KR20170037838A - 고속-처리량을 가진 멀티챔버 원자 층 피착 시스템 및 방법 - Google Patents

고속-처리량을 가진 멀티챔버 원자 층 피착 시스템 및 방법 Download PDF

Info

Publication number
KR20170037838A
KR20170037838A KR1020160122979A KR20160122979A KR20170037838A KR 20170037838 A KR20170037838 A KR 20170037838A KR 1020160122979 A KR1020160122979 A KR 1020160122979A KR 20160122979 A KR20160122979 A KR 20160122979A KR 20170037838 A KR20170037838 A KR 20170037838A
Authority
KR
South Korea
Prior art keywords
chamber
ald
sections
chamber sections
platen
Prior art date
Application number
KR1020160122979A
Other languages
English (en)
Inventor
앤드류 엠. 하우리루크
Original Assignee
울트라테크 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울트라테크 인크. filed Critical 울트라테크 인크.
Publication of KR20170037838A publication Critical patent/KR20170037838A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

높은 처리량을 갖는 ALD 시스템 및 방법이 개시된다. 이 ALD 시스템 및 방법은 내부 챔버 칸막이에 의해 형성된 복수의 챔버 섹션들을 가진 공정챔버를 채용한다. 처리될 웨이퍼들은 사이에 작은 간극을 가진 공정챔버 하우징 아래에서 회전하는 플래튼 위에 지지되며, 그에 의해 이 웨이퍼들은 챔버 섹션들 사이에서 이동된다. 복수의 챔버 섹션들은 칸막이들에 의해 및 그 내부에 조작 가능하게 배치되고 간극을 통해 플래튼 표면과 공압 소통하는 공압식 밸브들에 의해 공압적으로 구획된다. 일부 챔버 섹션들은 공정가스를 사용하여 ALD 공정을 수행하기 위해 사용되는 반면, 다른 챔버 섹션들은 정화가스를 포함하는 전이 섹션들이다. 일부 챔버 섹션들은 이것들을 통과하는 웨이퍼들 상에 레이저 공정 또는 플라즈마 공정을 수행하기 위해 채용될 수 있다.

