR STRUCTURE HAVING BURIED GATE STRUCTURE AND METHOD FOR MANUFACTURING THE SAME, MEMORY CELL HAVING THE SAME}
본 발명은 반도체장치에 관한 것으로서, 상세하게는 매립게이트구조를 구비한 반도체구조물 및 그 제조 방법, 그를 구비한 메모리셀에 관한 것이다.
트랜지스터의 고성능을 위해 금속게이트전극(Metal gate electrode)을 적용하고 있다. 특히, 매립게이트형 트랜지스터(Buried gate type transistor)에서는 고성능 동작을 위해 문턱전압(Threshhold voltage)의 제어가 요구된다. 또한, 게이트유도드레인누설(Gate Induced Drain Leakage; GIDL) 특성이 매립게이트형 트랜지스터의 성능에 큰 영향을 미치고 있다.
본 실시예들은, 문턱전압을 쉬프트(shift)시킬 수 있는 반도체구조물 및 그 제조 방법을 제공한다.
본 실시예들은, 게이트유도드레인누설(GIDL)을 개선할 수 있는 반도체구조물 및 그 제조 방법을 제공한다.
본 실시예들은, 리프레쉬(Refresh) 특성을 개선할 수 있는 메모리셀을 제공한다.
본 실시예들은, 성능이 개선된 전자장치를 제공한다.
본 발명의 실시예에 따른 반도체구조물 제조 방법은 반도체기판에 트렌치를 형성하는 단계; 상기 트렌치의 저면 및 측벽들 상에 게이트절연층을 형성하는 단계; 상기 게이트절연층 상에 일함수층을 형성하는 단계; 상기 트렌치 내에 위치하는 게이트전극을 형성하기 위해, 상기 일함수층을 리세싱하는 단계; 및 상기 게이트전극과 게이트절연층 사이에 다이폴유도층을 형성하기 위해, 상기 게이트전극을 열공정에 노출시키는 단계를 포함할 수 있다.
본 발명의 실시예에 따른 반도체구조물 제조 방법은 반도체기판에 트렌치를 형성하는 단계; 상기 트렌치의 저면 및 측벽들 상에 게이트절연층을 형성하는 단계; 상기 게이트절연층 상에 제1일함수층을 형성하는 단계; 상기 제1일함수층과 게이트절연층 사이에 예비 다이폴유도층을 형성하기 위해, 상기 일함수층을 열공정에 노출시키는 단계; 상기 제1일함수층 상에 상기 트렌치를 채우는 제2일함수층을 형성하는 단계; 상기 트렌치 내에 위치하는 제2일함수부 및 제1일함수부를 형성하기 위해, 각각 상기 제2일함수층과 제1일함수층을 리세싱하는 단계; 및 상기 제1일함수부와 게이트절연층 사이에 다이폴유도층을 형성하기 위해, 상기 예비 다이폴유도층을 리세싱하는 단계를 포함할 수 있다.
본 발명의 실시예에 따른 반도체구조물 제조 방법은 반도체기판에 트렌치를 형성하는 단계; 상기 트렌치의 저면 및 측벽들 상에 게이트절연층을 형성하는 단계; 상기 게이트절연층 상에 상기 트렌치를 채우는 일함수층을 형성하는 단계; 상기 반도체기판의 상부 표면보다 높은 레벨의 예비 일함수부를 형성하기 위해 상기 일함수층을 평탄화하는 단계; 상기 예비 일함수부와 게이트절연층 사이에 예비 다이폴유도층을 형성하기 위해, 상기 예비 일함수부를 열공정에 노출시키는 단계; 상기 트렌치 내에 위치하는 일함수부를 형성하기 위해, 상기 예비 일함수부를 리세싱하는 단계; 및 상기 일함수부와 게이트절연층 사이에 다이폴유도층을 형성하기 위해, 상기 예비 다이폴유도층을 리세싱하는 단계를 포함할 수 있다.
본 발명의 실시예에 따른 반도체구조물은 제1도핑영역과 제2도핑영역을 포함하는 반도체기판; 상기 반도체기판에 형성되며 상기 제1도핑영역과 제2도핑영역 사이의 채널영역을 포함하는 트렌치; 상기 채널영역 상의 게이트절연층; 상기 채널영역을 커버링하는 제1일함수층을 포함하는 상기 트렌치 내의 게이트전극; 상기 제1일함수층과 채널영역 사이에 형성되며, 음전하로 대전된 게이트절연층; 및 상기 게이트절연층과 제1일함수층 사이에 형성되며, 양전하로 대전된 다이폴유도층을 포함하고, 상기 다이폴유도층과 상기 제1일함수층은 동일한 금속 요소를 포함할 수 있다.
본 기술은 게이트전극을 구성하는 물질을 채운 후에 다이폴유도층을 형성하므로써 게이트전극의 채움을 개선할 수 있다.
또한, 본 기술은 다이폴유도층에 의해 도핑영역에 오버랩되는 게이트절연층의 손실을 방지할 수 있다.
또한, 본 기술은 채널영역과 게이트전극 사이에 고일함수(High work function)를 유도하는 다이폴유도층을 형성하므로써 채널 도즈(Channel dose)를 감소시켜 접합누설(Junction leakage)을 감소시킬 수 있다.
또한, 본 기술은 게이트전극과 도핑영역 사이에 저일함수물질(Low work function materials)을 형성하므로써, 게이트유도드레인누설(GIDL)을 감소시킬 수 있다.
도 1a는 제1실시예에 따른 반도체구조물을 설명한다.
도 1b는 게이트전극과 채널영역 사이의 다이폴을 설명하기 위한 도면이다.
도 2a 및 도 2b는 제1실시예의 변형예에 따른 반도체구조물을 설명한다.
도 3은 제1실시예에 따른 반도체구조물의 응용예를 설명한다.
도 4a 내지 도 4f는 제1실시예에 따른 반도체구조물을 제조하는 방법의 일예를 설명하기 위한 도면이다.
도 5a는 제2실시예에 따른 반도체구조물을 설명한다.
도 5b는 제2실시예의 변형예에 따른 반도체구조물을 설명한다.
도 5c는 제2실시예에 따른 반도체구조물의 응용예를 설명한다.
도 6a 내지 도 6g는 제2실시예에 따른 반도체구조물 제조하는 방법의 일예를 설명하기 위한 도면이다.
도 7a 내지 도 7g는 제2실시예에 따른 반도체구조물 제조하는 방법의 다른 예를 설명하기 위한 도면이다.
본 명세서에서 기재하는 실시예들은 본 발명의 이상적인 개략도인 단면도, 평면도 및 블록도를 참고하여 설명될 것이다. 따라서, 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 따라서, 본 발명의 실시예들은 도시된 특정 형태로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형태의 변화도 포함하는 것이다. 따라서, 도면에서 예시된 영역들은 개략적인 속성을 가지며, 도면에서 예시된 영역들의 모양은 소자의 영역의 특정 형태를 예시하기 위한 것이고, 발명의 범주를 제한하기 위한 것은 아니다.
이하, 실시예들에서, 문턱전압(Threshold voltage; Vt)은 플랫밴드전압(Flat-band voltage)에 의존한다. 플랫밴드전압은 일함수(workfunction)에 의존한다. 일함수는 다양한 방법에 의해 엔지니어링될 수 있다. 예컨대, 일함수는 게이트전극의 물질, 게이트전극과 채널 사이의 물질, 다이폴 등에 의해 조절될 수 있다. 일함수를 증가시키거나 또는 감소시키므로써 플랫밴드전압이 쉬프트될 수 있다. 고일함수는 플랫밴드전압을 파지티브(positive) 방향으로 쉬프트시킬 수 있고, 저일함수는 플랫밴드전압을 네가티브(negative) 방향으로 쉬프트시킬 수 있다. 위와 같이 플랫밴드전압의 쉬프트에 의해, 문턱전압을 조절할 수 있다. 실시예들은, 채널 농도를 감소시키거나 채널 도핑을 생략하더라도, 플랫밴드전압 쉬프트에 의해 문턱전압을 조절할 수 있다. 다이폴유도층에 의해 플랫밴드전압을 쉬프트시킬 수 있다.
도 1a는 제1실시예에 따른 반도체구조물을 설명하기 위한 도면이다. 도 1a는 반도체구조물(100)의 일부로서 트랜지스터(120)가 도시된다. 도 1b는 게이트전극과 채널영역 사이의 다이폴을 설명하기 위한 도면이다.
반도체구조물(100)은 기판(101)을 포함할 수 있다. 기판(101)에 활성영역(104)을 정의하는 소자분리영역(102)이 형성될 수 있다. 매립게이트구조(100G)는 기판(101) 내부로(into) 연장(extend)될 수 있다. 기판(101)에 게이트트렌치(106)가 형성될 수 있다. 게이트트렌치(106)는 활성영역(104)과 소자분리영역(102)을 횡단하는 라인 형상일 수 있다. 게이트트렌치(106) 내에 매립게이트구조(100G)가 형성될 수 있다. 활성영역(104)은 채널영역(104C), 제1도핑영역(112)과 제2도핑영역(113)을 포함할 수 있다.
트랜지스터(120)는 비-플라나 트랜지스터(Non-planar transistor), 예컨대, 매립게이트형 트랜지스터(Buried gate type transistor)일 수 있다.
기판(101)은 반도체프로세싱에 적합한 물질일 수 있다. 기판(101)은 반도체기판을 포함할 수 있다. 기판(101)은 실리콘을 함유하는 물질로 이루어질 수 있다. 기판(101)은 실리콘, 단결정 실리콘, 폴리실리콘, 비정질 실리콘, 실리콘저마늄, 단결정 실리콘저마늄, 다결정 실리콘저마늄, 탄소 도핑된 실리콘, 그들의 조합 또는 그들의 다층을 포함할 수 있다. 기판(101)은 저마늄과 같은 다른 반도체물질을 포함할 수도 있다. 기판(101)은 Ⅲ/Ⅴ족 반도체기판, 예컨대 GaAs과 같은 화합물반도체기판을 포함할 수도 있다. 기판(101)은 SOI(Silicon On Insulator) 기판을 포함할 수도 있다.
