KR20160117905A - 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물, 구리 나노와이어 네트워크의 제조방법 및 이를 포함하는 투명전극 - Google Patents

광소결에 의한 구리 나노와이어 네트워크 형성용 조성물, 구리 나노와이어 네트워크의 제조방법 및 이를 포함하는 투명전극 Download PDF

Info

Publication number
KR20160117905A
KR20160117905A KR1020150045935A KR20150045935A KR20160117905A KR 20160117905 A KR20160117905 A KR 20160117905A KR 1020150045935 A KR1020150045935 A KR 1020150045935A KR 20150045935 A KR20150045935 A KR 20150045935A KR 20160117905 A KR20160117905 A KR 20160117905A
Authority
KR
South Korea
Prior art keywords
copper
copper nanowire
sintering
composition
nanowire network
Prior art date
Application number
KR1020150045935A
Other languages
English (en)
Inventor
김학성
황현준
말라카르주나 코두루
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to KR1020150045935A priority Critical patent/KR20160117905A/ko
Priority to PCT/KR2016/003125 priority patent/WO2016159609A1/ko
Publication of KR20160117905A publication Critical patent/KR20160117905A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

본 발명은 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물, 구리 나노와이어 네트워크의 제조방법 및 이를 포함하는 투명전극에 관한 것으로서, 더욱 구체적으로는 구리 전구체, 바인더 및 환원제를 포함하는 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물, 이를 이용한 구리 나노와이어 네트워크의 제조방법 및 이를 포함하는 투명전극에 관한 것이다.
본 발명에 따르면, 값비싼 기존의 ITO 투명전극을 대체할 수 있는 구리 나노와이어 기반의 투명전극을 저렴한 가격으로 대량생산할 수 있다. 특히, 본 발명에서는 산화문제를 해결하여 안정적인 특성을 갖는 구리 나노와이어를 제조할 수 있으며, 상온 및 대기 조건에서 수 밀리세컨드 (msec) 이내의 매우 짧은 소결시간으로 환원 및 소결 공정을 수행할 수 있다. 또한, 300 ℃ 이상의 온도에서 수행되던 기존의 고온 소결 공정을 대체하여 상온 및 대기 조건에서도 대면적으로의 소결을 통한 와이어 간 접합 (welding)이 가능하기 때문에, 유리기판뿐만 아니라, PET 등의 폴리머 기판에도 적용이 가능하여 유연성 투명전극의 구현에 적합하다. 더불어, 산업적으로 상용화가 가능한 높은 비저항 값과 투명도를 얻을 수 있다.