Description

고속-처리량을 가진 멀티챔버 원자 층 피착 시스템 및 방법{HIGH-THROUGHPUT MULTICHAMBER ATOMIC LAYER DEPOSITION SYSTEM AND METHODS}
본 개시는 원자 층 피착에 관한 것이며, 더 구체적으로는 고속 처리량을 가진 원자 층 피착 시스템 및 방법에 관한 것이다.
여기서 언급된 모든 간행물 또는 특허 문헌의 전체 개시는 참조에 의해 본 명세서에 포함되며, 미국 특허 제5,997,963호; 제6,066,210호; 제7,833,351호; 제8,877,300호; 및 미국 특허출원 공개번호 2010/0183825 및 2010/0196078를 포함한다.
원자 층 피착(ALD: Atomic Layer Deposition)은 매우 통제된 방식으로 기판 위에 얇은 막을 피착하는 방법이다. 상기 피착 공정은, 증기 형태의 2개 이상의 화학물질(즉, 공정가스)을 사용하며, 그것들을 실리콘 웨이퍼와 같은 기판의 표면 위에서 순차적으로 그리고 자기제어 방식(self-limiting manner)으로 반응시킴으로써 제어된다. 이 순차 공정은 층층이 박막을 쌓기 위해 반복되며, 층들은 원자 크기의 두께를 가진다.
ALD는 다양한 막들, 예컨대 상호접속 차단층(interconnect barrier) 및 커패시터 전극을 위한 금속계 화합물뿐만 아니라 진보한 게이트 및 커패시터 유전체를 위한 이원계, 삼원계, 사원계 산화물과 같은 다양한 막들을 형성하기 위해 사용된다.
ALD 공정은 당해 기술분야에서 잘 알려진 바와 같이 단일 챔버 내에서 수행될 수 있다. 그러나 ALD 공정은 예컨대 화학기상증착 및 유사한 공정에 비해서 상대적으로 느리다. 전형적인 ALD 공정은 단일의 공정 챔버 내에 제1 공정가스를 도입한다. 샘플은 제1 공정가스에 표면을 노출하기 위해 짧은 시간 동안 이 환경 내에 위치된다. 통상적으로, 이 단계를 위해서 1초 미만이 필요하며, 실제로는 단지 수 밀리초(ms: milliseconds)만이 필요한 것으로 알려져 있다.
일단 표면에 제1 공정가스가 흠뻑 적셔지면, 제1 공정가스는 공정챔버 밖으로 배출된다. 그 다음 불활성 또는 정화 가스를 공정챔버를 통해 흘려보낸다. 그 다음 제2 공정가스가 공정챔버 내부에 도입된다. 제2 공정가스는 제1 공정가스가 흠뻑 적셔진 기판의 표면과 반응한다. 제2 공정가스를 공정챔버 안으로 흘려보내기 전에 불활성 가스를 공정챔버에 흘려보내는 목적은 원래의 반응하지 않은 공정가스 모두를 확실히 제거하기 위해서이다. 제2 공정가스는 제1 공정가스로 흠뻑 적셔진 기판의 표면과 반응한다. 일단 제2 반응 공정이 완료되면(수 밀리초 내에), 제2 공정가스는 제거되고 공정챔버는 다시 불활성 가스로 정화된다. 그 다음에, 제1 공정가스가 챔버 내부에 도입되고, 전체 반응 시퀀스가 원하는 두께의 ALD 막이 얻어질 때까지 반복된다.
ALD 공정이 느린 기본적인 이유는 기판 표면에서 공정가스의 반응속도와 관련이 없다. 이 반응은 비교적 빠르다. ALD 공정은 공정가스를 공정챔버 내부로 흐르게 하고, 그 공정가스를 배출하고, 불활성 가스를 흐르게 하고, 그 불황성 가스를 배출한 후, 다음 공정가스를 공정챔버 내부로 흐르게 하는 등에 필요한 시간때문에 오랜 시간이 걸린다. ALD의 처리량을 제한하는 것은 반응속도가 아니라 흐름 역학이다. 각각의 피착 시퀀스는 보통 수 초가 걸리며, 전체 사이클은 수 분이 걸릴 수 있다.
또한, ALD 공정이 고가인 주된 이유는 ALD 막을 구성하는 각각의 ALD 층이 비교적 대량의 고가의 공정가스를 소비하기 때문이다. 통상적으로, 공정챔버는 기판보다 훨씬 더 크다. 각각의 사이클에서, 공정가스가 배출된다. ALD 반응에서 공정가스의 실제 이용은 통상적으로 1%의 작은 분량이다.
ALD 공정을 고속화하기 위해, 복수의 ALD 챔버가 사용될 수 있다. 대안으로, 복수의 기판을 수용하는 큰 챔버가 일괄 처리로 알려진 것을 수행하기 위해 사용될 수 있다. 어느 쪽이든, 기판의 처리량을 향상시키기 위해 ALD 공정을 고속화하는 것은 기판당 비용을 감소시키게 된다. 또한, 비용을 감소시키기 위해 ALD 시스템의 단순화가 사용될 수도 있다. 특히, ALD 시스템(특히, 멀티챔버 ALD 시스템)의 소유 비용을 감소시키는 것이 기판당 비용을 감소시키기 위해 사용될 수 있다.
따라서, 시스템 비용 및 생산 비용에 추가되는 복잡성을 피하면서 처리량을 향상시키는 개선된 ALD 시스템 및 방법에 대한 요구가 있다.
본 개시는 원자 층 피착(ALD: Atomic Layer Deposition) 공정을 단순화시키면서도 사용되는 공정가스의 양을 감소시켜 ALD 공정의 비용을 감소시키는 ALD 시스템 및 방법에 관한 것이다. 상기 ALD 시스템 및 방법의 측면들은 공정챔버의 분리된 챔버 섹션들 내에 공정가스를 포함하고 또한 챔버 섹션들로부터 공정가스를 제거할 필요 없이 상기 분리된 챔버 섹션들 사이에서 기판을 이동시키는 것을 포함한다.
본 개시의 일 측면은, 복수의 웨이퍼 위에 ALD를 수행하는 멀티챔버 ALD 시스템용 공정 챔버이다. 상기 공정챔버는, 내부 및 개방 바닥 단부를 갖고, 상기 내부를 복수의 챔버 섹션들로 분할하는 챔버 칸막이들(chamber dividers)이 상기 내부 안에 배치된 하우징; 상기 복수의 웨이퍼를 지지하는 상부면 및 중심축을 갖고, 상기 상부면이 상기 하우징의 상기 바닥 단부로부터 간극만큼 떨어져 인접하여 조작 가능하게 배치되고, 상기 복수의 챔버 섹션들 사이에 상기 웨이퍼를 이동시키기 위해 회전할 수 있는 회전형 플래튼; 및 각각의 챔버 분할기 칸막이 내에 조작 가능하게 배치되고, 상기 간극 내의 상기 회전형 플래튼의 상기 상부면과 각각 공압 소통(pneumatic communication)하고, 인접한 챔버 섹션들 사이에 공압 구획을 형성하는 공압식 밸브를 포함하는 공정 챔버이다.
본 개시의 또 다른 측면은, 상기 하우징의 내부가 원형 단면을 갖는 공정 챔버이다.
본 개시의 또 다른 측면은, 상기 간극이 50 마이크론 내지 500 마이크론 사이인 공정 챔버이다.
본 개시의 또 다른 측면은, 상기 회전형 플래튼이 분당 10회 내지 200회 사이의 회전속도로 회전하는 공정 챔버이다.
본 개시의 또 다른 측면은, 상기 챔버 칸막이가 3개 내지 8개 사이의 챔버 섹션들을 형성하는 공정 챔버이다.
본 개시의 또 다른 측면은, 각각의 공압식 밸브들은: (i) 2개의 진공 채널들 사이에 낀 중심 정화가스 채널; 또는 (ii) 2개의 정화가스 채널들 사이에 낀 중심 진공 채널을 포함하는 공정 챔버이다.
본 개시의 또 다른 측면은, 상기 복수의 챔버 섹션들은: 각각의 제1 및 제2 공정 가스 소스에 조작 가능하게 연결되고 인접하지 않은 제1 및 제2 공정챔버 섹션; 및 정화가스 소스에 조작 가능하게 연결되고 인접하지 않은 제1 및 제2 비-공정 챔버 섹션을 포함하는 공정 챔버이다.
본 개시의 또 다른 측면은, 상기 복수의 챔버 섹션들 중 하나 이상에 대해서 조작 가능하게 정렬된 레이저 시스템을 추가로 포함하는 공정 챔버이다.
본 개시의 또 다른 측면은, 상기 복수의 챔버 섹션들 중 하나 이상에 대해서 조작 가능하게 정렬된 플라즈마 소스 시스템을 추가로 포함하는 공정 챔버이다.
본 개시의 또 다른 측면은, 각각의 챔버 섹션이 하나의 웨이퍼를 수용하는 공정 챔버이다.
본 개시의 또 다른 측면은, 상기 웨이퍼들 각각이 두께(THW)를 갖고, 각각의 챔버 섹션이 10·THW≤H≤50·THW 범위의 내부 높이(H)를 갖는 공정 챔버이다.
본 개시의 또 다른 측면은, 상기 공압식 밸브는 V-P-V 공압 구성 또는 P-V-P 공압 구성을 포함하며, 여기서 V는 진공을 나타내고 P는 압력을 나타내는 공정 챔버이다.
본 개시의 또 다른 측면은, 본 명세서에서 개시되고 전술한 것과 같은 공정챔버; 상기 챔버 섹션들 중 2개 이상에 조작 가능하게 연결된 공정가스 시스템; 및 상기 공정가스 시스템에 조작 가능하게 연결된 상기 2개의 챔버 섹션과 상이한 상기 챔버 섹션들 중 2개 이상에 조작 가능하게 연결된 정화가스 시스템;을 포함하는 멀티챔버 ALD 시스템이다.
본 개시의 또 다른 측면은, (i) 상기 챔버 섹션들 중 적어도 하나에 조작 가능하게 연결된 레이저 시스템; 및 (ii) 상기 챔버 섹션들 중 적어도 하나에 조작 가능하게 연결된 플라즈마 소스 시스템; 중 적어도 하나를 추가로 포함하는 멀티챔버 ALD 시스템이다.
본 개시의 또 다른 측면은, 상기 공정가스시스템이 제1 및 제2 공정가스를 각각 포함하는 제1 및 제2 공정가스 공급부를 포함하는 멀티챔버 ALD 시스템이다.
본 개시의 또 다른 측면은, 상기 복수의 챔버 섹션들이 4개의 챔버 섹션들로 구성되는 멀티챔버 ALD 시스템이다.
본 개시의 또 다른 측면은, 상기 웨이퍼들 각각은 두께(THW)를 갖고, 각각의 챔버 섹션은 10·THW≤H≤50·THW 범위의 내부 높이(H)를 갖는 멀티챔버 ALD 시스템이다.
본 개시의 또 다른 측면은, 상기 간극이 50 마이크론 내지 500 마이크론 범위인 멀티챔버 ALD 시스템이다.
본 개시의 또 다른 측면은, 각각의 챔버 섹션이 하나의 웨이퍼를 수용하는 멀티챔버 ALD 시스템이다.
본 개시의 또 다른 측면은, 원자 층 피착(ALD) 막을 형성할 표면을 각각의 웨이퍼들 위에 각각 갖는 복수의 웨이퍼들 위에 ALD를 수행하는 방법이다. 상기 방법은: 복수의 챔버 섹션들을 포함하는 공정챔버 하우징으로부터 500 마이크론 이하의 간극(G)만큼 떨어진 플래튼의 표면 위에 상기 복수의 웨이퍼를 지지하는 단계; 상기 챔버 섹션들을 공압적으로 구획하는 단계; 상기 공정챔버 하우징의 아래에서 상기 플래튼을 회전시켜, 상기 웨이퍼들을 상기 챔버 섹션들 사이에서 이동시키는 단계; 및 상기 ALD 막을 형성하기 위해 상기 웨이퍼들이 상기 챔버 섹션들을 통과할 때 상기 챔버 섹션들 중 적어도 하나에서 ALD 공정을 수행하는 단계;를 포함하는 방법이다.
본 개시의 또 다른 측면은, 상기 플래튼 회전이 상기 플래튼을 연속해서 회전시키는 것을 포함하는 방법이다.
본 개시의 또 다른 측면은, 상기 공압적 구획이 상기 간극(G)을 통해 상기 플래튼의 표면과 공압 소통하는 공압식 밸브들에 의해 수행되는 방법이다.
본 개시의 또 다른 측면은, 상기 공압식 밸브가 V-P-V 공압 구성 또는 P-V-P 공압 구성을 포함하며, 여기서 V는 진공을 나타내고 P는 압력을 나타내는 방법이다.
본 개시의 또 다른 측면은, 제1 챔버 섹션에서 제1 ALD 공정을 수행하는 단계, 및 상기 제1 챔버 섹션에 인접하지 않은 제2 챔버 섹션에서 제2 ALD 공정을 수행하는 단계를 추가로 포함하는 방법이다.