기판(101)에 활성영역(104)을 정의하는 소자분리영역(102)이 형성될 수 있다. 소자분리영역(102)은 STI(Shallow Trench Isolation) 영역일 수 있다. 소자분리영역(102)은 분리트렌치(103) 내에 형성될 수 있다.
활성영역(104)에 채널영역(104C), 제1도핑영역(112) 및 제2도핑영역(113)이 형성될 수 있다. 채널영역(104C)은 게이트트렌치(106)를 포함할 수 있다. 게이트트렌치(106) 양측의 활성영역(104) 내에 제1도핑영역(112)과 제2도핑영역(113)이 형성될 수 있다. 제1도핑영역(112)과 제2도핑영역(113)은 도전형 도펀트가 도핑된 영역이다. 예컨대, 도전형 도펀트는 인(P), 비소(As), 안티몬(Sb) 또는 붕소(B)를 포함할 수 있다. 제1도핑영역(112)과 제2도핑영역(113)은 동일 도전형의 도펀트로 도핑될 수 있다. 제1도핑영역(112)과 제2도핑영역(113)은 각각 소스영역과 드레인영역이라고 지칭될 수 있다. 제1도핑영역(112)과 제2도핑영역(113)의 하부면은 기판(101)의 상부 표면(top surface)으로부터 소정의 깊이에 위치할 수 있다. 제1도핑영역(112)과 제2도핑영역(113)은 게이트트렌치(106)의 측벽에 접촉할 수 있다. 제1도핑영역(112)과 제2도핑영역(113)의 하부면은 게이트트렌치(106)의 바닥면보다 높을 수 있다. 제1도핑영역(112)과 제2도핑영역(113)은 대칭될 수 있다. 예컨대, 제1도핑영역(112)과 제2도핑영역(113)은 동일 깊이의 접합을 형성할 수 있다.
게이트트렌치(106) 내에 매립게이트구조(100G)가 형성될 수 있다. 이를 임베디드 매립게이트구조(Embedded BG)라고 약칭할 수 있다. 매립게이트구조(100G)는 제1도핑영역(112)과 제2도핑영역(113) 사이의 게이트트렌치(106) 내에 위치할 수 있다.
매립게이트구조(100G)는 다이폴유도층(110) 및 게이트전극(G)을 포함할 수 있다. 게이트전극(G)은 제1일함수부(108)와 제2일함수부(109)를 포함할 수 있다. 매립게이트구조(100G)는 게이트절연층(107) 및 캡핑층(111)을 더 포함할 수 있다. 게이트전극(G)은 기판(101)의 상부면보다 낮은 레벨에 위치할 수 있다. 게이트전극(G)은 게이트트렌치(106)를 부분적으로 채울 수 있다. 따라서, '매립 게이트전극'이라고 지칭될 수 있다. 캡핑층(111)은 게이트전극(G) 상에 위치할 수 있다. 게이트절연층(107)은 게이트트렌치(106)의 바닥 및 측벽들 상에 형성될 수 있다. 다이폴유도층(110)은 게이트전극(G)의 제1일함수부(108)와 게이트절연층(107) 사이에 위치할 수 있다.
게이트절연층(107)은 실리콘산화물(Silicon oxide), 실리콘질화물(Silicon nitride), 실리콘산질화물(Silicon oxynitride), 고유전물질(High-k material) 또는 이들의 조합을 포함할 수 있다. 고유전물질은 실리콘산화물의 유전상수(dielectric constant)보다 더 큰 유전상수를 갖는 물질을 포함할 수 있다. 예컨대, 고유전물질은 3.9보다 큰 유전상수를 갖는 물질을 포함할 수 있다. 다른 예에서, 고유전물질은 10보다 큰 유전상수를 갖는 물질을 포함할 수 있다. 또다른 예에서, 고유전물질은 10 내지 30의 유전상수를 갖는 물질을 포함할 수 있다. 고유전물질은 적어도 하나의 금속성 원소(at least one metallic element)를 포함할 수 있다. 고유전물질은 하프늄함유물질(hafnium-containing material)을 포함할 수 있다. 하프늄함유물질은 하프늄산화물(hafnium oxide), 하프늄실리콘산화물(hafnium silicon oxide), 하프늄실리콘산화질화물(hafnium silicon oxynitride) 또는 그들의 조합을 포함할 수 있다. 다른 실시예에서, 고유전물질은 란탄산화물(lanthanum oxide), 란탄알루미늄산화물(lanthanum aluminum oxide), 지르코늄산화물(zirconium oxide), 지르코늄실리콘산화물(zirconium silicon oxide), 지르코늄실리콘산화질화물(zirconium silicon oxynitride), 알루미늄산화물(aluminum oxide), 및 그들의 조합을 포함할 수 있다. 고유전물질로는 공지된 다른 고유전물질이 선택적으로 사용될 수도 있다. 게이트절연층(107)은 다이폴유도층(110)에 따라 적절한 물질이 선택될 수 있다. 예컨대, 게이트절연층(107)은 다이폴유도층(110)보다 단위부피당 산소함량, 즉 산소농도가 작은 물질이 선택될 수 있다. 본 실시예에서, 게이트절연층(107)은 SiO2일 수 있다.
채널영역(104C)은 게이트트렌치(106)에 의해 채널길이가 길어질 수 있다. 본 실시예들에 따른 채널영역(104C)은 일반적인 플라나형 트랜지스터(Planar type transistor)에 비해 채널길이가 길다. 이에 따라, 숏채널효과를 방지할 수 있다.
게이트전극(G)은 채널영역(104C)과 오버랩될 수 있고, 제1,2도핑영역(112, 113)과 비-오버랩될 수 있다. 여기서, 오버랩이란 수평적으로 오버랩됨을 의미할 수 있다. 게이트전극(G)의 상부 표면 높이는 기판(101)의 상부 표면보다 낮은 레벨일 수 있다. 게이트전극(G)의 제2일함수부(109)는 저저항 금속-베이스 물질(Low resistivity metal-base materials)일 수 있다. 게이트전극(G)은 저저항을 위해, 저저항금속을 포함할 수 있다. 게이트전극(G)의 제2일함수부(109)는 텅스텐(W), 알루미늄(Al) 또는 이들의 조합을 포함할 수 있다.
게이트전극(G)과 게이트절연층(107) 사이에 다이폴유도층(110)이 위치할 수 있다. 다이폴유도층(110)은 게이트절연층(107)과 제1일함수부(108) 사이에 위치할 수 있다. 다이폴유도층(110) 및 게이트전극(G)의 상부 표면은 동일 레벨일 수 있다. 다이폴유도층(110) 및 제1일함수부(108)는 U자 형상일 수 있다.
게이트전극(G)의 상부에 캡핑층(111)이 채워질 수 있다. 캡핑층(111)은 게이트전극(109)을 보호하는 역할을 한다. 캡핑층(111)은 절연물질을 포함할 수 있다. 캡핑층(111)는 실리콘질화물, 실리콘산화질화물 또는 이들의 조합을 포함할 수 있다. 다른 실시예에서, 캡핑층(111)은 실리콘질화물과 실리콘산화물의 조합을 포함할 수 있다. 예컨대, 캡핑층(111)을 형성하기 위해 실리콘질화물로 라이닝한 후, 스핀온절연물질(Spin On Dielectric; SOD)로 채울 수 있다. 또다른 실시예에서, 캡핑층(111)은 N(Nitride)-O(Oxide)-N(Nitride)로 이루어진 삼중층(tri-layers)일 수 있다.
제1도핑영역(112)과 제2도핑영역(113) 상에 하드마스크층(105)이 형성될 수 있다. 하드마스크층(105)은 소자분리영역(102)의 상부를 커버링하도록 연장될 수 있다. 하드마스크층(105)은 TEOS와 같은 실리콘산화물을 포함할 수 있다.
다이폴유도층(110)에 대해 자세히 살펴보면 다음과 같다.
다이폴유도층(110)은 절연성 물질(Dielectric material)일 수 있다. 이에 따라, 게이트전극(G)의 저항을 감소시킬 수 있다. 다이폴유도층(110)은 게이트절연층(107)보다 유전상수가 높은 고유전물질(High-k material)일 수 있다. 다이폴유도층(110)은 고일함수(High workfunction)를 유도할 수 있다. 여기서, 고일함수란 실리콘의 미드갭일함수(Mid-gap Work Function)보다 높은 일함수를 지칭한다. 저일함수는 실리콘의 미드갭일함수보다 낮은 일함수를 지칭한다. 부연 설명하면, 고일함수는 4.5eV보다 높은 일함수를 갖고, 저일함수는 4.5eV보다 낮은 일함수를 가질 수 있다. 다이폴유도층(110)과 게이트절연층(107)이 접촉하게 되면, 다이폴(dipole)이 생성될 수 있다. 이러한 다이폴에 의해 제1일함수부(108)의 일함수가 증가될 수 있다. 다이폴을 생성하기 위해, 다이폴유도층(110)와 게이트절연층(107)은 서로 다른 단위부피당 산소함량을 가질 수 있다. 다이폴유도층(110)은 게이트절연층(107)보다 단위부피당 산소함량이 큰 고산소함유-금속산화물(High oxygen contained-metal oxide)로 형성할 수 있다. 게이트절연층(107)이 SiO2인 경우, 다이폴유도층(110)은 SiO2보다 단위부피당 산소함량이 큰 물질을 포함할 수 있다. SiO2보다 단위부피당 산소함량이 큰 물질은 알루미늄산화물(Al2O3), 티타늄산화물(TiO2), 하프늄산화물(HfO2), 지르코늄산화물(ZrO2) 또는 마그네슘산화물(MgO)을 포함할 수 있다. SiO2보다 단위부피당 산소함량이 작은 물질은 이트륨산화물(Y2O3), 란탄늄산화물(La2O3), 저마늄산화물(GeO2), 루테튬산화물(Lu2O3) 또는 스트론튬산화물(SrO)을 포함할 수 있다. 예를 들어, SiO2에 대한 Al2O3의 단위부피당 산소함량비는 1.21일 수 있다. SiO2에 대한 La2O3의 산소함량비는 0.77일 수 있다. SiO2에 대한 HfO2의 단위부피당 산소함량비는 1.05이다. 다이폴유도층(110)은 얇은 두께로 형성될 수 있다. 이로써, 게이트전극(G)의 체적을 크게 하여 게이트전극(G)의 저항을 현저히 낮출 수 있다.