Description

광소결에 의한 구리 나노와이어 네트워크 형성용 조성물, 구리 나노와이어 네트워크의 제조방법 및 이를 포함하는 투명전극{Composition for forming copper nanowire network by light sintering, method for preparing copper nanowire network, and transparent electrode including the same}
본 발명은 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물, 이를 이용한 구리 나노와이어 네트워크의 제조방법 및 이를 포함하는 투명전극에 관한 것이다.
오늘날, 각종 통신 및 전자기기들은 과학기술이 급속도로 발달함에 따라 점차 소형화, 경량화 및 유연화 추세로 진행되고 있으며, 그 외에도 다양한 기능을 갖춘 기기들이 요구되고 있다. 플렉서블 디스플레이, 트랜지스터, 터치패널, 태양전지 등과 같은 각종 유연성 전자기기들을 제작하기 위해서는, 투명성 및 유연성을 구비한 전극을 사용해야 하며, 이러한 전극은 폴리에틸렌 테레프탈레이트 (polyethylene terephthalate, PET), 또는 폴리에테르술폰 (polyethersulfone, PES) 등과 같은 유연성 기판 위에 박막을 형성하여 제작되고, 제작된 전극은 높은 전도도와 가시광 영역에서 우수한 투과도를 나타내야 한다. 또한, 면저항 수치에 따라서 안테나, 광학 필터, 정전기 방지막 등으로의 활용이 가능하기 때문에, 그 응용분야가 매우 다양하다.
현재 투명 전극으로 사용 가능한 차세대 소재로서, 투명 전도성 산화물 (transparent conducting oxide, TCO), 은 나노와이어 (silver nanowire), 탄소나노튜브 (carbon nanotube, CNT), 그래핀 (graphene), 전도성 고분자 (conducting polymer) 등의 물질들이 연구되고 있으며, 현재 가장 보편적으로 사용되는 투명 전극으로는 인듐 주석 산화물 (indium tin oxide, ITO) 박막이 있다. 하지만, ITO 박막은 유연성 소재로서 미래형 전자기기에 사용되기에는 여러 단점들을 보유하고 있다. 이에, ITO 박막의 단점을 극복하고, 이를 대체하기 위해서, 전술한 다양한 차세대 투명전극들에 대한 연구가 미래 디스플레이 산업의 성장과 함께 경쟁적으로 진행되고 있다.
특히, 소재 제작 시 랜덤 네트워크 형태를 이룰 수 있는 금속 나노와이어가 최근 들어 투명전극의 대체재로서 큰 주목을 받고 있다. 금속 나노와이어는 전극 필름의 제조를 저렴한 비용으로 진행할 수 있으며, 용액을 이용하여 롤투롤 공정을 통해 박막필름을 제조할 수 있다는 점에서 매우 큰 장점을 갖는다. 이 중에서도, 은 나노와이어 (silver nanowires, Ag NWs)는 우수한 광학적 특성, 유연성 및 높은 전도성을 보유하기 때문에, 투명 전도체로의 사용에 대한 잠재력이 매우 큰 물질로서 각광받고 있다.
그러나, 최근 금은 등 귀금속 원자재 가격의 급등으로 인해서, 좀더 경제적인 물질을 사용하여 금속 나노와이어를 제조하고자 하는 연구가 활발하며, 특히 그 중에서도 구리는 가격이 매우 저렴하기 때문에 매력적인 물질로 평가되고 있다. 구리는 금, 은과 같이 높은 전도성을 나타내면서도 저렴한 재료이긴 하지만, 금, 은과 달리 대기상태에서 쉽게 산화된다는 치명적인 단점을 갖는다. 특히, 구리를 이용하여 나노물질을 제조할 경우, 그 표면적 증가로 인해서 더욱 쉽게 산화되므로, 구리 나노물질을 통신 및 전자산업에 채용하는 것은 거의 불가능에 가깝거나, 매우 복잡한 고가의 공정을 필요로 한다.
관련하여, 대한민국 공개특허공보 10-2012-0132424호에서는 전도성 구리 나노잉크의 광소결 방법을 개시하고 있으며, 구체적으로는 구리 나노입자 또는 구리 전구체와 고분자 분산제를 혼합, 기판 위에 도포 및 건조, 및 극단파 백색광 조사 등의 과정을 통해서 전도성 구리나노잉크를 광소결하는 방법을 개시하고 있다. 또한, 대한민국 공개특허공보 10-2014-0044743호에서는 전도성 하이브리드 구리잉크 및 이를 이용한 광소결 방법을 개시하고 있으며, 구체적으로는 구리 나노입자, 구리 전구체, 및/또는 소정 용해도를 갖는 구리 이외의 금속 전구체와 고분자 바인더 수지를 혼합, 기판 위에 도포 및 건조, 및 극단파 백색광 조사 등의 과정을 통해서 전도성 하이브리드 구리잉크를 광소결하는 방법을 개시하고 있다.
또한, 대한민국 공개특허공보 제10-2013-0047243호에서는 구리 나노와이어를 산화시켜 산화 나노와이어를 형성한 다음, 이를 다시 환원시키고 레이저 조사를 통해서 소결시키는 방법을 개시하고 있으며, 대한민국 등록특허 10-1465467호에서는 금속염, 고분자 물질, 용매 및 환원제 등을 포함하는 용액을 마이크로웨이브로 조사하여 금속 나노와이어를 형성하는 기술을 개시하고 있다.
그러나, 상기 레이저 소결법은 극소면적에 대한 소결만이 가능하여 실용성이 떨어진다는 문제점이 있고, 상기 마이크로웨이브 소결법은 투과 깊이가 매우 얕아서 전자 패턴 인쇄에 부적합하다는 문제점이 있다. 또한, 대안으로서 플라즈마 소결법이 제안된 바도 있으나, 이는 고가의 정교한 장비를 요하기 때문에 경제성이 떨어진다는 문제점이 있다.
대한민국 공개특허공보 10-2012-0132424호 대한민국 공개특허공보 10-2014-0044743호 대한민국 공개특허공보 제10-2013-0047243호 대한민국 등록특허 10-1465467호
따라서, 본 발명에서는 상기 종래기술의 문제점을 해결하여, 상온 및 대기 조건에서도 고가의 장비 없이 간단한 공정을 통해서 저렴하게 대면적 및 대량생산이 가능하면서도, 산화문제를 해결하여 안정적인 특성을 갖는 구리 나노와이어 기반의 투명전극을 제공하고자 한다.
본 발명은 상기 과제를 해결하기 위해서,
구리 전구체, 바인더 및 환원제를 포함하는 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물을 제공한다.