본 개시의 또 다른 측면은, 상기 플래튼의 각각의 완전한 회전이 각각의 웨이퍼 상에 ALD 막을 형성하고, 복수의 ALD 막 층들로 구성된 ALD 막을 형성하기 위해 상기 플래튼의 복수의 완전한 회전들을 수행하는 단계를 추가로 포함하는 방법이다.
본 개시의 또 다른 측면은, 상기 웨이퍼들의 표면 또는 상기 ALD 막 층과 화학적으로 반응하지 않는 가스를 포함하는 적어도 하나의 챔버 섹션을 통해 상기 웨이퍼들을 통과시키는 단계를 추가로 포함하는 방법이다.
본 개시의 또 다른 측면은, 상기 챔버 섹션들의 적어도 하나에서 레이저 공정을 수행하는 단계를 추가로 포함하는 방법이다.
본 개시의 또 다른 측면은, 상기 레이저 공정이 정지된 라인 이미지 형성, 및 상기 라인 이미지에 대한 상기 웨이퍼 이동을 포함하는 방법이다.
본 개시의 또 다른 측면은, 상기 레이저 공정이 레이저-강화된 ALD 공정을 수행하기 위해 공정가스의 존재상태에서 수행되는 방법이다.
본 개시의 또 다른 측면은, 상기 챔버 섹션들 중 적어도 하나에서 플라즈마 공정을 수행하는 단계를 추가로 포함하는 방법이다.
본 개시의 또 다른 측면은, 상기 플래튼의 회전이 250ms 내지 500ms 사이의 상기 챔버 섹션들 내 잔류시간(residence time)을 각각의 웨이퍼에 제공하는 회전속도로 수행되는 방법이다.
본 개시의 또 다른 측면은, 상기 웨이퍼들이 상기 챔버 섹션들의 각각을 복수 회 통과하여 상기 웨이퍼들의 표면들의 각각에 ALD 막을 형성하도록, 상기 플래튼의 복수 회전을 수행하는 단계를 추가로 포함하는 방법이다.
본 개시의 또 다른 측면은, 상기 플래튼의 회전이 10 RPM(rotations per minute)과 200 RPM 사이의 회전속도로 수행되는 방법이다.
본 개시의 또 다른 측면은, 상기 회전속도가 30 RPM과 100 RPM 사이인 방법이다.
본 발명에 의하면, 시스템 비용 및 생산 비용에 추가되는 복잡성을 피하면서 처리량을 향상시키는 개선된 ALD 시스템 및 방법이 제공된다.
첨부 도면은 본 발명의 이해를 돕기 위한 것으로서 본 명세서의 일부를 구성한다. 도면들은 본 발명의 하나 이상의 실시예를 도시하고 상세한 설명과 함께 여러 실시예들의 동작과 원리를 설명하는 역할을 한다. 따라서, 아래와 같은 첨부된 도면과 함께 발명의 상세한 설명을 참조함으로써 본 발명은 더욱 완전히 이해될 수 있을 것이다.
도 1은 본 개시에 따른 고속-처리량(high-throughput)을 가진 멀티챔버 ALD 시스템의 모식도이고;
도 2는 4개의 챔버 섹션을 형성하는 4개의 칸막이를 포함하는 예시적인 공정챔버의 상부 절단도이고;
도 3은 위에 조작 가능하게 지지된 4개의 웨이퍼를 보여주는 예시적인 플래튼(platen)의 사시도이고;
도 4a는 본 명세서에 개시된 시스템 및 방법을 이용하여 위에 ALD 막이 형성되는 표면을 포함하는 예시적인 웨이퍼의 사시도이고;
도 4b는 도 4a의 웨이퍼의 단면도로서, 웨이퍼의 표면 위에 형성된 ALD 막을 추가로 포함하며, 확대 삽입도는 ALD 막이 복수의 ALD 막 층들로부터 형성된 것으로 도시하며;
도 5a 내지 도 5d는 플래튼 및 이것에 인접한 칸막이의 확대 단면도로서, 인접한 챔버 섹션들 사이에 공압적 구획(pneumatic partition)을 형성하기 위한 상기 칸막이 내부의 공압식 밸브의 동작을 도시하며;
도 6a는 도 5a에 유사한 도면으로서, 본 명세서에서 개시된 공압식 밸브를 위한 예시적인 P-V-P 공압 구성을 도시하며;
도 6b는 도 5c에 유사한 도면으로서, 본 명세서에서 개시된 공압식 밸브를 위한 또 다른 예시적인 P-V-P 공압 구성을 도시하며;
도 7a 및 도 7b는 도 2와 유사한 도면으로서, 5개의 챔버 섹션(도 7a) 및 6개의 챔버 섹션(도 7b)을 포함하는 2개의 상이한 챔버 실시예를 도시하며;
도 8은 도 1에 유사한 도면으로서, 챔버 섹션들 중 적어도 하나에서 레이저 처리(예컨대, 레이저 어닐링, 레이저-강화된 ALD 등)을 수행하도록 조작 가능하게 정렬된 레이저 시스템을 포함하는 예시적인 멀티챔버 ALD 시스템을 도시하며;
도 9는 챔버 섹션 내부의 웨이퍼의 사시도로서, 레이저 빔이 웨이퍼의 표면에서 라인 이미지를 형성하는 것을 도시하고, 이 라인 이미지는 전체 ALD 공정의 일부로서 레이저 처리를 수행하기 위해 아래 웨이퍼의 이동에 의해 웨이퍼의 표면에 대하여 주사되며,
도 10은 도 8과 유사한 도면으로서, 챔버 섹션들 중 적어도 하나에서 플라즈마 처리(예컨대, 플라즈마-강화된 ALD)를 수행하도록 조작 가능하게 정렬된 플라즈마 소스 시스템을 포함하는 예시적인 멀티챔버 ALD 시스템을 도시하며;
도 11은 플라즈마 처리 기능을 가진 챔버 섹션 내 웨이퍼의 확대도로서, 플라즈마가 플라즈마 소스 시스템으로부터 웨이퍼의 표면으로 흐르는 것을 도시한다.
이제 본 발명의 바람직한 실시예를 도시하고 있는 첨부한 도면을 참조하여 본 발명을 상세하게 설명한다. 가능한 한, 동일한 또는 유사한 참조 번호와 기호가 동일하거나 유사한 부분을 나타내도록 도면 전체에서 사용된다. 도면에서 축척은 필수적인 것은 아니며, 당해 기술분야의 숙련된 기술자는 본 발명의 주요 측면을 도시하기 위해 도면의 어느 부분이 간략화되었는지 인식할 수 있을 것이다.
첨부된 청구항들은 본 명세서의 일부를 구성하고, 참조에 의해 상세한 설명에 포함된다.
기준을 설정하기 위해 도면들 중 일부에서 직각 좌표가 표시되어 있는데, 이것들은 방향 또는 방위에 대해 제한하는 것을 의도하지 않는다.
아래 설명에서, "공정가스(process gas)"는 하나 이상의 가스 성분으로 구성되거나, 또는 하나의 가스 성분으로 구성될 수 있다. 공정가스는 웨이퍼의 표면 위에 형성되는 ALD 막 층을 포함하는 기판(웨이퍼)의 표면과 반응하는 것이다.
또한, 아래 설명에서, "정화가스(purge gas)"는 웨이퍼의 표면이나 웨이퍼의 표면 위에 형성되는 ALD 막 층과 어떤 실질적인 방법으로 반응하지 않는 질소 또는 하나 이상의 다른 불활성 가스와 같은 반응성이 없는 가스이다.
본 명세서에서 사용된 문구 "P와 Q 사이"는 P와 Q 값을 포함하며, 여기서 P와 Q는 숫자이다.
아래 설명에서, 플래튼의 완전한 회전(full rotation)은 플래튼 회전이 최초 위치에서 시작하여 최초 위치로 돌아오는 것이다. 즉, 플래튼이 360도 회전한다.
아래 설명에서, 2개의 공정가스(111, 112)가 예로서 설명된다. 일반적으로 "공정가스"를 지칭할 때, 편의상 참조번호 '111'이 사용되며, 이러한 참조는 다른 공정가스(112) 또는 추가의 공정가스에도 적용될 수 있음을 이해할 것이다.
멀티챔버 ALD 시스템
도 1은 고속 처리량을 가진 멀티챔버 ALD 시스템("시스템")(10)의 모식도이다. 시스템(10)은 공정챔버(20)를 포함하며, 이것의 실시예가 도 2에 절단 평면도로 도시되어 있다. 공정챔버(20)는 하우징(30)을 포함하고, 하우징(30)은 내부면(33)을 가진 측벽(32), 상단(34), 및 하단(36)을 가진다. 하우징(30)은 중심 하우징 축(AH)을 가진다. 상단(34)은 상부벽(38)을 갖는 반면 하단(36)은 개방되어 있다. 일 실시예에서, 측벽(32)은 원형 단면 형상을 가진 원통형이다. 또 다른 실시예에서, 하우징(30)은, 복수의 면들을 갖지만 바람직하게는 그 내부면(33)이 원형 단면 형상을 형성하는 것을 포함하여, 임의의 합당한 단면 형상을 가진 측벽(32)을 가질 수 있다.
공정챔버(20)의 하우징(30)은 하우징(30)의 상단(34)과 하단(36) 사이에서 측정된 높이("내부 높이")(H)를 갖는 내부(40)를 포함한다. 내부(40)는 칸막이(44)를 포함하며, 이것은 일 실시예에서 중심 하우징 축(AH)으로부터 방사상으로 연장한다. 도 2는 하우징(30)이 4개의 칸막이(44)를 포함하는 실시예를 도시하며, 각각에는 참조부호(44A, 44B, 44C, 44D)가 부여되어 있다. 각각의 칸막이(44)는 반대 측면들(45), 상부 에지(46), 하부 에지(48)를 포함한다. 칸막이(44)는 내부(40)에 복수의 챔버 섹션들(41)을 형성한다. 일 실시예에서, 칸막이(44)는 챔버 섹션들(41) 모두가 실질적으로 같은 크기, 형상 및 체적을 갖도록 정렬된다. 도 2에는 4개의 챔버 섹션(41A 내지 41D)을 형성하는 4개의 예시적인 카막이(44A 내지 44D)가 도시되어 있다. 각각의 칸막이(44)는 공압식 밸브(50)를 포함하며, 예를 들면, 4개의 칸막이(44A 내지 44D)는, 도 2에 도시되고 아래에서 더 자세히 설명한 것과 같이, 각각의 공압식 밸브(50A 내지 50D)를 갖는다. 각각의 칸막이(44)는 폭(w)을 가지며, 이것은 일 실시예에서 5mm≤w≤25mm 범위이다(도 5a 및 아래 설명 참조). 일 실시예에서, 각각의 칸막이(44)의 반대 측면들(45)은 평평하다.
아래 설명된 것과 같이, 시스템(10)은 두께(THw) 및 지름 또는 폭(Wd)을 갖는 복수의 웨이퍼(70)를 처리하도록 구성된다. 일 실시예에서, 내부 높이(H)는, 웨이퍼(70)를 처리할 때 챔버 섹션(41)이 비교적 적은 양의 공정가스 또는 정화 가스를 사용하도록, 선택될 수 있다. 일 실시예에서, 내부 높이(H)는 5·THw≤H≤100·THw 또는 10·THw≤H≤50·THw 또는 10·THw≤H≤20·THw 범위이다. 따라서, 예시적인 웨이퍼 두께 THw=750mm에 대해서, 예시적인 내부 높이(H)는 약 1cm와 5cm 사이일 수 있다.
공정챔버(20)는 또 회전형 플래튼(60)을 포함한다. 도 3은 예시적인 회전형 플래튼(60)의 사시도이다. 회전형 플래튼(60)은 상부면(62), 중심(C), 중심(C)을 통과하는 중심축(AP), 및 반지름(R)을 갖는다. 회전형 플래튼(60)의 상부면(62)은 처리될 복수의 웨이퍼(70)(예컨대, 도시된 것과 같이 4개의 웨이퍼)를 지지하도록 구성된다. 도 3의 파선(DL)들은, 하나의 웨이퍼(70)가 각각의 챔버 섹션(41) 내에 놓이도록 4개의 칸막이(44)가 상부면(62) 위에 놓일 수 있는 예시적 위치를 도시한다. 일 실시예에서, 회전형 플래튼(60)은, 웨이퍼들(70)을 제자리에 위치시키고 그것들을 평탄하게 유지하는 정전기 척을 포함한다.