제1일함수부(108)는 금속베이스물질일 수 있다. 제1일함수부(108)는 제1요소 및 제2요소를 포함할 수 있다. 제1요소는 금속원자일 수 있고, 제2요소는 질소를 포함할 수 있다. 제1요소는 열공정에 의해 확산될 수 있다. 이에 따라, 제1일함수부(108)와 게이트절연층(107) 사이에 제1요소의 산화물이 형성될 수 있다. 제1요소의 산화물은 다이폴유도층(110)이 될 수 있다. 즉, 다이폴유도층(110)은 제1일함수부(108)와 동일하게 제1요소를 포함할 수 있다. 제1일함수부(108)는 티타늄질화물을 포함할 수 있고, 다이폴유도층(110)은 티타늄산화물을 포함할 수 있다. 이와 같이, 제1일함수부(108)와 다이폴유도층(110)은 동일하게 티타늄 원자를 포함할 수 있다.
도 1b는 게이트전극과 채널영역 사이의 영역(C)을 상세히 설명한다.
도 1b를 참조하면, 제1일함수부(108)가 티타늄질화물을 포함하는 경우, 티타늄질화물의 티타늄과 게이트절연층(107)의 산소가 반응하여 티타늄산화물(TiO2)이 형성될 수 있다. 티타늄산화물은 다이폴유도층(110)이 될 수 있다. 다이폴유도층(110) 내의 산소농도는 게이트절연층(107)의 산소농도보다 높을 수 있다. 예컨대, 티타늄산화물(TiO2) 내의 산소 농도는 SiO2의 산소농도보다 높으며, 이로 인해 티타늄산화물(TiO2) 내의 산소가 SiO2 내부로 확산하게 된다. 즉, O2 - 이온(ion)이 티타늄산화물로부터 SiO2로 확산됨으로써, 티타늄산화물은 양전하로 대전(positive charged, 110P)되고, SiO2는 음전하로 대전(negative charged, 107N)된다. 이에 따라 다이폴(Dipole, D)이 형성된다. 다이폴(D)은 게이트전극(G), 특히 제1일함수부(108)의 에너지밴드(Energy Band)를 끌어내리게 되며, 이로써 제1일함수부(108)는 증가된 일함수를 갖게 된다. 결국, 게이트전극(G)의 유효일함수가 증가함에 따라 문턱전압을 조절할 수 있다.
위와 같이, 다이폴유도층(110)에 의해 게이트절연층(107)과 다이폴유도층(110) 사이에 다이폴(D)이 생성될 수 있다. 다이폴(D)은 다이폴유도층(110)과 게이트절연층(107)간의 산소함량비 차이에 의해 발생될 수 있다. 이러한 다이폴(D)은 게이트전극(G)의 제1일함수부(108)의 일함수를 증가시켜 고일함수를 유도하고, 이에 따라 문턱전압을 조절할 수 있다. 결국, 다이폴유도층(110)에 의해 채널영역(104C)의 채널도즈(channel dose)를 낮출 수 있다. 다이폴(D)의 극성 방향(polarity direction)을 제어하므로써 일함수를 제어할 수 있다. 이러한 다이폴(D)에 의해, 고일함수 또는 저일함수를 유도할 수 있다. 예컨대, 다이폴유도층(110)이 게이트절연층(107)보다 단위부피당 산소함량비가 큰 물질인 경우, 고일함수를 유도하는 방향의 다이폴이 생성될 수 있다. 다이폴유도층(110)이 게이트절연층(107)보다 단위부피당 산소함량비가 작은 물질인 경우, 저일함수를 유도하는 방향의 다이폴이 생성될 수 있다. 다이폴유도층(110)은 게이트절연층(107)보다 단위부피당 산소함량비가 큰 물질이므로, 고일함수로 변화시키는 방향의 다이폴(D)이 생성될 수 있다.
게이트트렌치(106)가 고종횡비(High aspect ratio)를 갖기 때문에, 일반적인 채널도핑에 의해서는, 게이트트렌치(106)의 바닥부까지 충분히 도핑을 수행하기 어렵다. 따라서, 채널도핑 이후에 추가로 게이트트렌치(106)의 바닥부에 국부적으로 채널도핑을 수행하는데, 이를 '국부적채널도핑'이라 지칭한다. 국부적채널도핑으로서 임플란트(Implantation)를 적용하는 경우, LCI(Locally Channel Implantation)라고 지칭한다.
다이폴유도층(110)에 의해 문턱전압을 조절할 수 있으므로, 국부적채널도핑(LCI)의 도즈를 현저히 낮추거나, 국부적채널도핑(LCI)을 생략할 수 있다. 결국, 본 실시예들은, 채널도즈를 낮추므로, 접합누설(junction leakage) 특성이 개선된다.
또한, 다이폴유도층(110)이 제1,2도핑영역(112, 113)과 비-오버랩되므로, 제1도핑영역(112) 및 제2도핑영역(113)에서의 게이트유도드레인누설(GIDL)을 억제할 수 있다. 다이폴유도층(110)이 제1도핑영역(112) 및 제2도핑영역(113)에 오버랩되는 경우, 고일함수 유도로 인해 게이트유도드레인누설(GIDL)이 증가될 수 있다. 따라서, 다이폴유도층(110)은 제1도핑영역(112) 및 제2도핑영역(113)에 비-오버랩(Non-overlap)되도록 높이가 조절될 수 있다.
도 2a 및 도 2b는 제1실시예의 변형예에 따른 반도체구조물을 설명한다. 도 2b는 도 2a의 A-A'선에 따른 단면도이다.
도 2a 및 도 2b를 참조하면, 반도체구조물(100M)의 일부로서 트랜지스터(120M)가 도시된다.
트랜지스터(120M)는 도 1a의 트랜지스터(120)와 유사할 수 있다. 트랜지스터(120M)은 매립게이트구조(100MG), 제1도핑영역(112) 및 제2도핑영역(113)를 포함할 수 있다. 매립게이트구조(100MG)는 게이트절연층(107), 다이폴유도층(110), 게이트전극(G) 및 캡핑층(111)을 포함할 수 있다. 게이트전극(G)은 제1일함수부(108) 및 제2일함수부(109)를 포함할 수 있다. 매립게이트구조(100MG)는 핀영역(104F)을 더 포함할 수 있다. 핀영역(104F)은 게이트트렌치(106)의 저면 아래에 위치할 수 있다. 게이트트렌치(106)는 제1트렌치(106A)와 제2트렌치(106B)를 포함할 수 있다. 제1트렌치(106A)는 활성영역(104) 내에 형성될 수 있다. 제2트렌치(106B)는 소자분리층(102) 내에 형성될 수 있다. 제1트렌치(106A)로부터 제2트렌치(106B)로 연속적으로 확장될 수 있다. 제1트렌치(106A)와 제2트렌치(106B)는 서로 다른 레벨에 위치하는 바닥면을 가질 수 있다. 예를 들어, 제1트렌치(106A)의 바닥면은 제2트렌치(106B)의 바닥면보다 높은 레벨에 위치할 수 있다. 제1트렌치(106A)와 제2트렌치(106B)의 높이 차이는 소자분리층(102)이 리세스됨에 따라 형성된다. 따라서, 제2트렌치(106B)는 제1트렌치(106A)의 바닥면보다 낮은 바닥면을 갖는 리세스영역(R)을 포함할 수 있다. 제1트렌치(106A)와 제2트렌치(106B) 사이의 단차로 인하여 활성영역(104)에 핀영역(104F)이 형성된다. 따라서, 활성영역(104)은 핀영역(104F)을 포함한다.
이와 같이, 제1트렌치(106A) 아래에 핀영역(104F)이 형성되고, 핀영역(104F)의 측벽은 리세스된 소자분리층(102F)에 의해 노출된다. 핀영역(104F)은 채널이 형성되는 부분이다. 핀영역(104F)은 새들핀(Saddle Fin)이라고 일컫는다. 핀영역(104F)에 의해 채널 폭을 증가시킬 수 있고, 전기적 특성을 향상시킬 수 있다.
도 3은 제1실시예에 따른 반도체구조물의 응용예를 설명한다.
도 3을 참조하면, 반도체구조물(100)의 일부로서 메모리셀(130)이 도시된다. 메모리셀(130)은 트랜지스터(120), 비트라인(140) 및 메모리요소(150)를 포함할 수 있다. 트랜지스터(120)는 도 1a의 트랜지스터(120)일 수 있다. 따라서, 트랜지스터(120)는 매립게이트구조(100G), 제1도핑영역(112) 및 제2도핑영역(113)을 포함할 수 있다. 제1도핑영역(112)은 제1콘택플러그(141)를 통해 비트라인(140)에 전기적으로 연결될 수 있다. 제2도핑영역(113)은 제2콘택플러그(151)를 통해 메모리요소(150)에 전기적으로 연결될 수 있다. 매립게이트구조(100G)는 매립워드라인구조(Buried Wordline Structrue; BWL)라고 지칭될 수 있다. 매립게이트구조(100G)는 게이트트렌치(106) 내에 내장될 수 있다. 매립게이트구조(100G)는 게이트절연층(107), 다이폴유도층(110), 게이트전극(G) 및 캡핑층(111)을 포함할 수 있다. 게이트전극(G)은 제1일함수부(108)와 제2일함수부(109)를 포함할 수 있다.
트랜지스터(120)는 도 2a의 트랜지스터(120M)로 대체될 수 있다.
도 4a 내지 도 4f는 제1실시예에 따른 반도체구조물을 제조하는 방법의 일예를 설명하기 위한 도면이다.