본 발명의 일 구현예에 따르면, 상기 구리 전구체는 CuCl2·2H2O, CuCl, CuCl2, Cu(acac)2, Cu(hfac)2, Cu(tfac)2, Cu(dpm)2, Cu(ppm)2, Cu(fod)2, Cu(acim)2, Cu(nona-F)2, Cu(acen)2, Cu(NO3)2·3H20, Cu(C3H4F3O2)2, CuSO4·5H20 또는 그 조합일 수 있다.
본 발명의 다른 구현예에 따르면, 상기 바인더는 헥사데실아민 (hexadecylamine, HDA), 옥타데실아민 (octadecylamine, ODA), 에틸렌디아민 (ethylenediamine, EDA), 올레산 (oleic acid), 올레일아민 (oleylamine), 폴리(N-비닐피롤리돈) (poly(N-vinylpyrrolidone), PVP), 폴리비닐알코올 (poly-vinly alcohol, PVA), 폴리비닐부티랄 (poly-vinyl butyral, PVB), 폴리에틸렌글리콜 (polyethylene glycol, PEG), 폴리메틸메타크릴레이트 (polymethylmethacrylate, PMMA), 폴리에틸메타크릴레이트 (polyethylmethacrylate), 폴리아크릴레이트 (polyacrylate), 폴리(메타)아크릴레이트 (poly(metha)acrylate), 덱스트란 (dextran), 포타슘 브롬화물 (potasium bromide), 세트리마이드 (cetyl trimethyl ammonium bromide), 아미노산 (amino acid) 또는 그 조합일 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 환원제는 글루코오스 (glucose), 암모니아 (ammonia), 하이드라진 (hydrazine), 아스코르브산 (ascorbic acid), 수산화나트륨 (sodium hydroxide), 수산화붕소나트륨 (sodium borohydride), 폴리(N-비닐피롤리돈) (poly(N-vinylpyrrolidone, PVP) 또는 그 조합일 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 구리 전구체는 상기 조성물 중 0.001 중량% 내지 10 중량%의 함량으로 포함되고, 상기 바인더는 상기 조성물 중 0.01 중량% 내지 30 중량%의 함량으로 포함되며, 상기 환원제는 상기 조성물 중 0.01 중량% 내지 40 중량%의 함량으로 포함될 수 있다.
한편, 본 발명은,
구리 전구체 및 바인더를 용매에 분산시킨 용액을 제조하는 단계;
상기 용액에 환원제를 첨가한 후 교반하는 단계;
상기 교반 용액을 밀봉 상태에서 가열함으로써 구리 나노와이어 잉크를 제조하는 단계;
상기 구리 나노와이어 잉크를 기판 상에 코팅 및 건조하는 단계; 및
상기 코팅 결과물을 제논 플래쉬 램프로부터 조사된 백색광을 이용하여 광소결시킴으로써 상기 구리 나노와이어 간의 네트워크를 형성하는 단계를 포함하는 구리 나노와이어 네트워크의 제조방법을 제공한다.
본 발명의 일 구현예에 따르면, 상기 구리 전구체 및 바인더를 용매에 분산시키는 단계는 초음파 분산기, 기계식 교반기, 볼밀 또는 3 롤밀을 사용하여 5 분 내지 60 분 동안 수행될 수 있다.
본 발명의 다른 구현예에 따르면, 상기 환원제를 첨가한 후 교반하는 단계는 25 ℃ 내지 80 ℃의 온도로 1 시간 내지 48 시간 동안 수행될 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 밀봉 상태에서의 가열 단계는 90 ℃ 내지 120 ℃의 온도로 5 시간 내지 48 시간 동안 수행될 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 기판은 폴리에스터 필름, 폴리이미드 필름, 폴리에틸렌 필름, BT 에폭시/유리 섬유, 포토페이퍼, 또는 유리로 된 기판일 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 구리 나노와이어 잉크의 코팅 단계는 스크린 프린팅, 잉크젯 프린팅, 그라뷰어링 (Gravuring), 롤투롤 (roll-to-roll) 코팅, 딥 코팅 (dip coating), 스프레이 코팅, 또는 스핀코팅에 의해서 수행될 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 광소결 단계는 상기 백색광을 조사하기 이전에, 근적외선 램프 또는 핫 플레이트를 사용하여 80 ℃ 내지 100 ℃의 온도에서 5 분 내지 60 분 동안 예열하는 단계를 더 포함할 수도 있다.
본 발명의 또 다른 구현예에 따르면, 상기 제논 플래쉬 램프의 광조사 시간은 0.1 ms 내지 10 ms이고, 펄스 간격 (pulse gap)은 0.1 ms 내지 20 ms이며, 펄스 수 (pulse number)는 1 회 내지 100 회일 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 제논 플래쉬 램프의 광강도는 (intensity) 0.1 J/㎠ 내지 50 J/㎠일 수 있다.
한편, 본 발명은 상기 방법에 의해서 제조된 구리 나노와이어 네트워크를 포함하는 투명전극을 제공한다.
본 발명에 따르면, 값비싼 기존의 ITO 투명전극을 대체할 수 있는 구리 나노와이어 기반의 투명전극을 저렴한 가격으로 대량생산할 수 있다. 특히, 본 발명에서는 산화문제를 해결하여 안정적인 특성을 갖는 구리 나노와이어를 제조할 수 있으며, 상온 및 대기 조건에서 수 밀리세컨드 (msec) 이내의 매우 짧은 소결시간으로 환원 및 소결 공정을 수행할 수 있다. 또한, 300 ℃ 이상의 온도에서 수행되던 기존의 고온 소결 공정을 대체하여 상온 및 대기 조건에서도 대면적으로의 소결을 통한 와이어 간 접합 (welding)이 가능하기 때문에, 유리기판뿐만 아니라, PET 등의 폴리머 기판에도 적용이 가능하여 유연성 투명전극의 구현에 적합하다. 더불어, 산업적으로 상용화가 가능한 높은 비저항 값과 투명도를 얻을 수 있다.
도 1은 본 발명에 따른 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물에 있어서, 환원제로서 글루코오스를 사용하는 경우에 발생되는 구리 나노와이어의 산화막 환원 반응을 도시한 도면이다.