회전형 플래튼(60)은, 하우징(30)의 하단(36)에 인접하고 그것으로부터 z-방향으로 떨어져 간극(G)을 형성하도록 정렬된다. 일 실시예에서, 간극(G)은 50 마이크론 내지 500 마이크론 범위이다. 일 실시예에서, 간극(G) < 1mm이다. 일 실시예에서, 회전형 플래튼(60)의 상부면(62)은, 웨이퍼(70)의 표면(72)이 회전형 플래튼(60)의 상부면(62)에 또는 아래에 놓이도록 각각 웨이퍼(70)를 수용하는 크기를 갖는 오목부들(63)을 포함한다(도 5c 및 아래 설명 참조). 일 실시예에서, 오목부들(63)은 웨이퍼(70)의 표면(72)이 회전형 플래튼(60)의 상부면(62)과 동일 평면상에 있도록 형성된다. 일 실시예에서, 하우징(30)과 회전형 플래튼(60) 중 적어도 하나는, 웨이퍼들(70)이 회전형 플래튼(60)의 상부면(62) 위에 조작 가능하게 배치되고 또한 간극(G)의 크기를 조정할 수 있도록, z-방향으로 움직일 수 있다.
도 4a는 예시적인 웨이퍼(70)의 사시도이며, 이것은 아래 설명된 것과 같이 ALD 공정이 수행되는 상부면("표면")(72)을 포함한다. 각각의 챔버 섹션(41)은 적어도 하나의 웨이퍼(70), 예컨대, 적어도 하나의 100mm 웨이퍼, 또는 적어도 하나의 200mm 웨이퍼 또는 적어도 하나의 300mm 웨이퍼 또는 적어도 하나의 450mm 웨이퍼를 수용하도록 구성된다. 일 실시예에서, 각각의 챔버 섹션(41)은 복수의 웨이퍼(70)를 포함할 수 있다. 일 실시예에서, 만일 지름 Wd = 200mm인 웨이퍼(70)의 중심이 회전형 플래튼(60)의 중심(C)으로부터 대략 750mm 떨어져 놓이면, 총 20개의 200mm 웨이퍼들이 회전형 플래튼(60)의 상부면(62) 위에 지지될 수 있다. 만일 웨이퍼들의 중심이 회전형 플래튼(60)의 중심(C)으로부터 대략 425mm 떨어져 놓이면, 총 10개의 200mm 웨이퍼들이 회전형 플래튼(60)의 상부면(62) 위에 지지될 수 있다.
지름 Wd의 n개 웨이퍼를 지지하기 위해 필요한 회전형 플래튼(60)의 반지름(R)은 다음 식으로 대략 구해질 수 있다:
R=(n)·(Wd)/(2π)+(Wd/2)
도 4b는 본 명세서에서 개시된 시스템(10) 및 방법을 사용하여 웨이퍼(70)의 상부면(72) 위에 형성된 예시적인 ALD 막(74)을 도시하는 웨이퍼(70)의 단면도이다. 도 4b의 확대 삽입도는 ALD 막(74)이, 아래 설명된 것과 같이, 각각의 ALD 피착 공정 또는 사이클 동안 형성된 복수의 개별 층들(74L)로 이루어진 것을 도시한다. ALD 막(74)의 층들(74L)은 실제 불연속은 아니지만 어떻게 ALD 막(74)이 단계들에서 한 층 한 층 원하는 두께(THF)로 형성되는지 예시하도록 도시되어 있다.
일 실시예에서, 회전형 플래튼(60)은, ALD 공정을 촉진하기 위해 웨이퍼(70)를 400℃까지 가열하도록 구성된다. 이 가열 기능은 예를 들면, 도 3에 도시한 것과 같이, 회전형 플래튼(60)의 내부에 또는 열적 접촉 상태로 조작 가능하게 정렬된 하나 이상의 가열소자(64)에 의해 달성될 수 있다.
다시 도 1을 참조하면, 시스템(10)은 또한, 공정챔버(20)에 조작 가능하게 연결된 공정가스 시스템(100)을 포함한다. 일 실시예에서, 공정가스 시스템(100)은 제1 공정가스(111)를 포함하는 제1 공정가스 공급부(101)와 제2 공정가스(112)를 포함하는 제2 공정가스 공급부(102)를 포함한다. 수행되는 특정 ALD 공정에 따라서 추가의 공정가스 공급부들이 사용될 수도 있으며, 2개의 공정가스 공급부(101, 102)는 예로서 도시된 것이다. ALD 기술에서, 공정가스(111, 112)는 "전구체" 또는 "전구체 가스"로도 지칭된다.
도 2를 참조하면, 일 실시예에서, 제1 공정가스 공급부(101)는 제1 공정가스 라인(121)을 통해 챔버 섹션(41A)에 조작 가능하게 연결되고 제2 공정가스 공급부(102)는 제2 공정가스 라인(122)을 통해 챔버 섹션(41C)에 조작 가능하게 연결된다. 공정가스 시스템(100)은 또한, 아래 설명된 것과 같이, 레이저 어닐링 또는 다른 공정이 ALD 공정의 일부로서 수행되는 실시예들에서 채용된 것과 같은, 다른 챔버 섹션들(41)에 대한 추가의 공정가스들 및 추가의 가스 라인들을 포함할 수 있다.
시스템(10)은 또한 공정챔버(20)에 조작 가능하게 연결된 정화가스 시스템(130)을 포함한다. 정화가스 시스템(130)은 질소 또는 또 다른 불활성 가스와 같은 정화가스(142)를 포함하는 정화가스 공급부(132)를 포함한다. 도 2에 도시된 실시예에서, 정화가스 공급부(132)는, 도 2에 도시된 것과 같이, 정화가스 라인들(152)을 통해서 챔버 섹션들(41B, 41D)에 조작 가능하게 연결된다. 또한, 정화가스 공급부(132)는 추가의 정화가스 라인들(152)을 통해서 각각의 칸막이(44) 내(예컨대, 각각의 칸막이(44A 내지 44D) 내) 공압식 밸브들(50)(예컨대, 공압식 밸브들(50A 내지 50D))에 조작 가능하게 연결된다.
시스템(10)은 또한 진공 라인들(162)을 통해 칸막이(44) 내 공압식 밸브들(50)에 조작 가능하게 연결된 진공시스템(160)을 포함한다.
챔버 섹션들(41)은 실질적으로 일정한 압력으로 유지될 수 있다. 즉, 챔버 섹션들(41)은 종래의 ALD 시스템들에서 행해지는 것처럼 특정 가스를 배출한 후 다시 추가될 필요가 없다. 오히려, 가스는 주어진 챔버 섹션(41) 내에 잔류하고 웨이퍼(70)는 하우징(30) 아래의 회전형 플래튼(60)의 회전에 의해 다른 챔버 섹션들(41)로 이동된다. 이것은 또한 챔버 섹션들(41) 사이에 위치하는 공압식 밸브들(50)에 대해서 약간의 압력 차이를 생성한다. 일 실시예에서, 이 압력 차이는 칸막이들(44) 아래의 간극(G) 안으로 그리고 공압식 밸브들(50) 안으로 가스의 흐름을 조장하도록 "음(negative)"이며, 이것은 챔버 섹션들(41) 사이에 가스 커튼을 생성함으로써 인접한 챔버 섹션(41)으로 가스의 흐름을 실질적으로 차단한다. 또 다른 실시예에서, 상기 압력 차이는, 공압식 밸브들(50)로부터의 정화 가스(142)의 흐름이 인접한 챔버 섹션들(41) 내 가스의, 칸막이(44) 아래 대응하는 간극(G) 안으로의 흐름을 억제하도록 "양(positive)"이다.
공정가스(111, 112) 등은 공정 단계들 사이에서 배출되기보다는 각각의 챔버 섹션들(41) 내에 잔류하기 때문에, 시스템(10)은 ALD 피착 공정의 비용을 실질적으로 감소시킨다. 위에 언급한 것과 같이, ALD 공정 비용의 많은 부분은 공정가스(111, 112)와 관련이 있다. 종래의 시스템에서, 10mm의 챔버 높이를 가진 200mm 웨이퍼용 공정챔버는 대략 500cm3를 차지하며 가스 압력은 명목상 100 millitorr이다. 각각의 ALD 막 층을 위해서, 모든 공정가스가 배출되고 교체된다. 1000 층 쌍에 대해서, 2x500cm3x1000x100 millitorr = 105cm3-torr의 고가의 가스가 소모된다. 본 명세서에서 개시된 시스템(100) 및 관련된 방법에서, 챔버 섹션(41)의 체적은 약 1000배 적은 공정가스가 소모되도록 한 번 채워진다.
다시 도 1을 참조하면, 시스템(10)은 구동 샤프트와 같은 기계적 구동장치(172)를 통해 회전형 플래튼(60)에 조작 가능하게 연결된 구동모터(170)를 포함하므로, 회전형 플래튼(60)은 그 중심축(AP)에 대해서 화살표(AR) 표시와 같이 회전한다. 일 실시예에서, 회전형 플래튼(60)의 중심축(AP)은 도 1에 도시된 것과 같이 중심 하우징 축(AH)과 동축이다.
시스템(10)은 공정가스 시스템(100, 정화가스 시스템(130), 진공시스템(160) 및 구동모터(170)에 조작 가능하게 연결된 컨트롤러(180)를 추가로 포함한다. 컨트롤러(180)는 일반적으로, 예를 들면, 컨트롤러(180)에 조작 가능하게 연결되거나 그 내부에 있는 비 일시적이고 컴퓨터로 읽을 수 있는 매체(182) 내의 명령 구현체에 의해, 시스템(10)의 동작을 제어하도록 구성된다.
도 5a 내지 도 5d는 인접한 챔버 섹션들(41)을 분리하는 인접한 칸막이(44)와 회전형 플래튼(60)의 4개의 상이한 x-z 확대 단면도로서, 칸막이(44) 내부의 공압식 밸브들(50)을 보여준다. 공압식 밸브(50)는 베르누이(Bernoulli) 밸브로도 지칭될 수 있다. 공압식 밸브(50)는, 예를 들면, 정화가스 라인(152) 및 진공 라인(162)을 포함하는 도관(200)을 통해서, 진공시스템(160) 및 정화가스 시스템(130)에 조작 가능하게 연결된다. 공압식 밸브(50)는 적어도 하나의 정화가스 라인(152)에 조작 가능하게 연결된 적어도 하나의 정화가스 채널(252)을 포함하고, 적어도 2개의 진공 라인(162)에 조작 가능하게 연결된 적어도 2개의 진공 채널(262)을 포함한다. 정화가스 채널(252)과 진공 채널(262)은 칸막이(44)의 상단(46)부터 하단(48)까지 대략 Z-방향으로 진행한다.
공정챔버(20)는 각각의 챔버 섹션(41)이 특정 가스, 예컨대 특정 공정가스 또는 정화가스(142)를 포함하도록 구성된다. 공압식 밸브(50)와 그 내부의 정화가스 채널(252) 및 진공 채널(262)은 인접한 챔버 섹션(41)을 공압적으로 분리하도록 구성된다. 각각의 공압식 밸브(50)는 간극(G)을 통해 회전형 플래튼(60)의 상부면(62)과 공압 소통하며, 인접한 챔버 섹션들(41) 사이에 공압 구획을 형성한다.
이러한 공압 구획을 달성하기 위해, 일 실시예에서 각각의 공압식 밸브(50)는, 칸막이(44)의 반대 측면들(45)에 근접하여 각각 위치하는 적어도 2개의 진공 채널(262)을 포함하며, 또한, 2개의 진공 채널 사이에 위치하는 적어도 하나의 정화가스 채널(252)을 포함한다(즉, 상기 2개의 진공 채널(262)은 상기 적어도 하나의 정화가스 채널(252)을 사이에 끼운다). 이러한 공압식 구성은 좌측에서 우측으로 "V-P-V"로 표현될 수 있으며, "V"는 진공을 나타내고 "P"는 정화 또는 적어도 하나의 정화가스 채널(252)로부터 흐르는 정화가스로부터의 압력를 나타낸다(도 5a 참조). "V"는 진공 채널(262)에 대응하고 "P"는 정화가스 채널(252)에 대응한다. 진공들(V)이 "외측"에 있는 반면 하나 이상의 압력들(P)과 하나 이상의 진공들(V)이 외측 진공들(V) 사이에 있는, 다양한 상이한 타입의 "V-P-V" 공압 구성이 있을 수 있다.
인접한 챔버 섹션들(41) 사이의 공압 구획은 가능한 견고한 것이 바람직하지만, 완벽할 필요는 없다는 것을 주목해야 한다. 일 실시예에서, 관련된 가스의 이동하는 양이 미미하다면, 하나의 챔버 섹션(41)으로부터의 일부 공정가스(111, 112)가 인접한 챔버 섹션(41)으로 이동할 수 있고, 일부 정화가스(142)가 하나의 챔버 섹션(41)으로부터 인접한 챔버 섹션(41)으로 이동할 수 있다. 여기서, 미미하다는 의미는 주어진 챔버 섹션(41) 내에서 일어나는 ALD 공정을 실질적으로 바꾸지 않는다는, 즉 형성되는 최종 ALD 막의 품질에 실질적으로 영향을 미치지 않는다는 것이다. 만일 이미 챔버 섹션(41) 내에 존재하는 가스의 양에 비해서 비교적 적은 가스 원자들이 하나의 챔버 섹션(41)으로부터 또 다른 챔버 섹션으로 이동하면, 최종 ALD 막(74)의 형성에 대한 영향은 미미할 것이다.