도 4a에 도시된 바와 같이, 기판(11)에 소자분리층(12)이 형성된다. 소자분리층(12)에 의해 활성영역(14)이 정의된다. 소자분리층(12)은 STI 공정에 의해 형성될 수 있다. 예를 들어, 기판(11)을 식각하여, 분리트렌치(13)를 형성한다. 분리트렌치(13)는 절연물질로 채워지고, 이에 따라 소자분리층(12)이 형성된다. 소자분리층(12)은 실리콘산화물, 실리콘질화물 또는 이들의 조합을 포함할 수 있다. 화학기상증착(CVD) 또는 다른 증착공정은 절연물질로 분리트렌치(13)를 채우는데 사용될 수 있다. CMP(chemical-mechanical polishing)와 같은 평탄화 공정(planarization process)이 부가적으로 사용될 수 있다.
다음으로, 기판(11) 상에 하드마스크층(15)이 형성될 수 있다. 하드마스크층(15)은 기판(11)에 대해 식각선택비를 갖는 물질로 형성될 수 있다. 하드마스크층(15)은 실리콘산화물을 포함할 수 있다. 하드마스크층(15)은 TEOS(Tetra-Ethyl-Ortho-Silicate)와 같은 실리콘산화물을 포함할 수 있다. 하드마스크층(15)은 라인 형상의 오프닝을 갖도록 패터닝되어 있을 수 있다.
다음으로, 기판(11) 내에 게이트트렌치(16)가 형성된다. 게이트트렌치(16)는 활성영역(14) 및 소자분리층(12)을 횡단하는 라인 형상을 가질 수 있다. 게이트트렌치(16)는 하드마스크층(15)을 식각 마스크로 이용한 식각 공정에 의해 형성될 수 있다. 게이트트렌치(16)는 분리트렌치(13)보다 얕게 형성될 수 있다. 게이트트렌치(16)의 깊이는 후속 게이트전극의 평균 단면적을 크게 할 수 있는 충분한 깊이를 가질 수 있다. 이에 따라, 게이트전극의 저항을 감소시킬 수 있다. 게이트트렌치(16)의 저부는 곡률을 가질 수 있다. 이와 같이 곡률을 갖도록 형성하므로써, 게이트트렌치(16)의 저부에서 요철을 최소화하고, 그에 따라 게이트전극의 채움(filling)을 용이하게 수행할 수 있다. 또한, 곡률을 갖도록 하므로써, 게이트트렌치(16)의 저부 모서리에 각진 모양을 제거하여 전계집중(electric field)을 완화할 수 있다.
도시하지 않았으나, 핀영역을 형성할 수 있다. 핀영역은 소자분리층(12)을 리세스시켜 형성할 수 있다(도 2a 및 도 2b 참조).
도 4b에 도시된 바와 같이, 게이트트렌치(16)의 표면 상에 게이트절연층(17)이 형성될 수 있다. 게이트절연층(17)을 형성하기 전에, 게이트트렌치(16) 표면의 식각손상을 치유할 수 있다. 예컨대, 열산화 처리에 의해 희생산화물을 형성한 후, 희생산화물을 제거할 수 있다.
게이트절연층(17)은 열산화 공정(Thermal Oxidation)에 의해 형성될 수 있다. 게이트절연층(17)은 후속 다이폴유도층보다 단위부피당 산소 함량이 작은 물질일 수 있다. 게이트절연층(17)은 SiO2일 수 있다. 다른 실시예에서, 게이트절연층(17)은 라이너폴리실리콘층을 증착한 후, 라이너폴리실리콘층을 라디칼산화시켜 형성할 수 있다. 또다른 실시예에서, 게이트절연층(17)은 라이너실리콘질화물층을 형성한 후, 라이너실리콘질화물층을 라디칼산화시켜 형성할 수도 있다.
다음으로, 게이트절연층(17) 상에 제1일함수층(18A) 및 제2일함수층(19A)이 형성될 수 있다. 제2일함수층(19A)은 게이트절연층(17) 상에서 게이트트렌치(16)를 채울 수 있다. 제1일함수층(18A)과 제2일함수층(19A)은 저저항 물질일 수 있다. 제2일함수층(19A)은 제1일함수층(18A)보다 저저항을 갖는 물질로 형성될 수 있다. 제1일함수층(18A)과 제2일함수층(19A)은 금속베이스물질(Metal-base material)을 포함할 수 있다. 제2일함수층(19A)과 제1일함수층(18A)은 동일 물질일 수 있다. 제2일함수층(19A)은 미드갭일함수를 가질 수 있다. 제1일함수층(18A)과 제2일함수층(19A)은 동일 일함수를 가질 수 있다. 제1일함수층(18A)은 제2일함수층(19A)보다 일함수가 높을 수 있다. 즉, 제1일함수층(18A)은 고일함수물질일 수 있다. 제2일함수층(22A)은 텅스텐층 또는 티타늄질화물을 포함할 수 있다. 제1일함수층(22A)은 티타늄질화물(TiN)을 포함할 수 있다. 제1일함수층(18A)은 산소와 반응할 수 있는 산소반응성 요소(oxygen-reactable elements)를 포함할 수 있다. 예컨대, 티타늄질화물의 티타늄은 산소와 반응하여 티타늄산화물을 형성할 수 있다.
도 4c에 도시된 바와 같이, 게이트 전극(G)이 형성될 수 있다. 게이트 전극(G)은 제2일함수부(Second workfunction portion, 19) 및 제1일함수부(First workfunction portion, 18)를 포함할 수 있다. 제2일함수부(19) 및 제1일함수부(18)를 형성하기 위해, 제2일함수층(19A) 및 제1일함수층(18A)이 선택적으로 식각될 수 있다. 예컨대, CMP 및 에치백공정이 순차적으로 진행될 수 있다. 게이트 전극(G)의 상부 표면은 활성영역(14)의 상부 표면보다 낮은 레벨일 수 있다. 이에 따라, 게이트트렌치(16) 내에 게이트 전극(G)이 위치할 수 있다. 이를, 임베디드 게이트전극 또는 매립게이트전극이라고 지칭할 수 있다. 제1일함수부(18)는 제2일함수부(19)의 확산을 방지하기 위한 배리어층의 역할을 할 수도 있다.
도 4d에 도시된 바와 같이, 다이폴유도층(dipole induction layer, 20)이 형성될 수 있다. 다이폴유도층(20)을 형성하기 위해 게이트전극(G)이 열공정(20H)에 노출될 수 있다. 열공정(20H)은 급속열처리(RTA)를 포함할 수 있다. 급속열처리는 800℃ 이상의 온도에서 실시할 수 있다. 노출된 게이트전극(G), 특히 제2일함수부(19)의 산화 현상을 방지하기 위해 산소프리(Oxygen-free) 분위기에서 실시한다. 급속열처리는 질소(N2) 또는 아르곤(Ar) 분위기에서 실시할 수 있다.
위와 같은 열공정(20H)에 의해 게이트절연층(17)과 게이트전극(G) 사이에 다이폴유도층(20)이 형성될 수 있다. 다이폴유도층(20)은 제1일함수부(18)와 게이트절연층(17) 사이에 형성될 수 있다. 예컨대, 제1일함수부(18)가 티타늄질화물을 포함하는 경우, 티타늄질화물의 티타늄과 게이트절연층(17)의 산소가 반응하여 티타늄산화물(TiO2)이 형성될 수 있다. 티타늄산화물은 다이폴유도층(20)이 될 수 있다. 다이폴유도층(20) 내의 산소농도는 게이트절연층(17)의 산소농도보다 높을 수 있다. 예컨대, 티타늄산화물(TiO2) 내의 산소 농도는 SiO2의 산소농도보다 높으며, 이로 인해 티타늄산화물(TiO2) 내의 산소가 SiO2 내부로 확산하게 된다. 즉, O2 - 이온(ion)이 티타늄산화물로부터 SiO2로 확산됨으로써, 티타늄산화물은 양전하로 대전(positive charged)되고, SiO2는 음전하로 대전(negative charged)된다. 이에 따라 다이폴(Dipole)이 형성된다. 다이폴은 게이트전극(G), 특히 제1일함수부(18)의 에너지밴드(Energy Band)를 끌어내리게 되며, 이로써 제1일함수부(18)는 증가된 일함수를 갖게 된다. 결국, 게이트전극(G)의 유효일함수가 증가함에 따라 문턱전압을 조절할 수 있다.
이와 같이, 다이폴(D)을 형성하면, 반도체기판(11), 즉 채널영역의 도펀트의 양을 줄일 수 있게 되고, 그로 인해 전계(E-Field)가 완화됨으로써 트랜지스터의 신뢰성 개선 및 DRAM의 리프레쉬 특성을 개선할 수 있게 된다.
열공정(20H)의 온도를 올릴수록 다이폴유도층(20)의 두께를 더욱 증가시킬 수 있게 되고, 그에 따라 게이트전극(G)의 유효일함수를 더욱 증가시킬 수 있다. 한편, 다이폴유도층(20)은 게이트전극(G)이 형성된 이후의 열공정(20H)에 의해 형성되므로, 그 두께가 증가되더라도 게이트전극(G)의 채움 특성에 영향을 미치지 않는다. 비교예로서, 다이폴유도층을 증착한 후, 게이트전극으로 사용되는 일함수층들을 채우는 경우, 다이폴유도층의 두께에 의해 일함수층들의 채움 특성이 열화될 수 있다.
상술한 바와 같이, 열공정(20H)을 통해 게이트전극(G)의 유효일함수를 증가시킬 수 있으므로, 게이트전극(G)의 채움 특성이 개선될 수 있다. 즉, 게이트전극(G)의 유효일함수를 증가시키 위해 고일함수물질층을 추가로 형성하지 않아도 되므로, 종횡비 증가가 없다. 아울러, 열공정(20H)에 의해, 제2일함수부(19)의 비저항을 줄여, RC 딜레이(dealy)를 개선할 수 있다.