도 2는 본 발명에 따른 구리 나노와이어 네트워크 제조방법에 대한 개략적인 공정도를 도시한 도면이다.
도 3은 본 발명에서 사용되는 백색광 발산 램프로서, 제논 램프를 이용한 극단파 광소결 장치에 대한 개략적인 도면을 도시한 도면이다.
도 4a 및 4b는 본 발명에 따라서 광소결 과정을 진행하였을 경우, 광소결 전후의 구리 나노와이어 상태를 주사전자현미경 (SEM)을 통해서 관찰한 사진을 도시한 도면이다.
도 5는 본 발명에 따른 구리 나노와이어 네트워크의 제조방법에 있어서, 구리 나노와이어의 함량에 따라서 면저항이 감소하는 것을 그래프로 도시한 도면이다.
도 6은 본 발명에 따른 구리 나노와이어 네트워크의 제조방법에 있어서, 사용되는 제논 램프의 극단파 백색광 조사 조건들을 개략적인 그래프로 도시한 도면이다.
도 7은 본 발명에 따른 투명전극에 있어서, 구리 나노와이어의 함량에 따른 투명전극의 투명도를 그래프로 도시한 도면이다.
도 8a 내지 8d는 각각, 40 ㎕, 100 ㎕ 및 200 ㎕ 함량의 구리 나노와이어 잉크를 사용하여 광소결을 수행한 이후 사진들, 및 40 ㎕ 함량의 구리 나노와이어 잉크를 사용하여 한양대학교 로고를 투명전극으로 제작한 사진들을 도시한 것이다.
이하, 본 발명을 더욱 상세하게 설명하기로 한다.
본 발명에서는 상온 및 대기 조건에서도 고가의 장비 없이 간단한 공정을 통해서 저렴하게 대면적 및 대량생산이 가능하면서도, 산화문제를 해결하여 안정적인 특성을 갖는 구리 나노와이어 기반의 투명전극을 제공하고자 하며, 이를 위해서, 구리 나노와이어로 이루어진 네트워크를 형성하기 위한 광소결용 조성물을 제조하고, 이를 이용하여 구리 나노와이어를 제조한 다음, 이를 기반으로 한 투명전극을 제공하고자 한다.
본 발명에 따른 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물은 구리 전구체, 바인더 및 환원제를 포함한다.
상기 구리 전구체는, 물 또는 아세톤 등과 같은 적당한 용매에 용해되어 구리 나노와이어를 형성하기에 적합한 물질로서, 예를 들어 이에 제한되는 것은 아니지만, CuCl2·2H2O, CuCl, CuCl2, Cu(acac)2, Cu(hfac)2, Cu(tfac)2, Cu(dpm)2, Cu(ppm)2, Cu(fod)2, Cu(acim)2, Cu(nona-F)2, Cu(acen)2, Cu(NO3)2·3H20, Cu(C3H4F3O2)2, CuSO4·5H20 또는 그 조합일 수 있다.
또한, 상기 바인더는 헥사데실아민 (hexadecylamine, HDA), 옥타데실아민 (octadecylamine, ODA), 에틸렌디아민 (ethylenediamine, EDA), 올레산 (oleic acid), 올레일아민 (oleylamine), 폴리(N-비닐피롤리돈) (poly(N-vinylpyrrolidone), PVP), 폴리비닐알코올 (poly-vinly alcohol, PVA), 폴리비닐부티랄 (poly-vinyl butyral, PVB), 폴리에틸렌글리콜 (polyethylene glycol, PEG), 폴리메틸메타크릴레이트 (polymethylmethacrylate, PMMA), 폴리에틸메타크릴레이트 (polyethylmethacrylate), 폴리아크릴레이트 (polyacrylate), 폴리(메타)아크릴레이트 (poly(metha)acrylate), 덱스트란 (dextran), 포타슘 브롬화물 (potasium bromide), 세트리마이드 (cetyl trimethyl ammonium bromide), 아미노산 (amino acid) 또는 그 조합으로부터 선택된 것을 사용할 수 있다. 이러한 바인더는 사용되는 종류와 그 함량에 따라서 합성되는 구리 나노와이어의 직경 및 길이를 결정하게 되고, 이는 이후 단계에서 수행되는 소결 공정에서 구리 나노와이어의 소결 특성에 큰 영향을 미치게 되는 바, 이에 따라서 소결 조건을 달라지게 한다.
한편, 본 발명에 따른 조성물은 환원제를 포함하는 바, 이는 구리 나노와이어 표면에 형성된 산화막을 백색광 조사에 의해서 환원 및 소결시킴으로써 높은 전도성을 유지하는데 기여하게 된다. 도 1에는 예를 들어 환원제로서 글루코오스를 사용하는 경우에 발생되는 구리 나노와이어의 산화막 환원 반응을 도시하였다. 본 발명에서 사용가능한 환원제로는, 이에 제한되는 것은 아니지만, 글루코오스 (glucose), 암모니아 (ammonia), 하이드라진 (hydrazine), 아스코르브산 (ascorbic acid), 수산화나트륨 (sodium hydroxide), 수산화붕소나트륨 (sodium borohydride), 폴리(N-비닐피롤리돈) (poly(N-vinylpyrrolidone, PVP) 또는 그 조합을 사용할 수 있다.
본 발명에 따른 조성물 중 각 성분들의 함량은 다음과 같다. 즉, 상기 구리 전구체는 상기 조성물 중 0.001 중량% 내지 10 중량%의 함량으로 포함될 수 있으며, 상기 바인더는 상기 조성물 중 0.01 중량% 내지 30 중량%의 함량으로 포함될 수 있고, 상기 환원제는 상기 조성물 중 0.01 중량% 내지 40 중량%의 함량으로 포함될 수 있다. 이때, 조성물 중 구리 전구체의 함량이 0.001 중량% 미만인 경우에는 구리 나노와이어의 합성 효율이 저하되는 문제점이 있고, 10 중량%를 초과하는 경우에는 광소결 공정에 적합하지 않은 구리 나노와이어 전극이 형성될 수 있다는 문제점이 있다. 또한, 조성물 중 바인더의 함량이 0.01 중량% 미만인 경우에는 구리 나노와이어의 형성 및 성장이 잘 일어나지 않는다는 문제점이 있고, 30 중량%를 초과하는 경우에는 전구체로부터 입자의 결정화 반응을 방해할 수 있다는 문제점이 있다. 또한, 조성물 중 환원제의 함량이 0.01 중량% 미만인 경우에는 구리 나노와이어 표면의 산화막을 충분히 환원시키지 못하여 투명전극의 전도성을 저하시킬 수 있는 문제점이 있고, 40 중량%를 초과하는 경우에는 구리 나노와이어의 광 흡수를 방해하기 때문에 백색광 조사를 통한 접합 (welding)에 적합하지 않다는 문제점이 있다.
한편, 본 발명은 상기 구리 나노와이어 형성용 조성물을 이용한 구리 나노와이어 네트워크의 제조방법을 제공한다. 구체적으로, 본 발명에 따른 방법은,