도 5b 및 도 5c에 도시된 공압식 밸브(50)의 예시적인 구성은 큰 중심 정화가스 채널(252)을 갖는다. 이 중심 정화가스 채널(252)로부터 밖을 향해 양쪽으로 이동하면서 V-P-V 채널 구성을 갖는다. 따라서, 칸막이(44)의 좌측면(45)으로부터 우측면(45)까지 중심 정화가스 채널(252) 구성은 V-P-V-P-V-P-V로 기술될 수 있는 공압 구성을 형성한다. 이러한 공압 구성 표시는 이해의 편의를 위해 도 5b와 도 5c에 포함되어 있다.
도 5d는 도 5c와 유사한 도면으로서 V-P-V-P-V 공압 구성을 보여주며, 여기서 중심 정화가스 채널(252)은 중심 진공 채널(262)로 대체되어 있고, 2개의 가장 안쪽 진공 채널(262)이 더 큰 중심 진공 채널(262)에 병합되어 있다.
공압식 밸브(50)에 대한 기본적인 V-P-V 공압 구성(즉, 정화가스(142)가 진공에 의해 사이에 끼임)은, 정화가스(142)가 중심 정화가스 채널(252)을 통해 간극(G) 안으로 흘러서 측면으로만 확산되고 나중에 간극(G) 내에서 인접한 진공 채널들(262)에 의해 정화가스 채널(252)의 각 측면 상에 짧은 거리 위로 올려지는 것을 가능하게 한다. 또한, 외측 진공 채널들(262)은 인접한 챔버 섹션(41)으로부터 가스를 각각 수집한다. 구체적으로는, 맨 좌측 진공 채널(262)은 간극(G) 안으로 흐르는, 좌측 챔버 섹션(41)으로부터의 제1 공정가스를 수집하고, 맨 우측 진공 채널(262)은 역시 간극(G) 안으로 흐르는, 우측 챔버 섹션(41) 내에 있는 정화가스(142)를 수집한다.
마찬가지로, 도 5b 및 도 5c의 V-P-V-P-V-P-V와 도 5d의 V-P-V-P-V 구성은 유사한 방식으로 동작하지만, 인접한 챔버 섹션(41)의 추가의 공압 분리(즉, 공압 구획)을 제공한다. 구체적으로는, V-P-V-P-V-P-V 구성에서, 맨 외측 진공 채널들(262)은 맨 좌측 챔버 섹션(41)으로부터 제1 공정가스(111)를, 그리고 맨 우측 챔버 섹션(41)으로부터 정화가스(142)를 각각 제거하는 역할을 하며, 또한 인접한 정화가스 채널(252)로부터 정화가스(142)를 제거한다.
한편, 가장 내측 진공 채널들(262)은 중심 정화가스 채널(252) 및 다른 인접한 정화가스 채널(252)로부터 정화가스(142)를 각각 제거한다. 정화가스 채널들(252) 내 진공 압력하의 정화가스(142)의 하향 흐름과 진공 채널들(262) 내의 진공 상태에서 정화가스(142) 및 제1 공정가스(111)의 상향 흐름으로 인해 가스의 역동적인 순환이 일어나 가스 버퍼 또는 "가스 커튼"(55)을 생성하며, 이것은 인접한 챔버 섹션들(41) 사이에 상당한 양의 정화가스(142) 및 공정가스(111, 112)의 이동을 차단한다.
공압식 밸브(50)에 대한 대안의 공압 구성은 P-V-P 구성, 즉 외측에 정화가스 압력(P) 및 내측에 진공(V)이 있는 구성에 기초한다. 도 6a는 도 5a와 유사한 도면으로서 P-V-P 공압 구성을 도시한다. 정화가스 채널들(252)과 진공 채널들(262)을 사용하는 상이한 P-V-P 공압 구성들이 채용될 수 있으며, 이것들은 P-V-P-V-P-V-P 및 P-V-P-V-P와 같은 도 5b 내지 도 5d에 도시한 것들에 유사하다. 도 6b는 도 5c에 유사한 도면으로서, 공압식 밸브(50)에 대한 또 다른 예시적인 P-V-P 공압 구성을 도시한다. 따라서, P-V-P 구성은 적어도 2개의 정화가스 채널(252)과 적어도 하나의 진공 채널(262)을 요구한다.
일반적인 P-V-P 구성은 일부 정화가스(142)가 인접한 챔버 섹션(41) 안으로 흘러들어가는 것을 통상적으로 허용한다. 여기서, 정화가스 압력(P)은 인접한 챔버 섹션(41) 내의 압력과 실질적으로 같거나 약간 더 크다. 챔버 섹션들(41) 중 하나가 정화가스 섹션인 경우, 공압식 밸브(50)로부터 정화가스 챔버 섹션(41)으로의 정화가스(142)의 이동은 미미하다. 챔버 섹션들(41) 중 하나가 공정가스(111, 112)를 포함하는 경우에, 공정가스 챔버 섹션(41)으로 들어가는 정화가스(142)의 양은 미미하므로 수행되고 있는 ALD 공정에 실질적인 영향을 미치지 않는다. 한편, 공정가스 챔버 섹션(41)으로 이동할 수 있는 정화가스(142)의 작은 양은 제1 공정가스(111)가 공압식 밸브(50)로 흐르는 것을 감소 또는 차단하는 역할을 할 수 있다. 즉, 고가의 공정가스의 손실을 경감할 수 있다.
일반적인 동작 방법
시스템(10)의 일반적인 동작에서, 웨이퍼(기판)(70)는 회전형 플래튼(60)의 상부면(62) 위에 배치되고 그것에 의해 도 3에 도시된 것과 같이 지지된다. 웨이퍼(70)는 동시에 회전형 플래튼(60) 위에 놓일 수 있고 오목부(63)(도 5c 참조) 내에 위치할 수 있다. 그 다음에 구동모터(170)가 작동되어, 회전형 플래튼(60)을 그 중심축(AP)에 대해서 회전시키며, 상기 중심축(AP)은 일 실시예에서 도 1에 도시된 것과 같이 중심 하우징 축(AH)과 동축이다. 이것은, 웨이퍼(70)를, 예컨대 41A->41B->41C->41D->41A 등으로, 인접한 챔버 섹션들(41) 사이에서 이동시키는 작용을 한다. 따라서, 주어진 웨이퍼(70)는 회전형 플래튼(60)의 각각의 전체 회전 동안 챔버 섹션들(41) 사이를 순서대로 순환할 것이다. 일 실시예에서, 회전형 플래튼(60)은 연속적으로, 즉 중지하지 않고 회전되며, 일 실시예에서 실질적으로 일정한 회전속도로 회전하는 것을 포함한다. 또 다른 실시예에서, 회전형 플래튼(60)은 주어진 완전한 또는 전체 회전 동안 1회 이상 중지되면서 회전되거나, 가변 회전속도로 회전될 수도 있다.
웨이퍼(70)의 표면(72)은 수 밀리초 동안 제1 공정가스(111)로 적셔지기 때문에, 회전형 플래튼(60)은 매우 빠르게 회전할 수 있다. 예를 들어, 만일 회전형 플래튼(60)이 분당 60 회전(RPM)(즉, 초당 1회전) 속도로 회전하면, 웨이퍼(70)는 총 약 250ms 동안(체류시간) 각각의 챔버 섹션(41) 내에 위치할 것이며, 이것은 웨이퍼(70)의 표면(72)을 적시기에 충분한다. 회전형 플래튼(60)에 대한 회전속도의 예시적인 범위는 10 RPM 과 200 RPM 사이 또는 30 RPM과 100 RPM 사이이다.
일 실시예에서, 회전형 플래튼(60)의 회전속도는 주어진 챔버 섹션(41) 내 웨이퍼(70)의 체류시간이 100ms와 1000ms 사이(즉, 1초), 또는 200ms와 750ms 사이, 또는 250ms와 500ms 사이이다. 일 실시예에서, 상기 체류시간은 웨이퍼(70)의 전단이 챔버 섹션(41)으로 진입할 때부터 웨이퍼(70)의 후단이 챔버 섹션(41)을 떠날 때까지 측정된다. 주목할 것은, 웨이퍼(70)의 후단이 챔버 섹션(41)의 외부에 남아 있는 동안 웨이퍼(70)의 전단 부분이 주어진 챔버 섹션(41)에 진입함으로써 어떤 불균일 처리가 발생하더라도, 웨이퍼(70)의 전단이 주어진 챔버 섹션(41)을 떠나 그 외부에 잔류할 때 웨이퍼(70)의 후단 부분에의 불균일한 노출에 의해 보상된다는 것이다.
회전형 플래튼(60)의 회전과, 챔버 섹션들(41) 사이에서 웨이퍼들(70)의 부수적인 움직임 동안, 칸막이들(44) 내의 공압식 밸브들(50)은, 웨이퍼(70)가 공정챔버(20)의 하우징(30) 아래로 이동하기에 충분한 간극(G)을 허용하는 동시에 인접한 챔버 섹션들(41)을 공압적으로 분리하는 공압 구획들로서 각각 역할을 한다. 전술한 것과 같이, 이러한 공압 구획은 정화가스 채널(252)을 통한 압력을 받는 정화가스(142)의 흐름과, 진공 라인(162)을 통해 진공시스템(160)에 조작 가능하게 연결된 진공 채널들(262)을 통한 진공의 신중한 이용의 조합에 의해 달성된다. 위에 언급한 것과 같이, 공압식 밸브(50)는 인접한 챔버 섹션들(41)을 공압적으로 분리하는 가스 커튼(55)을 생성한다.
공압식 밸브(50)에 의해 제거되는 주어진 챔버 섹션(41) 내의 소량의 가스(공정가스 또는 정화가스)는 챔버 섹션(41) 내의 압력을 유지하기 위해 대응하는 가스 소스를 사용하여 대체된다. 이 방식에서 손실된 가스의 양은, 진공 레벨과 정화가스(142)의 흐름을 조정함으로써 그리고 간극(G)을 가능한 한 작게 유지함으로써, 작게 유지될 수 있다. 또한, 위에 언급한 것과 같이, 공정가스(111, 112)의 소모속도는 간극(G)에 대해 작은 또는 최소의 크기를 가짐으로써 낮게 또는 최소로 유지될 수 있다.
일 실시예에서, 하나 거른 챔버 섹션들(41)(예컨대, 41A, 41C,...)은 공정챔버 섹션이지만 각각의 사이에 오는 챔버 섹션(예컨대, 41B, 41D,...)은 비공정 챔버 섹션이다. 일 실시예에서, 공정챔버 섹션들(41)은 비공정 챔버 섹션들(41) 내의 가스와 다른 가스를 포함한다. 일 실시예에서, 비공정 챔버 섹션들(41)의 주된 목적은 공정챔버 섹션들(41)을 분리하고, 웨이퍼(70)가 다음 공정을 위해 준비되는 전이 장소를 제공하는 것이다. 또 다른 실시예에서, 하나 또는 둘의 챔버 섹션들(41B, 41D)이 공정챔버 섹션(41)으로서 구성될 수도 있다.
Al2O3 막(74)을 형성하기 위해 4개의 챔버 섹션들(41)(41A 내지 41D)을 갖는 시스템(10) 내에서 수행될 수 있는 예시적인 ALD 공정이 아래 표1에 제시되어 있다.
Al2O3 막을 형성하기 위한 예시적인 4-챔버 공정
챔버 가스
41A 트라이-메틸-알루미나(111)
41B 질소 정화(142)
41C 수증기(H2O)(112)
41D 질소 정화(142)
GaN 막을 형성하기 위해 4개의 챔버 섹션들(41)(41A 내지 41D)을 갖는 시스템(10) 내에서 수행될 수 있는 또 다른 예시적인 ALD 공정이 아래의 표2에 제시되어 있다.
GaN 막을 형성하기 위한 예시적인 4-챔버 공정
챔버 가스
41A 트라이-메틸-갈륨(111)
41B 질소 정화(142)
41C 트라이-메틸-갈륨(111)
41D 질소 정화
시스템(10)은 전술한 실시예들에서 설명된 총 4개의 챔버 섹션들(41)에 한정되지 않는다. 도 7a는 도 2와 유사한 도면으로서 5개의 챔버 섹션들(41)(41A~41E)을 형성하는 5개의 칸막이들(44)(44A~44E)을 포함하는 예시적인 공정챔버(20)의 절단 평면도를 도시한다. 공정챔버(20)의 이러한 실시예에서, 챔버 섹션들(41A, 41C, 41D)은 공정 섹션들인 반면 챔버 섹션들(41B, 41E)은 비공정 섹션들일 수 있다.