도 4e에 도시된 바와 같이, 게이트전극(G) 상에 캡핑층(21)이 형성된다. 캡핑층(21)은 절연물질을 포함한다. 게이트전극(G) 상에서 게이트트렌치(16)가 캡핑층(21)으로 채워진다. 캡핑층(21)은 실리콘질화물을 포함할 수 있다. 후속하여, 기판(11)의 상부 표면이 노출되도록 캡핑층(21)의 평탄화가 진행될 수 있다. 다른 실시예에서, 캡핑층(21)은 실리콘산화물을 포함할 수 있다. 또다른 실시예에서, 캡핑층(23)은 NON(Nitride-Oxide-Nitride) 구조일 수 있다.
캡핑층(21)을 형성하므로써, 매립게이트구조(BG)가 형성된다. 매립게이트구조(BG)는 게이트절연층(17), 다이폴유도층(20), 게이트전극(G) 및 캡핑층(21)을 포함한다. 게이트전극(G)은 제1일함수부(18)와 제2일함수부(19)를 포함할 수 있고, 제1일함수부(18)와 게이트절연층(17) 사이에 다이폴유도층(20)이 위치할 수 있다. 게이트전극(G)의 상부 표면은 기판(11)의 상부 표면보다 낮게 위치한다. 이와 같이, 게이트전극(G)의 상부 표면을 낮게 리세스시킴에 따라, 게이트전극(G)과 주변 도전물(예, 콘택플러그) 간의 물리적 거리를 충분히 확보할 수 있다. 결국, 게이트전극(G)과 주변 도전물간의 절연 내압을 향상시킬 수 있다.
도 4f에 도시된 바와 같이, 활성영역(14) 내에 제1도핑영역(22)과 제2도핑영역(23)이 형성될 수 있다. 제1도핑영역(22)과 제2도핑영역(23)은 매립게이트구조(BG) 양측에 형성될 수 있다. 제1도핑영역(22)과 제2도핑영역(23)은 임플란트 등의 도핑 공정에 의해 형성될 수 있다. 제1도핑영역(22)과 제2도핑영역(23)은 게이트전극(G)과 비-오버랩되는 깊이를 가질 수 있다. 다이폴유도층(20) 및 제1일함수부(18)는 제1 및 제2도핑영역(22, 23)과 비-오버랩될 수 있다. 이에 따라, GIDL을 개선할 수 있다.
도 5a는 제2실시예에 따른 반도체구조물을 설명한다. 도 5b는 제2실시예의 변형예에 따른 반도체구조물을 설명한다.
도 5a 및 도 5b를 참조하면, 반도체구조물(200)의 일부로서 트랜지스터(220)이 도시된다.
트랜지스터(220)는 도 1a의 트랜지스터(120)와 유사할 수 있다. 트랜지스터(220)는 매립게이트구조(200G), 제1도핑영역(112) 및 제2도핑영역(113)를 포함할 수 있다. 매립게이트구조(200G)는 게이트절연층(107), 다이폴유도층(110), 게이트전극(G) 및 캡핑층(111)을 포함할 수 있다. 게이트전극(G)은 제1일함수부(108), 제2일함수부(109) 및 제3일함수부(210)를 포함할 수 있다. 매립게이트구조(200G)는 핀영역(104F)을 더 포함할 수 있다(도 5b 참조).
제3일함수부(210)는 제1일함수부(108)보다 낮은 일함수를 가질 수 있다. 제3일함수부(210)는 N형 일함수를 가질 수 있다. 제3일함수부는 실리콘의 미드갭일함수보다 낮은 일함수를 가질 수 있다. 제3일함수부(210)는 N형 도펀트가 도핑된 폴리실리콘을 포함할 수 있다. 제3일함수부(210)는 제1도핑영역(112) 및 제2도핑영역(113)과 오버랩될 수 있다. 저일함수를 갖는 제3일함수부(210)에 의해 게이트유도드레인누설(GIDL)을 개선할 수 있다. 도시하지 않았으나, 제3일함수부(210)와 제2일함수부(109) 사이에 배리어가 더 형성될 수 있다. 배리어는 제1일함수부(108)와 제3일함수부(210) 사이에 위치하도록 연장될 수 있다. 또한, 배리어는 제3일함수부(210)와 다이폴유도층(110) 사이에 위치하도록 연장될 수 있다. 배리어는 티타늄질화물을 포함할 수 있다.
도 5c는 제2실시예에 따른 반도체구조물의 응용예를 설명한다.
도 5c를 참조하면, 반도체구조물(200)의 일부로서 메모리셀(230)이 도시된다. 메모리셀(230)은 트랜지스터(220), 비트라인(140) 및 메모리요소(150)를 포함할 수 있다. 트랜지스터(220)는 도 5a의 트랜지스터(220)일 수 있다. 따라서, 트랜지스터(220)는 매립게이트구조(200G), 제1도핑영역(112) 및 제2도핑영역(113)을 포함할 수 있다. 제1도핑영역(112)은 제1콘택플러그(141)를 통해 비트라인(140)에 전기적으로 연결될 수 있다. 제2도핑영역(113)은 제2콘택플러그(151)를 통해 메모리요소(150)에 전기적으로 연결될 수 있다. 매립게이트구조(200G)는 매립워드라인구조(BWL)라고 지칭될 수 있다. 매립게이트구조(200G)는 게이트트렌치(206) 내에 내장될 수 있다. 매립게이트구조(200G)는 게이트절연층(107), 다이폴유도층(110), 게이트전극(G) 및 캡핑층(111)을 포함할 수 있다. 게이트전극(G)은 제1일함수부(108) 및 제2일함수부(109)를 포함할 수 있다. 게이트전극(G)은 제1도핑영역(112) 및 제2도핑영역(113)에 오버랩되는 제3일함수부(210)를 더 포함할 수 있다.
도 6a 내지 도 6g는 제2실시예에 따른 반도체구조물을 제조하는 방법의 일예를 설명하기 위한 도면이다. 제2실시예에 따른 제조 방법은 제1실시예에 따른 제조 방법과 유사할 수 있다.
도 6a에 도시된 바와 같이, 기판(31)에 소자분리층(32)이 형성된다. 소자분리층(32)은 분리트렌치(33) 내에 채워질 수 있다. 소자분리층(32)에 의해 활성영역(34)이 정의된다.
다음으로, 기판(31) 상에 하드마스크층(35)이 형성될 수 있다. 하드마스크층(35)은 실리콘산화물을 포함할 수 있다. 하드마스크층(35)은 TEOS를 포함할 수 있다. 하드마스크층(35)은 라인 형상의 오프닝을 갖도록 패터닝되어 있을 수 있다.
다음으로, 기판(31) 내에 게이트트렌치(36)가 형성된다. 게이트트렌치(36)는 활성영역(34) 및 소자분리층(32)을 횡단하는 라인 형상을 가질 수 있다. 다음으로, 도시하지 않았으나, 핀영역을 형성할 수 있다.
다음으로, 게이트트렌치(36)의 표면 상에 게이트절연층(37)이 형성될 수 있다. 게이트절연층(37)은 열산화 공정에 의해 형성될 수 있다. 게이트절연층(37)은 후속 다이폴유도층보다 단위부피당 산소함량이 작은 물질일 수 있다. 게이트절연층(37)은 SiO2일 수 있다.
다음으로, 게이트절연층(37) 상에 제1일함수층(38A)이 형성될 수 있다. 제1일함수층(38A)은 티타늄질화물(TiN) 또는 탄탈륨질화물(TaN)을 포함할 수 있다.
도 6b에 도시된 바와 같이, 다이폴유도층(39A)이 형성될 수 있다. 다이폴유도층(39A)을 형성하기 위해 제1일함수층(38A)이 열공정(39H)에 노출될 수 있다. 열공정(39H)은 급속열처리(RTA)를 포함할 수 있다. 급속열처리는 800℃ 이상의 온도에서 실시하며, 질소(N2) 또는 아르곤(Ar) 분위기에서 실시한다.
위와 같은 열공정(39H)에 의해 게이트절연층(37)과 제1일함수층(38A) 사이에 다이폴유도층(39A)이 형성될 수 있다. 예컨대, 제1일함수층(38A)이 티타늄질화물을 포함하는 경우, 티타늄질화물의 일부가 산화되어 티타늄산화물(TiO2)이 형성될 수 있다. 티타늄산화물은 다이폴유도층(39A)이 될 수 있다.
다이폴유도층(39A)은 하드마스크층(35)의 측벽 및 상부표면을 커버링할 수도 있다.
도 6c에 도시된 바와 같이, 제2일함수층(40A)이 형성될 수 있다. 제1일함수층(40A)은 제1일함수층(38A) 상에서 게이트트렌치(36)를 채울 수 있다. 제2일함수층(40A)은 미드갭일함수를 가질 수 있다. 제2일함수층(40A)은 저저항 물질로 형성될 수 있다. 제2일함수층(40A)은 저저항 금속을 포함할 수 있다. 제2일함수층(40A)은 텅스텐층을 포함할 수 있다.
도 6d에 도시된 바와 같이, 제2일함수부(40) 및 제1일함수부(38)가 형성될 수 있다. 제2일함수부(40) 및 제1일함수부(38)를 형성하기 위해, 제2일함수층(40A) 및 제1일함수층(38A)이 에치백공정에 의해 식각될 수 있다. 제2일함수부(40) 및 제1일함수부(38)의 상부 표면은 활성영역(34)의 상부 표면보다 낮은 레벨일 수 있다.
제2일함수층(40A) 및 제1일함수층(38A)을 에치백하는 동안에, 다이폴유도층(39A)에 의해 게이트절연층(37)이 손상되는 것을 방지할 수 있다(도면부호 37T 참조).
도 6e에 도시된 바와 같이, 다이폴유도층(39A)의 노출부분을 선택적으로 제거할 수 있다. 이에 따라, 게이트트렌치(36) 내에 다이폴유도층(39)이 잔류할 수 있다. 다이폴유도층(39)의 상부표면은 제2일함수부(40) 및 제1일함수부(38)의 상부 표면과 동일 레벨일 수 있다.