구리 전구체 및 바인더를 용매에 분산시킨 용액을 제조하는 단계;
상기 용액에 환원제를 첨가한 후 교반하는 단계;
상기 교반 용액을 밀봉 상태에서 가열함으로써 구리 나노와이어 잉크를 제조하는 단계;
상기 구리 나노와이어 잉크를 기판 상에 코팅 및 건조하는 단계; 및
상기 코팅 결과물을 제논 플래쉬 램프로부터 조사된 백색광을 이용하여 광소결시킴으로써 상기 구리 나노와이어 간의 네트워크를 형성하는 단계를 포함한다.
도 2에는 본 발명에 따른 구리 나노와이어 네트워크 제조방법에 대한 개략적인 공정도를 도시하였다. 도 2를 참조하면, 본 발명에 따른 방법은, 먼저 구리 전구체 및 바인더를 용매에 분산시키게 되는 바, 이때 분산을 용이하게 하기 위해서 초음파 분산기, 기계식 교반기, 볼밀 또는 3 롤밀 등의 분산 장치를 사용할 수 있으며, 분산 시간은 5 분 내지 60 분 동안 수행될 수 있다.
다음 단계로, 구리 전구체 및 바인더가 분산된 용액에 환원제를 첨가해 주게 되는데, 환원제 역시 상기 용액 중에 고르게 분산되게 하기 위해서, 25 ℃ 내지 80 ℃의 온도로 1 시간 내지 48 시간 동안 수행될 수 있다.
상기 단계들에 의해서 본 발명에 따른 구리 나노와이어 형성용 조성물이 완성되며, 이를 이용하여 구리 나노와이어를 제조하게 된다. 구리 나노와이어의 제조를 위해서는, 상기 구리 전구체, 바인더 및 환원제가 포함된 용액을 유리병 등에 넣어 밀봉하고 가열해주게 된다. 이러한 밀봉 및 가열 과정을 통해서 구리 전구체로부터 구리 나노와이어가 형성되게 되며, 상기 밀봉 상태에서의 가열 단계는 90 ℃ 내지 120 ℃의 온도로 5 시간 내지 48 시간 동안 수행될 수 있다.
이어서, 구리 나노와이어를 포함하는 잉크가 제조되면 이를 기판 상에 코팅 및 건조하게 된다. 사용되는 기판으로는 투명전극을 제조하기에 적합한 기판이라면 무방하며, 이에 제한되는 것은 아니지만, 폴리에스터 필름, 폴리이미드 필름, 폴리에틸렌 필름, BT 에폭시/유리 섬유, 포토페이퍼, 또는 유리로 된 기판을 사용할 수 있다.
상기 코팅 단계는, 종래 전극 패턴 형성에 사용되는 다양한 코팅법들이 사용될 수 있지만, 본 발명이 고온 및 진공 조건을 요하지 않는 저렴한 방식에 의해서 제조될 수 있다는 장점을 갖는다는 점을 고려하면, 상기 코팅 단계는 스크린 프린팅, 잉크젯 프린팅, 그라뷰어링 (Gravuring), 롤투롤 (roll-to-roll) 코팅, 딥 코팅 (dip coating), 스프레이 코팅, 또는 스핀코팅 등과 같은 경제적인 코팅 방법들에 의해서 수행될 수 있다.
이어서, 코팅된 구리 나노와이어 잉크는 근적외선 램프 또는 핫 플레이트를 사용하여 80 ℃ 내지 100 ℃의 온도에서 5 분 내지 60 분 동안 예열함으로써 용매를 건조시킬 수 있는데, 이러한 건조 단계가 필수적인 것은 아니며, 별도의 건조 단계 수행 없이 추후 광소결 단계 중에서 이러한 건조 과정을 수행할 수도 있다. 이 경우, 추후 광소결 단계는 건조, 예열 및 소결 등 2 단계 또는 3 단계로 나뉘어 순차적으로 진행될 수도 있다.
이어서, 본 발명에서는 구리 나노와이어 사이의 접합을 통해서 구리 나노와이어 네트워크를 형성하기 위한 광소결 단계를 수행하게 된다. 본 발명에서는 약 0.1 ms 내지 100 ms의 매우 짧은 시간에 의해서 완전한 건조 및 소결을 달성할 수 있는 바, 기판 상에 도포된 구리 나노와이어 잉크는 백색광을 발산하는 램프로부터 조사된 극단파 백색광에 의해서 광에너지를 받게 되고, 이에 의해서 광소결됨으로써 구리 나노와이어들 사이에 접합 (welding)이 이루어지게 된다. 결과적으로 구리 나노와이어들 사이에 네트워크가 형성되며, 형성된 네트워크에 의해서 전도성이 크게 증가하게 된다.
예를 들어, 도 3에는 본 발명에서 사용되는 백색광 발산 램프로서 제논 램프를 이용한 극단파 광소결 장치에 대한 개략적인 도면을 도시하였으며, 더불어 기판 상의 구리 나노와이어가 빛 에너지를 받아서 소결됨으로서 접합 전 상태 (1)에서, 접합 후 네트워크 형성을 이루는 상태 (2)로 변화되는 것을 도시하였다.
또한, 도 4a 및 4b에는 본 발명에 따라서 광소결 과정을 진행하였을 경우, 광소결 전후의 구리 나노와이어 상태를 주사전자현미경 (SEM)을 통해서 관찰한 사진을 도시하였으며, 도 5에는 구리 나노와이어의 함량에 따라서 면저항이 감소하는 것을 그래프로 도시하였다. 도 5를 참조하면 동일한 구리 나노와이어 함량을 사용하더라도 소결 전 (흑색선)에 비해서 소결 후 (적색선)의 면저항이 현저하게 감소하였음을 알 수 있고, 결과적으로 전도성이 크게 증가하였음을 알 수 있다.
상기 광소결 단계의 백색광 조사시, 광조사 시간 또는 펄스 폭, 펄스 갭, 펄스 수, 및 빛의 강도가 변화됨에 다라서 구체적인 광소결 조건이 달라지며, 그에 따라 총 광에너지 또는 광강도가 최대 100 J/㎠ 까지 방출된다. 이때, 충분한 광에너지가 조사되어야만 소결이 가능하며, 과도한 광에너지 조사 시에는 기판 및 구리 나노와이어의 손상을 야기하므로 적절한 에너지의 백색광을 조사해 주어야 한다. 광 소결용 구리 나노와이어의 소결을 위한 최적 에너지 범위는 기판에 따라 달라질 수 있는 바, PI 기판의 경우 1 ~ 50 J/㎠, PET 기판의 경우 1 ~ 15 J/㎠, 포토페이퍼 기판의 경우 3 ~ 15 J/㎠, BT 기판의 경우 10 ~ 20 J/㎠ 등으로 다양할 수 있다. 따라서, 본 발명에서 사용이 적합한 기판들의 종류를 고려할 때, 본 발명에서 상기 제논 플래쉬 램프의 광강도는 0.1 J/㎠ 내지 50 J/㎠일 수 있다.
또한, 상기 제논 플래쉬 램프의 광조사 시간은 0.1 ms 내지 10 ms일 수 있으며, 펄스 간격 (pulse gap)은 0.1 ms 내지 20 ms일 수 있고, 펄스 수 (pulse number)는 1 회 내지 100 회일 수 있다.