예를 들면, 인접한 공정 섹션들(41C, 41D)은, 예컨대 가열, 레이저 어닐링, 원래의 공정가스(111, 112)를 정화하지 않은 채의 또 다른 공정가스의 추가 등과 같은 추가의 처리 행위를 수행하는 공정챔버 섹션들(41) 중 하나에서 유사한 공정가스(111, 112)를 사용할 수 있다. 또 다른 실시예에서, 공정챔버(20)는 인접한 정화 챔버 섹션들(41)을 가질 수 있으며, 그 정화 챔버 섹션들(41) 중 하나는 전술한 것과 같은 레이저-어닐링 기능을 역시 가질 수 있다.
도 7b는 도 7a와 유사한 도면으로서, 6개의 챔버 섹션들(41)(41A~41F)을 형성하는 6개의 칸막이들(44)(44A~44F)을 갖는 공정챔버(20)의 또 다른 실시예를 도시한다. 이러한 6개 챔버 구성에서, 챔버 섹션(41)은 하나 걸러 하나가 비공정 챔버 섹션이고, 다른 챔버 섹션들(41)은 3개의 다른 공정가스(111, 112)를 각각 사용하는 공정챔버일 수 있다.
또 다른 실시예에서, 공정챔버 섹션들(41) 중 2개는 2개의 다른 공정가스(111, 112)를 각각 사용할 수 있고, 세 번째 공정챔버 섹션(41)은 예컨대 레이저 어닐링, 플라즈마 처리, 열처리 등과 같은 또 다른 처리를 위해 사용될 수 있다. 임의의 합리적인 개수의 챔버 섹션들(41), 예컨대 2개 내지 12개의 챔버 섹션들(41) 또는 3개 내지 8개의 챔버 섹션들(41)이 사용될 수 있다. 4개의 챔버 섹션들(41)의 구성이 특히 유용할 것으로 기대되는데, 그 이유는 정화 챔버 섹션들(41)이나 다른 비공정-가스 처리, 예컨대 레이저 어닐링, 열처리 등에 의해 분리된 공정챔버 섹션들(41)을 번갈아 바꾸는 것을 허용하기 때문이다.
레이저 어닐링을 구비한 멀티챔버 ALD 시스템
도 8은 도 1과 유사한 도면으로서, 공정챔버(20)에 대하여 조작 가능하게 정렬된 레이저 시스템(300)을 옵션으로 포함하는 예시적인 시스템(10)을 도시한다. 레이저 시스템(300)은 레이저 빔(312)을 방출하는 레이저(310)를 포함한다. 레이저 시스템(300)은 또 레이저 빔(312)을 조절하고 성형하는 빔-조절 광학시스템(316)과, 레이저 빔(312)을 주어진 챔버 섹션(41) 내 원하는 위치로 조향하는 미러(320)를 포함할 수 있다. 일 실시예에서, 레이저 빔(312)은 하우징(30)을 통과하고, 하우징(30) 내에 조작 가능하게 정렬된 창(39)를 통해 내부(40)의 원하는 챔버 섹션(41)으로 조향된다. 또 다른 실시예에서, 선택된 챔버 섹션(41)은 레이저 시스템(300)까지 연장하는 내부(예컨대, 튜브 형태)를 포함할 수 있으며, 레이저 빔(312)은 상기 내부를 통과하여 웨이퍼(70)의 표면(72)을 조사한다. 일 실시예에서, 레이저 시스템(300)은 컨트롤러(180)에 조작 가능하게 연결된다.
레이저 빔(312)은 웨이퍼(70)의 표면(72) 또는 그것에 형성되는 ALD 막(74) 위에 입사하게 된다. 레이저 시스템(300)이 조작 가능하게 정렬되는 챔버 섹션(41)은 레이저-강화된 ALD("LE-ALD")을 수행하기 위해 사용될 수 있다. 레이저 시스템(300)은, 레이저 처리가 챔버 섹션(41)을 통해서 웨이퍼(70)의 주어진 사이클 동안 두 번 이상 수행될 수 있도록 둘 이상의 챔버 섹션(41)에 대해서 조작 가능하게 정렬될 수 있다(즉, 회전형 플래튼(60)의 각각의 전체 회전에 대해 복수의 레이저 처리가 수행될 수 있다). 예를 들면, 전술한 4-챔버 섹션 구성에서, 2개의 정화 챔버 섹션들(예컨대, 40B, 40D)은 LE-ALD 처리 섹션들로 구성될 수 있다.
도 9는 챔버 섹션(41) 내의 웨이퍼(70)의 사시도로서, 웨이퍼(70)의 표면(72)에서 라인 이미지(314)를 형성하는 레이저 빔(312)을 도시한다. 일 실시예에서, 챔버 섹션(41)에서 레이저 어닐링을 수행하여 ALD 막 성장 공정을 촉진하기 위해, 라인 이미지(314)는 정지되어 있고 웨이퍼(70)의 표면(72)(또는 그 위에 형성된 ALD 막(74))이 화살표(AR)에 의해 표시된 것과 같이 라인 이미지(314) 아래에서 주사된다. 일 실시예에서, 챔버 섹션(41)은 전술한 정화가스(142)를 포함하거나, 또는 어닐링 또는 레이저-처리 공정 동안 주사된 라인 이미지(314)에 의해 가열된 웨이퍼(70)의 표면(72)의 국부적으로 가열된 부분과 반응하도록 선택된 것과 같은, 공정가스 시스템(100)으로부터의 공정가스(예컨대, 공정가스(111, 112))를 포함할 수 있다. 라인 이미지(314)는 긴 치수에 직교하는 방향으로 주사된다.
일 실시예에서, 라인 이미지(314)는 적어도 웨이퍼(70)의 폭(Wd)만큼 넓은 라인 길이(LL)를 가진다(예컨대, 200mm 지름 웨이퍼의 경우 LL≥200mm의 길이). 라인 이미지(314)는 또한 라인 폭(WL)을 가진다. 레이저 어닐링이 대략 1ms 이내에 완수되는 라인 폭(WL)을 갖는 것이 바람직하다. 만일 회전형 플래튼(60)이 60 RPM으로 움직이고, 만일 회전형 플래튼(60)이 20개의 200mm 웨이퍼들(70)을 갖는 경우, 웨이퍼들(70)은 대략 4000mm/초의 속도로 움직이고 있다. WL=4mm의 레이저 빔(312)의 폭은 1ms의 어릴링 시간을 생성할 수 있을 것이다. 일 실시예에서, 웨이퍼(70)의 표면(72)에서 라인 이미지(314)의 라인 길이(LL) 및 라인 폭(WL)은 빔-조절 광학시스템(316)에 의해 정의된다. 미러(320)의 위치는 레이저 빔(312)이 선택된 각도(예컨대, 수직 입사, 브루스터 각도 등)로 웨이퍼(70)의 표면(72)에 입사하도록 조정될 수 있다.
시스템(10)을 사용하여 수행된 예시적 레이저 어닐링 공정은 600℃와 1000℃ 사이의 웨이퍼(70)의 표면(72)에서의 피크 온도(TS)를 생성한다. 만일 회전형 플래튼(60)의 온도가 200℃라면, 레이저 빔(312)은 웨이퍼(70)의 표면 온도(TS)를 400℃ 내지 800℃만큼 상승시킬 필요가 있다.
또한, 레이저 빔(312)의 방사가 레이저 어닐링의 열 확산 길이 이내에서 흡수되도록 레이저 빔(312)에 대해 파장(λ)을 사용하는 것이 바람직하다. 실리콘 웨이퍼(70)에 대한 1ms 어닐링에 있어서, 상기 열 확산 길이는 대략 100 마이크론이다. 그러므로, 흡수길이 < 100ms인 것이 바람직하다. 실리콘 웨이퍼(70)에 있어서, 이것은 레이저 파장(λ)이 약 1마이크론 미만인 것을 의미한다.
짧은 시간 동안의 고온 어닐링이 소성 변형보다 탄성 변형을 생성하는 것이 밝혀졌기 때문에, 웨이퍼(70) 상의 각각의 지점에서 대략 1ms의 어닐링 시간(즉, 체류시간(dwell time))을 갖는 것이 바람직하다. 이런 식으로, ALD 막(74) 및 실리콘 웨이퍼(70)는 탄성적으로 확대된다. 이 요건은 피크 온도 요건과 함께 레이저 시스템(300)을 적절히 설계하는데 충분한다.
공정챔버(20)의 4-챔버-섹션 실시예에서, 챔버 섹션들(41A, 41C)의 하나 또는 둘 다는 레이저-어닐링 공정챔버 섹션들일 수 있는 반면, 챔버 섹션들(41B, 41D)은 비공정 챔버 섹션들일 수 있다. 실행 가능한 ALD 공정을 수행하는 것과 일맥상통하는 처리 및 비공정 챔버 섹션들의 임의의 조합이 시스템(10)에서 사용될 수 있다.
플라즈마 처리를 갖는 멀티챔버 ALD 시스템
도 10은 도 1 및 도 8과 유사한 도면으로서, 공정챔버(20)에 대해서 조작 가능하게 정렬된 플라즈마 소스 시스템(400)을 포함하는 시스템(10)의 일 실시예를 도시한다. 플라즈마 소스 시스템(400)은 컨트롤러(180)에 조작 가능하게 연결될 수 있다. 도 11은 챔버 섹션(41) 내의 웨이퍼(70)의 표면(72)을 향해서 흐르는 플라즈마(410)를 방출하는 플라즈마 소스 시스템(400)의 측면 사시도이다.
플라즈마(410)는 웨이퍼(70)의 표면(72) 위에 위치하는 ALD 막 층(74L) 또는 웨이퍼(70)의 표면(72)과 화학적으로 반응하는 플라즈마 종류(예컨대, 산소 라디칼(O*)과 같은 대전된 이온들)를 포함한다. 플라즈마(410)는 플라즈마 소스 시스템(400)과 웨이퍼(70)의 표면(72) 사이의 압력 차이로 인해 웨이퍼(70)의 표면(72)을 향해 이동한다. 일 실시예에서, 플라즈마 소스 시스템(400)은 2개 이상의 챔버 섹션(41)에 대해서 조작 가능하게 정렬될 수 있다. 따라서, 일 실시예에서, 시스템(10)은 챔버 섹션들(41) 중 적어도 하나에서 플라즈마-강화된 ALD(PE-ALD)를 수행하기 위해 사용될 수 있다. 또 다른 실시예에서, 플라즈마(410)는, 예컨대 정화 또는 비공정 챔버 섹션(41)에 대해서 조작 가능한 정렬로 플라즈마 소스 시스템(400)을 제공함으로써, 처리 단계들 사이에서 웨이퍼(70)를 세척하기 위해 사용될 수 있다.
처리량 고려
본 명세서에서 개시된 시스템 및 방법은 처리된 웨이퍼(70)의 상대적으로 높은 처리량을 제공하도록 설계된다. 높은 처리량의 일 실시예는 0.25 마이크론 이상의 재료가 위에 피착된 6인치 웨이퍼(70)의 시간당 10개 이상이다.
이제, 시스템(10)과, 표 2에 제시된 기본적인 공정을 사용하는 전술한 대응하는 방법들을 사용하여 GaN을 형성하는 예시적인 공정을 고려한다. 회전형 플래튼(60)에 대한 60 RPM 회전속도에서, 시간당 3600 사이클(즉, 완전 회전들)이 존재하고, 각각의 사이클은 하나의 ALD 막 층(74L)을 피착하며, 따라서 약 1 마이크론 두께(THF)를 가진 GaN의 ALD 막(74)을 1시간에 성장시킬 수 있다. 공정챔버 크기(예컨대, 회전형 플래튼(60)의 반지름(R))는 회전형 플래튼(60) 위에 맞을 수 있는 웨이퍼(70)의 수를 결정하지만, 회전형 플래튼(60)의 반지름(R)은 하나의 회전형 플래튼(60) 위에 6인치 웨이퍼(70)를 20개 초과하여 수용하도록 충분히 크게 만들어질 수 있다. 이것은 전술한 예시적인 고속 처리량 공정의 막 두께의 4배이고 2배 많은 웨이퍼(70)이다. 즉, 약 8배의 처리량 향상을 나타낸다.
이상에서 설명된 본 발명의 바람직한 실시예들에 대한 다양한 변형이 첨부된 청구항들에 정의된 것과 같은 본 발명의 사상 또는 범위를 벗어나지 않으면서 이루어질 수 있음은 당해 기술분야의 숙련자에게는 명백할 것이다. 따라서, 본 발명은 첨부된 청구항과 그 균등물의 범위 안에 있는 한 본 발명에 대한 변경 및 변형을 포함하는 것으로 해석되어야 한다.