도 6f에 도시된 바와 같이, 제3일함수부(41)가 형성될 수 있다. 제3일함수부(41)는 제3일함수층(도면부호 생략)을 채운 후에, 리세싱 공정에 의해 형성될 수 있다. 제3일함수부(41)는 저일함수 물질을 포함한다. 제3일함수부(41)는 도전성을 갖는 비-금속물질로 형성될 수 있다. 제3일함수부(41)는 N형 불순물이 도핑된 폴리실리콘을 포함할 수 있다. 제3일함수부(41)는 활성영역(34)의 상부 표면보다 낮은 레벨일 수 있다.
위와 같이, 제3일함수부(41)를 형성하므로써, 게이트트렌치(36) 내에 게이트전극(G)이 형성될 수 있다. 게이트전극(G)은 제1일함수부(38), 제2일함수부(40) 및 제3일함수부(41)를 포함할 수 있다. 제1일함수부(38)와 게이트절연층(37) 사이에 다이폴유도층(39)이 위치할 수 있다.
도 6g에 도시된 바와 같이, 제3일함수부(41) 상에 캡핑층(42)이 형성된다. 캡핑층(42)은 절연물질을 포함한다. 제3일함수부(41) 상에서 게이트트렌치(36)가 캡핑층(42)으로 채워진다. 캡핑층(42)은 실리콘질화물을 포함할 수 있다. 후속하여, 하드마스크층(35)의 상부 표면이 노출되도록 캡핑층(42)의 평탄화가 진행될 수 있다.
상술한 바와 같은 일련의 공정에 의해, 매립게이트구조(BG)가 형성된다. 매립게이트구조(BG)는 게이트절연층(37), 다이폴유도층(39), 제1일함수부(38), 제2일함수부(40), 제3일함수부(41) 및 캡핑층(42)을 포함한다.
캡핑층(42) 형성 후에, 임플란트 또는 기타 다른 도핑기술에 의해 불순물의 도핑공정이 수행된다. 이에 따라 기판(31) 내에 제1도핑영역(43)과 제2도핑영역(44)이 형성된다. 불순물의 도핑 공정을 진행할 때, 캡핑층(42)이 배리어로 사용된다. 제1도핑영역(43)과 제2도핑영역(44)은 각각 소스영역과 드레인영역이라고 지칭될 수 있다.
제1도핑영역(43)과 제2도핑영역(44)은 제3일함수부(41)와 오버랩되는 깊이를 가질 수 있다.
도 7a 내지 도 7g는 제2실시예에 따른 반도체구조물 제조하는 방법의 다른 예를 설명하기 위한 도면이다.
도 7a에 도시된 바와 같이, 기판(31)에 소자분리층(32)이 형성된다. 소자분리층은 분리트렌치(33) 내에 채워질 수 있다. 소자분리층(32)에 의해 활성영역(34)이 정의된다.
다음으로, 기판(31) 상에 하드마스크층(35)이 형성될 수 있다. 하드마스크층(35)은 실리콘산화물을 포함할 수 있다. 하드마스크층(35)은 TEOS를 포함할 수 있다. 하드마스크층(35)은 라인 형상의 오프닝을 갖도록 패터닝되어 있을 수 있다.
다음으로, 기판(31) 내에 게이트트렌치(36)가 형성된다. 게이트트렌치(36)는 활성영역(34) 및 소자분리층(32)을 가로지르는 라인 형상을 가질 수 있다.
다음으로, 게이트트렌치(36)의 표면 상에 게이트절연층(37)이 형성될 수 있다. 게이트절연층(37)은 열산화 공정에 의해 형성될 수 있다. 게이트절연층(37)은 후속 다이폴유도층보다 단위부피당 산소함량이 작은 물질일 수 있다. 게이트절연층(37)은 SiO2일 수 있다.
다음으로, 게이트절연층(37) 상에 제1일함수층(38A)이 형성될 수 있다. 제1일함수층(38A)은 티타늄질화물(TiN) 또는 탄탈륨질화물(TaN)을 포함할 수 있다.
다음으로, 제2일함수층(40A)이 형성될 수 있다. 제2일함수층(40A)은 제1일함수층(38A) 상에서 게이트트렌치(36)를 채울 수 있다. 제2일함수층(40A)은 텅스텐층을 포함할 수 있다.
도 7b에 도시된 바와 같이, 예비 제2일함수부(40B) 및 예비 제1일함수부(38B)가 형성될 수 있다. 예비 제2일함수부(40B) 및 예비 제1일함수부(38B)를 형성하기 위해, 제2일함수층(40A) 및 제1일함수층(38A)의 CMP 공정이 수행될 수 있다. CMP 공정은 하드마스크층(35)의 표면이 노출될때까지 수행될 수 있다.
도 7c에 도시된 바와 같이, 다이폴유도층(39B)이 형성될 수 있다. 다이폴유도층(39B)을 형성하기 위해 예비 제1일함수부(38A)가 열공정(39H)에 노출될 수 있다. 열공정(39H)은 급속열처리(RTA)를 포함할 수 있다. 급속열처리는 800℃ 이상의 온도에서 실시하며, 질소(N2) 또는 아르곤(Ar) 분위기에서 실시한다.
위와 같은 열공정(39H)에 의해 게이트절연층(37)과 예비 제1일함수부(38B) 사이에 다이폴유도층(39B)이 형성될 수 있다. 예컨대, 예비 제1일함수부(38A)가 티타늄질화물을 포함하는 경우, 티타늄질화물의 일부가 산화되어 티타늄산화물(TiO2)이 형성될 수 있다. 티타늄산화물은 다이폴유도층(39B)이 될 수 있다.
다이폴유도층(39B)은 하드마스크층(35)의 측벽을 커버링할 수도 있다.
도 7d에 도시된 바와 같이, 제2일함수부(40) 및 제1일함수부(38)가 형성될 수 있다. 제2일함수부(40) 및 제1일함수부(38)를 형성하기 위해, 예비 제2일함수부(40B) 및 예비 제1일함수부(38B)가 에치백공정에 의해 식각될 수 있다. 제2일함수부(40) 및 제1일함수부(38)의 상부 표면은 활성영역(34)의 상부 표면보다 낮은 레벨일 수 있다.
예비 제2일함수부(40B) 및 예비 제1일함수부(38B)을 에치백하는 동안에, 다이폴유도층(39B)에 의해 게이트절연층(37)이 손상되는 것을 방지할 수 있다(도면부호 37T 참조).
도 7e에 도시된 바와 같이, 다이폴유도층(39B)의 노출부분을 선택적으로 제거할 수 있다. 이에 따라, 게이트트렌치(36) 내에 다이폴유도층(39)이 잔류할 수 있다. 다이폴유도층(39)의 상부표면은 제2일함수부(40) 및 제1일함수부(38)의 상부 표면과 동일 레벨일 수 있다.
도 7f에 도시된 바와 같이, 제3일함수부(41)가 형성될 수 있다. 제3일함수부(41)는 제3일함수층(도면부호 생략)을 채운 후에, 리세싱 공정에 의해 형성될 수 있다. 제3일함수부(41)는 저일함수 물질을 포함한다. 제3일함수부(41)는 도전성을 갖는 비-금속물질로 형성될 수 있다. 제3일함수부(41)는 N형 불순물이 도핑된 폴리실리콘을 포함할 수 있다. 제3일함수부(41)는 활성영역(34)의 상부 표면보다 낮은 레벨일 수 있다.
위와 같이, 제3일함수부(41)를 형성하므로써, 게이트트렌치(36) 내에 게이트전극(G)이 형성될 수 있다. 게이트전극(G)은 제1일함수부(38), 제2일함수부(40) 및 제3일함수부(41)를 포함할 수 있다. 제1일함수부(38)와 게이트절연층(37) 사이에 다이폴유도층(39)이 위치할 수 있다.
도 7g에 도시된 바와 같이, 제3일함수부(41) 상에 캡핑층(42)이 형성된다. 캡핑층(42)은 절연물질을 포함한다. 제3일함수부(41) 상에서 게이트트렌치(36)가 캡핑층(42)으로 채워진다. 캡핑층(42)은 실리콘질화물을 포함할 수 있다. 후속하여, 하드마스크층(35)의 상부 표면이 노출되도록 캡핑층(42)의 평탄화가 진행될 수 있다.
상술한 바와 같은 일련의 공정에 의해, 매립게이트구조(BG)가 형성된다. 매립게이트구조(BG)는 게이트절연층(37), 다이폴유도층(39), 제1일함수부(38), 제2일함수부(40), 제3일함수부(41) 및 캡핑층(42)을 포함한다.
캡핑층(42) 형성 후에, 임플란트 또는 기타 다른 도핑기술에 의해 불순물의 도핑공정이 수행된다. 이에 따라 기판(31) 내에 제1도핑영역(43)과 제2도핑영역(44)이 형성된다. 불순물의 도핑 공정을 진행할 때, 캡핑층(42)이 배리어로 사용된다. 제1도핑영역(43)과 제2도핑영역(44)은 각각 소스영역과 드레인영역이라고 지칭될 수 있다.
제1도핑영역(43)과 제2도핑영역(44)은 제3일함수부(41)와 오버랩되는 깊이를 가질 수 있다.
상술한 실시예들에 따른 반도체구조물은 DRAM(Dynamic Random Access Memory)에 적용될 수 있으며, 이에 한정되지 않고 SRAM(Static Random Access Memory), 플래시메모리(Flash Memory), FeRAM(Ferroelectric Random Access Memory), MRAM(Magnetic Random Access Memory), PRAM(Phase Change Random Access Memory) 등의 메모리에 적용될 수 있다.
상술한 실시예들에 따른 반도체구조물은 전자장치에 적용될 수 있다. 전자장치는 복수의 반도체장치를 포함할 수 있고, 반도체장치는 트랜지스터를 포함할 수 있다. 전자장치에 포함된 반도체장치들 중 적어도 하나의 반도체장치는, 게이트트렌치 내에 형성된 매립게이트구조를 포함한다. 매립게이트구조는 다이폴유도층 및 게이트전극을 포함할 수 있다. 게이트전극은 제1일함수부와 제2일함수부를 포함할 수 있다. 다이폴유도층은 티타늄산화물을 포함할 수 있고, 제1일함수부는 티타늄질화물을 포함할 수 있다. 제2일함수부는 텅스텐을 포함할 수 있다. 다이폴유도층에 의해 문턱전압을 용이하게 조절할 수 있다. 따라서, 전자장치는 소형화에 대응하여 빠른 동작속도를 구현할 수 있다.