예를 들어, 본 발명에 따른 구리 나노와이어 네트워크의 제조방법에 있어서, 사용되는 제논 램프의 극단파 백색광 조사 조건에 대한 그래프가 도 6에 도시되어 있으며, 기판 위에 도포된 구리 나노와이어 잉크에 대한 극단파 백색광 조사에 따른 저항의 변화가 도 5에 도시되어 있다. 도 5를 참조하면, 백색광 조사를 통한 광소결 후, 저항이 감소하여 전도성이 향상됨을 확인할 수 있다. 또한, 도 6을 참조하면, 구리 나노와이어의 함량이 증가할수록 저항이 감소하며, 동일한 구리 나노와이어 함량에서는 소결 후가 소결 전에 비해서 그 저항이 감소한다는 사실을 확인할 수 있다.
한편, 도 7에는 구리 나노와이어의 함량에 따른 투명전극의 투명도를 그래프로 도시하였으며, 도 7을 참조하면, 구리 나노와이어의 함량이 증가할수록 투명전극의 투명도는 다소 감소한다는 사실을 알 수 있다. 이는, 도포되는 구리 나노와이어의 양이 증가함에 따라 전도성 구리 나노와이어 네트워크가 보다 촘촘히 형성되기 때문이다. 즉, 구리 나노와이어 네트워크가 촘촘해질수록 전자의 이동도가 증가하여 전도성 (conductivity)은 증가하나, 구리 나노와이어가 빛의 투과를 방해하기 때문에 투과도 (transmittance)는 감소한다. 이러한 효과는 구리 나노와이어의 직경, 길이 및 바인더의 종류에 따라서 달라질 수 있음은 자명하다. 도 8a 내지 8d에는 각각 40 ㎕, 100 ㎕ 및 200 ㎕ 함량의 구리 나노와이어 잉크를 사용하여 광소결을 수행한 이후 사진들, 및 40 ㎕ 함량의 구리 나노와이어 잉크를 사용하여 한양대학교 로고를 투명전극으로 제작한 사진을 도시하였다. 도 8a 내지 8c를 참조하면, 구리 나노와이어 잉크의 양이 증가함에 따라서 투과도는 감소한다는 사실을 알 수 있으며, 도 8d를 참조하면, 우수한 전도성을 보유한 이외에도, 높은 투명도와 낮은 혼탁도를 갖는 투명전극을 산업적 규격에 적합하게 제조할 수 있다는 사실을 알 수 있다.
따라서, 본 발명은 또한 전술한 본 발명에 따른 방법에 의해서 제조된 구리 나노와이어 네트워크를 포함하는 투명전극을 제공하며, 예를 들어 도 5 및 도 7을 참조하면, 본 발명에 따른 구리 나노와이어 투명전극은, 40 ㎕ 함량의 구리 나노와이어 잉크를 사용하여 네트워크를 형성하는 경우, 160/sq의 면 저항값과 560 nm 파장 영역에서 97%의 투과도를 나타낸다. 상기 수치는 투명전극 분야에서, 산업적으로 허용가능한 유용한 포함될 뿐만 아니라, 우수한 전도성을 갖는 투명전극으로 분류될 수 있다. 또한, 본 발명에 따른 광소결된 구리 나노와이어 투명전극은 저렴한 가격으로 대량생산이 가능한 바, 산업적으로 우수한 경쟁력을 갖추고 있다.
이하, 실시예를 통해서 본 발명을 더욱 상세하게 설명하기로 하되, 하기 실시예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명의 범위를 제한하는 것은 아니다.
실시예 1.
증류수 (H2O)를 용매로 하여 0.015 M의 구리 전구체 CuCl2·2H2O와 헥사데실아민 0.058 M 용액을 제조하였다. 제조된 용액을 음파처리기 (sonicator)로 분산시킨 후, 환원제로서 글루코오스 0.028 M을 첨가하였다. 상기 용액을 55 ℃에서 자성 교반기 (magnetic stirrer)를 이용하여 충분히 분산시킨 후, 파라핀 테이프 (paraffin tape)로 밀봉하였다. 용액이 들어있는 밀봉 유리병을 오븐에 넣고 102 ℃에서 6 시간 동안 가열 반응을 수행함으로써, 광소결용 구리 나노와이어를 제조하였다.
다음으로, 상기 용액 중에 합성된 구리 나노와이어를 진공펌프와 필터를 이용하여 얻어낸 후, 딥 코팅 (dip coating)을 통해서 PET 기판에 코팅하였다. 구리 나노와이어가 코팅된 기판을 핫 플레이트로 80 ℃에서 1 시간 동안 건조한 후, 건조된 기판에 제논 플래쉬 램프를 이용하여 강도 10 J/㎠, 펄스 폭 10 ms, 펄스 수 1 회의 펄스 조사조건으로 극단파 백색광을 조사하여 구리 나노와이어들 간의 접합 (welding)을 형성함으로써, 본 발명에 따른 구리 나노와이어 네트워크를 투명전극의 형태로 제조하였다.
실시예 2.
아세톤을 용매로 사용하여 0.02 M의 구리 전구체 Cu(NO3)2·3H20와 헥사데실아민 0.07 M 용액을 제조하였다. 제조된 용액을 음파처리기로 분산시킨 후, 환원제로서 글루코오스 0.035 M을 첨가하였다. 상기 용액을 55 ℃에서 자성 교반기를 이용하여 충분히 분산시킨 후, 파라핀 테이프로 밀봉하였다. 용액이 들어있는 밀봉 유리병을 오븐에 넣고 110 ℃에서 5 시간 동안 가열 반응을 수행함으로써, 광소결용 구리 나노와이어를 제조하였다.
다음으로, 상기 용액 중에 합성된 구리 나노와이어를 진공펌프와 필터를 이용하여 얻어낸 후, 스프레이 코팅 (spray coating)을 통해서 투명 PI 기판에 코팅하였다. 구리 나노와이어가 코팅된 기판을 핫 플레이트로 100 ℃에서 30 분 동안 건조한 후, 건조된 기판에 제논 플래쉬 램프를 이용하여 강도 12.5 J/㎠, 펄스 폭 20 ms, 펄스 수 3 회의 펄스 조사조건으로 극단파 백색광을 조사하여 구리 나노와이어들 간의 접합을 형성함으로써, 본 발명에 따른 구리 나노와이어 네트워크를 투명전극의 형태로 제조하였다.
실시예 3.
디에틸렌 글리콜 (diethylene glycol, DEG)를 용매로 사용하여 0.02 M의 구리 전구체 CuSO4·5H20와 헥사데실아민 0.075 M 용액을 제조하였다. 제조된 용액을 음파처리기로 분산시킨 후, 환원제로서 폴리(N-비닐피롤리돈) (PVP) 0.035 M을 첨가하였다. 상기 용액을 70 ℃에서 자성 교반기를 이용하여 충분히 분산시킨 후, 파라핀 테이프로 밀봉하였다. 용액이 들어있는 밀봉 유리병을 오븐에 넣고 120 ℃에서 5 시간 동안 가열 반응을 수행함으로써, 광소결용 구리 나노와이어를 제조하였다.
다음으로, 상기 용액 중에 합성된 구리 나노와이어를 진공펌프와 필터를 이용하여 얻어낸 후, 롤투롤 (roll-to-roll) 코팅을 통해서 PET 기판에 코팅하였다. 구리 나노와이어가 코팅된 기판을 근적외선 램프로 80 ℃에서 5 분 동안 건조한 후, 건조된 기판에 제논 플래쉬 램프를 이용하여 강도 5 J/㎠, 펄스 폭 10 ms, 펄스 수 1 회의 펄스 조사조건으로 극단파 백색광을 조사하여 구리 나노와이어들 간의 접합을 형성함으로써, 본 발명에 따른 구리 나노와이어 네트워크를 투명전극의 형태로 제조하였다.