Claims (34)

  1. 복수의 웨이퍼 위에 원자 층 피착(ALD)을 수행하는 멀티챔버 ALD 시스템용 공정 챔버에 있어서,
    내부 및 개방 바닥 단부를 갖고, 상기 내부를 복수의 챔버 섹션들로 분할하는 챔버 칸막이들이 상기 내부 안에 배치된 하우징;
    상기 복수의 웨이퍼를 지지하는 상부면 및 중심축을 갖고, 상기 상부면이 상기 하우징의 상기 바닥 단부로부터 간극만큼 떨어져 인접하여 조작 가능하게 배치되고, 상기 복수의 챔버 섹션들 사이에 상기 웨이퍼를 이동시키기 위해 회전할 수 있는 회전형 플래튼; 및
    각각의 챔버 분할기 칸막이 내에 조작 가능하게 배치되고, 상기 간극 내의 상기 회전형 플래튼의 상기 상부면과 각각 공압 소통하고, 인접한 챔버 섹션들 사이에 공압 구획을 형성하는 공압식 밸브;를 포함하는, 공정 챔버.
  2. 제 1 항에 있어서,
    상기 하우징의 내부는 원형 단면을 갖는, 공정 챔버.
  3. 제 1 항에 있어서,
    상기 간극은 50 마이크론 내지 500 마이크론 사이인, 공정 챔버.
  4. 제 1 항에 있어서,
    상기 회전형 플래튼은 분당 10회 내지 200회 사이의 회전속도로 회전하는, 공정 챔버.
  5. 제 1 항에 있어서,
    상기 챔버 칸막이는 3개 내지 8개 사이의 챔버 섹션들을 형성하는, 공정 챔버.
  6. 제 1 항에 있어서,
    각각의 상기 공압식 밸브들은:
    (i) 2개의 진공 채널들 사이에 낀 중심 정화가스 채널; 또는
    (ii) 2개의 정화가스 채널들 사이에 낀 중심 진공 채널;
    을 포함하는, 공정 챔버.
  7. 제 1 항에 있어서,
    상기 복수의 챔버 섹션들은:
    각각의 제1 및 제2 공정 가스 소스에 조작 가능하게 연결되고 인접하지 않은 제1 및 제2 공정챔버 섹션; 및
    정화가스 소스에 조작 가능하게 연결되고 인접하지 않은 제1 및 제2 비-공정 챔버 섹션;
    을 포함하는, 공정 챔버.
  8. 제 1 항에 있어서,
    상기 복수의 챔버 섹션들 중 하나 이상에 대해서 조작 가능하게 정렬된 레이저 시스템을 추가로 포함하는, 공정 챔버.
  9. 제 1 항에 있어서,
    상기 복수의 챔버 섹션들 중 하나 이상에 대해서 조작 가능하게 정렬된 플라즈마 소스 시스템을 추가로 포함하는, 공정 챔버.
  10. 제 1 항에 있어서,
    각각의 상기 챔버 섹션은 하나의 웨이퍼를 수용하는, 공정 챔버.
  11. 제 1 항에 있어서,
    상기 웨이퍼들 각각은 두께(THW)를 갖고,
    각각의 상기 챔버 섹션은 10·THW≤H≤50·THW 범위의 내부 높이(H)를 갖는, 공정 챔버.
  12. 제 1 항에 있어서,
    상기 공압식 밸브는 V-P-V 공압 구성 또는 P-V-P 공압 구성을 포함하며, 여기서, V는 진공을 나타내고 P는 압력을 나타내는, 공정 챔버.
  13. 멀티챔버 ALD 시스템에 있어서,
    제1항에 의한 공정 챔버;
    상기 챔버 섹션들 중 2개 이상에 조작 가능하게 연결된 공정가스 시스템; 및
    상기 공정가스 시스템에 조작 가능하게 연결된 상기 2개의 챔버 섹션과 상이한 상기 챔버 섹션들 중 2개 이상에 조작 가능하게 연결된 정화가스 시스템;
    을 포함하는, 멀티챔버 ALD 시스템.
  14. 제 13 항에 있어서,
    (i) 상기 챔버 섹션들 중 적어도 하나에 조작 가능하게 연결된 레이저 시스템; 및
    (ii) 상기 챔버 섹션들 중 적어도 하나에 조작 가능하게 연결된 플라즈마 소스 시스템;
    중 적어도 하나를 추가로 포함하는, 멀티챔버 ALD 시스템.
  15. 제 13 항에 있어서,
    상기 공정가스 시스템은 제1 및 제2 공정가스를 각각 포함하는 제1 및 제2 공정가스 공급부를 포함하는, 멀티챔버 ALD 시스템.
  16. 제 13 항에 있어서,
    복수의 상기 챔버 섹션들은 4개의 챔버 섹션들로 구성되는, 멀티챔버 ALD 시스템.
  17. 제 13 항에 있어서,
    상기 웨이퍼들 각각은 두께(THW)를 갖고,
    각각의 상기 챔버 섹션은 10·THW≤H≤50·THW 범위의 내부 높이(H)를 갖는, 멀티챔버 ALD 시스템.
  18. 제 13 항에 있어서,
    간극은 50 마이크론 내지 500 마이크론 범위인, 멀티챔버 ALD 시스템.
  19. 제 13 항에 있어서,
    각각의 상기 챔버 섹션은 하나의 웨이퍼를 수용하는, 멀티챔버 ALD 시스템.
  20. 원자 층 피착(ALD) 막을 형성할 표면을 각각의 웨이퍼들 위에 각각 갖는 복수의 웨이퍼들 위에 ALD를 수행하는 방법에 있어서,
    복수의 챔버 섹션들을 포함하는 공정챔버 하우징으로부터 500 마이크론 이하의 간극(G)만큼 떨어진 플래튼의 표면 위에 상기 복수의 웨이퍼를 지지하는 단계;
    상기 챔버 섹션들을 공압적으로 구획하는 단계;
    상기 공정챔버 하우징의 아래에서 상기 플래튼을 회전시켜, 상기 웨이퍼들을 상기 챔버 섹션들 사이에서 이동시키는 단계; 및
    상기 ALD 막을 형성하기 위해 상기 웨이퍼들이 상기 챔버 섹션들을 통과할 때 상기 챔버 섹션들 중 적어도 하나에서 ALD 공정을 수행하는 단계;를 포함하는, 방법.
  21. 제 20 항에 있어서,
    상기 플래튼 회전은 상기 플래튼을 연속해서 회전시키는 것을 포함하는, 방법.
  22. 제 20 항에 있어서,
    상기 공압적 구획은 상기 간극(G)을 통해 상기 플래튼의 표면과 공압 소통하는 공압식 밸브들에 의해 수행되는, 방법.
  23. 제 22 항에 있어서,
    상기 공압식 밸브는 V-P-V 공압 구성 또는 P-V-P 공압 구성을 포함하며, 여기서 V는 진공을 나타내고 P는 압력을 나타내는, 방법.
  24. 제 20 항에 있어서,
    제1 챔버 섹션에서 제1 ALD 공정을 수행하는 단계, 및 상기 제1 챔버 섹션에 인접하지 않은 제2 챔버 섹션에서 제2 ALD 공정을 수행하는 단계를 추가로 포함하는, 방법.
  25. 제 20 항에 있어서,
    상기 플래튼의 각각의 완전한 회전은 각각의 웨이퍼 상에 ALD 막을 형성하고,
    복수의 ALD 막 층들로 구성된 ALD 막을 형성하기 위해 상기 플래튼의 복수의 완전한 회전들을 수행하는 단계를 추가로 포함하는, 방법.
  26. 제 25 항에 있어서,
    상기 웨이퍼들의 표면 또는 상기 ALD 막 층과 화학적으로 반응하지 않는 가스를 포함하는 적어도 하나의 챔버 섹션을 통해 상기 웨이퍼들을 통과시키는 단계를 추가로 포함하는, 방법.
  27. 제 20 항에 있어서,
    상기 챔버 섹션들의 적어도 하나에서 레이저 공정을 수행하는 단계를 추가로 포함하는, 방법.
  28. 제 27 항에 있어서,
    상기 레이저 공정은 정지된 라인 이미지 형성 및 상기 라인 이미지에 대한 상기 웨이퍼 이동을 포함하는, 방법.
  29. 제 27 항에 있어서,
    상기 레이저 공정은 레이저-강화된 ALD 공정을 수행하기 위해 공정가스의 존재상태에서 수행되는, 방법.
  30. 제 20 항에 있어서,
    상기 챔버 섹션들 중 적어도 하나에서 플라즈마 공정을 수행하는 단계를 추가로 포함하는, 방법.
  31. 제 30 항에 있어서,
    상기 플래튼의 회전은 250ms 내지 500ms 사이의 상기 챔버 섹션들 내 잔류시간을 각각의 웨이퍼에 제공하는 회전속도로 수행되는, 방법.
  32. 제 20 항에 있어서,
    상기 웨이퍼들이 상기 챔버 섹션들의 각각을 복수 회 통과하여 상기 웨이퍼들의 표면들의 각각에 ALD 막을 형성하도록, 상기 플래튼의 복수 회전을 수행하는 단계를 추가로 포함하는, 방법.
  33. 제 20 항에 있어서,
    상기 플래튼의 회전은 10 RPM과 200 RPM 사이의 회전속도로 수행되는, 방법.
  34. 제 33 항에 있어서,
    상기 회전속도는 30 RPM과 100 RPM 사이인, 방법.
KR1020160122979A 2015-09-28 2016-09-26 고속-처리량을 가진 멀티챔버 원자 층 피착 시스템 및 방법 KR20170037838A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562233575P 2015-09-28 2015-09-28
US62/233,575 2015-09-28