전술한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.
101 : 반도체기판 102 : 소자분리층
104 : 활성영역 105 : 하드마스크층
106 : 게이트트렌치 107 : 게이트절연층
108 : 제1일함수부 109 : 제2일함수부
110 : 다이폴유도층 111 : 캡핑층
112 : 제1도핑영역 113 : 제2도핑영역

Claims (34)

  1. 반도체기판에 트렌치를 형성하는 단계;
    상기 트렌치의 저면 및 측벽들 상에 게이트절연층을 형성하는 단계;
    상기 게이트절연층 상에 일함수층을 형성하는 단계;
    상기 트렌치 내에 위치하는 게이트전극을 형성하기 위해, 상기 일함수층을 리세싱하는 단계; 및
    상기 게이트전극과 게이트절연층 사이에 다이폴유도층을 형성하기 위해, 상기 게이트전극을 열공정에 노출시키는 단계
    를 포함하는 반도체구조물 형성 방법.
  2. 제1항에 있어서,
    상기 열공정은 산소프리(Oxygen-free) 분위기에서 수행하는 반도체구조물 형성 방법.
  3. 제1항에 있어서,
    상기 다이폴유도층을 형성하는 단계는,
    급속열처리에 의해 수행되는 반도체구조물 형성 방법.
  4. 제3항에 있어서,
    상기 급속열처리는 질소 또는 아르곤 분위기에서 수행하는 반도체구조물 형성 방법.
  5. 제1항에 있어서,
    상기 다이폴유도층은 상기 게이트절연층보다 산소농도가 큰 물질을 포함하는 반도체구조물 형성 방법.
  6. 제1항에 있어서,
    상기 다이폴유도층은 상기 일함수층을 구성하고 있는 일부 요소의 산화물을 포함하는 반도체구조물 형성 방법.
  7. 제1항에 있어서,
    상기 일함수층은 금속베이스물질을 포함하고, 상기 다이폴유도층은 상기 금속베이스물질의 금속을 함유하는 산화물을 포함하는 반도체구조물 형성 방법.
  8. 제1항에 있어서,
    상기 일함수층은 티타늄질화물을 포함하고, 상기 다이폴유도층은 티타늄산화물을 포함하는 반도체구조물 형성 방법.
  9. 제1항에 있어서,
    상기 일함수층을 형성하는 단계는,
    상기 게이트절연층 상에 제1일함수층을 컨포멀하게 형성하는 단계; 및
    상기 제1일함수층 상에 제2일함수층을 채우는 단계를 포함하고,
    상기 다이폴유도층은 상기 제1일함수층의 일부와 상기 게이트절연층의 일부가 반응하여 형성되는 반도체구조물 형성 방법.
    를 포함하는 반도체구조물 형성 방법.
  10. 제9항에 있어서,
    상기 제1일함수층은 티타늄질화물을 포함하고, 상기 제2일함수층은 텅스텐을 포함하는 반도체구조물 형성 방법.
  11. 제9항에 있어서,
    상기 제1일함수층과 제2일함수층은 각각 티타늄질화물을 포함하는 반도체구조물 형성 방법.
  12. 제1항에 있어서,
    상기 게이트절연층은 실리콘산화물(SiO2)을 포함하고, 상기 일함수층은 티타늄질화물을 포함하며, 상기 다이폴유도층은 티타늄산화물(TiO2)을 포함하는 반도체구조물 형성 방법.
  13. 반도체기판에 트렌치를 형성하는 단계;
    상기 트렌치의 저면 및 측벽들 상에 게이트절연층을 형성하는 단계;
    상기 게이트절연층 상에 제1일함수층을 형성하는 단계;
    상기 제1일함수층과 게이트절연층 사이에 예비 다이폴유도층을 형성하기 위해, 상기 일함수층을 열공정에 노출시키는 단계;
    상기 제1일함수층 상에 상기 트렌치를 채우는 제2일함수층을 형성하는 단계;
    상기 트렌치 내에 위치하는 제2일함수부 및 제1일함수부를 형성하기 위해, 각각 상기 제2일함수층과 제1일함수층을 리세싱하는 단계; 및
    상기 제1일함수부와 게이트절연층 사이에 다이폴유도층을 형성하기 위해, 상기 예비 다이폴유도층을 리세싱하는 단계
    를 포함하는 반도체구조물 형성 방법.
  14. 제13항에 있어서,
    상기 열공정은 산소프리(Oxygen-free) 분위기에서 수행하는 반도체구조물 형성 방법.
  15. 제13항에 있어서,
    상기 다이폴유도층을 형성하는 단계는,
    급속열처리에 의해 수행되는 반도체구조물 형성 방법.
  16. 제15항에 있어서,
    상기 급속열처리는 질소 또는 아르곤 분위기에서 수행하는 반도체구조물 형성 방법.
  17. 제13항에 있어서,
    상기 제1일함수층은 티타늄질화물을 포함하고, 상기 다이폴유도층은 티타늄산화물을 포함하는 반도체구조물 형성 방법.
  18. 제13항에 있어서,
    상기 다이폴유도층을 형성하는 단계 이후에,
    상기 제1일함수부 및 제2일함수부 상에 제3일함수층을 채우는 단계;
    상기 제3일함수부를 형성하기 위해, 상기 제3일함수층을 리세싱하는 단계;
    상기 제3일함수부 상에 캡핑층을 채우는 단계; 및
    상기 제3일함수부와 오버랩되는 도핑영역을 형성하기 위해, 상기 캡핑층을 배리어로 하여 상기 반도체기판에 도펀트를 도입하는 단계
    를 더 포함하는 반도체구조물 형성 방법.
  19. 제18항에 있어서,
    상기 도핑영역은 상기 다이폴유도층과 비-오버랩되는 깊이를 갖는 반도체구조물 형성 방법.
  20. 제18항에 있어서,
    상기 제3일함수층은 상기 제1일함수층 및 제2일함수층보다 낮은 일함수를 갖는 물질로 형성하는 반도체구조물 형성 방법.
  21. 반도체기판에 트렌치를 형성하는 단계;
    상기 트렌치의 저면 및 측벽들 상에 게이트절연층을 형성하는 단계;
    상기 게이트절연층 상에 상기 트렌치를 채우는 일함수층을 형성하는 단계;
    상기 반도체기판의 상부 표면보다 높은 레벨의 예비 일함수부를 형성하기 위해 상기 일함수층을 평탄화하는 단계;
    상기 예비 일함수부와 게이트절연층 사이에 예비 다이폴유도층을 형성하기 위해, 상기 예비 일함수부를 열공정에 노출시키는 단계;
    상기 트렌치 내에 위치하는 일함수부를 형성하기 위해, 상기 예비 일함수부를 리세싱하는 단계; 및
    상기 일함수부와 게이트절연층 사이에 다이폴유도층을 형성하기 위해, 상기 예비 다이폴유도층을 리세싱하는 단계
    를 포함하는 반도체구조물 형성 방법.
  22. 제21항에 있어서,
    상기 열공정은 산소프리(Oxygen-free) 분위기에서 수행하는 반도체구조물 형성 방법.
  23. 제21항에 있어서,
    상기 다이폴유도층을 형성하는 단계는,
    급속열처리에 의해 수행되는 반도체구조물 형성 방법.
  24. 제23항에 있어서,
    상기 급속열처리는 질소 또는 아르곤 분위기에서 수행하는 반도체구조물 형성 방법.
  25. 제21항에 있어서,
    상기 일함수층은 티타늄질화물을 포함하고, 상기 다이폴유도층은 티타늄산화물을 포함하는 반도체구조물 형성 방법.
  26. 제21항에 있어서,
    상기 일함수층을 형성하는 단계는,
    상기 게이트절연층 상에 제1일함수층을 컨포멀하게 형성하는 단계; 및
    상기 제1일함수층 상에 제2일함수층을 채우는 단계를 포함하고,
    상기 다이폴유도층은 상기 제1일함수층의 일부와 상기 게이트절연층의 일부가 반응하여 형성되는
    반도체구조물 형성 방법.
  27. 제26항에 있어서,
    상기 다이폴유도층을 형성하는 단계 이후에,
    상기 일함수부 상에 제3일함수층을 채우는 단계;
    상기 제3일함수부를 형성하기 위해, 상기 제3일함수층을 리세싱하는 단계;
    상기 제3일함수부 상에 캡핑층을 채우는 단계; 및
    상기 제3일함수부와 오버랩되는 도핑영역을 형성하기 위해, 상기 캡핑층을 배리어로 하여 상기 반도체기판에 도펀트를 도입하는 단계
    를 더 포함하는 반도체구조물 형성 방법.
  28. 제27항에 있어서,
    상기 도핑영역은 상기 다이폴유도층과 비-오버랩되는 깊이를 갖는 반도체구조물 형성 방법.
  29. 제27항에 있어서,
    상기 제3일함수층은 상기 제1일함수층 및 제2일함수층보다 낮은 일함수를 갖는 물질로 형성하는 반도체구조물 형성 방법.
  30. 제1도핑영역과 제2도핑영역을 포함하는 반도체기판;
    상기 반도체기판에 형성되며 상기 제1도핑영역과 제2도핑영역 사이의 채널영역을 포함하는 트렌치;
    상기 채널영역 상의 게이트절연층;
    상기 채널영역을 커버링하는 제1일함수층을 포함하는 상기 트렌치 내의 게이트전극; 및
    상기 제1일함수층과 채널영역 사이에 형성되며, 음전하로 대전된 게이트절연층;
    상기 게이트절연층과 제1일함수층 사이에 형성되며, 양전하로 대전된 다이폴유도층을 포함하고,
    상기 다이폴유도층과 상기 제1일함수층은 동일한 금속 요소를 포함하는
    반도체구조물.