Claims (15)

  1. 구리 전구체, 바인더 및 환원제를 포함하는 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물.
  2. 제1항에 있어서,
    상기 구리 전구체는 CuCl2·2H2O, CuCl, CuCl2, Cu(acac)2, Cu(hfac)2, Cu(tfac)2, Cu(dpm)2, Cu(ppm)2, Cu(fod)2, Cu(acim)2, Cu(nona-F)2, Cu(acen)2, Cu(NO3)2·3H20, Cu(C3H4F3O2)2, CuSO4·5H20 또는 그 조합인 것을 특징으로 하는 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물.
  3. 제1항에 있어서,
    상기 바인더는 헥사데실아민 (hexadecylamine, HDA), 옥타데실아민 (octadecylamine, ODA), 에틸렌디아민 (ethylenediamine, EDA), 올레산 (oleic acid), 올레일아민 (oleylamine), 폴리(N-비닐피롤리돈) (poly(N-vinylpyrrolidone), PVP), 폴리비닐알코올 (poly-vinly alcohol, PVA), 폴리비닐부티랄 (poly-vinyl butyral, PVB), 폴리에틸렌글리콜 (polyethylene glycol, PEG), 폴리메틸메타크릴레이트 (polymethylmethacrylate, PMMA), 폴리에틸메타크릴레이트 (polyethylmethacrylate), 폴리아크릴레이트 (polyacrylate), 폴리(메타)아크릴레이트 (poly(metha)acrylate), 덱스트란 (dextran), 포타슘 브롬화물 (potasium bromide), 세트리마이드 (cetyl trimethyl ammonium bromide), 아미노산 (amino acid) 또는 그 조합인 것을 특징으로 하는 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물.
  4. 제1항에 있어서,
    상기 환원제는 글루코오스 (glucose), 암모니아 (ammonia), 하이드라진 (hydrazine), 아스코르브산 (ascorbic acid), 수산화나트륨 (sodium hydroxide), 수산화붕소나트륨 (sodium borohydride), 폴리(N-비닐피롤리돈) (poly(N-vinylpyrrolidone, PVP) 또는 그 조합인 것을 특징으로 하는 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물.
  5. 제1항에 있어서,
    상기 구리 전구체는 상기 조성물 중 0.001 중량% 내지 10 중량%의 함량으로 포함되고, 상기 바인더는 상기 조성물 중 0.01 중량% 내지 30 중량%의 함량으로 포함되며, 상기 환원제는 상기 조성물 중 0.01 중량% 내지 40 중량%의 함량으로 포함되는 것을 특징으로 하는 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물.
  6. 구리 전구체 및 바인더를 용매에 분산시킨 용액을 제조하는 단계;
    상기 용액에 환원제를 첨가한 후 교반하는 단계;
    상기 교반 용액을 밀봉 상태에서 가열함으로써 구리 나노와이어 잉크를 제조하는 단계;
    상기 구리 나노와이어 잉크를 기판 상에 코팅 및 건조하는 단계; 및
    상기 코팅 결과물을 제논 플래쉬 램프로부터 조사된 백색광을 이용하여 광소결시킴으로써 상기 구리 나노와이어 간의 네트워크를 형성하는 단계를 포함하는 구리 나노와이어 네트워크의 제조방법.
  7. 제6항에 있어서,
    상기 구리 전구체 및 바인더를 용매에 분산시키는 단계는 초음파 분산기, 기계식 교반기, 볼밀 또는 3 롤밀을 사용하여 5 분 내지 60 분 동안 수행되는 것을 특징으로 하는 구리 나노와이어 네트워크의 제조방법.
  8. 제6항에 있어서,
    상기 환원제를 첨가한 후 교반하는 단계는 25 ℃ 내지 80 ℃의 온도로 1 시간 내지 48 시간 동안 수행되는 것을 특징으로 하는 구리 나노와이어 네트워크의 제조방법.
  9. 제6항에 있어서,
    상기 밀봉 상태에서의 가열 단계는 90 ℃ 내지 120 ℃의 온도로 5 시간 내지 48 시간 동안 수행되는 것을 특징으로 하는 구리 나노와이어 네트워크의 제조방법.
  10. 제6항에 있어서,
    상기 기판은 폴리에스터 필름, 폴리이미드 필름, 폴리에틸렌 필름, BT 에폭시/유리 섬유, 포토페이퍼, 또는 유리로 된 기판인 것을 특징으로 하는 구리 나노와이어 네트워크의 제조방법.
  11. 제6항에 있어서,
    상기 구리 나노와이어 잉크의 코팅 단계는 스크린 프린팅, 잉크젯 프린팅, 그라뷰어링 (Gravuring), 롤투롤 (roll-to-roll) 코팅, 딥 코팅 (dip coating), 스프레이 코팅, 또는 스핀코팅에 의해서 수행되는 것을 특징으로 하는 구리 나노와이어 네트워크의 제조방법.
  12. 제6항에 있어서,
    상기 광소결 단계는 상기 백색광을 조사하기 이전에, 근적외선 램프 또는 핫 플레이트를 사용하여 80 ℃ 내지 100 ℃의 온도에서 5 분 내지 60 분 동안 예열하는 단계를 더 포함하는 것을 특징으로 하는 구리 나노와이어 네트워크의 제조방법.
  13. 제6항에 있어서,
    상기 제논 플래쉬 램프의 광조사 시간은 0.1 ms 내지 10 ms이고, 펄스 간격 (pulse gap)은 0.1 ms 내지 20 ms이며, 펄스 수 (pulse number)는 1 회 내지 100 회인 것을 특징으로 하는 구리 나노와이어 네트워크의 제조방법.
  14. 제6항에 있어서, 상기 제논 플래쉬 램프의 광강도는 (intensity) 0.1 J/㎠ 내지 50 J/㎠인 것을 특징으로 하는 구리 나노와이어 네트워크의 제조방법.
  15. 제6항 내지 제14항 중 어느 한 항에 따른 방법에 의해서 제조된 구리 나노와이어 네트워크를 포함하는 투명전극.
KR1020150045935A 2015-04-01 2015-04-01 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물, 구리 나노와이어 네트워크의 제조방법 및 이를 포함하는 투명전극 KR20160117905A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020150045935A KR20160117905A (ko) 2015-04-01 2015-04-01 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물, 구리 나노와이어 네트워크의 제조방법 및 이를 포함하는 투명전극
PCT/KR2016/003125 WO2016159609A1 (ko) 2015-04-01 2016-03-28 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물, 구리 나노와이어 네트워크의 제조방법 및 이를 포함하는 투명전극

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150045935A KR20160117905A (ko) 2015-04-01 2015-04-01 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물, 구리 나노와이어 네트워크의 제조방법 및 이를 포함하는 투명전극

Publications (1)

Publication Number Publication Date
KR20160117905A true KR20160117905A (ko) 2016-10-11

Family

ID=57006208

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150045935A KR20160117905A (ko) 2015-04-01 2015-04-01 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물, 구리 나노와이어 네트워크의 제조방법 및 이를 포함하는 투명전극

Country Status (2)

Country Link
KR (1) KR20160117905A (ko)
WO (1) WO2016159609A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190119322A (ko) * 2018-04-12 2019-10-22 인제대학교 산학협력단 펄스 레이저 조사를 이용한 구리 나노 와이어 투명 전도성 전극의 제조방법
KR102282300B1 (ko) * 2020-03-02 2021-07-27 서울대학교산학협력단 귀금속이 코팅된 구리 나노와이어의 제조방법, 이를 포함하는 구리 나노와이어 및 디바이스
KR20230015101A (ko) * 2021-07-22 2023-01-31 메타솔 주식회사 Ipl에 의한 구리 전극의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120132424A (ko) 2011-05-27 2012-12-05 한양대학교 산학협력단 전도성 구리 나노잉크의 광소결 방법
KR20130047243A (ko) 2011-10-31 2013-05-08 한국과학기술원 나노와이어 제조방법, 나노와이어 패턴 형성방법 및 그 방법에 의해 제조된 나노와이어
KR20140044743A (ko) 2012-10-04 2014-04-15 한양대학교 산학협력단 전도성 하이브리드 구리잉크 및 이를 이용한 광소결 방법
KR101465467B1 (ko) 2013-09-13 2014-11-27 영남대학교 산학협력단 마이크로웨이브를 이용한 금속 나노와이어의 제조방법 및 그로부터 제조된 금속 나노와이어

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101073808B1 (ko) * 2008-12-31 2011-10-13 단국대학교 산학협력단 구리 나노선의 제조방법 및 이에 의해 제조된 구리 나노선
EP2510524A4 (en) * 2009-12-07 2014-10-01 Univ Duke COMPOSITIONS AND METHODS FOR GROWING COPPER NANOWLAS
KR101359663B1 (ko) * 2011-05-19 2014-02-07 한양대학교 산학협력단 극단파 백색광 조사법을 이용한 반도체 산화물의 광소결 방법
KR101548671B1 (ko) * 2011-12-08 2015-09-02 한양대학교 산학협력단 극단파 백색광 조사법을 이용한 탄소-금속 산화물 복합체 및 전기화학소자의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120132424A (ko) 2011-05-27 2012-12-05 한양대학교 산학협력단 전도성 구리 나노잉크의 광소결 방법
KR20130047243A (ko) 2011-10-31 2013-05-08 한국과학기술원 나노와이어 제조방법, 나노와이어 패턴 형성방법 및 그 방법에 의해 제조된 나노와이어
KR20140044743A (ko) 2012-10-04 2014-04-15 한양대학교 산학협력단 전도성 하이브리드 구리잉크 및 이를 이용한 광소결 방법
KR101465467B1 (ko) 2013-09-13 2014-11-27 영남대학교 산학협력단 마이크로웨이브를 이용한 금속 나노와이어의 제조방법 및 그로부터 제조된 금속 나노와이어

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190119322A (ko) * 2018-04-12 2019-10-22 인제대학교 산학협력단 펄스 레이저 조사를 이용한 구리 나노 와이어 투명 전도성 전극의 제조방법
KR102282300B1 (ko) * 2020-03-02 2021-07-27 서울대학교산학협력단 귀금속이 코팅된 구리 나노와이어의 제조방법, 이를 포함하는 구리 나노와이어 및 디바이스
KR20230015101A (ko) * 2021-07-22 2023-01-31 메타솔 주식회사 Ipl에 의한 구리 전극의 제조 방법

Also Published As

Publication number Publication date
WO2016159609A1 (ko) 2016-10-06

Similar Documents

Publication Publication Date Title
JP6924789B2 (ja) パターン化された透明導電体の製造方法
TWI655090B (zh) 透明電極及其製造方法
KR102032108B1 (ko) 금속성 나노섬유 잉크, 실질적으로 투명한 전도체, 및 제조 방법
KR102225511B1 (ko) 수성 조성물, 이를 이용한 전도성 박막 제조 방법과 이로부터 제조된 전도성 박막, 및 이를 포함하는 전자 소자
JP5706998B2 (ja) 透明導電性インク及び透明導電パターン形成方法
EP2961801B1 (en) Fused metal nanostructured networks, use of fusing solutions with reducing agents and methods for forming metal networks
JP2021167425A (ja) 融着ネットワークを有する透明導電性フィルムの形成のための金属ナノワイヤーインク
KR101350507B1 (ko) 금속 나노입자를 포함하는 전기전도성 잉크 및 이의 광 소결 방법
US20150030783A1 (en) Method for manufacturing transparent conductive pattern
JP2017033938A (ja) 金属ナノワイヤー含有透明導電膜及びその塗布液
KR102225197B1 (ko) 분산체, 그리고 이것을 이용한 도전성 패턴 구비 구조체의 제조 방법 및 도전성 패턴 구비 구조체
KR20160146714A (ko) 강자성 금속 나노와이어 분산액 및 그의 제조 방법
KR20170037573A (ko) 도전체, 도전성 구조물, 및 이를 포함하는 전자 소자
KR20150107091A (ko) 헤이즈 및 전기전도도가 개선된 은 나노와이어를 이용한 투명 도전체
KR102591112B1 (ko) 금속 산화물 나노시트들의 집단과 그 제조 방법, 및 이를 포함하는 도전체 및 전자 소자
KR20160117905A (ko) 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물, 구리 나노와이어 네트워크의 제조방법 및 이를 포함하는 투명전극
KR102452651B1 (ko) 도전체, 그 제조 방법, 및 이를 포함하는 소자
Tang et al. Fabrication of high-quality copper nanowires flexible transparent conductive electrodes with enhanced mechanical and chemical stability
KR101679144B1 (ko) 탄소나노구조체를 포함하는 광소결에 의한 전도성 구리 패턴 형성용 조성물, 광소결에 의한 전도성 구리 패턴의 제조방법 및 이로부터 제조된 전도성 구리 패턴을 포함하는 전자소자
JP2014179315A (ja) 銀導電膜の製造方法
KR20160037298A (ko) 자외선 조사에 의한 환원법을 이용한 은 나노와이어, 이의 제조방법 및 이를 포함하는 투명 도전성 필름
CN104751940B (zh) 透明导电膜组合物及透明导电膜
CN111416058B (zh) 一种导电薄膜、显示装置和显示装置的制作方法
KR20160059215A (ko) 이형상 투명전극 제조방법
KR20150019993A (ko) 은 나노와이어의 제조방법 및 이를 이용하여 제조된 은 나노와이어

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
E601 Decision to refuse application
E801 Decision on dismissal of amendment