Publications (1)

Publication Number Publication Date
KR20170037838A true KR20170037838A (ko) 2017-04-05

Family

ID=58408548

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160122979A KR20170037838A (ko) 2015-09-28 2016-09-26 고속-처리량을 가진 멀티챔버 원자 층 피착 시스템 및 방법

Country Status (6)

Country Link
US (1) US20170088952A1 (ko)
JP (1) JP2017092454A (ko)
KR (1) KR20170037838A (ko)
CN (1) CN106555174A (ko)
SG (1) SG10201607942YA (ko)
TW (1) TWI603384B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210066346A (ko) * 2019-11-28 2021-06-07 한국생산기술연구원 회전형 진공 공정챔버의 씰링 구조

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102411152B1 (ko) 2017-05-02 2022-06-21 피코순 오와이 Ald 장치, 방법 및 밸브
KR20200037824A (ko) * 2017-07-27 2020-04-09 에바텍 아크티엔게젤샤프트 투과 장벽
US11131022B2 (en) * 2018-05-16 2021-09-28 Applied Materials, Inc. Atomic layer self aligned substrate processing and integrated toolset
JP7003859B2 (ja) * 2018-07-13 2022-01-21 住友金属鉱山株式会社 表面被覆近赤外線遮蔽微粒子の製造方法と表面被覆近赤外線遮蔽微粒子
KR102581681B1 (ko) * 2018-09-05 2023-09-22 삼성전자주식회사 플라즈마 증착 방법 및 플라즈마 증착 장치
CN109868460B (zh) * 2019-03-14 2021-10-15 嘉兴科民电子设备技术有限公司 一种薄膜生长系统及生长方法
WO2021030336A1 (en) 2019-08-12 2021-02-18 Kurt J. Lesker Company Ultra high purity conditions for atomic scale processing
CN116770222A (zh) * 2022-03-09 2023-09-19 上海集成电路材料研究院有限公司 一种高通量薄膜沉积设备、刻蚀设备及其方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6932871B2 (en) * 2002-04-16 2005-08-23 Applied Materials, Inc. Multi-station deposition apparatus and method
US20040058293A1 (en) * 2002-08-06 2004-03-25 Tue Nguyen Assembly line processing system
KR100497748B1 (ko) * 2002-09-17 2005-06-29 주식회사 무한 반도체소자 제조용 원자층 증착 장치 및 원자층 증착 방법
US20070281089A1 (en) * 2006-06-05 2007-12-06 General Electric Company Systems and methods for roll-to-roll atomic layer deposition on continuously fed objects
US8043432B2 (en) * 2007-02-12 2011-10-25 Tokyo Electron Limited Atomic layer deposition systems and methods
GB0816186D0 (en) * 2008-09-05 2008-10-15 Aviza Technologies Ltd Gas delivery device
JP5093162B2 (ja) * 2009-03-12 2012-12-05 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
US8758512B2 (en) * 2009-06-08 2014-06-24 Veeco Ald Inc. Vapor deposition reactor and method for forming thin film
JP5812606B2 (ja) * 2010-02-26 2015-11-17 株式会社日立国際電気 基板処理装置及び半導体装置の製造方法
JP6134191B2 (ja) * 2013-04-07 2017-05-24 村川 惠美 回転型セミバッチald装置
US8986562B2 (en) * 2013-08-07 2015-03-24 Ultratech, Inc. Methods of laser processing photoresist in a gaseous environment
TWI643971B (zh) * 2014-01-05 2018-12-11 美商應用材料股份有限公司 使用空間原子層沉積或脈衝化學氣相沉積之薄膜沉積
JP2017503079A (ja) * 2014-01-05 2017-01-26 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 空間的原子層堆積又はパルス化学気相堆積を使用する膜堆積

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210066346A (ko) * 2019-11-28 2021-06-07 한국생산기술연구원 회전형 진공 공정챔버의 씰링 구조

Also Published As

Publication number Publication date
JP2017092454A (ja) 2017-05-25
TW201712735A (zh) 2017-04-01
SG10201607942YA (en) 2017-04-27
US20170088952A1 (en) 2017-03-30
TWI603384B (zh) 2017-10-21
CN106555174A (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
KR20170037838A (ko) 고속-처리량을 가진 멀티챔버 원자 층 피착 시스템 및 방법
US11742189B2 (en) Multi-zone reactor, system including the reactor, and method of using the same
CN108140578B (zh) 通过表面毒化处理的由下而上的间隙填充
TWI753523B (zh) 高溫熱原子層沉積氮化矽膜
KR101803768B1 (ko) 회전형 세미 배치 ald 장치 및 프로세스
CN105917445B (zh) 具有空间原子层沉积的自对准式双图案化
JP2019511118A (ja) スペーサ用の窒化ケイ素膜の選択的堆積
KR102025441B1 (ko) 증착 후 소프트 어닐링
US9443716B2 (en) Precise critical dimension control using bilayer ALD
KR20200062360A (ko) 공간 분리를 갖는 단일 웨이퍼 프로세싱 환경들
KR102441431B1 (ko) 표면을 갖는 기판을 프로세싱 챔버에 포지셔닝하는 단계를 포함하는 프로세싱 방법
WO2014130670A1 (en) Apparatus and methods for carousel atomic layer deposition
JP2012195513A (ja) プラズマ処理装置
EP2465972B1 (en) Method and system for thin film deposition
KR102307233B1 (ko) 금속 산화물 후처리를 위한 방법들
JP2023113690A (ja) 空間堆積ツールを操作する方法
KR101610644B1 (ko) 다수 챔버 적층 구조 원자층 증착장치
US11015246B2 (en) Apparatus and methods for depositing ALD films with enhanced chemical exchange
KR20210066017A (ko) 개선된 온도 균일성을 갖는 공간적 웨이퍼 처리
JP7149431B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
TW202138604A (zh) 藉由電漿ald進行的矽的選擇性沉積