  31. 제30항에 있어서,
    상기 게이트절연층은 실리콘산화물을 포함하고, 상기 다이폴유도층은 상기 실리콘산화물보다 산소농도가 큰 금속산화물을 포함하는 반도체구조물.
  32. 제31항에 있어서,
    상기 다이폴유도층은 티타늄산화물을 포함하며, 상기 제1일함수층은 티타늄질화물을 포함하는 반도체구조물.
  33. 제30항에 있어서,
    상기 게이트전극은,
    상기 제1일함수층 상의 제2일함수층 및 상기 제2일함수층 상에 위치하며 상기 제1 및 제2도핑영역과 오버랩되는 제3일함수층을 더 포함하는 반도체구조물.
  34. 제33항에 있어서,
    상기 제1일함수층은 실리콘의 미드갭일함수보다 높은 고일함수를 갖고, 상기 제3일함수층은 실리콘의 미드갭일함수보다 낮은 저일함수를 갖는 반도체구조물.
KR1020150150915A 2015-10-29 2015-10-29 매립게이트구조를 구비한 반도체구조물 및 그 제조 방법, 그를 구비한 메모리셀 KR102410919B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020150150915A KR102410919B1 (ko) 2015-10-29 2015-10-29 매립게이트구조를 구비한 반도체구조물 및 그 제조 방법, 그를 구비한 메모리셀
US15/090,759 US9704961B2 (en) 2015-10-29 2016-04-05 Semiconductor structure having buried gate structure, method for manufacturing the same, and memory cell having the same
US15/613,845 US9917167B2 (en) 2015-10-29 2017-06-05 Semiconductor structure having buried gate structure, method for manufacturing the same, and memory cell having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150150915A KR102410919B1 (ko) 2015-10-29 2015-10-29 매립게이트구조를 구비한 반도체구조물 및 그 제조 방법, 그를 구비한 메모리셀

Publications (2)

Publication Number Publication Date
KR20170049959A true KR20170049959A (ko) 2017-05-11
KR102410919B1 KR102410919B1 (ko) 2022-06-21

Family

ID=58635753

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150150915A KR102410919B1 (ko) 2015-10-29 2015-10-29 매립게이트구조를 구비한 반도체구조물 및 그 제조 방법, 그를 구비한 메모리셀

Country Status (2)

Country Link
US (2) US9704961B2 (ko)
KR (1) KR102410919B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172369A (zh) * 2021-04-02 2022-10-11 华邦电子股份有限公司 半导体结构及其制造方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102410919B1 (ko) * 2015-10-29 2022-06-21 에스케이하이닉스 주식회사 매립게이트구조를 구비한 반도체구조물 및 그 제조 방법, 그를 구비한 메모리셀
KR102455869B1 (ko) * 2015-12-23 2022-10-20 에스케이하이닉스 주식회사 매립게이트구조를 구비한 반도체장치 및 그 제조 방법, 그를 구비한 메모리셀
KR102511942B1 (ko) * 2016-12-16 2023-03-23 에스케이하이닉스 주식회사 매립게이트구조를 구비한 반도체장치 및 그 제조 방법
US11245020B2 (en) * 2017-01-04 2022-02-08 International Business Machines Corporation Gate-all-around field effect transistor having multiple threshold voltages
CN108346666B (zh) * 2017-01-23 2022-10-04 联华电子股份有限公司 半导体元件及其制作方法
CN108962891B (zh) 2017-05-18 2019-11-19 联华电子股份有限公司 用以避免列锤击问题的半导体结构及其制作方法
KR102404645B1 (ko) 2017-08-28 2022-06-03 삼성전자주식회사 반도체 장치
KR102378471B1 (ko) 2017-09-18 2022-03-25 삼성전자주식회사 반도체 메모리 소자 및 그 제조 방법
US10600900B2 (en) * 2017-10-16 2020-03-24 Kabushiki Kaisha Toshiba Semiconductor device and electric apparatus
KR102377358B1 (ko) 2017-10-16 2022-03-23 삼성전자주식회사 반도체 메모리 소자 및 그 제조 방법
KR102528205B1 (ko) 2018-06-26 2023-05-03 에스케이하이닉스 주식회사 매립 채널 어레이 트랜지스터를 포함하는 극저온 반도체 소자
US10304835B1 (en) * 2018-08-15 2019-05-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method
US10573723B1 (en) * 2018-08-23 2020-02-25 International Business Machines Corporation Vertical transport FETs with asymmetric channel profiles using dipole layers
CN110875391A (zh) * 2018-09-03 2020-03-10 长鑫存储技术有限公司 晶体管及其形成方法、集成电路存储器
US10790287B2 (en) * 2018-11-29 2020-09-29 Applied Materials, Inc. Reducing gate induced drain leakage in DRAM wordline
KR20200144182A (ko) * 2019-06-17 2020-12-29 에스케이하이닉스 주식회사 매립 게이트 구조를 구비한 반도체 장치 및 그 제조 방법
US20210126103A1 (en) * 2019-10-29 2021-04-29 Micron Technology, Inc. Apparatus comprising wordlines comprising multiple metal materials, and related methods and electronic systems
CN112309987A (zh) * 2020-10-30 2021-02-02 福建省晋华集成电路有限公司 半导体结构的制作方法和半导体结构
US11711914B2 (en) 2021-04-07 2023-07-25 Winbond Electronics Corp. Semiconductor structure having buried gate structure and method of manufacturing the same
TWI769797B (zh) 2021-04-27 2022-07-01 華邦電子股份有限公司 動態隨機存取記憶體及其製造法方法
US11374011B1 (en) * 2021-05-11 2022-06-28 Winbond Electronics Corp. Method of manufacturing dynamic random access memory
TWI783534B (zh) * 2021-06-18 2022-11-11 華邦電子股份有限公司 動態隨機存取記憶體及其製造方法
US11690217B2 (en) 2021-07-06 2023-06-27 Winbond Electronics Corp. Dynamic random access memory with adhesion layer and method of manufacturing the same
US11742402B2 (en) * 2021-07-21 2023-08-29 Nanya Technology Corporation Semiconductor structure and manufacturing method thereof
KR20230134287A (ko) * 2022-03-14 2023-09-21 삼성전자주식회사 반도체 소자 및 그의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130110599A (ko) * 2012-03-29 2013-10-10 삼성전자주식회사 트랜지스터, 반도체 소자 및 이를 포함하는 반도체 모듈
KR20140145434A (ko) * 2013-06-13 2014-12-23 삼성전자주식회사 반도체 소자 및 이의 제조 방법
KR20150090669A (ko) * 2014-01-29 2015-08-06 에스케이하이닉스 주식회사 듀얼일함수 매립게이트형 트랜지스터 및 그 제조 방법, 그를 구비한 전자장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235399A (ja) * 2007-03-19 2008-10-02 Toshiba Corp トレンチ型電力用半導体装置及びその製造方法
KR101205143B1 (ko) * 2010-11-15 2012-11-26 에스케이하이닉스 주식회사 반도체 소자 및 그 제조 방법
KR101927992B1 (ko) * 2012-08-31 2018-12-12 에스케이하이닉스 주식회사 반도체 소자 및 그 제조 방법
KR102008318B1 (ko) 2012-12-06 2019-08-08 삼성전자주식회사 반도체 소자
US9196546B2 (en) * 2013-09-13 2015-11-24 United Microelectronics Corp. Metal gate transistor
KR102410919B1 (ko) * 2015-10-29 2022-06-21 에스케이하이닉스 주식회사 매립게이트구조를 구비한 반도체구조물 및 그 제조 방법, 그를 구비한 메모리셀

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130110599A (ko) * 2012-03-29 2013-10-10 삼성전자주식회사 트랜지스터, 반도체 소자 및 이를 포함하는 반도체 모듈
KR20140145434A (ko) * 2013-06-13 2014-12-23 삼성전자주식회사 반도체 소자 및 이의 제조 방법
KR20150090669A (ko) * 2014-01-29 2015-08-06 에스케이하이닉스 주식회사 듀얼일함수 매립게이트형 트랜지스터 및 그 제조 방법, 그를 구비한 전자장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172369A (zh) * 2021-04-02 2022-10-11 华邦电子股份有限公司 半导体结构及其制造方法

Also Published As

Publication number Publication date
KR102410919B1 (ko) 2022-06-21
US20170125532A1 (en) 2017-05-04
US9704961B2 (en) 2017-07-11
US20170271464A1 (en) 2017-09-21
US9917167B2 (en) 2018-03-13

Similar Documents

Publication Publication Date Title
KR102410919B1 (ko) 매립게이트구조를 구비한 반도체구조물 및 그 제조 방법, 그를 구비한 메모리셀
KR102396085B1 (ko) 매립금속게이트구조를 구비한 반도체장치 및 그 제조 방법, 그를 구비한 메모리셀, 그를 구비한 전자장치
US11276761B2 (en) Semiconductor device having buried gate structure, method for manufacturing the same, and memory cell having the same
US10910224B2 (en) Semiconductor device having buried gate structure and method for fabricating the same
US20220293734A1 (en) Semiconductor device having buried gate structure and method for fabricating the same
KR102336033B1 (ko) 매립금속게이트구조를 구비한 반도체장치 및 그 제조 방법, 그를 구비한 메모리셀, 그를 구비한 전자장치
US11935939B2 (en) Semiconductor device having buried gate structure and method for fabricating the same
KR102432719B1 (ko) 매립금속게이트구조를 구비한 반도체장치 및 그 제조 방법, 그를 구비한 메모리셀, 그를 구비한 전자장치
US11600710B2 (en) Semiconductor device having buried gate structure and method for fabricating the same
KR20210026808A (ko) 매립 게이트 구조를 구비한 반도체 장치 및 그 제조 방법
KR20160073143A (ko) 듀얼일함수 게이트구조를 구비한 반도체장치 및 그 제조 방법, 그를 구비한 메모리셀, 그를 구비한 전자장치
TW202329410A (zh) 具有埋藏閘極結構的半導體裝置及製造其之方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant